
The Intensional View Environment

Kim Mens
Département d’Ingénierie Informatique

Université catholique de Louvain, Belgium
kim.mens@info.ucl.ac.be

Andy Kellens∗

Programming Technology Lab
Vrije Universiteit Brussel, Belgium

akellens@vub.ac.be

Frédéric Pluquet, Roel Wuyts
Decomp

Université Libre de Bruxelles, Belgium
{frederic.pluquet | roel.wuyts}@ulb.ac.be

Abstract

This paper presents IntensiVE, a tool suite implemented
in Cincom VisualWorks Smalltalk that allows for the docu-
mentation and co-evolution of high-level structural regular-
ities in the source code of a software system.

1 Introduction

The IntensiVE tool suite, which is based on the underly-
ing models of Intensional Views and Intensional Relations,
allows for the documentation of high-level structural regu-
larities in the source code of a software system. It also sup-
ports co-evolution of those regularities with the source code
when either of them evolve. IntensiVE was implemented in
VisualWorks Smalltalk (7.3) and comprises, amongst oth-
ers, the following sub-tools:

• Intensional View Editor
• View Consistency Checker
• Relation Editor
• Relation Checker
• Intensional View Displayer

In the remainder of this paper we describe each of these sub-
tools and how they support the co-evolution of structural
regularities with source code. Along the way we introduce
the underlying concepts of Intensional Views and Relations.

2 The Intensional View Editor

An Intensional View is a set of source-code entities
(classes or methods) which are structurally similar. Instead

∗Ph.D. scholarship funded by the “Institute for the Promotion of Inno-
vation through Science and Technology in Flanders” (IWT Vlaanderen).

of enumerating all elements that make up a view, it is de-
fined by means of an intension: an executable description
which yields, upon evaluation, the set of entities belong-
ing to the view, also called the extension of the view. As
languages in which to describe the intension of a view, our
tools currently supports the logic meta-programming lan-
guage Soul [2] as well as the Smalltalk language.

Figure 1 shows the Intensional View Editor, the main
tool for creating and manipulating views, together with
some structural regularities we documented for Small-
Wiki [3], a Wiki implementation in Smalltalk. On the
screenshot, the left pane shows all defined views (and re-
lations, which we explain in section 4) in a tree representa-
tion. The right hand side shows the Intensional View Editor
opened on a view named ‘Execute Methods’.

This view represents all methods responsible for ex-
ecuting actions on Wiki pages. As can be seen
from the screenshot, the intension for this view is:
methodInProtocol(?entity,action). This query,
written in Soul , binds occurrences of methods in the ‘ac-
tion’ protocol to the free logic variable ?entity. Also no-
tice in the screenshot (left pane) that this view is defined as
a subview of the view containing ‘all SmallWiki methods’.
The semantics of defining a view as subview of another one
is that the intension of the subview is calculated in the con-
text of the parent view. In other words, evaluating the in-
tension of the Execute Methods view results in all methods
which belong to the extension of the view ‘all SmallWiki
methods’ but also to an action method protocol.

To deal with deviating cases in the source code, the tool
also supports the explicit exclusion (resp. inclusion) of an
entity from a view. Figure 1 shows an example of this: the
method listActions, implemented on the Action class
is explicitly excluded it from the view, by putting it in the
‘excludes set’ of the view. Analogously, we have an ‘in-



Views

Relations

Alternatives

Deviations

Intension

Figure 1. The Intensional View Editor at work

cludes set’ of entities that should be included in a view, even
though they do not satisfy the intension.

Intensional Views allow the definition of multiple alter-
native descriptions for the same view. This ability, together
with the requirement of extensional consistency between
those alternatives (explained in the next section), provides
an elegant way of declaring interesting naming and coding
conventions to be respected by the entities of a view.

3 The View Consistency Checker

Fig. 2 shows the View Consistency Checker. This tool
is used to verify that the different alternative descriptions
of a same view are extensionally consistent, meaning that
they all produce the same extension. When this constraint
is violated, the tool provides appropriate feedback on what
entities are in conflict. A developer can use this feedback in
order to fix the inconsistencies.

The tool shows the user a column per alternative descrip-
tion of the view. The first column contains the extension of
the main alternative (by default this is the first alternative of
the view, but double-clicking a column changes the main al-
ternative); the other columns contain the delta between the
extension of the main alternative and the alternative repre-
sented by the column. If an element does not exist in the
main alternative it is coloured green. Elements present in
the main alternative but not in the other are coloured red.

4 The Relation Editor

The Relation Editor allows a user to document relations
between intensional views. Our model currently supports

Default 
alternative

Other 
alternatives

Delta with 
default

Figure 2. The View Consistency Checker

only relations of the canonical form:

Q1 x ∈ Source : Q2 y ∈ Target : x R y

where Q1 and Q2 are either logic quantifiers ∀, ∃, ∃!, @ or
more fuzzy quantifiers1 like some, few, many or most.
Source and Target represent intensional views and R is
a binary predicate over the source-code entities (denoted
by x and y) contained in those views. A simple example
of an intensional relation is that all ‘Execute Methods’ are
implemented by ‘Action Classes’. This relation, opened in
the Relation Editor, is shown in figure 3. Expressed in the
canonical form above, the relation is defined as:

1The fuzzy quantifiers are defined in terms of a minimum or maximum
number of elements for which the condition should hold.



Source Target

Predicate

Quantifiers

Deviations

Figure 3. The Relation Editor at work

∀x∈ ExecuteMethods :

∃!y∈ ActionClasses :

x methodInClass y

Our tool offers two possibilities to define a binary predi-
cate R over source-code entities, in terms of which inten-
sional relations can be expressed. In addition to defining
the predicate directly in Smalltalk the user can opt to use a
Soul predicate (typically using LiCoR, an extensive library
of Soul predicates to reason about source code). Like the
Intensional View Editor, the Relation Editor also supports
the explicit declaration of deviating cases. It allows a user
to specify explicitly tuples of source-code entities to be in-
cluded in or excluded from the relation.

5 The Relation Checker

When pressing the ‘Check’ button in the Relation Editor
(Fig. 3), the validity of a relation with respect to the source
code is checked and the user is presented an instance of the
Relation Checker (Fig. 4). Besides reporting whether the
relation holds, the tool presents the user a list of all tuples
for which the relation is valid as well as some statistics on
how many elements from source and target participate in the
relation. It also lists all entities from the source view which
are not in the domain of the relation as well as all entities
in the target which are not reached by the relation. When
a relation does not succeed, a user can use this information
to determine for which source code entities the documented
relation and the source code are out of sync.

Tuples

Elements from 
Source/Target 
not in Relation

Quantitative 
information

Figure 4. The Relation Checker at work

6 The Intensional View Displayer

The tools listed above support a user in manipulating
(declaring, modifying, renaming, removing, verifying and
saving) intensional views and relations. Our suite also in-
cludes a visualization tool that provides a user with a global
and compact drawing of all defined views and relations. The
Intensional View Displayer is depicted in Fig. 5. For a given
selection of views, the displayer shows all these views, all
their alternative descriptions, all subview relationships and
all intensional relations in which those views take part. The
views are laid out automatically in a hierarchy that reflects
the view nesting, but the layout can be modified and stored
manually.

The visualization tool is defined on top of CodeCrawler



Figure 5. The Intensional View Displayer at work

[1], a reverse engineering tool which combines software
metrics and visualization. This allows us tho use metrics
to highlight important characteristics of intensional views
or relations. For example, a simple metric for a view is the
number of entities contained in its extension. In Fig. 5 this
metric was used as height of the rectangular boxes repre-
senting the views.

The visualization tool also uses colors to distinguish the
different kinds of objects in a drawing. By default, the
name and rectangle of intensional views are drawn in black,
as well as the subview edges (starting with a triangle) and
edges relaying a view with its alternative descriptions (end-
ing with a diamond). The text and rectangle of the alter-
native descriptions are rendered in grey and an option can
be toggled to not render them at all. Finally, edges rep-
resenting intensional relations, together with the relation
name, are drawn in blue. The use of colours can also be
used as a metric, for example to highlight inconsistencies in
the documentation. The ‘View Consistency’ metric, for ex-
ample, calculates the extensional consistency of a view and
draws the view in red when inconsistent. A similar metric
can be applied to the links connecting a view to its alterna-
tives, to indicate what particular alternatives are inconsis-
tent. In a similar way a color metric can be applied to the
intensional relations, so that invalid intensional relations are

highlighted in red. As shown in figure 5, this allows us to
assess the possible inconsistencies between the documenta-
tion and the source-code of the system in a glimpse of the
eye

7 Download

IntensiVE is available under the GNU Lesser General
Public License and can be downloaded from:
http://prog.vub.ac.be/∼akellens/intensive/

References

[1] M. Lanza. Codecrawler: Lessons learned in building a soft-
ware visualization tool. In Proceedings of the 7th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2003), pages 409–418. IEEE Computer Society,
2003.

[2] K. Mens, I. Michiels, and R. Wuyts. Supporting software de-
velopment through declaratively codified programming pat-
terns. Elsevier Journal on Expert Systems with Applications,
23(4):405–431, November 2002.

[3] L. Renggli. Smallwiki - collaborative content management.
2003.


	Introduction
	The Intensional View Editor
	The View Consistency Checker
	The Relation Editor
	The Relation Checker
	The Intensional View Displayer
	Download

