
Co-evolving Code and Design

with Intensional Views — A Case Study

Kim Mens ∗

Département d’Ingénierie Informatique (INGI)
Université catholique de Louvain (UCL)

Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium

Andy Kellens

Departement Informatica (DINF)
Vrije Universiteit Brussel (VUB)

Pleinlaan 2, B-1050 Brussel, Belgium

Frédéric Pluquet Roel Wuyts

Départment d’Informatique
Université Libre de Bruxelles (ULB)

Boulevard du Triomphe - CP212, B-1050 Bruxelles, Belgium

Abstract

Intensional views and relations have been proposed as a way of actively documenting
high-level structural regularities in the source code of a software system. By checking
conformance of these intensional views and relations against the source code, they
supposedly facilitate a variety of software maintenance and evolution tasks. In this
paper, by performing a case study on three different versions of the SmallWiki
application, we critically analyze in how far the model of intensional views and its
current generation of tools provide support for co-evolving high-level design and
source code of a software system.

Key words: Case study, co-evolution, intensional views and relations, SmallWiki.

∗ Corresponding author.
Email addresses: Kim.Mens@info.ucl.ac.be (Kim Mens),

akellens@vub.ac.be (Andy Kellens), fpluquet@yahoo.fr (Frédéric Pluquet),
roel.wuyts@ulb.ac.be (Roel Wuyts).

URLs: http://www.info.ucl.ac.be/∼km (Kim Mens),
http://prog.vub.ac.be/∼akellens/ (Andy Kellens),
http://homepages.ulb.ac.be/∼rowuyts/ (Roel Wuyts).

Pre-print version of the paper accepted for the journal. For a full version, see Elsevier.



1 Introduction

Maintaining the source code of long-lived software systems requires an ade-
quate documentation of their intended design. However, due to their constant
evolution, it is often hard to keep their source code and design synchronized.
This is partly due to the fact that current-day integrative development en-
vironments still focus too much on writing code and too little on supporting
maintenance and evolution tasks [1].

Intensional source-code views and relations [2,3,4,5] have been proposed as
an active documentation technique that addresses some of these problems.
They increase our ability to understand and document the code and its design
by grouping together structurally related source-code entities. They facilitate
software maintenance and evolution, because alternative descriptions of the
same intensional view can be checked for consistency and because relations
between intensional views can be defined and verified against the source code.

In [2] we explained how to codify software architectures by means of inten-
sional source-code views 1 and how to check conformance of those architectures
with the source code. In [3] we proposed intensional views as an intuitive and
lightweight but verifiable means of documenting crosscutting concerns in a
software system. In [4] we discussed how intensional views facilitate a vari-
ety of software understanding, maintenance and evolution tasks. Finally, [5]
emphasized on documenting and verifying high-level relations between inten-
sional views. We also discussed the analogy of testing structural source-code
regularities in a software system by means of intensional views and relations
with testing the behavior of a software system by means of unit tests.

To define and verify intensional views and their relations we built a tool suite
which we called IntensiVE. This ‘Intensional View Environment’ was imple-
mented entirely in and seamlessly integrated with the VisualWorks Smalltalk
development environment and comprises, amongst others, the following tools:

The Intensional View Editor (Fig. 1) allows us to document relevant con-
cerns in the source code in terms of intensional views and to inspect the
source-code entities corresponding to such concerns.

The View Consistency Checker (Fig. 2) allows us to verify consistency
between different alternative descriptions of an intensional view, with re-
spect to the current source-code base, and to provide fine-grained feedback
on the differences between these alternative definitions.

The Relation Editor (Fig. 3) allows us to document high-level relationships
between intensional views, as well as known deviations of these relationships
in the source code.

1 called ‘virtual software classifications’ in that paper



The Relation Checker (Fig. 4) allows us to verify these relations against
the current source code, and provides fine-grained feedback on their validity.

Whereas older versions of these tools have been reported on briefly in [5],
we have recently re-implemented them entirely to improve their efficiency,
persistence and integration with version 2 of the StarBrowser [6], an advanced
source code browser for VisualWorks Smalltalk. In addition to having the
logic query language Soul [7] as underlying language in which to describe the
intensional views and relations, the tools now offer support for using Smalltalk
too as query language to reason about source code. Another novel feature is the
ability to define nested views, which allows us to create context-specific views.
Finally and most importantly, we added support for visualizing intensional
views and relations (see Fig. 5), by relying on CodeCrawler [8], a reverse
engineering tool which combines software metrics and visualization.

The aim of this paper is to perform a critical evaluation of the current gen-
eration of tools, including the new opportunities offered by the visualization
tool, to support co-evolution of high-level design and source-code of a medium-
sized Smalltalk application. The case we selected for this study is SmallWiki
[9], an object-oriented Wiki implementation in Smalltalk. We documented
the intended design of an early version of SmallWiki and observed how this
documentation helped us in better understanding the software and its imple-
mentation structure, as well as in discovering certain structural irregularities
in its source code. Then we verified this design documentation against two
more recent versions of SmallWiki and discovered some interesting ways in
which the source code and its design evolved.

From the experiences gained with this case study, we distilled a list of lessons
learned about the model of intensional views and relations and its associ-
ated tools, in particular on how they support co-evolution of source code and
higher-level design. Amongst others we learned that documenting the design
of a software system with intensional views and relations allowed us not only
to detect interesting structural inconsistencies introduced in the code upon
evolution, but also that the process of documenting itself helped us to bet-
ter understand the source code and how it evolved. A dedicated visualization
which highlights what views and relations have become inconsistent with the
code, proved very useful since it allowed us to readily assess the impact of an
evolution step and locate potential structural problems. Finally, the ability of
using and combining both logic and Smalltalk queries had the advantage that
we could always choose the query language most appropriate to our needs,
that is, the one that yields the most compact and declarative queries.



2 Experimental Setup: SmallWiki

A Wiki is a collaborative web application that allows users to add content, but
also allows anyone to edit the content. SmallWiki [9] is a fully object-oriented
and extensible Wiki framework that was developed entirely in VisualWorks
Smalltalk. As opposed to most other Wiki implementations, which are hard to
adapt, SmallWiki has been designed from the start with extensibility in mind.
It has a clean object-oriented design where all entities that can be stored in web
pages (text, links, tables, lists) are explicitly modelled as objects. Everything
in SmallWiki is designed to be extended: page types, storage mechanism,
actions, security mechanism, web-server, etc. Plug-ins can be shared within
the community and loaded independently of each other into the system.

We decided to use SmallWiki for our case study for several reasons. Because it
is open source, its source code is freely available. Secondly, many versions exist,
from very early versions up until the stable versions that are currently in use at
several places. Thirdly, it is a non-trivial piece of software, yet still manageable
in size and complexity. We studied the following versions of SmallWiki:

Version 1.54 (14-12-2002) was the first internal release of SmallWiki, of-
fering an operational Wiki server with rather limited functionality: only
the rendering and editing of fairly simple Wiki pages was supported. This
version contained 63 classes and 424 methods.

Version 1.90 (15-01-2003) covered only one extra month of development
(thus limiting the risk of having a version that was too drastically different
from the first version studied). Nevertheless, this month represented quite
an active period of development with several releases a day (thus making
it a non-trivial version to study). This version contained 8 more classes (71
in total) but many more methods (633). An important change with respect
to version 1.54 was that in this newer version the methods responsible for
rendering HTML code were refactored.

Version 1.304 (16-11-2003) was chosen because it covered a larger devel-
opment period (almost 1 year) with lots of intermediate versions. This al-
lowed us to study the problem of synchronizing design documentation and
source code over a longer time interval. With 108 classes and 1219 methods,
this version was significantly larger than the previous two.

In order to study the usefulness of intensional views and relations to document
the design structure of an evolving software system, we conducted the following
experiments on the different versions:

(1) We started by codifying the design of version 1.54 and investigated how
this documentation helped us in better understanding the code structure
as well as some of the adopted naming and coding conventions.



(2) We then verified this structural documentation against the more recent
version 1.90 and drew conclusions about how SmallWiki evolved, and
about the consequences of this evolution on the documented structure.

(3) Finally, we verified the documentation against the most recent version
studied (1.304) and observed that the design remained relatively stable,
even after this longer development period.

3 IntensiVE

Before describing our experiments in more detail, in this section we give an
overview of the model of Intensional Views and Relations, together with its as-
sociated tool suite: IntensiVE, or Intensional View Environment. The following
five subsections each focus on one of the major sub-tools of the environment
namely the intensional view editor, the view consistency checker, the relation
editor, the relation checker, and the intensional view displayer. Along the way
we explain the underlying model of intensional views and relations.

3.1 The Intensional View Editor

An Intensional View is a set of source-code entities (classes or methods) which
are structurally similar. Instead of enumerating all elements that make up a
view, it is defined by means of an intension: an executable description which
yields, upon execution, the set of entities belonging to the view, also called
the extension of the view.

The Intensional View Editor (Fig. 1) is our main tool for creating and manipu-
lating views. On the screenshot, the left pane shows all defined views in a tree
representation. The right hand side shows the Intensional View Editor opened
on a view named ‘Execute Methods’. This view groups all methods responsible
for executing actions on Wiki pages. Since all these methods are classified in an
‘action’ method protocol, we provide the following intension for the Execute
Methods view: methodInProtocol(?entity,action). This query, written in the
logic language Soul [7], binds occurrences of methods in the ‘action’ protocol
to the free logic variable ?entity. By convention, the Intensional View Editor
assumes that a logic query has a free variable named ?entity and calculates
the view extension as the accumulation of all bindings to that variable. When
using Smalltalk as query language, it suffices to write a Smalltalk block that
returns a collection. E.g., we can define a view of all SmallWiki classes by
means of a Smalltalk expression SmallWiki allClasses.



Fig. 1. The Intensional View Editor at work

Notice in the screenshot (left pane) that this view is defined as a subview of
the view containing ‘all SmallWiki methods’. The semantics of defining a view
as subview of another one is that the intension of the subview is calculated in
the context of the parent view. In other words, evaluating the intension of the
Execute Methods view results in all methods which belong to the extension
of the view ‘all SmallWiki methods’ but also to an action method protocol.

The tool also supports the explicit exclusion (resp. inclusion) of an entity from
a view. For example, the method listActions, implemented on the Action

class, is part of the computed extension of the Execute Methods view, but
is not really an execute method. Hence we explicitly excluded it from the
view, by putting it in the ‘excludes set’ of the view. Analogously, we have an
‘includes set’ of entities that should be included in a view, even though they
do not satisfy the intension.

Intensional Views allow the definition of multiple alternative descriptions for
the same view. This ability, together with the requirement of extensionally
consistency (explained in the next subsection), provides an elegant way of
declaring interesting naming and coding conventions to be respected by the
entities of a view, as we will see in Section 4.

3.2 The View Consistency Checker

Fig. 2 shows the View Consistency Checker. This tool is used to verify that the
different alternative descriptions of a same view are extensionally consistent,



Fig. 2. The View Consistency Checker at work

meaning that they all produce the same extension. When this constraint is
violated, the tool provides appropriate feedback on what entities are in cause.

To illustrate this consider the Execute Methods view again. In addition to
the intension already described above, we defined an alternative description
based on the observation that the names of all execute methods start with the
string ‘execute’. Fig. 2 shows the result of checking extensional consistency
between these two alternatives of the Execute Methods view. Note that we
checked extensional consistency before having explicitly excluded listActions

from the second alternative of the view. In fact, it was precisely the feedback
from the View Consistency Checker that motivated us to take a look at the
implementation of that method and decide that it was a deviating case.

The tool shows the user a column per alternative description of the view. The
first column contains the extension of the main alternative (by default this
is the first alternative of the view, but double-clicking a column changes the
main alternative); the other columns contain the delta between the extension
of the main alternative and the alternative represented by the column. If an
element does not exist in the main alternative, it is coloured green. Elements
present in the main alternative, but not in the other are displayed in red.

3.3 The Relation Editor

The Relation Editor allows a user to document relations between intensional
views. Our model currently supports only relations of the canonical form:

Q1 x ∈ Source : Q2 y ∈ Target : x R y

where Q1 and Q2 are either logic quantifiers ∀, ∃, ∃!, @ or more fuzzy quanti-



Fig. 3. The Relation Editor at work

fiers 2 like some, few, many or most. Source and Target represent intensional
views and R is a binary predicate over the source-code entities (denoted by x
and y) contained in those views. A simple example of an intensional relation is
that all Execute Methods are implemented by an Action Class (we define this
view in Section 4.1). Fig. 3 shows the Relation Editor opened on this relation.
Expressed in the canonical form above, the relation was defined as:

∀ x ∈ ExecuteMethods : ∃! y ∈ ActionClasses : x methodInClass y

To define a binary predicate R over source-code entities, in terms of which
intensional relations can be defined, our tool offers two possibilities. In addition
to defining the predicate directly in Smalltalk (using a Smalltalk block that
takes two arguments and returns a boolean), the user can opt to use a Soul
predicate (typically using LiCoR, an extensive library of Soul predicates to
reason about source code). For concrete examples we refer to Subsection 4.2.

Like the Intensional View Editor, the Relation Editor supports the explicit
declaration of deviating cases. It allows a user to specify explicitly tuples of
source-code entities to be included in or excluded from the relation.



Fig. 4. The Relation Checker at work

3.4 The Relation Checker

When pressing the ‘Check’ button in the Relation Editor (Fig. 3), the validity
of a relation with respect to the source code is checked and the user is presented
an instance of the Relation Checker (Fig. 4). Besides reporting whether the
relation holds, the tool presents the user a list of all tuples for which the
relation is valid as well as some statistics on how many elements from source
and target participate in the relation. It also lists all entities from the source
view which are not in the domain of the relation as well as all entities in the
target which are not reached by the relation. When a relation does not succeed,
a user can use this information to determine for which source code entities the
documented relation and the source code are no longer synchronized.

3.5 The Intensional View Displayer

All tools above support a user in manipulating (declaring, modifying, renam-
ing, removing, verifying and saving) intensional views and relations. What is
still missing is a visualization tool that provides a user with a global and com-
pact drawing of all defined views and relations (or a relevant subset thereof).
This is the purpose of the Intensional View Displayer depicted in Fig. 5. For
a given selection of views, the displayer shows all these views, all their al-
ternative descriptions, all subview links and all intensional relations in which
those views take part. The views are laid out automatically in a hierarchy that
reflects the view nesting, but the layout can be modified and stored manually.

Since the visualization tool is defined on top of CodeCrawler [8], a reverse en-
gineering tool which combines software metrics and visualization, by making
intelligent use of metrics we can highlight important characteristics of inten-

2 The fuzzy quantifiers are defined in terms of a minimum or maximum number of
elements for which the condition should hold.



Fig. 5. The Intensional View Displayer at work on SmallWiki 1.304

sional views or relations. For example, a simple metric for a view is the number
of entities contained in its extension. In Fig. 5 this metric was used as height of
the rectangular boxes representing the views. For example, we can see that the
view All SmallWiki Classes has many more entities than the Action Classes
view, which is normal because the latter is defined as a subview of the former.

The visualization tool also uses colors to distinguish the different kinds of ob-
jects in a drawing. By default, the name and rectangle of intensional views
are drawn in black, as well as the subview edges (starting with a triangle)
and edges relaying a view with its alternative descriptions (ending with a di-
amond). The text and rectangle of the alternative descriptions are rendered
in grey and an option can be toggled to not render them at all. Finally, edges
representing intensional relations, together with the relation name, are drawn
in blue. What is more interesting is that colors can be used as a metric too, for
example to highlight inconsistencies in the documentation. The ‘View Con-
sistency’ metric, for example, calculates the extensional consistency of a view
and draws the view in red when inconsistent. A similar metric can be applied
to the links connecting a view to its alternatives, to indicate what particular
alternatives are inconsistent. In a similar way a color metric can be applied to
the intensional relations, so that invalid intensional relations are highlighted in
red. E.g., Fig. 5 immediately tells us that the view Outputtable Classes is in-
consistent with some of its alternatives, and that the relation between Classes
Visited and Outputtable Classes is invalid too: they are all colored red.



'Actioned' 
structure
classes

SmallWiki 
classes

Storable 
classes

Action 
classes

Visitor 
classes

Output 
Visitors

Store
Visitors

name is
prefix of

forall existsOne

Component 
classes

Server 
classescalls

ex
ist

s

ex
ist

s

'Structured' 
Action 
classes

Outputable 
classes

subset

Legend :
is subset of nested views (implicit

subset relationship)
is subset of explicitly represented

as intensional relation
<relation name>

intensional relation

subset

Structure 
classes

subset

 all accept
 class of type

all are
accepted
by class

 all accept
 class of type

all are
accepted
by class

Classes 
visited

Fig. 6. Intensional Views and Relations on SmallWiki

4 Experiment 1 (Documenting the structure of SmallWiki 1.54)

Having explained the IntensiVE toolsuite in detail, we now elaborate on the
actual experiments we conducted on SmallWiki. In our first experiment we
tried to document the intended design of SmallWiki version 1.54 and investi-
gated how this documentation helped us in better understanding the imple-
mentation structure as well as some of the naming and coding conventions
that were used. Due to a lack of adequate documentation for this particular
version, the approach we adopted was largely manual. We manually inspected
the code, looking for interesting groups of classes or methods, codified those
groups as intensional views, checked the views against the source code and
further refined them when necessary, inspected the elements of the defined
views to uncover relations with other views (potentially to be defined), etc.

In total, we came up with 17 intensional views, related by 14 nesting rela-
tionships and 16 intensional relations. Figures 6 and 7 summarize all defined
views and relations. Whereas Fig. 6 shows the views containing classes and
their interrelationships, Fig. 7 focusses on views containing methods. Next two
subsections first discuss the views and then the relations between the views.

4.1 Views

All SmallWiki Classes. First of all we defined a view consisting of all
classes in the application under study. This view was codified straightforwardly
by means of a Smalltalk query SmallWiki allClasses. 3

3 Or alternatively using a Soul query classInNamespace(?entity,[SmallWiki]).



SmallWiki 
classes

Action 
classes

Visitor 
classes

Legend :
nested views

are implemented by
<relation name>

intensional relation

Classes 
visited

SmallWiki 
methods

Accept 
methods

Visitor 
methods

all call

calls

some
exists

are
implemented
by

are
implemented
by

Execute 
methods

are
implemented
by

are
implemented
by

Structure 
classes

all
 unders

tan
d

meth
od ca

llin
g

Fig. 7. Relations on SmallWiki method views

To restrict their domain to the SmallWiki classes only, the rest of the views
were defined as subviews of this view. For example, we defined a series of views
corresponding to the important class hierarchies in the code. They were all
defined by means of a Soul query of the form
classInHierarchyOf(?entity,[root class of hierarchy]).

Structure Classes (classes in hierarchy of Structure) represent SmallWiki enti-
ties that can be referred to by a single URL, like a web page.

Component Classes (PageComponent hierarchy) represent the components out
of which a web page can be constructed: text, links, tables, lists, . . .

Visitor Classes (Visitor hierarchy) visit the structure and component classes
and play a crucial role in SmallWiki, e.g. for rendering and storing web pages.

Action Classes (Action hierarchy) model the actions that can be performed on
Wiki pages.

Server Classes (WikiServer hierarchy) represent the different kind of Wiki servers
supported by SmallWiki (version 1.54 only supported Swazoo).

Other views that we defined, mainly by manual code inspection, were:

Visitor methods are all methods implemented in the Visitor class hierarchy
that belong to a visiting method protocol. In Soul this was expressed as:

classInHierarchyOf(?class,[SmallWiki.Visitor]),
methodOfClassInProtocol(?entity,?class,?protocol),
[’visiting*’ match:?protocol]

In fact this is an example of a hybrid query where we use logic to reason about
the code structure and evaluate a Smalltalk expression, parameterized by a logic
variable (this is a particular feature of Soul), to reason about strings.



Accept methods are the methods named accept: and play an important role
in the Visitor design pattern. We defined this view by means of a Soul query
methodWithName(?entity,[#accept:]).

Actioned structure classes We defined the group of all structure classes on
which actions can be performed as a subview of the Structure Classes. They
can be recognized easily because they have a corresponding Action class:

classInViewNamed(?c, ActionClasses),
[’*Action’ match: ?c name],
[(?entity name, ’Action’) = ?c name asString]

Structured action classes Dually we defined the view of action classes for a par-
ticular structure class as a subview of the Action Classes.

Execute methods are responsible for executing different actions on Wiki pages,
such as rendering, saving, canceling and editing. They have in common that
their names start with ‘execute’. We defined this view by means of the intension:
[’execute*’ match: ?entity selector asString]. Because we observed that
the SmallWiki developer(s) consistently adopted the convention to put these
methods in an ‘action’ method protocol, we also defined an alternative inten-
sion: methodInProtocol(?entity,action).

Defining the views above triggered the definition of some more views:

Store Visitors and Output Visitors After having defined the Classes Visited
view we wondered what classes were being visited and for what reason. By in-
specting the Visitor Classes in more detail we learned that in SmallWiki 1.54
there were two main visitors: a ‘store’ visitor and an ‘output’ visitor. We codified
these straightforwardly as subviews of the Visitor Classes view: all Visitor classes
named VisitorStore* or VisitorOutput*, respectively.

Storable Classes and Outputtable Classes We also defined a view represent-
ing the ‘storable’ classes, i.e. classes visited by a Store Visitor, and one represent-
ing the ‘outputtable’ classes, as subviews of Classes Visited. We only show the
definition of the Storable Classes, the one for Outputtable Classes being analo-
gous. We defined the view in terms of the newly defined Store Visitors: the store
visitor classes need to implement a specific method accept<name of class> :
for every class they want to visit. Without divulging all details, the following
hybrid query extracts these visited classes from the names of the Store Visitors:

classInViewNamed(?class,StoreVisitors),
methodWithNameInClass(?method,?selector,?class),
[?selector = (#accept, ?entity name, ’:’) asSymbol]

As a second example of how existing views were reused to gradually refine and
understand the code structure, the definition of the Visitor Classes view triggered
the definition of a view consisting of all classes being visited:



Classes Visited are those classes that can be visited by Visitor Classes. Since
the Visitor design pattern [10] uses a double dispatch protocol where the visited
classes implement an accept method taking a visitor as argument, we defined this
view using the Soul query methodWithNameInClass(?M,[#accept:],?entity).
In addition, since all these accept: methods belonged to a ‘visiting’ method pro-
tocol, as alternative description we used protocolInClass(visiting,?entity).

When checking consistency of this view, we learned that the use of the ‘visiting’
protocol was indeed adhered to in a very disciplined way: all classes implementing
accept: also had a ‘visiting’ method protocol and vice versa. To document this, we
defined the following alternative for the previously discussed Accept Methods view:
methodInProtocol(?entity,visiting).

However, since all alternative descriptions should produce the same extension, this
implied not only that every accept: method belongs to a visiting method pro-
tocol but also that every method in a visiting method protocol is an accept:
method. That constraint was clearly too strong, as we learned when verifying it us-
ing the View Consistency Checker: the Visitor class did not implement an accept:
method, but did contain a few ‘visit’ methods in the visiting protocol. By excluding
the Visitor class from the new alternative, the constraint became valid.

We noticed that there are quite some views (and relations, as we will see in Sub-
section 4.2) in our design documentation that document the Visitor design pattern
[10], even though that specific pattern is quite well known and well understood.
Nevertheless, we decided to document it explicitly because of the crucial role the
pattern plays in the SmallWiki implementation, but more importantly because we
wanted to be able to verify whether the implementation constraints implied by this
pattern remained consistently adhered to in future versions of SmallWiki.

4.2 Relations between intensional views

All relations we identified between intensional views containing classes are sum-
marized in Fig. 6. Dashed lines ending with a triangle represent view nesting. In
addition to those subset relationships we codified some extra subset relationships
between non-nested views:

Classes Visited is subset of Outputtable Classes Not only are all output-
able classes a particular kind of visited classes (which was codified by means
of nesting), in fact all visited classes are outputtable.

Structure Classes is subset of Storable Classes Whereas all visited classes
are outputtable, only a few are storable. On the other hand, all structure classes,
with the notable exception of the abstract superclass Structure itself, were
storable. Since this seemed like a potentially important design contstraint, we
documented it as an intensional relation with an explicit deviation for the excep-
tional case of the Structure class.



Structure Classes is subset of Actioned Structure Classes Although the ‘ac-
tioned’ structure classes were defined as subview of the structure classes, we ob-
served that all structure classes (again with the exception of the class Structure)
were ‘actioned’, i.e. had a corresponding *Action class.

‘Actioned’ Structure Classes versus ‘Structured’ Action Classes This same
observation led us to define the following intensional relation between the ‘Ac-
tioned’ Structure Classes and ‘Structured’ Action Classes :

∀ x ∈ ActionedStructureClasses : ∃! y ∈ StructuredActionClasses :
x has name which is prefix of name of y

where the relation predicate was defined using the following Smalltalk block:

[:class1 :class2 | (class1 name asString),’*’
match: (class2 name asString)]

Next we defined the relationship between the visitors and the visited classes.

Output Visitors all accept class of type Outputtable Classes and
Store Visitors all accept class of type Storable Classes
Because of the double dispatch mechanism used in the visitor design pattern
we know that all visitor classes that can handle a certain type of class need to
implement a specific accept method taking objects of that type as argument. In
particular this holds for the output visitors and outputtable classes, as well as
for the store visitors and storable classes. The (hybrid) Soul predicate in terms
of which we defined these intensional relations is given below. Due to the lack
of static typing in Smalltalk, the predicate relies on the fact that the formal
parameters of the method are named after the expected type.

acceptsClassOfType(?VisitorClass,?VisitedClass) if
methodWithNameInClass(?Method,?Selector,?VisitorClass),
[’accept*’ match:?Selector asString],
argumentOfMethod(?Argument,?Method),
[’*’,(?VisitedClass name asString),’*’ match:?Argument asString]

Outputtable Classes all are accepted by Output Visitors and
Storable Classes all are accepted by Store Visitors
Conversely, all visited classes are supposed to be accepted by at least one visitor
class. In particular this holds for the outputtable classes and output visitors, as
well as for the storable classes and store visitors. The logic predicate in terms of
which this relation is defined, is the inverse of the above:

isAcceptedByClass(?VisitedClass,?VisitorClass) if
acceptsClassOfType(?VisitorClass,?VisitedClass)

We also documented that server classes are invoked by structure classes.



Structure Classes calls Server Classes Since not all server classes need to be
invoked (it suffices to have one server running) and not all structure classes call
the server classes, this intensional relation was defined as
∃ x ∈ StructureClasses : ∃ y ∈ ServerClasses : x classCallsClass y
where x classCallsClass y checks if class x has a method that potentially calls
a method on class y. This predicate was taken from the logic library.

Whereas Fig. 6 focused on views containing classes, Fig. 7 summarizes the relations
between intensional views containing methods. First of all there are the obvious
implementation relationships:

Accept Methods are Implemented By Classes Visited
Execute Methods are Implemented By Action Classes
Visitor Methods are Implemented By Visitor Classes

Other intensional relations which we documented were:

Accept Methods all call Visitor Methods Indeed, the accept: methods all
have the following pattern to call an appropriate method on the visitor:

accept: aVisitor
aVisitor accept<name of class>: self

To express this relation we used a universal quantifier and a predicate method-
CallsMethod which we declared in Smalltalk using the following block:

[:method1 :method2 | method1 sendsSelector:
(method2 compiledMethod selector)]

Visitor Methods some call Visitor Methods This relation codifies the fact
that a visitor method is often implemented in terms of other visitor methods.
For example, quite some of the accept* visitor methods make a self call to the
visit: method. For expressing this intensional relation we used the same predi-
cate as above and a fuzzy quantifier some which requires that the relation is valid
for at least 25% of the elements in its domain.

Structure Classes all understand method calling Execute Methods
Since actions are to be executed on things like web pages, which are represented
by structure classes, we require that all these structure classes understand (at
least one) method that calls an appropriate execute method for actually handling
the actions. For example, the abstract class Structure implements a method
named evaluateActionWithRequest:response: which calls execute on the ap-
propriate action class. We defined this in terms of a logic predicate which we
added to the logic library.



Fig. 8. Intensional views and relations on version 1.90

5 Experiment 2 (Comparing the documentation with SmallWiki 1.90)

In the second experiment we compared the documented design of version 1.54 to
the more recent version 1.90 and tried to understand how SmallWiki evolved, and
what the consequences of this evolution were on the design documentation. To do
so, we loaded the new version and recomputed and visualized all known intensional
views and relations with the Intensional View Displayer. As explained in Subsection
3.5 and illustrated in Fig. 8, all conflicting views and relations were highlighted in
red. We inspected the conflicts and tried to understand the discovered problems.

Inconsistent views

Storable Classes became inconsistent because of an explicit deviation in the third
alternative that was no longer needed. More precisely, we originally documented
that all Storable Classes except the Document class were Structure Classes. In
version 1.90, the system had been refactored such that the Document class was
moved to another hierarchy. We updated the design documentation by removing
the deviation.

Invalid relations

Structure Classes all understand method calling Execute Methods
failed because in SmallWiki 1.54 the execute methods were being abused to render
web pages in HTML format. In the newer and cleaner version, page rendering was
performed by separate rendering methods. The only remaining purpose of the
execute methods was to dispatch action requests to more appropriate methods



depending on the action to be taken. Hence the invalid relation highlighted an
interesting restructuring of the application. To update the documentation we did
two things:

(1) we documented the dispatching mechanism by defining an intensional relation
which required the execute methods to make a self call to a more specific
execute* method (where * is a non-empty string). E.g., the method execute
on class ChapterEdit calls either executeCancel or executeSave if the
corresponding button was selected and performs an executeEdit otherwise;

(2) we documented that the execute methods were not allowed to send mes-
sages to the instance variable named html (which was typically the way how
rendering was being done).

After having done so we still found a few violations against these new constraints
but did not codify them as explicit deviations, since we wanted to emphasize that
they were real design conflicts that should be fixed in a new version of the code.

Structure Classes is subset of Storable Classes failed because of the addi-
tion of two new intermediate superclasses. We defined these two classes as devi-
ating cases of the relation.

Comparing view sizes

Using the Intensional View Displayer, we compared the size of all views on version
1.54 with those on version 1.90. We wanted to find out if and where there were
important differences in size, as these may indicate potential problems. We did this
by using the Intensional View Displayer and choosing the number of entities in the
extension as height of the view. There didn’t appear to be any real problems except
for the Actioned Structure Classes view and its dual view the Structured Action
Classes which both became empty. When trying to understand the reason we found
out that the view definition needed refinement. The introduction of some interme-
diate classes in version 1.90 forced us to use the classInHierarchyOf predicate
instead of subclassOf.

Newly introduced views and relations

Because of the restructuring of the code in version 1.90, we needed to add one new
view and one new relation:

Rendering Methods. The restructuring of the Execute Methods made us decide
to define a new intensional view grouping all Rendering Methods.

Execute Methods call Rendering Methods The restructuring caused the re-
sponsibility of rendering web pages to be shifted from the execute methods to the
rendering methods, but rendering was still triggered by the execute methods.



6 Experiment 3 (Verifying the design structure of SmallWiki 1.304)

In the third and last experiment we reverified our design documentation on yet a
more recent version of SmallWiki (the one visually represented in Fig. 5) and drew
conclusions about the usefulness of intensional views and relations to document
the design structure of an evolving software system over a longer development pe-
riod. Again, the design documentation appeared to be quite stable, but nevertheless
we discovered some interesting inconsistent views and invalid relations, which are
discussed next. We also compared the view sizes with those on the previous version.

Inconsistent Views

Outputtable Classes became inconsistent because of the addition of four new
classes. Instead of having a specialized accept* method like the other Outputtable
Classes (and as expected by the view definition), these classes delegated their
accept method to a more general one. We solved this by refining the view such
that it is declared as the conjunction of the classes with a specialized accept
method together with the classes that delegate their accept method.

Storable Classes became inconsistent, as can be seen from Fig. 5, for the same
reasons as the Outputtable classes view. By redefining this view in an analo-
gous way, the consistency of this view was restored.

Execute Methods is no longer consistent because some coding conventions were
not adhered to consistently in this version: there were two ‘execute’ methods that
were not implemented in the correct protocol, and there were two other methods
that were in the right protocol but did not start with the string ‘execute’. To fix
the problem the former just needed to be moved to the correct protocol whereas
the latter either needed to be renamed or put in a more appropriate protocol.

Invalid Relations

Structure Classes is subset of Storable Classes and
Classes Visited is subset of Outputtable Classes failed because of the
failure of the Storable Classes and Outputtable classes views, as discussed above.
After fixing these views, these relations became valid again.

Storable Classes are all accepted by Store Visitors failed since the argument
of the accept method on LinkInternalVisitor was called ‘anInternalLink’ in-
stead of on the expected ‘aLinkInternal’. (Remember that the predicate defi-
nition relied on the fact that the argument names respected a particular naming
convention.) We fixed this problem by renaming the argument.

Store Visitors all accept class of type Storable Classes failed due to the ad-
dition of new storable classes which were not taken into account by the Storable
Classes view. We solved this conflict by extending the Storable Classes view.



Output Visitors all accept class of type Outputtable Classes failed because
in the original version of this intensional relation we documented the classes
AnObsoleteVisitorOutput and AnObsoleteVisitorHtml as explicit deviations
of the relation. These classes however were removed from the code between ex-
periment 2 and 3 and thus caused this relation to fail. This was fixed by removing
the deviating cases from the documentation again.

Comparing view sizes

We compared the sizes of the (extension of the) intensional views on version 1.90
with those on version 1.304 and observed two important differences: the number of
Action Classes almost doubled (from 13 to 25), because more functionality had been
added to SmallWiki, whereas the number of Execute Methods further diminished
from 23 to 14, illustrating the continued migration from the old style of execute
methods to those using the visitor pattern.

7 Critical analysis and lessons learned

In this section, based on our experiences gained with the SmallWiki case, we perform
a critical analysis of the current generation of tools — including the new opportu-
nities offered by the visualization tool — and of the underlying model of intensional
views and relations, to support co-evolution of high-level design and source code of
a medium-sized Smalltalk application.

Deviations The experiments illustrated the importance of being able to define
explicit deviations (inclusions and exclusions) to intensional views and relations.
This happened when the implementation should have adhered to an intension
or relation, but for various reasons did not. Typically, this either indicated an
opportunity to refactor the code, or to refine an intension that was expressed too
broadly. In either case it was useful to document the deviating cases explicitly.
When eventually fixing the code or intension and reverifying consistency, the tool
would issue warnings about deviations that had become obsolete, confirming us
that the exceptional case had indeed been solved, at which point we could safely
remove the corresponding deviation.

Completeness Although intensional views and relations allowed us to express and
verify interesting structural constraints about the source code, the obtained design
documentation was by no means complete. For example, it could prove useful to
complement this design documentation with more dynamic information produced
by other tools.

Static versus dynamic information Indeed, both query languages supported
by our tool (Soul and Smalltalk) allowed us to define views and relations which
reason about the static structure of a system only. Although we did not experi-
ence the lack of dynamic information as a severe hindrance while documenting the



design of SmallWiki, we do agree that this restriction may prohibit us in docu-
menting some interesting design constraints. For instance, the concept of a layered
architecture is very hard to express without the use of dynamic information.

Incremental approach In our experiment, we adopted an incremental approach
to document SmallWiki. Starting from a minimal working knowledge about the
case, we gradually refined and documented our knowledge about the system by
alternating manual code inspection with the definition of views and relations and
verifying them against the source code. The tools helped us in codifying and
testing our assumptions about the code structure and in finding out where the
assumptions were (or became) invalid and why. This incremental approach not
only allowed us to obtain a fine-grained documentation of the structure of Small-
Wiki, but at the same time helped us in obtaining a better comprehension of the
system’s implementation. In addition, we observed that verifying the documen-
tation against newer versions of the code often provided us with valuable insights
in how the application’s design evolved.

Co-evolution The goal of the IntensiVE toolsuite is to support co-evolution of
code and design documentation. To this end, our tools support the detection
of structural conflicts between documentation and code, when either of them
have evolved. We can discriminate between two kinds of conflicts. A first kind of
conflict is when the documentation is conceptually correct, but some parts in the
code violate it. This can happen when an actual bug was introduced in the code
(e.g., removing a method that is being relied on) or when a certain naming or
coding convention (e.g., putting a method in the wrong protocol) or architectural
constraint was violated (e.g., adding a class that can be visited but does not
implement the appropriate methods). In order to fix these conflicts, the code
needs to be adapted. The other kind of conflicts that may occur are caused by
code restructurings that affect the original design documentation. Such conflicts
typically need to be solved by modifying the design documentation, i.e. adapting
the views and relations.

Perhaps surprisingly, the majority of conflicts we detected were of the second
kind, i.e. they were caused by code restructurings of SmallWiki. Indeed, over the
different versions of SmallWiki, the source code was often restructured in order
to improve the design of the application. A possible explanation for the fact that
we did not discover many conflicts of the first kind is that we did not apply the
documentation to a system under development, but rather applied it ‘a posteriori’
to versions of SmallWiki which had already been released and tested.

Visualization One of the most recent additions to IntensiVE is the visualization
tool. By making good use of the underlying CodeCrawler tool, we could use it
not only to display the declared views and relations, but also to highlight incon-
sistent views and relations and to help us assess the impact of an evolution of the
system. Using the CodeCrawler integration, with an appropriate metric we could
for instance visualize the size of the views and the cardinality of the differences
between the various alternatives of a view. This was a significant improvement
over earlier versions of our tools where we had to manually inspect all views and
relations in order to get an idea of the impact of evolution on the documentation.



A downside of using the visualization was that, when the number of views and
relations increased, the visual representation became cluttered. A pragmatical
solution to this problem was to visualize only a selection of views and relations.

Choice of query language An interesting question when using IntensiVE is what
query language to select. When defining an intensional view or relation, should
we prefer logic queries over Smalltalk queries, or perhaps prefer hybrid queries?
The rule of thumb we adopted was to always choose the language that best suited
our needs, that is, the language in which we could express the query or predicate
in the most compact, yet still declarative way. In practice, it often turned out
that a hybrid query was most appropriate. For example, we could have defined
the Structured Action Classes view by means of a logic query:

classWithName(?entity,?ename),
endsWith(?ename,[’Action’]),
classInViewNamed(?c,StructureClasses),
classWithName(?c,?cname),
equals([?cname, ’Action’], [?ename asString])

By using a mixture of logic and Smalltalk code, however, we could write the query
much more compactly, by doing the string pattern matching in Smalltalk and the
reasoning about the code structure in logic:

[’*Action’ match: ?entity name],
subclassOf(?c, [SmallWiki.Structure]),
[(?c name, ’Action’) = ?entity name asString]

In an extreme case this even resulted in a hybrid query which took 4 lines of code,
while the same query, written down in Smalltalk took 17 lines.

Nevertheless, without going in the technical details, when using IntensiVE we did
occasionally notice some limitations when trying to mix queries and predicates
defined in the different languages. To solve these limitations, a better integration
and symbiosis of the logic and Smalltalk query languages and libraries is required
(like the one proposed in [11]).

Is logic programming needed? On the other hand, none of the declared views
or relations in this case study required the full power offered by our logic pro-
gramming language Soul. Hence we could probably use a less expressive but faster
query mechanism like SmallLint [12], and still be able to codify the same views.
But then we would also loose the abstraction facilities offered by our logic pro-
gramming language, as well as its logic library containing an extensive set of
predicates to reason about Smalltalk source code.

8 Conclusion

This paper investigated how the model of intensional views and relations and the
IntensiVE toolsuite can be used to support co-evolution of source code and design of



a software system. The evaluation was done by documenting the design of an early
version of SmallWiki and checking this documentation against two more recent
versions of SmallWiki. Doing these experiments we observed that:

• Although building a first version of the design documentation of an unknown
system remains a largely manual process, the incremental nature of the approach,
combined with tool support to verify and visualize conformance of the design
against the code, helps us in understanding the code and its structure.

• Once the design of a system has been documented with intensional views and
relations, conformance of this design against other versions can be checked and
visualized. Even by simply reverifying the defined views and relations on another
version of the software, we gain useful insights on how the software evolved.

• Visualization of high-level design documentation is useful and important, espe-
cially when combined with advanced metrics and coloring to highlight potential
inconsistencies. In a glimpse of the eye it is possible to get an overview of the
design, and assess whether it conforms to the code, and where not.

• Being able to use different query languages to express views and relations is
important. It means that the language most appropriate to express certain kinds
of information can be chosen. At the same time it reduces the learning cost of the
approach: someone not proficient with logic programming can start with simple
Smalltalk queries and gradually learn to use the logic language and library. A
good integration and symbiosis of the query languages and libraries is essential,
however.

Overall, despite some minor limitations of the environment, the IntensiVE toolsuite
supported us quite well in documenting the high-level structure of SmallWiki and
keeping it synchronized with the code as it evolved, while at the same time providing
us with useful insights on how the code structure evolved over time.

Acknowledgements

Andy Kellens is funded by a PhD scholarship of the ”Institute for the Promotion
of Innovation through Science and Technology in Flanders” (IWT Vlaanderen).

References

[1] A. J. Ko, H. H. Aung, B. A. Myers, Eliciting design requirements for
maintenance-oriented ides: A detailed study of corrective and perfective
maintenance, in: Proceedings of the International Conference on Software
Engineering ICSE’2005, IEEE Computer Society, 2005, pp. 126–135.



[2] K. Mens, R. Wuyts, T. D’Hondt, Declaratively codifying software architectures
using virtual software classifications, in: Proceedings of TOOLS Europe 1999,
IEEE Computer Society Press, 1999, pp. 33–45, TOOLS 29 — Technology of
Object-Oriented Languages and Systems, Nancy, France, June 7-10.

[3] K. Mens, T. Mens, M. Wermelinger, Maintaining software through intentional
source-code views, in: Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE’02), ACM Press, 2002, pp.
289–296.

[4] K. Mens, B. Poll, S. González, Using intentional source-code views to aid
software maintenance, in: Proceedings of the International Conference on
Software Maintenance (ICSM’03), IEEE Computer Society Press, 2003, pp.
169–178.

[5] K. Mens, A. Kellens, Towards a framework for testing structural source code
regularities, submitted to ISCM 2005.

[6] R. Wuyts, S. Ducasse, Unanticipated integration of development tools using the
classification model, Computer Languages, Systems and Structures 30 (1-2).

[7] K. Mens, I. Michiels, R. Wuyts, Supporting software development through
declaratively codified programming patterns, Elsevier Journal on Expert
Systems with Applications 23 (4) (2002) 405–431.

[8] M. Lanza, Codecrawler: Lessons learned in building a software visualization
tool, in: Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (CSMR 2003), IEEE Computer Society, 2003, pp. 409–418.

[9] L. Renggli, Collaborative web : Under the cover, Master’s thesis, University of
Berne (2005).

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Languages and Systems, Addisson-Wesley, 1994.

[11] K. Gybels, Soul and smalltalk - just married: Evolution of the interaction
between a logic and an object-oriented language towards symbiosis, in:
Proceedings of the Workshop on Declarative Programming in the Context of
Object-Oriented Languages, 2003.

[12] D. Roberts, J. Brant, R. Johnson, B. Opdyke, An Automated Refactoring Tool,
in: Proceedings of ICAST 1996, Chicago, IL, 1996.


	Introduction
	Experimental Setup: SmallWiki
	IntensiVE
	The Intensional View Editor
	The View Consistency Checker
	The Relation Editor
	The Relation Checker
	The Intensional View Displayer

	Experiment 1 (Documenting the structure of SmallWiki 1.54)
	Views
	Relations between intensional views

	Experiment 2 (Comparing the documentation with SmallWiki 1.90)
	Experiment 3 (Verifying the design structure of SmallWiki 1.304)
	Critical analysis and lessons learned
	Conclusion
	References

