
Towards a Framework for
Testing Structural Source-Code Regularities

Kim Mens
Département d’Ingénierie Informatique

Université catholique de Louvain
Place Sainte Barbe, 2

B-1348 Louvain-la-Neuve, Belgium
kim.mens@info.ucl.ac.be

Andy Kellens∗

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2
B-1050 Brussels, Belgium

akellens@vub.ac.be

Abstract

As size and complexity of software systems increase, pre-
serving the design and specification of their implementation
structure gains importance in order to maintain the evolv-
ability of the system. However, due to constant changes, the
implementation structure and its documentation tend to di-
lute over time. Building on the underlying models of inten-
sional views and intensional relations, our IntensiVE tool-
suite helps a developer in documenting structural source-
code regularities, verifying them and offering fine-grained
feedback when the code does not satisfy those regularities.

Keywords: structural source-code regularities, intensional views
and relations, design documentation, automated conformance
checking, maintenance and evolution, tool support.

1 Introduction

Due to changing requirements, bug-fixes or adoption of
new technology, software systems constantly evolve. The
ever increasing size and complexity of software however
renders the task of evolving a software system a non-trivial
one, making it imperative for the design documentation
and implementation structure of the system to be up to
date and explicitly known to developers and maintainers.
Unfortunately, the quality of the structure and documen-
tation of the system tend to decay over time, thus hav-
ing a negative impact on the overall maintainability of the
system. To alleviate this problem, we developed the In-
tensiVE toolsuite, based on the underlying model of in-
tensional views [6] and relations. It allows for the docu-
mentation of structural source-code regularities, like nam-

∗Ph.D. scholarship funded by the “Institute for the Promotion of Inno-
vation through Science and Technology in Flanders” (IWT Vlaanderen).

ing conventions, programming conventions and structural
dependencies, that are shared by multiple source-code en-
tities (classes, methods, packages) spread throughout the
program. More importantly, the toolsuite offers support to
verify conformance of that documentation to the implemen-
tation and to provide fine-grained feedback when inconsis-
tencies between documentation and implementation are dis-
covered.

2 Intensional Views

We explain the model of intensional views using the Vis-
itor design pattern [2]. The Visitor is an object-oriented de-
sign pattern that can be applied to implement a variety of
different operations on a hierarchy of elements, while keep-
ing the operations’ implementation independent of the ele-
ment hierarchy. The pattern is implemented by providing,
on all classes of the element hierarchy, an accept method
which takes as argument an instance of a visitor class (rep-
resenting the operation to be carried out on the elements)
and which calls a corresponding visit method defined on
the visitor class, using a so-called “double-dispatch” proto-
col. [2]

An intensional source-code view, or intensional view for
short, is a set of source-code entities (e.g., classes, meth-
ods) that share an arbitrary, but well-defined structural prop-
erty. Instead of defining such a set by explicitly enumerat-
ing all of its elements, it is defined by specifying an inten-
sion: an executable description which codifies the common-
alities of all entities belonging to the view. The intension
of a view is described in Soul [5], a dedicated logic pro-
gramming language that can query and reason about object-
oriented (Smalltalk) source code. Evaluating a view’s in-
tension produces its extension: the set of entities that sat-
isfy the description. Fig. 1 shows the extension of two sim-
ple intensional views on the Visitor example: the Accept



Methods view which groups all accept methods and the
Visit Methods view which groups all methods whose name
start with ‘visit’ and which are implemented on a subclass
of AbstractVisitor. (The alternative Accept Methods
view and barred method are explained below.)

ElementA.accept:
ElementB.accept:

Accept Methods (alternative)

Visitor1.visitElementA:
Visitor2.visitElementA:
Visitor1.visitElementB:
Visitor2.visitElementB:

Visit Methods

AbstractElement.accept:
ElementA.accept:
ElementB.accept:

Accept Methods (default)

Figure 1. Two views on the Visitor

The model of intensional views also supports the defini-
tion of multiple, alternative intensions for the same view,
one of which is called the default alternative. We can think
of two different intensions for the Accept Methods view:

1. All methods named ‘accept’ taking a single parameter;

2. All methods implemented by a subclass of
AbstractElement which perform a double
dispatch.

When specifying multiple alternatives for a view we require
them to be extensionally consistent: upon evaluation of its
intension, each alternative should yield the same extension.

Fig. 1 shows the extensions of both alternatives of the
Accept Methods view. Notice that the two alternatives
above are not extensionally consistent. Alternative 1 is
more general: it includes an abstract accept method which
does not satisfy alternative 2, since an abstract method has
no implementation. To deal with conflicting cases like
these, our model supports the annotation of each alterna-
tive with an inclusion and exclusion set which allow users
to indicate explicitly what entities need to be included, re-
spectively excluded, from the extension produced by that
alternative. For example, we make the two alternatives
above extensionally consistent, by excluding the conflict-
ing abstract method from alternative 1. We depicted this
in Fig. 1 by barring that method. The requirement of ex-
tensional consistency allows us to express some interesting
structural source-code regularities, and the inclusion and
exclusion sets allow us to document explicitly what source-
code entities do not satisfy such regularities.

3 Intensional Relations

Intensional relations are binary relations between inten-
sional views of the following canonical form:

Q1 x ∈ V1 : Q2 y ∈ V2 : x R y

where Q1 and Q2 are logic quantifiers ∀, ∃, ∃! or @; V1 and
V2 are intensional views and R is a binary relation over
the source-code entities (denoted by x and y) contained
in those views. For example, in the Visitor pattern an
important intensional relation holds between the Accept
Methods view and the Visit Methods: every accept method
calls a corresponding visit method. Formally, we have:

∀x ∈ Accept Methods :
∃!y ∈ Visit Methods : (1)

x methodDoesSend y

where x methodDoesSend y is a binary relation over
source-code entities that holds when x and y are methods
and x sends a message to y.

What actual source-code relations R are supported and
how they are implemented depends on the chosen query lan-
guage. In our logic meta-programming language Soul [5],
we can use as relation R any binary predicate provided by
LiCoR, a library of predicates for reasoning about static
source-code dependencies like method implementations,
message sending, and so on.

4 Using IntensiVE to codify and test struc-
tural source-code regularities

Using a concrete instantiation of the Visitor design pat-
tern in a Smalltalk program as an example, we now explain
how our IntensiVE toolsuite supports a software engineer
in documenting structural regularities and co-evolving this
documentation with the source code. For more information
on IntensiVE we refer to [3]. For a larger case study, we
refer to [4].

Codifying structural regularities

When coding, a software developer often takes important
decisions about the program structure. When trying to un-
derstand a program a software engineer makes a mental pic-
ture of the program’s structure. In either case, there is a
need to store this knowledge explicitly, so that the knowl-
edge does not get lost, so that it can be communicated to
others, and so that it can be checked whether the code con-
forms to that knowledge, or found out where it does not.

The IntensiVE toolsuite enables a software developer
to document explicitly, and incrementally, the structural



regularities in a program. Whenever a developer discovers
a structurally relevant group of source-code entities or a
structural relationship between such groups, he can try to
codify it as an intensional view or intensional relation,
respectively. E.g., in the Visitor pattern, knowing that all
Accept Methods are structurally similar, we group all these
methods in an intensional view, as explained in Section 2.

The following SOUL query describes the default in-
tension of the Accept Methods view:

classInHierarchyOf(?c,[AbstractTerm]),
methodWithNameInClass(?entity,[#accept:],?c)

This logic query declares that a source-code ?entity is
part of the view if it is a method named accept: imple-
mented on a class in the AbstractTerm class hierarchy
(the element hierarchy of the Visitor pattern).

Having defined this intensional view, we inspect it
in more detail by exploring its extension, and discover
that, with the notable exception of the abstract accept:
method defined on AbstractTerm, all methods in this
view have exactly the same format:

accept: aVisitor
ˆaVisit visit<name>: self

where <name> is the name of the class implementing the
method. Since this “double dispatch” protocol is an impor-
tant coding convention we decide to encode it as follows:

1. We explicitly exclude the accept: method on
AbstractTerm from the default intension, as it has
no concrete implementation.

2. We define an alternative intension specifying that all
methods in the view have the above format.

3. We define a new intensional view Visit Methods that
groups all the visit methods.

4. We explicitly codify the intensional relation (1) which
states that every accept method calls a visit method.

Check conformance

Whenever we have documented some structural source-
code regularities, we can use our toolsuite to check whether
the source code actually conforms to those regularities. The
two main mechanisms for doing so are: (a) defining mul-
tiple alternative intensions of a view and verifying exten-
sional consistency among those alternatives, and (b) defin-
ing and verifying intensional relations between views.

If the conformance check succeeds, we know that we
have correctly documented a structural regularity. If the
check fails, more fine-grained information about what went
wrong will be produced, as we will see in Subsection 4. In
that case, there are basically three different ways in which a
software developer can solve the problem:

1. When the codified regularities were not entirely correct
or not sufficiently precise, he can refine the intensional
views and relations that document these structural reg-
ularities, using the same tools as before ;

2. When the codified regularities were conceptually cor-
rect but the source code does not consistently satisfy
these regularities, the developer may wish to restruc-
ture the source code so that it does. After having mod-
ified the code, he can recheck the regularity.

3. When the developer lacks sufficient knowledge to
modify the code immediately, he can explicitly anno-
tate the inconsistencies as ‘known deviations’.

We experienced that in practice strategy 3 is often useful
as a temporary fix when we get in trouble with strategy 1
or 2. Of course we should return to those strategies later to
get to the heart of the problem and remove the documented
deviations.

Co-evolution of source code and structure

In order for a software developer to modify the source code
or the declared structural regularities in such a way that
both become or remain consistent, it is imperative that he
receives fine-grained feedback on where the source code vi-
olates the regularities. The IntensiVE toolsuite contains two
dedicated tools that provide such fine-grained feedback.

Figure 2. The View Inspector

The View Inspector (Fig. 2) is launched whenever
checking extensional consistency of a view fails. The first
column lists all source-code entities that satisfy the de-
fault intension of the view. The other columns1 show the
delta between the default intension and each of the alter-
native intensions. When applied to the Accept Methods
view, we discovered a method named accept: on class
MultiPartFunctor which satisfied the default inten-
sion but not the alternative one. We discuss later how we
solved this inconsistency.

1In Fig. 2 there are only 2 columns but in general there are as many
columns as there are alternative views.



Figure 3. The Relation Inspector

The Relation Inspector (Fig. 3) is launched whenever
an intensional relation is checked. In addition to indicat-
ing whether the relation succeeded, it shows all tuples of
source-code entities for which the relation predicate, in
terms of which the relation is defined, holds. Those enti-
ties in either the source or target view which do not appear
in any tuple are indicated in the bottom two panes. The
amount and percentage of entities in both the source and
target view that participate in the relation are also shown.

When applying the Relation Editor on the ‘call’ relation
(1) between Accept Methods and View Methods (Fig. 3),
we learned that the relation failed because the method
accept:, implemented by the MultiPartFunctor
did not call a visit method. This is the same method that
caused the extensional consistency of the Accept Methods
to fail. When inspecting the code of that method we saw
that it is in fact an abstract method. We explicitly exclude it
from the default alternative of the Accept Methods view,
just like we did with the abstract accept: method on
AbstractTerm, which resolved both inconsistencies.

Methodological aspects

Although we explained each of the above activities sep-
arately, we do not regard them as separate activities that
should be performed sequentially. Rather, we see them as
part of an incremental and iterative process where docu-
mentation, conformance checking and co-evolution of the
structural regularities are strongly intertwined.

We purposefully designed IntensiVE as a non-coercive
set of tools in a software developer’s toolbox. It is the de-
veloper who decides whether, when and how to use them.
Based on our experience with IntensiVE we advocate an
incremental and iterative methodology which bears some
ressemblance with XP testing [1]:

• Intensional views and relations document important
structural constraints and dependencies in the source

code. The developer documents, checks and refines
these structural regularities by need, whenever he feels
there is a need to do so.

• The documented regularities are relatively isolated:
every intensional view can be checked independently
for extensional consistency, and every intensional rela-
tion can be verified independently of any other. Modi-
fying a view, however, may invalidate some of the in-
tensional relations in which it participates directly.

• Documenting and checking the structural regularities
helps us in better understanding the source-code struc-
ture and at a same time give us confidence that the soft-
ware is structured as desired.

• Even though it may require some insight to correctly
define an intensional view or relation, our IntensiVE
toolsuite has been designed as a lightweight set of tools
that are seamlessly integrated with the development
environment and that incite developers to document
structural regularities and check them frequently.

5 Summary

In this paper we demonstrated a methodology similar to
XP testing for documenting structural regularities in source
code, supported by our IntensiVE toolsuite. To illustrate the
approach, we documented an instance of the Visitor design
pattern and demonstrated how our tools help in co-evolving
the documentation and implementation of the pattern.

References

[1] K. Beck. Extreme programming eXplained : embrace change.
Addison-Wesley, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Languages
and Systems. Addisson-Wesley, 1994.

[3] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. The inten-
sional view environment. In Proceedings of Industrial Ap-
plication and Tool Demostration papers of the International
Conference on Software Maintenance ICSM 2005, 2005.

[4] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views - a case study. Elsevier
Journal on Computer Languages, Systems & Structures, 2006
(to appear).

[5] K. Mens, I. Michiels, and R. Wuyts. Supporting software de-
velopment through declaratively codified programming pat-
terns. Elsevier Journal on Expert Systems with Applications,
23(4):405–431, November 2002.

[6] K. Mens, B. Poll, and S. González. Using intentional source-
code views to aid software maintenance. In Proceedings
of the International Conference on Software Maintenance
(ICSM’03), pages 169–178. IEEE Computer Society Press,
2003.


	Introduction
	Intensional Views
	Intensional Relations
	Using IntensiVE to codify and test structural source-code regularities
	Summary

