
How to Make Lisp More Special

Pascal Costanza, Pascal.Costanza@vub.ac.be
Vrije Universiteit Brussel, Programming Technology Lab

Pleinlaan 2, B-1050 Brussels, Belgium

Abstract

Common Lisp provides generalized places that can
be assigned via the SETF macro, and provides ways
to hook into SETF. Past attempts to extend this to
rebinding places, similar to “special” variables, lead
to potentially incorrect behavior: New “bindings”
are created by side effects, and therefore affect all
threads that access the same places. Instead of stor-
ing values directly we can store symbols in those
places and associate the values as symbol values.
This allows new bindings to be confined to the cur-
rent thread. As an illustration, I provide a DLETF
framework and a CLOS metaclass SPECIAL-CLASS.

1 Introduction

Common Lisp provides a notion of generalized
places that can be assigned with SETF. The SETF
macro analyzes the form it is applied to and expands
into a form that performs the actual assignment
statement. Common Lisp provides various ways to
hook into that SETF framework. One of the sim-
plest ways is to just define a function with a name
that is not a symbol as usual, but a list consisting
of SETF and the name for which the SETF macro
should expand into a call to that function. As an
example, consider a getter and a setter function for
a closed-over value:

(let (some-value)
(defun some-value ()

some-value)
(defun (setf some-value) (new-value)

(setq some-value new-value)))

Now, one can call (some-value) to retrieve the
value of the lexical variable some-value, and (setf
(some-value) 42) to set the value of that variable.
The latter form may, for example, expand into (LET
NIL (FUNCALL #’(SETF SOME-VALUE) 42)). The
main advantage of the SETF framework is that it
provides and supports a consistent naming scheme
for getters and their associated setters. See [17] for
the specification of the SETF framework.

There have been attempts in the past to provide
a similar framework for rebinding places instead of
assigning them. For example, McCLIM [14] defines
a LETF form for temporarily binding slots to new
values. In the following code snippet, for example,
a ‘medium’ object is bound to specific values for
‘ink’ and for ‘style’. These bindings are kept for the
dynamic extent of the enclosed code.

(letf (((medium-ink medium) +red+)
((medium-line-style medium) +bold+))

(draw-line medium x1 y1 x2 y2))

The anticipated effect of such a construct is sim-
ilar to the effect of rebinding a dynamically scoped
“special” variable in Common Lisp. Special vari-
ables turn out to be very useful when there is a
need to influence the behavior of parts of a program
without having to clutter the parameter lists of
the functions called directly and/or indirectly. For
example in Common Lisp, there are several stan-
dardized special variables that control the behavior
of the standard print functions. One example is
*PRINT-BASE* that specifies the radix to use when
printing numbers. So by binding *PRINT-BASE* to,
say, 16 one can ensure that all numbers are printed
in hexadecimal representation, no matter where the
printing takes place below a certain point in the call



stack. Consider the following program fragment:

(let ((*print-base* 16))
(dotimes (i 20)

(dotimes (j 20)
(print i)
(print j))))

The I-s and J-s are all printed in hexadecimal
representation although this is not made explicitly
clear at each invocation of PRINT. It should be clear
by now that this would also be the case for arbitrar-
ily nested function calls inside the DOTIMES loops
that directly or indirectly call PRINT.

In the LETF example above, all forms that re-
fer to the respective ‘ink’ and ‘style’ slots also see
the new values in the dynamic extent of the LETF
form. It is important to note that LETF does not
introduce new access functions (MEDIUM-INK and
MEDIUM-LINE-STYLE in the example above) that
shadow the previously visible accessors, but that
the change to slot values is indeed performed on
the actual slots of the MEDIUM object. This means
that if the MEDIUM is (or has been) passed around to
other functions, the new slot values will be visible
during the extent of the LETF form, no matter how
they are accessed.

The LETF operator is usually implemented by ex-
panding into an UNWIND-PROTECT form that stores
the old values in temporary variables, changes the
slots via SETF and changes them back to their old
value in the protected forms. This indeed gives us
the expected semantics for the dynamic extent of
the LETF form. However, this also leads to poten-
tially incorrect behavior in the presence of multi-
threading since the changes to the slots are not
confined to the current thread, but also affect all
other threads that happen to access these slots in
the respective objects. Effectively, this is closer
to the more adequately termed LET-GLOBALLY con-
struct of some Lisp dialects and libraries, for ex-
ample ZetaLisp and Liquid Common Lisp, than to
the envisioned rebinding of special variables. While
LET-GLOBALLY and the sketched implementation of
LETF change global bindings, new bindings of spe-
cial variables in Common Lisp are always locally
confined to the current thread in all multi-threaded

Common Lisp implementations that I am aware of.
In the *PRINT-BASE* example, say, the value 16 is
only seen in the thread executing the code fragment
above but not in others, unless by coincidence. The
unwritten rule to confine new bindings of special
variables this way is also reported in other publica-
tions, like [5].1

2 Dynamic Scope for the Masses

On a superficial level, it seems impossible to in-
troduce correct dynamic scoping, as available for
special variables, to other kinds of references in
Common Lisp because storage locations are inher-
ently “singletons” that cannot automagically “mul-
tiplex”. However, Common Lisp specifies the PROGV
special operator that provides a handle on dynamic
scoping. I have combined this operator with the fact
that all problems in computer science can be solved
by another level of indirection, and implemented
the DLETF framework. As explained in the follow-
ing paragraphs, it combines two ideas: It uses PROGV
for rebinding values with correct dynamic scoping,
and it provides ways to hook into that framework
to define one’s own forms that work with DLETF,
providing a similar level of extensibility as SETF.

2.1 PROGV

The PROGV operator is one of Common Lisp’s special
operators. It takes a list of symbols, a list of values
and an implicit block of code, creates new dynamic
bindings for the symbols with the given values, and
executes the code block in that dynamic environ-
ment. Its explicit purpose is to provide a handle on
the mechanism for binding special variables [17].

Although there is no guarantee that PROGV works
as expected in multi-threaded implementations of
Common Lisp, according to the expectations de-
scribed above, PROGV also provides the behavior of
confining new bindings to the current thread in all

1LETF has its roots in an operator of the same name on
Lisp Machines. Reportedly, Lisp Machines provide machine-
level operations that makes it straightforward to implement
LETF with the correct semantics akin to special variables, so
the problems described above did not exist on Lisp Machines.



implementations that I am aware of, following the
consensus for special variables.

This results in the following scheme to provide
correct dynamic scoping in a generic way: Instead
of storing values directly in “special” places, (un-
interned) symbols are stored in those places, and
the values are associated as the respective symbol
values. This allows DLETF to rebind those symbol
values to new values, and given that PROGV is im-
plemented as expected, this correctly confines those
new bindings to the currently executing thread.

2.2 Hooking into DLETF

The DLETF framework, as I have defined it, does not
provide any new kinds of special places by itself.
However, any place / accessor can be used in con-
junction with DLETF, provided they adhere to the
following simple protocol: It is the responsibility
of the accessors to store symbols instead of values
in the respective places. They must use the opera-
tor MAKE-SPECIAL-SYMBOL of the DLETF framework
to create such symbols in order to allow checking
correct usage, and can use the SPECIAL-SYMBOL-P
predicate to distinguished them from other symbols.

When the accessors are invoked, they have to
check the setting of *SYMBOL-ACCESS*: When it is
bound to a non-nil value, they have to write or read
the special symbol as such instead of the actual sym-
bol value, otherwise they have to access the symbol
value. The special symbols stored in the special
places can be created lazily on demand, but must
remain the same after initialization.

As an example, we take a look at our introductory
code snippet again.

(dletf (((medium-ink m) +red+)
((medium-line-style m) +bold+))

(draw-line m x1 y1 x2 y2))

The DLETF macro expands this code into the fol-
lowing application of PROGV.

(progv (let ((*symbol-access* t))
(list (medium-ink m)

(medium-line-style m)))
(list +red+ +bold+)

(draw-line m x1 y1 x2 y2))

That code switches *SYMBOL-ACCESS* to T to get
the symbols associated with the respective slots,
binds those symbols to the new values, and then
executes the DRAW-LINE form.

2.3 The SPECIAL-CLASS Metaclass

In order to make the latter example work in full,
I provide a CLOS metaclass SPECIAL-CLASS that
allows declaring slots to be “special”, which means
that their accessors adhere to the DLETF protocol.
This allows us to declare the “medium” class as fol-
lows.

(defclass medium ()
((ink :accessor medium-ink

:special t)
(line-style :accessor medium-line-style

:special t))
(:metaclass special-class))

The metaclass SPECIAL-CLASS is implemented
as follows: In the class initialization and class
finalization stages,2 slots are checked whether
they are declared :SPECIAL, and (only) such
special slots are then represented as instances
of SPECIAL-EFFECTIVE-SLOT-DEFINITION. This al-
lows the slot access functions to be defined accord-
ing to the DLETF protocol. As an example, see the
following definition of SLOT-VALUE-USING-CLASS.

(defmethod slot-value-using-class
((class special-class)
object
(slot special-effective-slot-definition))
(let ((slot-symbol (call-next-method)))

(cond (*symbol-access* slot-symbol)
((boundp slot-symbol)
(symbol-value slot-symbol))
(t (slot-unbound ...)))))

2According to the CLOS MOP specification given in [12],
class initialization records the information for the given class
only, without taking into account the specifications of the
superclasses, while class finalization takes the final steps to
allow objects of a class to be instantiated. This is a two-
step process in order to ease development and automated
build processes by allowing classes and their superclasses to
be defined in arbitrary order.



The setter for SLOT-VALUE-USING-CLASS must
invoke the getter to read the symbol associated with
the respective slot:

(defmethod (setf slot-value-using-class)
(new-value
(class special-class)
object
(slot special-effective-slot-definition))
(if *symbol-access*

(call-next-method)
(let ((slot-symbol

(let ((*symbol-access* t))
(slot-value-using-class
class object slot))))

(setf (symbol-value slot-symbol)
new-value))))

This setter has to check for *SYMBOL-ACCESS*
because being able to set the symbol is
important for initializing special slots.
The other generic functions for access-
ing slots (SLOT-BOUNDP-USING-CLASS and
SLOT-MAKUNBOUND-USING-CLASS) are also im-
plemented accordingly. Furthermore, slots that do
not declare an :INITFORM option in the respective
class definition are lazily associated with a symbol
for DLETF. This is taken care of with a specialization
of the SLOT-UNBOUND function.

Two other technicalities need to be solved.

• CLOS allows bypassing the slot access func-
tions (SLOT-VALUE-USING-CLASS, etc.) for ini-
tializing freshly allocated objects for efficiency
reasons. This is rectified in a method for
SHARED-INITIALIZE that checks for special
slots that are not associated with special sym-
bols as generated by MAKE-SPECIAL-SYMBOL
but with “ordinary” values, and “lifts” such
values to special symbol values as required by
DLETF.

• CLOS allows classes to be redefined at run-
time. The SPECIAL-CLASS implementation has
to guard against switching a special slot to a
non-special slot in such a redefinition, because
there is no obvious way to “collapse” the po-
tentially many values of a single special slot

in different threads to a single value of a non-
special slot. The reverse change from a non-
special to a special slot is not a problem and is
implicitly dealt with by lifting the slot value in
SHARED-INITIALIZE, as described above.

2.4 Other Data Structures

The CLOS Metaobject Protocol proves to be very
suitable for adding special slots to the DLETF frame-
work. Other data structures, like arrays, lists, struc-
tures, etc., do not provide metaobject protocols that
allow changing their semantics in similar ways. In
order to make their accessors adhere to the DLETF
protocol, one has to revert to some other means.
Common Lisp provides packages as a modulariza-
tion mechanism, and they allow “shadowing” exist-
ing symbols of other packages. This indeed allows
us to redefine existing accessors and make existing
code “automagically” use the new definitions.

Assume we want to allow arrays to have special
entries. We can define a package SPECIAL-ARRAY
that imports all Common Lisp definitions but shad-
ows MAKE-ARRAY and AREF, and redefines them as
follows.

(defpackage "SPECIAL-ARRAY"
(:use "COMMON-LISP" "DLETF")
(:shadow "MAKE-ARRAY" "AREF")
(:export "MAKE-ARRAY" "AREF"))

(in-package "SPECIAL-ARRAY")

(defun make-array (dimensions &rest args)
(let ((array

(apply #’cl:make-array
dimensions args)))

... initialize with special symbols ...
array))

(defun aref (array &rest subscripts)
(let ((symbol

(apply #’cl:aref array
subscripts)))

(if *symbol-access*
symbol
(symbol-value symbol))))



This code is clearly only a sketch. We may want
to change the code to allow lazy initialization with
special symbols in case an array is not initialized
itself. We also have to ensure that other array (and
sequence) accessors adhere to the DLETF as well.
Finally, we may want to turn MAKE-ARRAY, AREF,
etc., into generic functions that deal both with reg-
ular and special arrays by implementing methods
for those different kinds of arrays, which means that
we would effictively define an object-oriented layer
for array accesses.

None of these issues are severe stumbling blocks.
They are just tedious and therefore left as an exer-
cise to the reader.

2.5 Efficiency

Carrying out considerably large benchmarks to test
the performance overhead induced by the DLETF
framework is still future work at the time of writ-
ing this paper. Therefore, I can only provide a few
comments on the design decisions for the existing
implementation.

Dynamic Scoping It is known that rebinding
special variables induces a performance overhead.
For example, [2] describes three implementation
techniques called shallow binding, deep binding and
acquaintance vectors, each with their own perfor-
mance characteristics. Shallow binding associates
one global storage location for a special variable
and on rebinding, the old value is stashed away in
a stack of previous bindings. This makes access-
ing and rebinding fast but context switches between
different threads slow because all special variables
have to be changed on each switch. Deep binding
uses an association list as an environment for spe-
cial variables that maps variable names to values.
This makes rebinding and context switches fast but
accessing variables slow because in the worst case,
the whole association list has to be searched for the
current binding of a special variable. Finally, ac-
quaintance vectors use arrays as an environment for
special variables, with each variable having a unique
index into such arrays. This makes accessing and
context switching fast but rebinding slow because

for each new binding a whole array has to be copied.
See [2] and also [10] and [1] for more details.

The slow aspects of these implementation tech-
niques can (and reportedly are) improved by caches.
In the (admittedly small) examples I have tried so
far, I have not noticed serious penalties because of
the use of rebinding symbol values.

Double Indirection The DLETF framework
works by storing symbols into storage locations and
associating the respective values with those slots in-
stead of storing the values directly into the stor-
age locations. This leads to the need to follow
an extra indirection for each access to a special
place. Whether this incurs a serious penalty or not
can only be determined by performing benchmarks.
Existing literature suggests that double indirection
does not, or at least does not necessarily lead to any
performance penalty at all on modern CPUs. See,
for example, [16] and [8].

Slot Access Specializing the slot access functions
(SLOT-VALUE-USING-CLASS, etc.) seems to incur a
serious performance overhead for the seemingly in-
nocuous task of accesing an object slot. It seems
to be a serious penalty that these functions exist
at all because one would expect a serious slow-
down in comparison to the simple array accesses
that other object-oriented languages usually com-
pile slot accesses to. However, the CLOS MOP
is designed in a way that allows a Common Lisp
compiler to completely bypass the slot access func-
tions when it can prove that for “simple” slots
there does not exist a specialization of the respec-
tive slot access function. This is why in my im-
plementation of SPECIAL-CLASS, only slots with
:SPECIAL set to T are represented by instances of
SPECIAL-EFFECTIVE-SLOT-DEFINITION. Examina-
tion of the resulting code of a number of CLOS
implementations indeed reveal that they make use
of the possible optimizations for non-special slots.
So at least, the performance overhead is confined to
slots that are indeed special.

In [15], an improvement of the CLOS slot ac-
cess protocol (“structure instance protocol”) is sug-
gested that may help to reduce the overhead of in-



voking the code of the special slot accessors. This
approach is implemented, for example, in Tiny
CLOS for Scheme and its derivatives. It is prob-
ably worthwhile to implement the special classes on
top of such an approach and compare the perfor-
mance characteristics with my CLOS-based imple-
mentation.

3 Related Work

Scheme does not provide any standard constructs
for dynamic scoping - in [18], an implementation of
dynamically scoped variables on top of lexical scop-
ing is presented, and the reports that define the
Scheme standard head for minimalism and concep-
tual simplicity instead of completeness.

However many Scheme dialects, for example Mz-
Scheme [9], provide dynamic scope in two ways: as
the fluid-let form and as parameter objects. A
major drawback of fluid-let is that it is explic-
itly defined to save a copy of the previous value
of a global variable on the stack and establish the
new binding by side-effecting that variable, similar
to LET-GLOBALLY or McCLIM’s LETF, and so has
the same issues with multi-threading that DLETF
solves. On the other hand, parameter objects and
its parameterize form are indeed viable candidates
to be used in the same way as symbols and PROGV
in DLETF.

Recent attempts at introducing dynamically
scoped variables into C++ [11] and Haskell [13]
would in principle also be suitable because they are
implemented by passing dynamic environments to
functions behind the scenes instead of modifying
global state. However, it is not clear whether those
approaches provide first-class handles on their dy-
namic binding constructs as PROGV or parameter ob-
jects do.

4 Summary and Future Work

The DLETF framework is currently available as part
of AspectL, a library for aspect-oriented program-
ming in Common Lisp, and can be downloaded from
http://common-lisp.net/project/aspectl. It runs on

Allegro Common Lisp, CMU Common Lisp, Lisp-
Works, OpenMCL and Steel Bank Common Lisp.

One of the main problems with implementing
AspectL, including the metaclasses SPECIAL-CLASS
and SPECIAL-FUNCTION, were the incompatibilities
of the CLOS MOP implementations across differ-
ent Common Lisps. Since AspectL has started to
grow a considerable amount of fixes to iron out
those incompatibilities, I have started the imple-
mentation from scratch and now provide two sep-
arate packages: A “Closer to MOP” library that
provides a unified interface to the CLOS MOP
with many rectifications of those incompatibili-
ties, and ContextL. Closer to MOP can be down-
loaded from http://common-lisp.net/project/closer
and runs on CLISP (2.33) in addition to the im-
plementations mentioned above. On top of that,
ContextL includes a somewhat polished version
of the DLETF framework and a new implementa-
tion of SPECIAL-CLASS, among other things. Con-
textL is going to supersede AspectL, and this pa-
per describes the implementation of DLETF and
SPECIAL-CLASS in ContextL, not the one in As-
pectL. Unfortunately, ContextL is not publicly
available yet at the time of writing this paper.

AspectL’s SPECIAL-FUNCTION is an interesting
application of the DLETF framework. Conceptu-
ally, it turns the slot of a generic function metaob-
ject that contains the methods defined on a generic
function into a special slot. This means that one
can rebind the set of generic function methods in
the same way as special variables, and so one can
have different sets of methods in different threads
for the same generic function. This in turn allows
expressing interesting idioms that are all based on
the idea to change the behavior of a function with
dynamic extent, and thus are similar to dynami-
cally scoped functions. For example, functions can
be wrapped with security checks in some threads,
or expensive methods can be replaced by stubs in
testing frameworks, and so on. Special functions
are, in fact, an implementation of the originally
envisioned WITH-ADDED-METHODS macro, as speci-
fied in the original CLOS specification [3], but with
dynamic scope instead of lexical scope.3 See [6]

3WITH-ADDED-METHODS was not included in ANSI Common



for an introduction to dynamically scoped func-
tions and [7] for an overview of AspectL, including
SPECIAL-FUNCTION.

The use of symbols to “multiplex” arbitrary
places is, in a sense, the reverse of the use of symbols
in Common Lisp’s synonym streams to make virtu-
ally different streams in fact refer to the same single
stream. Rebinding the symbol of a synonym stream
rebinds all existing synonyms for that stream. I
have not explored yet what a combination of that
approach with DLETF could yield in terms of expres-
sivity. The idea would be to assign the same special
symbol to different places and in this way have them
permanently linked to each other.

References

[1] Henry Baker. Shallow Binding in Lisp
1.5. Communications of the ACM 21,
7 (July 1978), 565-569. Available:
http://home.pipeline.com/∼hbaker1/Shallow-
Binding.html

[2] Henry Baker. Shallow Binding Makes Func-
tional Arrays Fast. ACM Sigplan Notices
26, 8 (Aug. 1991), 145-147. Available:
http://home.pipeline.com/∼hbaker1/Shallow-
Arrays.html

[3] Daniel Bobrow, Linda DeMichiel, Richard
Gabriel, Sonya Keene, Gregor Kiczales, David
Moon. Common Lisp Object System Spec-
ification. Lisp and Symbolic Computation
1, 3-4 (January 1989), 245-394. Available:
http://www.dreamsongs.com/CLOS.html

[4] CLOS Standardization Mailing List
(archive). Available: ftp://ftp.parc.xerox.com
/pub/pcl/archive

[5] Roger Corman. Multi-Threaded Lisp: Chal-
lenges and Solutions. International Lisp Con-
ference 2002, San Francisco, USA, 2002.

Lisp due to being underspecified. The archive of the CLOS
standardization mailing list [4] suggests that it may have orig-
inally been supposed to be dynamically scoped, but this is not
completely clear.

[6] Pascal Costanza. Dynamically Scoped Func-
tions as the Essence of AOP. ECOOP 2003
Workshop on Object-Oriented Language En-
gineering for the Post-Java Era, Darm-
stadt, Germany, July 22, 2003. ACM Sig-
plan Notices 38, 8 (August 2003). Available:
http://www.pascalcostanza.de/dynfun.pdf

[7] Pascal Costanza. A Short Overview of As-
pectL. European Interactive Workshop on
Aspects in Software (EIWAS’04), Berlin,
Germany, September 23-24. Available:
http://www.topprax.de/EIWAS04/

[8] Pascal Costanza. Transmigration of Object
Identity. University of Bonn, Institute of Com-
puter Science III, Ph.D. thesis, 2004.

[9] Matthew Flatt. PLT MzScheme: Language
Manual, 2005. Available: http://download.plt-
scheme.org/doc/

[10] Richard Gabriel. Performance and Evaluation
of Lisp Systems. MIT Press, 1985. Available:
http://www.dreamsongs.com/Books.html

[11] David Hanson and Todd Proebsting. Dynamic
Variables. In: PLDI 2001 - Proceedings. ACM
Press, 2001.

[12] Gregor Kiczales, Jim des Rivières, Daniel G.
Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[13] Jeffrey Lewis, John Launchbury, Erik Mei-
jer, M. Shields. Implicit Parameters: Dynamic
Scoping with Static Types. In: POPL 2000 -
Proceedings. ACM Press, 2000.

[14] McCLIM. Available: http://common-lisp.net
/project/mcclim/

[15] Fernando D. Mato Mira. The ECLOS Meta-
class Library. In: Chris Zimmermann (ed.). Ad-
vances in Object-Oriented Metalevel Architec-
tures and Reflection. CRC Press, 2000.

[16] Sven Müller. Transmigration von Objektiden-
titäten – Integration der Spracherweiterung



Gilgul in eine Java-Laufzeitumgebung. Univer-
sity of Bonn, Institute of Computer Science III,
diploma thesis, 2002.

[17] Kent Pitman (ed.). Common Lisp Hyper-
Spec. Available: http://www.lispworks.com
/documentation/HyperSpec/

[18] Guy Steele and Gerald Sussman. Lambda -
The Ultimate Imperative. MIT AI Lab, AI
Lab Memo AIM-353, March 1976. Available:
http://repository.readscheme.org/ftp/papers/ai-
lab-pubs/AIM-353.pdf


