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Chapter 1

Introduction

In this dissertation we investigate how a logic meta programming approach based
on temporal logic can be used to reason about program execution and past pro-
gram state. The result of this research is the specification and a (non straight-
forward) implementation of a declarative pointcut language dedicated to writing
pointcuts that relate multiple join points in the (past) execution of a program.

Successful software is subject to reuse: a computer program’s lifetime is
stretched by the many (re)releases, that hopefully add functionality and elim-
inate bugs compared to earlier versions. Updating old software is often hard
– especially software that was written by other people; All programmers know
that uncomfortable feeling they get when they skim through source code – of-
ten badly documented – in the hopes of finding that piece of code they need to
adapt or use to implement their desired changes in a program. Therefore it is
of utmost importance that programs are carefully designed, so that it is easy
(for other programmers) to understand the program structure and its relation
to the program requirements or concerns, which is the case when each concern is
addressed separately in the program. This is an important principle in software
engineering known as “separation of concerns”.

Currently, separation of concerns is pursued through program modularisa-
tion: programmers break up a program into different program requirements or
concerns that combined reflect the program’s desired functionality and then they
try to map these concerns onto separate modules, where modules are the basic
abstraction mechanisms a programming language offers, such as classes, meth-
ods, functions, procedures, packages etc. However, full separation of concerns
is hard to achieve using a traditional object-oriented, procedural or functional
language.

Full separation of concerns through modularisation is difficult because a
program can only be modularised in one way at a time, possibly matching very
well for particular concerns, but other concerns that do not align with this
modularisation end up scattered over different modules: concerns that do not
align with a particular modularisation are called crosscutting concerns. Many
types of crosscutting concerns exist: logging, synchronization, profiling, error
handling to name just a few.

The implementation of a crosscutting concern is scattered over different
modules and leads to tangled code, because modules now implement multi-

1



CHAPTER 1. INTRODUCTION 2

ple concerns (partly). Scattering and tangling makes programs harder to read,
maintain and reuse, because programmers looking to adapt one concern are
forced to read, maintain or discard pieces of code that have nothing to do with
that particular concern, but just happen to be stuffed in the same module. A
new paradigm called aspect-oriented programming emerged to cope with this
problem through modularisation.

Aspect-oriented programming is all about modularising crosscutting con-
cerns. An aspect language is a language extension for a base language, such
as Java or Smalltalk, that introduces new constructs that allow the implemen-
tation of crosscutting concerns in distinct modules, called aspects. The ability
of an aspect language to support the modularisation of crosscutting concerns
depends on its join point model.

An aspect language’s join point model consists of join points, a means of
describing join points and a means of affecting behavior at a join point. Two
types of join points exist in the space of AOP: dynamic join points, such as
method calls, refer to events in the execution of a program and static join
points refer to places in the program code, such as the body of a method. The
AOP idea is then that one specifies the join points a crosscutting concern’s
behavior affects and that the crosscutting behavior is assured at these places,
rather than implementing the crosscutting behavior by producing scattered or
tangled code. The means for describing join points is called a pointcut language,
where a pointcut can be seen as a predicate over all join points in a program,
to pick out join points of interest.

The expressiveness of an aspect language depends of course on the variety of
join points that are included in its join point model, but more importantly on
the expressiveness of the pointcut language for describing these join points and
the composition mechanisms for composing complex pointcuts out of simpler
pointcuts. A logic meta programming approach to aspect-oriented programming
proposes the use of a full-fledged logic programming language as a pointcut
language with a built-in library of predicates that are pointcut predicates for
the individual join points in the join point model: this approach is recognized
to be a very declarative and open view on pointcut languages.

Although early research in AOP focused on aspects that are triggered at
a single join point, recent research has evolved towards aspects that are trig-
gered based on the occurrence of a series of join points in the execution of
a program and past program state: they were dubbed event-based aspects,
stateful aspects and context-aware aspects. However, currently, no (sufficiently
expressive) pointcut language that allows to write pointcuts, to be used in the
implementation of these sorts of aspects, exists.

Program execution generates a (dynamic) join point at each computational
step: all the join points that are generated this way, can be placed on a time
line, reflecting the order in which they occurred, and we observe that there
exists a temporal relation between any two join points on this time line. If
we can express this temporal relation, we can describe the sequence of events
in a pointcut. A formalism dedicated to reasoning about time and temporal
relations, is temporal logic.

Temporal logic is a term being used to denote a series of logics of qualified
truth. In temporal logic formulas are evaluated in terms of an implicit temporal
context. A temporal logic adds new types of logic connectives called temporal
operators that abstract the explicit handling of time in a formula. Depending
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on the definition of time applied, these temporal logics have a different meaning.
For example, there exists a form of metric temporal logic where time is defined
as a linear sequence of time points and the temporal operators express temporal
relations between formulas in terms of intervals of time points. As defended in
this dissertation, this particular form of metric temporal logic, is a solid basis
for designing (and implementing) a logic pointcut language that can be used to
describe sequences of (constrained) join points.

The remainder of this dissertation is dedicated to the description of a tempo-
ral logic pointcut language, named HALO, as a declarative means to write down
pointcuts that match part of the execution history of a program. In HALO, a
pointcut about multiple (past) join points is evaluated in respect to the the
program state at these (past) join points, so that constraints about past join
points are checked against the program state at the occurrence of a past join
point. This makes it possible to reason about current and past program state
in HALO, and furthermore, it is possible to put constraints on a past join point
in a pointcut, that involve values from a later join point. The language’s ap-
plicability is evaluated by implementing some example promotional aspects for
an e-commerce application, that exploit HALO’s expressiveness.

1.1 Document Overview

This dissertation consists of seven parts. In the next chapter we give an in-
troduction to aspect-oriented programming and present an overview of current
AOP systems that allow one to write aspects based on the occurrence of a
sequence of join points, but lack dedicated pointcut languages.

The third chapter gives an introduction to logic meta programming and its
applications, including aspect-oriented programming; This approach is the basis
of our problem solution: we add temporal logic to the formalism as a means for
reasoning about program execution.

A next chapter investigates the use of (temporal) logic meta programming as
a basis for our pointcut language and as an experiment we use the language to
implement aspects for an e-commerce application and a video game application.
We present a non straightforward implementation, involving a dedicated forward
chainer, in the subsequent chapter.

We continue the dissertation by giving an overview of related work. Finally,
a last chapter in this dissertation summarizes our results and outlines future
work.



Chapter 2

Aspect-Oriented Software
Development

2.1 Overview

In this chapter we give an overview of aspect-oriented programming (AOP) as a
solution for implementing crosscutting concerns, introduced by Kiczales et. al.
in the paper titled “Aspect Oriented Programming” [23].

In a first section we explain what crosscutting concerns are and we intro-
duce the concepts behind AOP and aspect languages, being join point models,
aspects, join points, pointcuts, advices and weavers. Next we cover two existing
aspect languages, namely AspectJ and CARMA to illustrate these concepts.

A subsequent section deals with new types of crosscuts and the types of
aspects to develop them, namely stateful aspects and context-aware aspects. We
review a couple of existing AOP systems that allow one to implement stateful
or context-aware aspects (EAOP, JasCo, Reflex).

To conclude the chapter we present our conclusions and a summary of the
chapter.

2.2 Separation of concerns

The way programmers design an application is by problem decomposition: they
break up the program into distinct requirements or concerns that overlap in
functionality as little as possible. This has an important positive consequence
on their design, namely that one concern does not depend on another concern
and consequently they do not need to know about one concern to understand
another and they do not need to consider other concerns when changing one 1.
Next step in obtaining a program, is implementing it.

2.2.1 Modularisation

The implementation of a program results in mapping the different concerns from
the problem decomposition onto separate modules, where modules are the basic

1This strategy was dubbed“Separation of concerns” by Dijkstra. [45]

4
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abstraction mechanisms a programming language offers: this mapping is known
as program modularisation. Depending on the target programming language’s
paradigm, different types of modules are offered; An object-oriented language of-
fers classes and methods and inheritance as a composition mechanism, whereas a
functional language offers functions to abstract a concern. Inherently, problem
decomposition is tightly coupled to the target programming language’s para-
digm. Full separation of concerns is not easy to achieve through modularisation
using a traditional language 2, because

A program can be modularised in only one way at a time, and the
many kinds of concerns that do not align with that modularisation
end up scattered across many modules.

This property is known as the“Tyranny of the Dominant Decomposition” [38].

2.2.2 Crosscutting concerns

The concerns that do not align with a particular modularisation are called cross-
cutting concerns [23]. Crosscutting concerns are said to be scattered over differ-
ent modules which means their implementation is spread over different modules,
which results in tangled code, because now one module implements multiple con-
cerns. Examples of crosscutting concerns are error handling, synchronisation,
profiling, logging etc. To make the concept less abstract, we discuss a crosscut-
ting concern for a banking application implemented Java.

Example: logging sensitive operations in a banking application.

Bank
register(Client)
createAccount(Client)
shareAccount(Client, Account)
unshareAccount(Client, Account)
login (Client)
logout(Client)

Client
withdraw(AccountNr, Integer)
credit(AccountNr, Integer)
view(AccountNr)
clientID

Account
withdraw(Client, Integer)
credit(Client, Integer)
transfer(Client, Account)
view(Client)
balance

*

*

*

1

Figure 2.1: UML for a banking application.

Consider the UML diagram of a banking application as shown in Figure
2.1: a bank has many clients who can create and share accounts to manage
their money by making deposits and withdrawals: this is the program’s main

2Object- oriented, functional, procedural.



CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 6

functionality and this is reflected in the different classes and methods. Another
concern in the banking application is security: sensitive operations – e.g. op-
erations that affect an account’s balance – need to be logged. The application
programmer identifies two sensitive operations, implemented by the withdraw
and deposit methods and needs to extend these methods to include the logging
behavior, which the programmer can achieve by inserting an extra statement in
the body of the method definitions (Figure 2.2); Worst case scenario, this is re-
peated in other classes for other sensitive operations (e.g. for the shareAccount
method).

public class Account
{

private int balance;

public void withdraw(Client client, int money) {
/* sensitive operation */
balance = (balance - money);
/* create message */
String msg = "Withdraw called by ";
msg += client.getClientID()
log(msg);

}

public void credit(Client client, int money) {
/* sensitive operation */
balance = (balance + money) ;
/* create message */
String msg = "Credit called by ";
msg += client.getClientID();
log(msg);

}

public void log(String message) {
Date now = new Date();
message += now.toString();
system.out.println(message);

}

public void view() {
system.out.println(balance);

}

}

Figure 2.2: Logging sensitive operations.

The problem with this approach, is that one concern, namely logging of
sensitive operations, is implemented across several methods (scattering). This
is bad because when the programmer wants for example to reuse one of the
methods to implement a method in a subclass, she also inherits the logging
concern’s behavior, which has nothing to do with the behavior the method
is named after or when she needs for example to debug such a method, she
needs to read through the logging code that has nothing to do with the regular
behavior of a sensitive operation (tangling). In short: crosscutting concerns
make code harder to reuse and maintain. This problem can not simply be
solved by inheritance.

One can try to solve this problem using inheritance: make a sub class
LoggedAccount for the class Account and in the class LoggedAccount im-
plement two methods withdraw and deposit that re-implement these methods
using super sends. The problem is that there can be more than one class with
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operations that need to be logged (e.g. method shareAccount in class Bank.),
one would need to make special sub classes for these classes too (e.g. a class
LoggedBank) which implies the logging concern will still be scattered over dif-
ferent modules. In the next section we introduce AOP as a way of modularising
crosscutting concerns such as the logging example.

2.3 Modularising crosscutting concerns via as-
pects

The goal of AOP is to modularise crosscutting concerns by introducing new
types of modules (abstractions) in an existing programming language, called
base language, that can be used to implement these so-called crosscutting con-
cerns separately: the resulting language extension is called an aspect language
3. An AOP-based implementation of an application consists of a base applica-
tion (a program written in the base language implementing the concerns that
can be modularised) and a bunch of aspects written in the aspect language: it
is up to a weaver program to combine the aspects and the base program. The
question when designing an aspect language is of course, how does one go about
modularising a crosscutting concern and can we abstract this in new language
constructs?

2.3.1 Join Point Models

The ability of an AOP language to support a modular implementation of cross-
cutting concerns depends on its join point model [27] [22]. A join point model
consists of three concepts:

1. Join points are the points of reference in a base program which a cross-
cutting concern affects. We distinguish two types of join points, namely
lexical join points (referring to a location in the program text (e.g. the
body of a method)) and dynamic join points (referring to an event in the
execution of a program (e.g. a method call)).

2. A way to describe (or quantify) multiple join points, often called a pointcut.
A pointcut can be seen as a predicate over all join points in a program, to
pick out join points of interest: e.g. “The bodies of the methods in class
A” or “All the calls to method A.”

3. A means of affecting behavior at a join point e.g. “Synchronize this method”
or “Execute this piece of code”.

2.3.2 Weaving

The weaver is responsible for making sure that aspects are added to a base
program. There are two ways of doing this:

static weaving : the program in the base language is compiled to a new pro-
gram (program transformation). Advantage: No overhead at runtime.

3We follow [23] where AOP is achieved through language extension; there are however
approaches that propose frameworks for implementing crosscutting concerns [35] [5]
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Disadvantage: Aspects can not be turned on/off at runtime, base code
needs to be recompiled when aspects are added/ removed.

dynamic weaving : the base language interpreter is aware of aspects and
divides program execution into join point events: for each event possible
pointcuts are evaluated for truth and if true, the related piece of code
is wrapped around the join point event in the execution. Advantage:
aspects can be turned on/off at runtime, aspects can be added/removed
at runtime. Disadvantage: runtime overhead.

In the next section we analyze two different aspect languages, namely As-
pectJ ( for Java) and CARMA (for Smalltalk) to clarify the concepts discussed
so far in this section.

2.3.3 Case study: AspectJ

In this section we introduce AspectJ [39], which is a general-purpose aspect
language for Java. We discuss the language in terms of its join point model (see
section 2.3.1).

Join Points

AspectJ is a general-purpose aspect language for Java, the join points in the
AspectJ join point model are therefore related to the different modules available
in Java, i.e. methods and classes. Join points in AspectJ are well-defined events
in the execution of a Java program, like a method call, method execution, con-
structor call, constructor execution, field reference and field set 4. Join points
have a signature, for example in case of a method call join point, the signature
is the method’s name and all the other static information the programmer was
required to type in when defining the method.

Pointcut language

AspectJ defines a pointcut language as a declarative means to describe join
points: a pointcut is a predicate over events from the program execution. The
AspectJ pointcut language consists of constructs to define primitive pointcuts
and logical connectives that can be used to compose pointcuts. The primitive
pointcuts in AspectJ are any of the following [39]:

• Kinded pointcuts are pointcut designators based on the kind of a join point
( call, execution, get, set, initialization , ...) 5.

• Context-exposure pointcuts expose part of the execution context at their
join points: these values are bound to a name, that can be used throughout
the rest of a pointcut definition. (this, args, target)

• Control flow-based pointcuts to capture all join points in the control flow
of another join point (cflow, cflowbelow).

4For a detailed reference, check the language reference [39]
5The term “kinded poincuts” is adopted in AspectJ 5 to refer to the primitive pointcuts

previously known as method-related pointcuts, field-related pointcuts and object creation-
related pointcuts (see [40])
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• Expression-based pointcuts is a predicate on join point context (if).

Remember that join points have a signature and the primitive pointcut’s argu-
ment is a signature pattern: it is possible to leave part of the signature pat-
tern variable by using wildcards, allowing pointcuts to range over multiple join
points.

Some examples primitive pointcuts are the following:

• call ( void Account.credit(Client, int) ) matches any join point
that represents a call to the method void Account.credit(Client, int)
).

• call ( Account.new(..) ) matches any join point that represents a
call to any constructor of the class Account.

• get ( int Account.* ) matches any join point that represents reading
a slot of type int defined in the class Account.

• cflow (call(void Account.deposit(Client, int))) matches any join
point in the control flow of a call to the method void Account.deposit
(Client, int). This includes the call itself.

• if(5 == 5) matches any join point, because the condition 5 == 5 is al-
ways true.

Pointcuts are composed using connectives that define a certain relation be-
tween pointcuts. Following logic connectives are available to compose pointcuts:

&& logical “and” (binary connective): e.g. pointcutC = pointcutA && point-
cutB implies that pointcutC, applied to a join point, evaluates to true
when both pointcutA and pointcutB, applied to the join point evaluate
to true.

|| logical “or” (binary connective): e.g. pointcutC = pointcutA || pointcutB
implies that pointcutC, applied to a join point, evaluates to true when
at least one of the two pointcuts pointcutA and pointcutB evaluates to
true.

! logical “not” (unary connective): e.g. pointcutC = !pointCutA implies that
pointcutC, applied to a join point, evaluates to true when pointcutA,
applied to the join point, evaluates to false.

Take for example the following pointcut definition:

pointcut callWithdraw(int price, Article art) : (
execution(void Account.withdraw(int)) &&
target(account) &&
args(amount)
&& if(amount > 100)

}

A pointcut definition in AspectJ looks like a method definition: the name
callWithdraw before the () names the pointcut and the code between the ()
declares a type for each variable used in the pointcut, defined between the {}.
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The pointcut is a composition of four pointcuts, all connected by the “and”
connective &&: so the entire pointcut is true for a given join point, if each of the
four sub-pointcuts is true for that join point. The first sub-pointcut, namely
execution(void withdraw(int)) matches a join point, when that join point
represents the execution of a method named withdraw, defined in the class
Account. The second pointcut and the third pointcut are so-called context-
exposure pointcuts (which always evaluate to true): they bind the variables
account and integer to the object on which the method withdraw is being
invoked and the argument of the method withdraw respectively. The last point-
cut, if(amount > 100), is an expression-based pointcut that evaluates to true
for a join point if the value bound (by context-exposure predicates) to amount
is larger then 100. So this pointcut matches the execution of the piece of code
(given a = new Account(1000)): a.withdraw(200), but not a.withdraw(50)
or a.deposit(200).

Introduction

In AspectJ it is possible to add methods and data slots to a class from within an
aspect definition; This is done by defining the method/data slot in an Aspect,
binding the method to the class by using a scope operator to define the method
(c.f. c++) (e.g. introduction of method log in class Account in Figure 2.4).

Advice language: connecting advice code and pointcuts.

The advice language consists of constructs such as before, after and around
and proceed to connect advice code with a pointcut. Depending on the con-
struct used to connect the advice code and the pointcut, the advice code is
executed before or after an event for which the pointcut (= predicate) is true
in the execution of a program in case of a before or after advice respectively.
The around connector allows the programmer to replace the event completely
by the execution of the advice code, but note that the event can be called from
within the advice, using the proceed construct.

For example, a before advice connected to the pointcut callWithdraw de-
fined earlier, might look like this6:

before() : (callWithdraw(int, Article)) {
String msg = "Balance = ";

Account acc = (Account) thisJoinPoint.getTarget();
msg += acc.getBalance();

System.out.println(msg);
}

If we execute the piece of code a.withdraw(200), given a = new Account(1000),
a message “Balance = 1000” is printed to the screen. On the other hand, if we
define an after advice like this:

after() : (callWithdraw(int, Article)) {
String msg = "Balance = ";

6The keyword thisJoinPoint can be used within the advice code to refer to the join point
for which the pointcut (connected to the advice code) matches: this way, the arguments,
target etc. can be retrieved from the join point.
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Account acc = (Account) thisJoinPoint.getTarget();
msg += acc.getBalance();

System.out.println(msg);
}

The message “Balance = 800” is printed to the screen if a.withdraw(100),
given a = new Account(1000) is executed. Instead, if we define an around
advice like:

around() : (callWithdraw(int, Article)) {
String msg = "Balance = ";

Account acc = (Account) thisJoinPoint.getTarget();
acc.setBalance(acc.getBalance() - (acc.getBalance() / 100));
proceed();
msg += acc.getBalance();

System.out.println(msg);
}

Then, if we execute a.withdraw(200), given a = new Account(1000), the mes-
sage “Balance = 790” is printed to the screen.

Example: logging sensitive operations using AspectJ

In Figure 2.4 we show how the logging concern for the banking application
from section 2.2.2 can be implemented using AspectJ. In Figure 2.4, we see the
definition of an aspect LoggingAspect: this module contains the definition of
two advices and shows the introduction of the method log in the class Account.
The advices are both after advices and they make sure a message is logged
when the methods credit or deposit is called. The class Account is now freed
from any code that implements the logging concern (Figure 2.3): hence full
separation of concerns is achieved as the logging concern is now implemented in
one separate module, namely the aspect LoggingAspect.

public class Account
{

private int balance;

public void withdraw(int money) {
;; sensitive operation
balance = (balance - money);

}

public void credit(int money) {
;; sensitive operation
balance = (balance + money);

}

public void view() {
system.out.println(balance);

}
}

Figure 2.3: Account class from the banking application in Figure 2.1 freed from
the logging code.
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public aspect LoggingAspect {

public void Account.log(String message) {
Date now = new Date();
message += now.toString();
System.out.println(message);

}

after(Client client) : execution(void Account.credit(Client, int)) && args(
client, ...) {

String msg = "Credit called by ";
msg += client.getClientID();
log(msg);

}

after(Client client) : execution(void Account.withdraw(Client, int)) && args(
client, ...) {

String msg = "Credit called by ";
msg += client.getClientID();
log(msg);

}
}

Figure 2.4: AspectJ modularising logging concern for banking application in
Figure 2.1; Note that the class Account is now freed from all logging code
(Figure 2.3).

2.3.4 Case study: CARMA

CARMA [17] is an aspect language for Smalltalk, inspired by AspectJ, but based
on logic meta programming, meaning that in CARMA, crosscuts are expressed
in terms of logic programs. The idea behind CARMA is to use a logic meta
language, namely SOUL, extended with a libray of pointcut predicates for the
individual join points in CARMA’s join point model, as pointcut language.

SOUL [28] is based on Prolog, though with some variations on syntax 7. For
example the rule in Figure 2.5 is a valid rule definition. Note line nr. 1, this
is not an ordinary predicate call; The code between the [] is regular Smalltalk
code: such a block of code is evaluated at the Smalltalk level and should return
a boolean value. This mechanism is known as escaping to the base level [25]. In
addition to full-fledged SOUL, CARMA adds a library of predicates over join
points.

member(?H, <?H | ?T> ) if [true].
member(?X, <?H | ?T>) if member(?X, ?T).

Figure 2.5: SOUL: definition of class predicate.

The join points in CARMA are based on the key events in the execution of a
Smalltalk program, being message sends/receptions and assignments/references:
the join points and primitive pointcuts are described in Table 2.1. The idea is to
compose these primitives into more complex pointcuts, that can be abstracted
by rule definitions. Hence it is possible to build a library of specialized join

7Instead of the symbol :-, the keyword if is used to separate the head from the body of
a rule; The symbol for conjunction is also , and lists are surrounded by <> instead of [].
Queries are simply rules with an empty head.
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point predicates that extend the primitive join point predicates: CARMA is
therefore called an open weaver [19].

Message reception reception(?jp, ?selector, ?arguments)
Message send send(?jp, ?selector, ?arguments)
Assignment assignment(?jp, ?varName, ?oldValue, ?newValue)
Reference reference(?jp, ?varName, ?value)

Table 2.1: CARMA primitive pointcuts.

For example, the logging aspect for the banking application in Figure 2.1
looks as in Figure 2.6 in CARMA. The advice definition consists of two parts:
the part before the do keyword specifies the pointcut for the join point and
the part after the do keyword is the advice code. Note the member(?msg,
<[#withdraw], [#deposit]> pattern: the predicate member predicate is de-
fined as a plain rule (Figure 2.5).

after ?jp matching
reception(?jp, ?msg, <?client, ?int>),
member(?msg, <[#withdraw], [#deposit]>)

do
Transcript show: (?msg: asString), ’ called by ’, (?client: getClientID)

Figure 2.6: CARMA advice: logging sensitive operations for banking application
in Figure 2.1.

The advantages of using a logic meta language to express crosscuts are versa-
tile. First of all, the unification mechanism from logic programming is included
in the pointcut language as wildcard mechanism; Second, it is possible to reuse
crosscut definitions when they are defined by means of a rule; And finally, from
meta programming, the languages gets inspection and reflection functionality
to reason about a program’s (static) structure.

2.4 Expressive Pointcut Languages

Early AOP languages focused on providing support for implementing crosscuts
that depend on a single join point and this was reflected in their pointcut lan-
guages. With the introduction of control-flow based pointcut descriptors, it was
recognized that some crosscuts depend on a sequence of join points in the con-
trol flow of another join point (e.g. “log all functions called by function A”).
More recently, it was advocated that there exists a great deal of crosscuts that
depend on multiple join points, that are not necessarily related by control-flow.
We next discuss three AOP approaches that support such aspects, but first we
illustrate how to implement these aspects in AspectJ.

2.4.1 Context-aware crosscuts in AspectJ

In this section we discuss an e-commerce application and the difficulties that
arise in AspectJ when one tries to implement some example aspects, that depend
on (past) program state at (past) join points.
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Consider a simple e-commerce application. A shop has customers and sells
articles. Customers have an account and have to login to put shop articles in
their basket and to checkout their basket. The UML diagram is shown in Figure
2.7.

Shop

promo-activated()

Customer

checkout()
login ()
buy(Article)

Article
name

article-name()

Basket

compute-total-price()

*1

*

1

1 *

1

1

Figure 2.7: E-commerce application

In order to attract customers to the shop, the shop occasionally engages in
promotional marketing campaigns. Such a promotional campaign has two effects
on the shop, which can be implemented as aspects: the advertising aspect adds
banners to the shop’s pages to advertise the promotion, and the discounting
aspect gives customers a discount on articles when they check out. The shop
application can automatically engage in promotions based on certain conditions.
There can be several variations of conditions that activate a promotion:

• The current time is in a pre-set interval (e.g. before Christmas, “happy
hour”, ...).

• There is a stock overflow for a particular item.

• A competing website does a promotion.

The discount aspect affects the computation of the price of the basket when
the customer checks out. Whether a discount is given depends on the activation
of a promotion, but again, there can be several variations:

• The promotion is active when the customer checks out.

• The promotion is active when the customer logs in.

• The promotion is active when an article is added to the shopping basket.

To illustrate the program’s desired behavior, consider a sample program run
depicted in Figure 2.8. There is a time line depicted for two users: we see that
there is temporarily one promotional context active, namely seasonal-promo.
On the timeline, we see that user 1 logs in when the context seasonal-promo
is active: at that time, the website is popping up banners to lure customers to
login (e.g. “Login now and get a discount on checkout!”). The idea is that when
user 1 checks out at a time the seasonal-promo context is no longer active, user
1 still gets her discount related to the seasonal-promo context. User 2 however
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does not get this discount, as she logged in when the promotional context was
not active, but no harm done: the banners promising a discount were no longer
being displayed when she logged in anyway.

seasonal promo

User1:

User2:

Time

login buy checkout buy checkout

login buy checkout buy checkout

Discount given at checkout can depend on

promotional context active when user logs in
 

Figure 2.8: E-commerce application program run

In the example, there are two aspects that depend on the same promotional
context of the shop. First of all, appropriate banners must be displayed on the
website when a promotion is active and second, the promotion context affects
the discounts a particular user receives. So when considering an implementation,
we need to separate the promotion context definition so that we can use it for
implementing both the banners and the discount aspects. We next discuss how
these aspects can be implemented in AspectJ.

The first aspect we implement, gives a discount at check out time for a user,
if the shop was in a promotional state when the customer logged in. In order
to do this in AspectJ, we need to create a new aspect:

public aspect DiscountAtCheckout {
...

}

This module encapsulates the different advices. We note that in order to give
a discount at check out, we need to advice the method computeTotalPrice, as
this method is responsible for calculating the bill – by accumulating the price
of all articles in the user’s shopping basket – and giving the discount, which
results in subtracting an amount from this total (Figure 2.9).

int around(): (callCheckout(User)){
int total = proceed();
total -= (int) (total * 0.10);
return total;

}

Figure 2.9: AspectJ advice definition.

However, the discount is only given if the user logged in when the discount
promotion was active. So, the pointcut looks as in Figure 2.10. The pointcut
is a composition of four pointcuts: the one on line nr. 2 matches all join points
in the control flow of the execution of the method “checkout”; Line nr. 3 shows



CHAPTER 2. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 16

a context-exposure pointcut, binding the variable usr to the target object on
which a method call, represented by such a join point, is called; Line nr. 4 is an
expression-based pointcut to check whether there was a promotion at login time
for the object bound to usr which uses the method promotionsActiveAtLoginP
and Line nr. 5 matches a join point that represents the execution of a method
named computeTotalPrice. This pointcut, named callCheckout evaluates
to true for a join point if all of the sub-pointcuts evaluate to true (because
&& is used to connect all of them). Except for the implementation of the
method promotionsActiveAtLoginP (see Figure 2.11) used in the expression-
based pointcut, we have described the complete definition of the pointcut.

1. pointcut callCheckout( User usr): (
2. cflow(execution(void User.checkout())) &&
3. target(usr) &&
4. if(promotionsActiveAtLoginP(usr)) &&
5. execution(int User.computeTotalPrice())
6. );

Figure 2.10: AspectJ pointcut definition.

The method getPromosActiveAtLogin returns true if the User object, on
which it is invoked, logged in when a promotion was active. However, this infor-
mation can not simply be computed when the method getPromosActiveAtLogin
is called (when the pointcut in Figure 2.10 is applied to a join point) because
the shop might not be in a promotional state anymore8. So we need to keep a
state variable for each user object that stores this information when a user logs
in: AspectJ’s introduction mechanism allows us to do this (Figure 2.11), by
adding a new instance slot to the class User (line nr. 1) and method (lines
nr. 3-5). Of course, now we need a means to make sure the instance slot
promosActiveAtLogin is set.

1. private boolean User.promosActiveAtLogin = false;
2.
3. public boolean User.getPromosActiveAtLogin(){
4. return promosActiveAtLogin;
5. }
6. private static boolean promotionsActiveAtLoginP(User usr){
7. return usr.getPromosActiveAtLogin();
8. }

Figure 2.11: AspectJ introduction of an instance slot and an instance method
in the class User.

We need to implement another advice that computes the value for the in-
stance slot promosActiveAtLogin when a user logs in (ergo when the method
login is invoked on a User object). The pointcut is depicted in Figure 2.12 and
the advice in Figure 2.13.

The AspectJ implementation of the aspect works fine, but is not very intüıtive.
We need to manage a state for User objects to track if a user logs in when pro-
motions are active, to check when the check out event happens in order to decide
to give a discount or not. In fact, the implementation of the (conceptually one)

8Remember that the promotional state of a shop object is represented by a slot
promoActivated, containing a boolean value, in the class shop, which is flipped when the
promotions are turned on/off.
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pointcut callLogin(User usr): (
execution(void User.login()) &&
target(usr) &&

if(promotionsActiveP(usr))
);

Figure 2.12: AspectJ pointcut to match join points representing invocations of
the method login when promotions are active.

advice “trigger a discount at check out if user logged in when promotions were
active” is scattered over several advices (Figure 2.11, 2.13). The problem is that
the conceptual advice depends on multiple (past) join points in the execution
history of the program – not related by control flow – and this relation can-
not be expressed in AspectJ’s pointcut language. This example is not a lonely
exception.

after() : (callLogin(User)) {
User usr = (User) thisJoinPoint.getTarget();
usr.promosActiveAtLogin = true;
}

Figure 2.13: AspectJ advice on pointcut callLogin in Figure 2.12.

A second aspect we will illustrate, implements the fact that a discount is
given on an article, whenever there was a stock-overflow for that type of article,
when the user added it to her basket. Again we need to create a new aspect:

public aspect DiscountAtCheckout {
...
}

Adding an article to a basket is implemented by the method buy. So assigning
a discount to an article happens when this method is executed (Fgure 2.14).
Again, the pointcut is a composition of pointcuts, all connected by &&: the
pointcut evaluates to true for a join point if all these sub-pointcuts evaluate to
true. Line nr. 2 captures the execution of the method buy; Line nr. 3 and nr. 4
bind the target object and arguments of the join point to the variables usr and
art respectively; Line nr. 5 is a context-exposure pointcut that calls the method
stockOverflow, which expresses that a discount is only assigned if there is a
stock-overflow for that particular type of item.

1. pointcut callBuy(User usr, Article art) : (
2. execution(void User.buy(Article)) &&
3. target(usr) &&
4. args(art) &&
5. if(stockOverflow(usr, art, 2))
6. );

Figure 2.14: AspectJ pointcut.

The method stockOverflow is implemented as in Figure 2.15. We need to
introduce an instance method stockOverflowShopP in the class shop: it simply
counts the articles of a particular type and compares this number to a given
threshold for “stock-overflow”.
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public boolean Shop.stockOverflowShopP(Article art, int nr){
LinkedList arts = this.getArticles();
int countedSoFar = 0;
for(int i = 0; i < arts.size(); i++){

Article art2 = (Article) arts.get(i);
if(art2.getName().equals(art.getName())){

countedSoFar += 1;
}

}
return (countedSoFar > nr);

}

Figure 2.15: AspectJ introduction of a method in class Shop.

The advice (Figure 2.16) simply stores the fact that an article is assigned a
discount when the pointcut of Figure 2.14 matches for a join point. Note that we
need to manage a dictionary to store the discounts assigned to the articles (line
nr. 10), this dictionary can then be queried to compute the discounted price of
an article when it is billed to the user on check out (Figure 2.17). Basically, we
get “complex” code for just the same reasons as noted for the implementation
of the previous aspect.

1. before() : (callBuy(User, Article)) {
2. Object args [] = thisJoinPoint.getArgs();
3. Article art = (Article)args[0];
4. User usr = (User) thisJoinPoint.getTarget();
5. // store discount
6. Double d = new Double(0.10);
7. collectDiscounts.put(art, d);
8. }
9.
10. private Dictionary collectDiscounts = new Hashtable();

Figure 2.16: AspectJ before advice.

Implementing crosscutting concerns that depend on multiple join points in
the execution of a program in AspectJ, is not straightforward, because AspectJ’s
pointcut language does not provide a sufficiently expressive mechanism to ex-
press the ordering relation between two join points 9: if we try to implement
such aspects, this leads to complicated code, involving the manipulation of state
variables.

int around() : (callgetPrice()){
Article art = (Article) thisJoinPoint.getTarget();
double newPrice = proceed();
Double percentage = (Double) collectDiscounts.get(art);
if (percentage != null){

double prcentage = percentage.doubleValue();
newPrice -= (newPrice * prcentage);
collectDiscounts.remove(art);

}
return (int) newPrice;

}

Figure 2.17: AspectJ around advice.

9The cflow pointcut allows one to match all join points in the control flow of another join
point, but we need more!
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2.4.2 Event-based Aspects

Douence et. al. [12] [33] formally define event-based aspect oriented program-
ming (EAOP) as a general framework for AOP in which they define aspects
in terms of sequences of events emitted during program execution. The EAOP
model allows one to express pointcuts that become true if a sequence of events
(unrelated by control flow) is matched in the execution history of a program 10.

EAOP-tool

Currently, Douence et. al. [35] have implemented an EAOP tool which is basi-
cally an object-oriented framework for writing EAOP applications in Java: with
this approach they do not offer a pointcut language, but rely on the programmer
to manually generate and match events using built-in methods, which is not a
very declarative means for specifying pointcuts.

We illustrate how this framework can be used to implement a discount as-
pect for an e-commerce application depicted in Figure 2.7. The purpose of the
discount aspect is to give a discount to a user if it is her first check out ever.

To define a new aspect, we need to create a subclass of the class Aspect.
The class Aspect implements the methods nextEvent and definition. The
method nextEvent returns the next event in the execution of a program. The
idea is that we use this method within other method definitions to manually
define pointcuts. Figure 2.18 shows the method nextCheckout which defines a
pointcut that matches calls of the method “checkout”.

Event nextCheckout(Customer c) {
Event e = nextCheckout();
while (((MethodCall)e).receiver != c) {

e = nextCheckout();
}
this.isCrosscutting = true;
return e;

}

Event nextCheckout() {
boolean ok = false;
Event e = null;
while (!ok) {

e = nextEvent();
ok = (e instanceof MethodCall) &&

((MethodCall)e).method.getName().equals("checkout");
}
return e;

}

Figure 2.18: EAOP pointcut definition.

The purpose of the method definition is to define an advice for the aspect.
To implement our discount aspect, we need to override this method, as in Figure
2.19. Note that we need to manually match the pointcut by means of the method
nextCheckout and that we need to manually attach a discount aspect per user
instance (cf. insert).

From this relatively simple example it becomes clear that without the sup-
port of a pointcut language writing event-based aspects is rather cumbersome:

10We mean the whole execution history of a program here, not just methods that were
called previously in the current control flow.
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public void definition() {
Customer c = newCustomer();
insert(new Discount());
while (true) {

Event e = nextCheckout(c);
if firstCheckout(e){

System.out.print("discount: "); /* advice */
}

}
}

Figure 2.19: EAOP advice.

the programmer needs to manipulate the events generated during program ex-
ecution manually. Currently, there is one other AOP system related to the
EAOP model which has a more declarative means to define aspects which al-
lows writing aspects that depend on multiple events in the execution history,
namely JasCo.

2.4.3 JAsCo Stateful Aspects

JAsCo [42] is an AOP system for Java with some language support to write
down stateful aspects. The idea is that aspects are triggered by sequences
of join points and they evolve according to the join points they match. For
example, an aspect responsible for logging sensitive operations in a banking
application, must wait for the log file to be opened before it can start writing
logging information to it: these aspects are called stateful aspects because a state
is needed to represent their evolution (logging on/off if file opened/closed). Note
that a change of state is triggered by an event in the execution of a program. The
problem with current AOP languages is that they do not offer direct support to
write down stateful aspects, but rather depend on the programmer to manage
this “aspect state” by means of variables manually. JAsCo however, does offer
some linguistic support for writing down stateful aspects.

In JAsCo, stateful aspects [7] are implemented by means of a state machine
to track the state an aspect is in: JAsCo offers constructs to describe the states
and transitions of this state machine declaratively so that the programmer does
not have to generate events at join points and feed these to a state machine
manually (as is the case in section 2.4.2 with method nextEvent). We illustrate
the JAsCo language by means of an example.

Consider for example a banking application where sensitive operations need
to be logged (as in section 2.2.2), but the logging should only be active when
a user is logged in. In JAsCo this boils down to the aspect depicted in Figure
2.20. The idea is that the program execution is mapped onto the transitions in
a state machine: the method ProtocolLogger implements this by enumerating
the different possible transitions and by specifying which possible transitions
can be taken next, when a certain join point 11 is encountered, following the
pattern:

"transition name" : "JAsCo pointcut" > "following transitions";

11JAsCo primitive pointcuts include call(method), execution(method), cflow(method),
withincode(method), target(MyClass) and connectives ||, !, && [41].
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For every transition a before-, after- or around-advice can be defined, allowing
one to insert behavior at a state transition, following the pattern:

before|after|around "transition name" {....}

class ProtocolLogger extends Logger {

hook StatefulProtocolLogger {

StatefulProtocolLogger(methodLogin(..args),methodDeposit(..args),methodWithdraw(..args), methodLogout(...args)) {
CalledLoginTrans :

execution(methodLogin) > CalledWithdrawTrans || CalledDepositTrans || CalledLogoutTrans ;
CalledWithdrawTrans :

execution(methodWithdraw) > CalledWithdrawTrans || CalledDepositTrans || CalledLogoutTrans ;
CalledDepositTrans :

execution(methodDeposit) > CalledWithdrawTrans || CalledDepositTrans || CalledLogoutTrans ;
CalledLogoutTrans :

execution(methodLogout) > CalledLoginTrans;
}

after CalledLoginTrans() {
System.out.println("Started logging for client ");
System.out.println(thisJoinPoint.getArgumentsArray()[0].getClientID());

}

before CalledWithdrawTrans() {
System.out.println("Logging withdraw for ");
System.out.println(thisJoinPoint.getCalledObject().getClientID());
System.out.println("thisJoinPoint.getSignature()");

}

before CalledDepositTrans() {
System.out.println("Logging deposit for ");
System.out.println(thisJoinPoint.getCalledObject().getClientID());
System.out.println("thisJoinPoint.getSignature()");

}

before CalledLogoutTrans() {
System.out.println("Stop logging for ");
System.out.println(thisJoinPoint.getArgumentsArray()[0].getClientID());

}
}
}

Figure 2.20: JAsCo AspectBean

It is also possible to put conditions on the transitions (e.g. Figure 2.21).

isApplicable CalledDepositTrans() {
return thisJoinPoint.loggingEnabled();

}

Figure 2.21: JAsCo condition on transition

In JAsCo, aspects need to be deployed using a connector (Figure 2.22): this
makes sure a state machine is created for an aspect. Note that the programmer
must decide at what time a state machine must be created (keyword perobject,
perthread, etc).

The main benefit of the JAsCo approach is that one needs not concern oneself
with events generated at runtime nor with feeding them to a state machine or
managing state variables to reflect the state the aspect is in as was the case with
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static connector TimingConnector {
perthread ProtocolLogger.StatefulProtocolLogger logger =

new ProtocolLogger.StatefulProtocolLogger(
void Bank.login(Client),
void Client.withdraw(AccountNr, integer),
void Client.deposit(AccountNr, integer),
void Bank.logout(Client)

);
}

Figure 2.22: JAsCo connector

EAOP tool (section 2.4.2). There are however some problems with the JAsCo
approach:

1. It is difficult to write down a stateful aspect in terms of transitions without
a good clear picture of the state machine in ones mind (Figure 2.23) 12

2. There is no declarative way to pass context information from one join
point to another to check conditions on the second join point: one needs
to create a variable and assign it when a transition is entered.

3. One needs to decide manually when to create create an instance of an
aspect.

Therefore we believe there is still room for improvement in JAsCo.

logged
Out

calledLogin

calledLogout

calledWithdraw calledDepositlogged
In

Figure 2.23: State machine for JAsCo aspect in Figure 2.20.

2.4.4 Context-aware aspects

The notion of context-aware aspects has been introduced by Tanter et. al. [36]:
Related to the idea of context-aware applications, context-aware aspects are as-
pects whose behavior is context-dependent. In that paper, the authors address
the problem that current AOP languages incorporate a too limited notion of
context when considering context-aware applications (e.g. context is only infor-
mation on the join point and not the state of a program) and that therefore the

12We found it particularly difficult to write the aspect without first drawing the state
machine.
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definition of context needs to be extended, for example to include the ability to
refer to past contexts. The use of a specialized pointcut language is proposed,
but only back-end technology based on Reflex is discussed.

Reflex [37] is an open reflexive extension to Java that makes it possible to do
both structural and behavioral modifications of programs. The main concepts
in Reflex for doing such modifications are the behavioral link and the structural
link : only the behavioral link is discussed in [36] as a means to implement
context-aware aspects. A behavioral link is responsible for invoking messages
on a metaobject at occurrences of operations specified by a hookset. A hookset,
similar to a pointcut in AspectJ, is a means to describe where an aspect will
apply (= a set of operations such as method calls, method executions, etc. ): the
class Hookset can be used to create new hooksets; The constructor of the class
Hookset takes three selection conditions (a sort of predefined predicates under
the form of classes) as arguments which describe the type of operations, the class
in which the operations occur and constraints on the operations themselves: note
that only lexical crosscuts can be expressed by hooksets. For example, Figure
2.24 defines a hookset in Reflex: it describes all method (call)s (line nr. 2) where
the method is defined in the class Bank (line nr. 3).

// Reflex hookset
1. Hookset logHookset = new Hookset(
2. MsgReceive.class,
3. new NameCS(Bank, false),
4. new AnyOS()));

// Equivalent AspectJ pointcut
execution(* Bank.*(..))

Figure 2.24: Reflex hookset definition: captures all method calls, where the
method is defined in the class Bank

Creating a behavioral link is done by means of the constructor Links.cre-
ateBlink which takes a hookset and a metaobject as arguments and by setting
the different properties of the link (by methods like setCall defined in BLink).
For example, in Figure 2.25 we define a behavioral link, named log which is
responsible for sending a message log, before a method of the class Bank (de-
scribed by hookset hookset in Figure 2.24) is called, to a metaobject that is the
instance of the Java class Logger. Notice line nr. 5, this shows an important
feature of Reflex: the method addActivation can be used to add an activation
condition which restricts the set of intercepted operations to those that satisfy a
condition at runtime. A condition is implemented by implementing the interface
Active, which exposes one method namely, evaluate that takes as argument
the object on which an operation (intercepted by a hookset) is called. In [36]
Reflex is extended with support for defining contexts and context-specific link
activation conditions.

Defining a context in Reflex is done by subclassing the class Context and
overriding the method getState. This method returns null if a context is not
currently active or returns an instance of the class ContextState, indicating the
program is in a context. Calling the method getState is refered to as snapshot-
ting. An object ContextState contains context information (e.g. the discount
rate in a promotional context). The Reflex implementation makes sure that the
ContextState object’s context information, is the same as when the snapshot
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1. BLink log = Links.createBLink(logHookset, new Logger());
// class Logger contains advice code under the form of methods
2. log.setCall(Logger.class, log);
3. log.setControl(Control.BEFORE); // before advice
4. log.setScope(Scope.GLOBAL); // singleton metaobject
5. log.addActivation(new Condition()); // adding a dynamic condition

Figure 2.25: Reflex behavioral link for hookset in Figure 2.24

was requested (i.e. stateful). For example in Figure 2.26 defines a ChargeCtx
for our banking application, defining the rate for performing a transaction. A
object ChargeState contains the rate at the moment the snapshot was created,
no matter when the snapshot is accessed.

class ChargeCtx extends Context {
CFlow cf = CFlowFactory.get(new Hookset(MsgReceive.class,

new NameCS(Bank, false), new AnyOS()));
double rate; // with setter
ContextState getState() {
if(!cf.in()) return null;
return new ChargeState(rate);

}
class ChargeState

extends ContextState {
double rate;
double getRate() { return rate; }

}}

Figure 2.26: Reflex context definition

The idea is now that contexts are used in link activation conditions. In [36]
Reflex is extended with the classes CtxActive and SnapshotCtxActive which
implement the interface Active and these classes need to be subclassed in order
to obtain a context-dependent link activation condition. The class CtxActive
class contains an instance variable, itsContext, referring to the activation con-
dition’s context, the method evaluate returns true if the associated context
is/was active. To determine if a context is/was active, the method getCtxState
needs to be overridden. For example the context CurrentlyInCtx defines an
activation condition that can be used in a link to capture operators only if a
context is currently active:
class CurrentlyInCtx extends CtxActive {
ContextState getCtxState(Object o){ return itsContext.getState(); }
}

The abstract class SnapshotCtxActive extends the class CtxActive and
provides the necessary support for defining activation conditions that depend
on past context snapshots by implementing the methods:

• void snapshot(Hookset hs, Parameter p): stores a snapshot of the
context in p when an operation matches the given hookset hs

• Snapshot getSnapshot(Object o): returns the snapshot taken for an
object o

For example, we can implement a Charge context for a banking application –
which represents the current rate that is charged for handling a transaction –
as in Figure 2.2713. The idea is that the rate that is charged for a transaction

13Example CreatedInCtx adapted from [36].
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changes over time (e.g. when it’s Christmas, the rate is lower than usually). The
class CreatedInCtx is responsible for making a context snapshot for each created
object. The advice code (implemented by method amount in a class Charge)
is only executed when the chargeCtx is active when an operator matches the
specified hookset (because inCharge is added as activation condition). The
(built-in) method getCtxParam is used to fetch the rate that was set when the
object, on which an operator is used, was created.

class CreatedInCtx extends SnapshotCtxActive {
CreatedInCtx(Context c, BLink l){
super(c);
ClassSelector cs = l.getClassSelector();
annotate(cs);
snapshot(new Hookset(Creation.class, cs, new AnyOS()), Parameter.THIS);

} }

BLink charge = Links.createBLink(chargeHS, new Charge());
Context chargeCtx = new ChargeCtx();
CtxActive inCharge = new CreatedInCtx(chargeCtx, charge);
charge.addActivation(inCharge);
charge.setCall(Charge.class, amount, inCharge.getCtxParam(rate));

Figure 2.27: Reflex create context definition

The nice thing about Reflex is that it actually does offer support for imple-
menting context-aware aspects. However, this support is offered under the form
of a framework, rather than a declarative pointcut language. We believe that
a dedicated pointcut language can greatly improve the expressiveness of such a
system.

Problem statement

Crosscuts in terms of sequences of join points are a recognized problem. Cur-
rent AOP systems that allow one to express them in terms of aspects, such as
EAOP tool, JasCo and Reflex do not offer pointcut languages for defining them,
but rather rely on the programmer to manipulate the events generated during
program execution themselves.

We believe however that a dedicated pointcut language can add to the ex-
pressiveness of these AOP systems. Furthermore, we believe that it can in fact
be done without extending the model of AOP languages we defined in section
2.3.1. We believe it suffices to introduce connectives into an existing pointcut
language which define a temporal relation between the pointcuts they connect.
In the next chapter we discuss temporal logic as a basis for developing such
connectives.

2.5 Summary and Conclusion

In this chapter we introduced aspect-oriented programming (AOP). AOP is a
new programming paradigm in which a strict separation of concerns is pursued,
which is not possible to achieve using a traditional object-oriented, functional
or procedural language. AOP is currently achieved through the extension of
a base language with language constructs to define modules for implementing
crosscutting concerns: this language extension is called an aspect language.
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Aspect languages are based on a join point model which consists of join
points, a means of describing join points and a means of affecting behavior at
a join point, which in most aspect languages is done by means of a pointcut
language and an advice language. Pointcut languages allow one to describe
sets of join points declaratively. Pointcuts are connected to pieces of code that
implement part of a crosscutting concern using a before, after or around +
proceed connector.

An example aspect language we introduced is AspectJ, which is an aspect
language for Java. AspectJ allows one to write pointcuts that match single
events in the execution of a program and pointcuts that match events in the
control flow of another event. There is however a great deal of crosscuts that
depend on sequences of events in the execution history of a program. This lead
to the introduction of EAOP as a new model for AOP where crosscuts depend
on sequences of events and context- aware aspects in which context-exposure of
past events is possible. Current implementations of these AOP models do not
offer pointcut languages to deal with temporal relations. We believe however
that a dedicated pointcut language can greatly improve the expressiveness of
these systems and in the next section we investigate temporal logic as a basis
for designing such a pointcut language.



Chapter 3

Logic Meta Programming

In this chapter we discuss the concepts behind logic programming by means
of the prototypical logic programming language called Prolog. We next define
logic meta programming and its relation to logic programming and we present
the current (research) applications of logic meta programming. We continue
the chapter with the definition of temporal logic meta programming and discuss
its relation to temporal logic. To conclude the chapter we give a summary
and we introduce the experiment to evaluate the use of temporal logic meta
programming.

3.1 Logic Programming

Before we define Logic Meta Programming, we take a look at logic programming.
Logic Programming is a programming paradigm: the idea is that a program de-
scribes a logic theory and that a procedure call (or query) is nothing but a
theorem which needs to be verified for truth using this program [13]. Logic pro-
gramming is often called declarative programming as a program describes what
a problem is, rather than how to solve it. As an example logic programming
language, we discuss Prolog, as this is the basis of most logic meta program-
ming applications (including CARMA) and hence of particular interest for this
dissertation.

3.1.1 Definite clause logic

Before we delve into Prolog, we introduce definite clause logic, which is the
logic after which Prolog was designed. Understanding definite clause logic helps
understanding Prolog better. Another reason why we introduce definite clause
logic is that this allows us to introduce some important concepts from logic
theory that are used throughout the rest of this chapter, by example – for a
formal overview of logic theory, we refer to [13] or [32]. Discussing definite
clause logic –or any logic language for that matter– is done by covering three
topics: syntax, semantics and proof theory. Syntax defines the sort of logic
formulas or sentences one can write down in a logic language. Semantics gives
meaning to logic formulas, meaning that some formal theory can be used to
determine whether a formula is true or false. Finally, proof theory defines how

27
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constant :: a single word starting with lower case letter
functor :: a single word starting with lower case letter
predicate :: a single word starting with lower case letter
variable :: a single word starting with upper case letter
term :: <constant> | <variable> | <functor>(term{,term}*)
atom :: <predicate>(<term>{,<term>}*)
clause :: <head>: −<body>.
head :: <atom>
body :: <atom>{,<atom>}*

Table 3.1: Grammar for definite clause logic.

we can acquire new sentences from assumed sentences by means of pure symbol
manipulation [13].

Syntax

The syntax of definite clause logic is defined as follows. A variable is a sin-
gle word, starting with an uppercase letter, whereas a constant, a predicate
and a functor are represented by a single word, starting with a lower case
letter. A term is either a constant, a variable or a functor followed by a
number of terms, enclosed between brackets and separated by comma’s (e.g.
pirate(lotte, Ship)). A ground term is a term without variables. An atom
is a predicate, followed by a number of terms (called arguments), enclosed be-
tween brackets and separated by comma’s (e.g. parent(marie, lotte)). A
clause consists of a head, followed by the symbol :- and a body. A head is
simply an atom and a body is a sequence of atoms, separated by a comma, end-
ing with a dot (e.g. parent(Person, lotte) :- mother(Person, lotte).. A
program is a set of clauses. The grammar is summarized in Backus-Naur form
in Table 3.1.

An example program is depicted in Figure 3.1 1. In order to give meaning
to this program, we need to interpret the program. Informally, the purpose of
the program is to represent the grandparent relation; It states which people
are parents of which people and consequently which people are grandparents of
which people. Formally, the semantics of a program written in definite clause
logic, is defined by its model theory.

1. parent(anna, marie).
2. parent(marie, lotte).
3. grandparent(GrandPerson, Child) :-
4. parent(GrandParent, Parent),
5. parent(Parent, Child).

Figure 3.1: Prolog: grandparent relation.

Model theory

Remember that the idea behind logic programming is that a program describes
a logic theory and that a query is nothing but a theorem (= a formula) that

1The notation parent(anna,marie). is short for parent(anna,marie):- true
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needs to be proved given this program. Now that we know the syntax of definite
clause logic we can write syntactically correct programs, but we still don’t know
the semantics of a formula: i.e. is either false or true? In order to determine the
semantics of a formula, given a program, we need to cover quite a few concepts.

The Herbrand universe of a program is defined as the set of ground terms
that can be constructed from the constants and functors present in the program.
For example the Herbrand Universe for the program shown in Figure 3.1 is de-
fined as {anna, lotte,marie}. Note that in general it possible that the Herbrand
universe is infinite: e.g. the program plus(0,0,s(X)) has as Herbrand universe
the set {0, s(0), s(s(0)), ...}.

Next, the Herbrand base of a program is the set of ground atoms that can be
constructed using the predicates present in the program and the ground terms
from the program’s Herbrand universe. For example the Herbrand base for the
program depicted in Figure 3.1 is the set {parent(anna,marie), parent(ma-
rie, anna), parent(marie, lotte), parent(lotte,marie), parent(anna, lotte), par-
ent(lotte, anna), grandparent(anna,marie), grandparent(marie, anna), grand-
parent(marie, lotte), grandparent(lotte,marie), grandparent(anna, lotte), grand-
parent(lotte, anna), parent(anna, anna), grandparent(anna, anna), parent(ma-
rie,marie), grandparent(marie,marie), parent(lotte, lotte), grandparent(lot-
te, lotte)}.

The Herbrand interpretation for a program is a subset of the Herbrand base
of the program, so that each element is assigned the truth value true. A substitu-
tion is a mapping from variables to terms (e.g. {Child→lotte} and {X→Y} are
substitutions). Applying a substitution to a clause means that the occurrence
of each variable on the left-hand of a substitution is replaced by the term on the
right-hand of the same substitution. For example, if we apply the substitution
{Parent→marie, Child→lotte, GrandPerson→anna} to the clause featured in
Figure 3.1, we get the clause:

grandparent(anna, lotte) :-
parent(anna, marie),
parent(marie, lotte).

A ground clause is a clause without variables and a ground instance of a
clause is the clause obtained by applying a substitution that replaces all vari-
ables in the clause. A ground clause is true given an interpretation if at least
one atom in the body of the clause is false in the interpretation or the head
of the clause is true in the interpretation. An interpretation is a model for
a clause, if the interpretation is a model for every ground instance of the
clause. For the program depicted in Figure 3.1, we can construct the model
{parent(marie,lotte),parent(anna,marie), grandparent(anna, lotte)}. A clause
C is a logical consequence of a program P (P |=C), if every model of P is also a
model of C.

So, in theory, in order to resolve a query Q given a program P , we can check
P |=Q: however, this is a very inefficient method, as the number of models for
a program can be quite large, even infinite! Proof theory allows to determine
much faster if a query is true or false.

Proof theory

Proof theory is a technique that relies on the idea that if a program P can
be rewritten, by some clever symbol manipulation following well-defined rules
called inference rules, to a query Q, then that query is said to be proved (P`Q)
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and preferably true (P |=Q). Proof theory is sound if P`Q→ P |=Q. The proof
theory for definite clause logic consists of one single rule called resolution.

Resolution makes use of a matching process called unification. A substitu-
tion is called a unifier for two atoms, when the substitution assigns values to
the variables in the atoms such that both atoms are equal after applying the
substitution. For example, the substitution {Parent→marie, Child→lotte } is
a unifier for the atoms parent(Parent, lotte) and parent(marie, Child): both
patterns are said to unify). Note that before one tries to unify two patterns,
one must check if a variable does not occur in a term one is trying to substi-
tute the variable for: this is called the occur check . E.g. unifying sails(X,
boat owned by(X) and sails(Y, Y) should fail, but without the occur check, the
unification loops. Unification without the occur check makes resolution unsound
[13].

The resolution rule is now as follows. If there is an atom in the body of a
clause that unifies with the head of another clause, resulting in a unifier, the
two clauses resolve to the clause gotten after applying the unifier to a clause
where the head of that clause is the same as the head of the first clause and the
body of that clause consists of union of the atoms in the bodies of both clauses,
except the for the head of the second clause. E.g. applying resolutions to the
clauses nr. 1 and 2 resolves in the clause nr. 3 shown in Figure 3.2.

grandparent(Grandperson, Child):- parent(GrandParent, Parent), parent(Parent, Child).false :- grandparent(Person, lotte)

 false :- parent(GrandParent, Parent),  parent(Parent, lotte).

{Person ®  Grandperson, Child ®  lotte}

Figure 3.2: Resolution example.

Instead of randomly applying resolution to the clauses in a program in
order to prove a query, a proof technique called proof by refutation is used.
The idea is that we try to prove the opposite of the query and if we stumble
upon a contradiction, the query is proved. In order to find a contradiction,
we repeatedly apply resolution to the query false : −query and if we come
to a point where we get the clause false : −true, we have a contradiction,
as this clause can never be true. For example, if we try to prove the query
grandparent(Person, lotte), given the program depicted in Figure 3.1, we try
to prove false : −grandparent(Person, lotte), which leads to a contradiction.
The different resolution steps are depicted in the proof tree depicted in Figure
3.3. Note that sometimes, multiple clauses can be chosen to perform a res-
olution step (e.g. in Figure 3.3 at resolution step 2, we can chose the clause
parent(anna,marie) aswell), depending on the clause chosen, the proof theory
can even fail, meaning one resolves to a clause –different from false : −true–
that can not be resolved anymore. Nevertheless, all possibilities must be tried
to make sure the clause false : −true cannot be obtained; If this is the case for
all possibilities, the query simply fails.
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grandparent(Grandperson, Child):- parent(GrandParent, Parent),
                                                  parent(Parent, Child).

false :- grandparent(Person, lotte )

false :- parent(GrandParent, Parent),
 parent(Parent, lotte )

{Person ®  Grandperson, Child ®  lotte}
parent(marie, lotte).

{Parent ®  marie}

false :-  parent(GrandParent, marie) parent(anna, marie).

false :- true

Figure 3.3: Proof tree for the query grandparent(Person, lotte), given the pro-
gram in Figure 3.1.

3.1.2 Prolog

In principle, Prolog is almost the same as definite clause logic. The main differ-
ence between Prolog and definite clause logic is Prolog’s resolution strategy and
built-in features (such as keywords cut, is, etc. ). In this section we will focus
on explaining the resolution strategy, as it is important to realize –because we
are going to implement our own logic language– what the differences between
logic and logic programming are.

The syntax and semantics are practically the same as the syntax and se-
mantics for definite clause logic –though clauses are sometimes referred to as
rules and clauses with an empty head as facts. The main difference is that there
are a set of keywords –depending on the implementation– built-in such as cut,
is etc. . For a decent overview we refer to the documentation of a particular
Prolog distribution (e.g. [46]).

Prolog’s proof procedure is based on the proof theory defined for definite
clause logic, namely proof by refutation. In order to make that proof theory
executable, we need to chose the order in which an atom in a body of a clause
is picked out to apply a resolution step and we need to define how the second
clause in a resolution step is picked out from a program. Together this is called
a resolution strategy. Prolog implements the SLD-resolution strategy. SLD
stands for selection rule, linear resolution and definite clauses. The idea is that
the clauses in a program are tried top-down, one by one and the atoms in
the body of a clause are resolved from left to right. E.g. resolving the query
?grandparent(Person,lotte), given the program in Figure 3.1, results in a
search, depicted as a path in Figure 3.4 in a tree of possible resolution steps.

3.2.
The SLD-resolution strategy makes Prolog executable, but also less declara-

tive. The order in which the clauses are added to the program and the order of
the atoms in the body of a rule influences whether a query is answered or not.
There are even SLD trees with infinite branches [13]. Consequently, we might
never reach a success branch in the SLD tree, because we keep going down an
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?grandparent(Person, lotte )

 :- parent(GrandParent, Parent), parent(Parent, lotte )

false :- true :- parent(marie, lotte ), parent(lotte , lotte )

Figure 3.4: Path followed in SLD tree for answering query
?grandparent(Person,lotte) given the program depicted in Figure 3.1

infinite subtree. This makes Prolog incomplete, as there are logical consequences
of a program that cannot be found. Secondly, Prolog is unsound, as the occur
check (see Section 3.1.1) is omitted from Prolog’s unification algorithm. Hence,
Prolog is different from definite clause logic, which is sound and complete.

3.2 Logic Meta Programming

The definition of logic meta programming is as follows:

Logic Meta Programming is the use of a Logic Programming
language at the Meta level to reason about and manipulate programs
built in some underlying base language.

The idea behind logic meta programming is to use a logic programming
language, called the meta language, to write meta programs that state knowledge
about programs written in some other language, called base language. This
knowledge base can then be queried to reason about a program written in the
base language.

The goal of logic meta programming research is to examine how logic meta
programming can be used to support the software development process in one
way or another [6]. Current applications of logic meta programming being
investigated can be placed in one of the following categories:

• verification of source code to some higher-level description (e.g. checking if
source code matches certain design patterns, coding conventions etc. [28])

• extraction of information from source code (e.g. visualization, browsing,
measurement, etc. ) [29]

• generation of source code

• aspect-oriented programming [44][20]

For example, in the previous chapter, we discussed CARMA which is a logic
pointcut language based on the logic meta language SOUL for Smalltalk. As
briefly discussed in that chapter, SOUL is basically Prolog. However, SOUL
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is different from Prolog in that SOUL has built-in support (under the form of
predicate libraries) to reason about Smalltalk code, access the Smalltalk base
level and even generate Smalltalk code. CARMA introduces a predicate library
for describing join points on top of SOUL as a pointcut language for Smalltalk.
Other tools related to logic meta programming and ideas actively being re-
searched are plenty – which proves that logic meta programming is a valuable
technique: SOUL [47], TyRuBa [11], JQuery [43], CARMA [20], etc.

All these logic meta programming systems have one thing in common, namely
the logic meta languages they propose are all modeled after Prolog. There is
however a wealth of other logics out there and these are perhaps more expres-
sive for certain logic meta programming applications. In the next section we
investigate a new form of logic meta programming based on temporal logic we
dubbed temporal logic meta programming to reason about the execution history
of a program.

3.3 Temporal Logic Meta Programming

We define temporal logic meta programming as a form of logic meta programming
where the logic programming language is based on a temporal logic program-
ming language. The focus of this dissertation is to use temporal logic meta
programming as a means for developing an AOP language to express aspects
that depend on multiple join points in the execution of a program, such as
stateful aspects and context-aware aspects (see Chapter 2). In order to describe
a sequence of join points, we note that there is a temporal relation between
these join points: if we can describe this relation, we can describe the sequence.
For example in Figure 3.5 the execution of a simple program is depicted: the
program is fed to an interpreter which executes the commands sequentially,
resulting in the events or join points shown on the time line. Describing the
execution history – or time line –, is done by saying things like “event A hap-
pens before event B” and “event C happens after event B”. So our logic meta
language needs to be able to express these temporal relations.

Program:
do A;
do B;
do C;

Interpreter
event(A) event(B) event(C)

t1 t2 t3 TIME

Figure 3.5: The execution history of a program depicted on a time line.

The easiest way to include the notion of time in Prolog, which is used as
logic meta language in current logic meta programming applications, is to add
an extra variable to every pattern: this temporal variable is then bounded to a
time stamp and we express temporal relations by putting constraints on these
temporal variables. For example, to describe the execution history in Figure 3.5,
we can write the following query in Prolog: event(X1, T1), event(X2, T2),
event(X3, T3), T1 < T2, T2 < T3. Manual manipulation of time stamps in
general is tedious and a natural need to introduce some form of abstraction
arises: temporal logic introduces temporal operators and assumes an implicit
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temporal context under which each formula is evaluated, as an abstraction mech-
anism for time manipulation.

The term temporal logic [15] refers to all logics that allow the (abstract)
representation of temporal relations. In temporal logic, a query is evaluated in
relation to time and the truth value of a formula can change over time. Take for
example the statement: “ Lotte sleeps.”: depending on the time this statement
is evaluated to (e.g. from 1h30 - 9h30) this is true or false. A temporal logic
introduces temporal operators – or temporal connectives – into a logic 2, which
abstract the explicit handling of time. The origin of temporal logic lies with
modal logic.

3.3.1 Modal Logic

A modal logic extends propositional or predicate logic with a new type of oper-
ators, called modalities. The goal of modal logic is to represent possibility: e.g.
“is it necessary that A is true” (�A) or “is it possible that A is true” (�A).

More formally, we define the syntax of classic modal logic as follows. The
alphabet of the language consists of:

• a set of propositional variables P = { p, p, ... }

• logic connectives ←, ¬

• modalities � , (� = ¬�¬)

Then, if ψ and ϕ are well-formed formula, so are: p ∈ P , �ψ, �ψ, ϕ←ψ.
The semantics of modal formulas is defined by means of Kripke structures.

A Kripke structure K (or model) is a 3-tuple consisting of a set W of countable
worlds, an accessibility relation T which determines if it is possible to go from
one world to another and an interpretation function L which determines which
propositions are true in a world (cf. state machine). Figure 3.6 is a graphical
representation of a Kripke structure.

A modal formula is evaluated in terms of one of the worlds. For example,
in classical modal logic, the formula �ψ resolves to true in a world ω1 if there
is at least one world accessible from ω1 for which ψ true is and the formula �ψ
resolves to true in a world ω2 if ψ is true for all worlds accessible from ω1

3.
More formally, given a Kripke structure K = (W , T , L) and a world w, we say
that a formula is true in a world for a model K if:

1. K,w |= p if (w, p) ∈ L

2. K,w |= ¬ ϕ if K,w 6|= ϕ

3. K,w |= ϕ ← ψ if K,w 6|= ψ or K,w |= ϕ

4. K,w |= � ϕ if ∀ v : (w, v) ∈ T : K,v |= ϕ

and a formula ϕ is true for a model K if: K |= ϕ if ∀ w ∈ W : K,w |= ϕ
For example, for the Kripke structure in Figure 3.6, formulas �q and �p are

true in world w1 (K,w1 |= �q, K,w1 |= �p).
2Being propositional logic or predicate logic.
3Note that this is very different from traditional logic, where all operators are truth-

functional, meaning the truth value of a formula depends on the truth value of its components,
whereas in temporal logic, the truth value of a formula is relative to the temporal context to
which it is evaluated.
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w1 w2 w3

w4

p q
1 0

p q
0 1

p q
1 1

p q
1 0

Figure 3.6: Graph for Kripke K = (W , T , L) with
W = { w1, w2, w3, w4 }
T = { (w1, w2), (w1, w4), (w2, w3) }
L = { (w1, p), (w2, q), (w2, p), (w3, p), (w4, q) }

Temporal logic was first introduced by Arthur Prior under the form of Tense
logic [10] as a form of modal logic to reason about the past and the future truth
value of a formula, which lead to the introduction of the past modalities P ,
H and the future modalities F and G into propositional logic. More formally,
we define the syntax of Tense logic as follows. The alphabet of the language
consists of:

• a set of propositional variables P = { p, q, ... }

• logic connectives ←, ¬

• modalities P , H, F , G

Then, if ψ and ϕ are well-formed formula, so are: p ∈ P , Pψ, Gψ, Hψ, Fψ,
ϕ←ψ.

The semantics of the temporal operators is as follows. Pp expresses that
proposition p was true sometime in the past, Fp expresses that proposition p
will be true in the future, Hp expresses that proposition p was always true
in the past and Gp that proposition p will always be true in the future. For
example Hp ∧ p ∧ Fp expresses that there never will be a moment where p is
false. More formally, the semantics are defined in terms of temporal frames. A
temporal frame consists of a set W of time points (time), an ordering relation
for these time points, an accessibility relation T which determines if it is possible
to go from one time point to another and an interpretation function that defines
at each time point the truth value of a proposition. A temporal logic formula
is evaluated to a time point. We say that a formula is true at a time point t for
a temporal frame K = (W,<, T, L) if:

1. K,t |= p if (p, t) ∈ L

2. K,t |= ¬ ϕ if K,t 6|= ϕ

3. K,t |= ϕ ← ψ if K,t 6|= ψ or K,t |= ϕ

4. K,t1 |= P ψ if ∃ t2 : t2 < t1 : T ,t2 |= ψ
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5. K,t1 |= F ψ if ∃ t2 : t1 < t2 : K,t2 |= ψ

6. K,t1 |= H ψ if ∀ t2 : t2 < t1 : K,t2 |= ψ

7. K,t1 |= G ψ if ∀ t2 : t1 < t2 : K,t2 |= ψ

Figure 3.7 defines an example temporal frame for Tense logic: from it, we
can conclude for example at 12h00 that “lotte has been sleeping” (K,t3 |=
Plottesleeps). 4 Depending on the definition of time points, different temporal
logics are defined as a variation on tense logic.

11h 12h10h

lotte sleeps
1

lotte sleeps
1

lotte sleeps
0

Figure 3.7: Graph for temporal frame K = (W , , T , L) with
W = { 10h, 11h, 12h }
T = { (w1, w2) : w1 < w2 }
L = { (10h, lotte sleeps), (11h, lotte sleeps), (12h, lotte sleeps) }

3.3.2 Classification of temporal logics

If we define time as a set of time points and a time stamp refers to a certain
“moment” in time and is used to associate a pattern with time, we can classify
temporal logics by the following possible properties of time [16]:

Time points or time intervals : a time stamp refers to a single time point
or an interval of time points.

Bounded or unbounded time : if every time stamp is preceded by another
time stamp, time is said to be unbounded in the past ; If every time stamp
is succeeded by another time stamp, time is said to be unbounded in the
future. If on the other hand there is a time stamp for which there is no
time stamp preceding it, time is called bounded in the past ; If there is a
time stamp for which there is no time stamp succeeding it, time is said to
be bounded in the future

4The graph is a representation of the Kripke structure, notice two accessibility relations:
red arrows to see if one can access a past time point and black arrows to see if one can access
a future time point.
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Discrete, dense or continuous time : depending on the domain chosen to
represent time points, time is said to be discrete, dense or continuous: this
naming is used when referring to the set of integers, the set of rational
numbers or the set of real numbers to represent time-points respectively.

Linear or branching time : time is called linear when the set of time-points
is totally ordered and when the set of time-points is partially ordered time
is called branching.

In addition to these options, we include the option for a temporal logic to be
based on propositional logic or first-order logic.

3.3.3 Temporal logic meta programming experiment: re-
quired properties

Remember that one of our goals, is to find a language that allows one to eas-
ily express aspects that depend on multiple join points in the execution of a
program. For this purpose, we need a pointcut language in which it is easy
to describe (ordered) sequences of events generated by program execution and
we need to be able to place constraints on the arguments of these events. If
we define program execution as a linear sequence of computational steps that
starts at a well-defined point in time, we observe that in order to describe such
a sequence using temporal logic, the properties we are looking for in a temporal
logic are:

1. time stamps refer to time points,

2. time is unbounded in the future (in general, we never know if program
execution ever stops), execution starts at a well-defined point in time, so
time is bounded in the past.

3. time-points are mapped to integers, because we want to reason about an
execution trace in terms of execution time. We could for example map
time points to real time, making the temporal formulas be evaluated in
relation to real time. This could for example be interesting for expressing
time-related business rules using temporal logic, however this is not the
focus of this dissertation.

4. linear time: time points are totally ordered. In this dissertation, we chose
not consider reasoning about multi-threaded programs.

5. based on FOL (we want to be able to put constraints on the arguments of
the events).

In the next section we take a look at metric temporal logic which has these
properties.

3.3.4 Metric Temporal Logic

Metric Temporal Logic [9] [8] – or MTL – allows reasoning about linear – pos-
sibly infinite – time intervals: MTL introduces temporal operators that allow
the logician to say things as “B becomes true sometime within t time points A
was true” or “A becomes true, so at the next time-point B is true”. The base
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logic for MTL is FOL; the properties (section 3.3.2) of MTL are summarized as
follows

• time stamps label time points

• discrete time points

• linear time

• time unbounded in the future, time bounded in the past

• base logic: FOL

Syntax and Semantics

The alphabet of MTL consists of:

• a set of constants C = { c1, c2, ... }

• a set of predicate symbols P = { p1, p2, ... }

• a set of functor symbols F = { f1, f2, ... }

• a set of variable symbols X = { X1, X2, ... }

• logic connectives ←, ¬ and derived logic connectives ∨, ∧

• temporal operators •, ◦, �t, �t (t ∈ Z ∪ {−∞,+∞})

• symbols ( and )

Then we say that t is a term, if t is a variable (t ∈ X) or t is a constant (t ∈ C)
or if t = f(t1, ..., t2) where t1...t2 are terms and f is a functor (f ∈ F ).

Then, if x is a variable (x ∈ X) and if p is a predicate (p ∈ P ) and t1, ..., t2
are terms and if ψ and ϕ are well-formed formulas, then so are P (t1, ..., t2) (an
atom), ¬ψ, φ ← ψ, •ψ, ◦ψ, �tψ, �tψ, �−∞ψ, �∞ψ, �−∞ψ, �∞ψ, �[t,k]ψ and
�[t,k]ψ well-formed formulas.

Informally, the meaning of the temporal operators is as follows (mathemat-
ical notation between braces):

• ψ next ϕ (or ψ ∧ ◦ ϕ) is true if currently ψ is true and at the next time
point from now ϕ is true.

• ψ previous ϕ (or ψ ∧ • ϕ) is true if currently ψ is true and at the previous
time point from now ϕ is true.

• ψ always-within-t-timepoints ϕ (or ψ ∧ �t is true if ψ) is currently
true and ψ is true for all time points, within t time points from now.

• ψ sometime-within-t-timepoints ϕ (or ψ ∧ �t ϕ) is true if ψ is currently
true and for at least one time point, within t time points from now, ϕ is
true.

• ψ sometime-next ϕ (or ψ ∧ �+∞ ϕ) is true if ψ currently true and and
ϕ is true some later time point (unrestricted) from now.



CHAPTER 3. LOGIC META PROGRAMMING 39

• ψ sometime-previous ϕ (or ψ ∧ �−∞ ϕ) is true if ψ is currently true and
ϕ is true some earlier time point (unrestricted) from now.

• ψ always-within-interval-t-k ϕ (or ψ ∧ �[t,k] ϕ) is true if currently
ψ is true and for all time points, within t, k time points from now, ϕ is
true.

• ψ sometime-within-interval-t-k ϕ (or ψ ∧ �[t,k] ϕ) is true if currently
ψ is true and for at least one time point, within t, k time points from now,
ϕ is true.

meaning that ψ is true at some time-points after ϕ happens, if one time
stamps ϕ at t and the final time that ψ is true at t.

Formally, the semantics of MTL formulas are defined in terms of MTL struc-
tures. An MTL structure is a 4-tuple consisting of a set of time points T , the
ordering relation <, an interpretation function I which assigns at each time
point, a truth value for each possible ground atom, and a initial temporal con-
text t0. A variable assignment α is a mapping α: X → C.

Given an MTL structure M = (T , <, t0, I) a time point t and a variable
assignment α, we say that a formula is true in a time point t for a model M
under a variable assignment α if:

1. M ,α,t |= p(t1, ..., tn) if (p(α(t1), ...,α(tn)), t) ∈ I

2. M ,α,t |= ¬ φ if M ,α,t 6|= φ

3. M ,α,t |= φ ← ψ if M ,α,t 6|= ψ or M ,α,t |= φ

4. M ,α,t |= •ψ if M ,α,t− 1 |= ψ

5. M ,α,t |= ◦ψ if M ,α,t+ 1 |= ψ

6. M ,α,t1 |= �cψ if ∃ t2 :
t1 ≤ t2≤ t1 + c : T ,α,t2 |= ψ if c ≥ 0 or
t1 + c ≤ t2≤ t1 : T ,α,t2 |= ψ if c ≤ 0.

7. M ,α,t1 |= �cψ if ∀ t2 :
t1 ≤ t2≤ t1 + c : T ,α,t2 |= ψ if c ≥ 0 or
t1 + c ≤ t2≤ t1 : T ,α,t2 |= ψ if c ≤ 0.

and a formula ψ is true for a MTL structure M , if M ,α,t0 |= ψ:
E.g. M = ({1, 2 },¡, 1, { (1, p(a) , 0), (2, p(a), 1))}) |= ◦ p(a).

Metric temporal logic programming is based on a subset of MTL, meaning
that metric temporal logic programming programs are built out of a subset of
metric temporal logic. The reason why metric temporal logic programming is
based on a subset of MTL, is the same reason that Prolog is based on definite
clause logic, a subset of first-order logic: this allows metric temporal logic to
become executable [9]. A metric temporal logic programming program consists
of a set of MTL clauses and we can query a program by means of an MTL query
Q, defined by:
Q ::= ε | A5 | ◦Q | •Q | �tQ | Q ∧ Q

5Atom.
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and an metric temporal logic programming clause C is defined by:

C ::= A | ◦C | •C | �tC | C ← Q
So, one can only use the temporal operator �t in the body of a clause or a

query and the operator �t is not allowed in the head of a clause.
An example program, is depicted in Figure 3.86. In this example, we as-

sume that the time points refer to years. The program is a so-called historical
database: it stores the career information of a person named “john” over the
past 20 years. The first clause stores for example the information that john was
a salesman between 16 and 20 years ago and the second clause states that he
managed the sales department between 15 and 11 years ago. The last clause
states that, at any time, if a person manages a department, that person is a
manager.

1. � [−20,−16] salesman(john)
2. � [−15,−11] manages(john, sales)
3. � [−10,−6] manages(john, development)
4. � [−10,−6] manages(john, board)
5. � (manager(Person) ← manages(Person,Department))

Figure 3.8: Metric temporal logic programming program.

Example queries are depicted in Figure 3.9. The first query means “was
john a manager in the past 20 years” and the second one asks something like
“who was a manager last year”. In order to find the answer to these queries,
MTL must be made executable – the same way as definite clause logic is made
executable for Prolog–: Therefore, the program and queries are translated into
constraint logic programs [9], so that finding out the answer to a query can
be done using constraint logic programming resolution [9]. Constraint logic
programming resolution is similar to Prolog resolution, but in addition, the
constraints that are encountered during resolution, must be satisfiable. When a
query is being resolved, constraints are collected in a constraint repository and
at each unification step, these constraints are checked for satisfiability; This is
different from Prolog, where a constraint must simply be true when it is being
resolved. E.g. given the program:

B(X,1):-X<0.
B(X,Y):-X=1, Y>0.
A(X,Y):-X>0, B(X,Y).

the query A(X, 1) results in resolving X>0, B(X,1) resulting in putting the
constraint X>0 in a constraint repository and resolving B(X, 1), which in turn
results in the answer X⇀1.

1. �−20 manager(john)
2. • manager(Person)

Figure 3.9: MTL query.
6Example taken from [9])
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1. Π(ψ) = π(ψ, 0, {}) where

2. π(•, ψ, t, S) = π( ψ, (t - 1), S)

3. π(◦, ψ, t, S) = π( ψ, (t + 1), S)

4. π(�tψ, t, S) = π(ψ, (t + x), S ∪ {0 ≤ x ≤ c } if c > 0)

5. π(�tψ, t, S) = π(ψ, (t + x), S ∪ {c ≤ x ≤ 0} if c < 0) (with x a new variable)

6. π(�tψ, t, S) = π(ψ, (t + x), S ∪ {0 ≤ x ≤ c } if c > 0)

7. π(�tψ, t, S) = π(ψ, (t + x), S ∪ {c ≤ x ≤ 0} if c < 0) (with x a new variable)

8. π(ψ ← ϕ, t, S) = π(ψ, t, S ) ← π(ϕ, t, S)

9. π(ψ ∧ ϕ, t, S) = π(ψ, t, S ) ∧ π(ϕ, t, S)

10. π(p(t1, ..., tn), t, S) = p(t, t1, ..., tn)∧ S

Table 3.2: Rules for translating MTL formulas to FOL formulas.

In order to translate metric temporal logic programming programs to con-
straint logic programs, it suffices to add an additional argument to each pred-
icate and to express the temporal relations defined by the temporal operators
by putting constraints on these temporal variables (see [9]). The translation
function Π is depicted in Table 3.2.

For example, the program from Figure 3.8 can be translated into an equiva-
lent Prolog program (Figure 3.10) and so can the queries (Figure 3.11) revealing
us that john was a manager in the last 20 years and that john was a manager
last year.

1. salesman(X, john) ← X ≤, -16; X ≥ -20
2. manages(X, john, sales) ← X ≤, -11; X ≥ -15
3. manages(X, john, development) ← X ≤, -11; X ≥ -15
4. manages(X, john, board) ← X ≤, -11; X ≥ -15
5. manager(X,Person) ← manages(X,Person,Department)

Figure 3.10: Metric temporal logic programming program from Figure 3.8 trans-
lated to Prolog.

1. manager(X, john), -20 ≤ X ≤ 0
2. manager(X,Person), X = −1

Figure 3.11: Metric temporal logic programming queries from Figure 3.9 trans-
lated to Prolog queries.
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3.3.5 HALO: a subset of metric temporal logic

In this section we define a subset of metric temporal logic, which is the basis
of our pointcut language HALO, defined in the next chapter. The temporal
operators we restrict ourselves to in HALO are the past operators from MTL,
namely the operators •, �−∞ and �[a,b]. We then define a HALO clause as in
Table 3.3. A clause is always defined under the operator �[−∞,∞] and consists of
a head and a body, where the head is an atom and the body is a conjunction of
formulas. The formulas are restricted to be an atom or a conjunction of formulas
as argument of one of the temporal operators •, �−∞ or �[a,b], where the first
formula in that conjunction is an event pattern (an atom with predicate = call or
create) . E.g. �[−∞,∞](advice(Discount, User) ← call(checkout, User) ∧ �−∞
call(login, User)).

clause :: �[−∞,∞] (< atom >←< conjunction >)
conjunction :: < formula > {∧ < formula > ∗}
formula :: < atom > | < temporal > (< event > ∧ < conjunction >)
temporal :: • | �−∞ | �[l,r]
event :: < call > | < create >
call :: call(F, A)
create :: create(C, I)

Table 3.3: HALO as a subset of MTL.

Under these restrictions, we can transform the rewrite rules depicted in Table
3.2 into an algorithm for compiling MTL to Prolog.

For, example, given the rules in Table 3.2, we observe the following equiva-
lences, for the operator �−∞ for rule nr. 5 in Table 3.2:
p(a) ∧ �−∞q(b)
⇔ p(X, a) ∧ q(Y +X, b) ∧ −∞ ≤ Y ≤ 0 ∧Z = Y + X
⇔ p(X, a) ∧ q(Z, b) ∧ −∞ ≤ Z −X ≤ 0
⇔ p(X, a) ∧ q(Z, b) ∧ Z ≤ X

Furthermore, we restrict the semantics of the temporal operator �−∞ such
that the formula �−∞(call(X,Y )∧ conjunction) matches only the most recent,
past call(X,Y ) for which the entire formula is true. E.g. �−∞(call(display,X)∧
X > 2), 3 |= call(display, 3) and 6|= call(display, 4) if we know that at time point
1 call(display, 4) is true and at time point 2 call(display, 3) is true.

Similarly, for the operator �[a,b], we observe the equivalences for rules nr. 4,5
in Table 3.2:
p(a) ∧ �[c,d]q(b)
⇔ p(X, a) ∧ q(Y +X, b) ∧ c ≤ Y ≤ d ⇔ Z = Y +X
⇔ p(X, a) ∧ q(Z, b) ∧ c ≤ Z −X ≤ d
⇔ p(X, a) ∧ q(Z, b) ∧ c+X ≤ Z ≤ d+X

For the operator •, we observe the equivalences for rule nr. 2 in Table 3.2:
p(a) ∧ •q(b)
⇔ p(X, a) ∧ q(X − 1, b)
⇔ p(X, a) ∧ q(Z, b) ∧ Z = X − 1

The algorithm now works as follows. In order to compile a clause, we must
first compile away the �: for this purpose, we generate a new temporal variable
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1. result = nil.
2.
3. def compile-rule(rule):-
4. temporal-var = gensym()
5. compile-to-prolog(temporal-var, head(rule))
6. head = result
7. result = nil
8. compile-to-prolog(temporal-var, body(rule))
9. body = result
10. result = nil
11. return rule(head, body)

Figure 3.12: Pseudo code for compiling restricted MTL clause to Prolog.

(nr. 4 in Figure 5.2), which we use to compile the head of the clause (nr. 5 in
Figure 5.2) and the body of the clause (nr. 8 in Figure 5.2) respectively (derived
from rule nr. 6 in Table 3.2).

Compiling the head or the body of a clause is done using the function
compile-to-prolog depicted in Figure 5.3. This function takes as argument
a temporal variable and a formula to compile. The temporal variable is added
as an argument to the formula, when the formula is an atom (nr. 19 in 5.3 and
rule nr. 10 in table 3.2), otherwise, in case the formula being compiled is one
with a temporal operator, we generate a new temporal variable and compile
the arguments of the temporal operator, using this new temporal operator and
we add a constraint between the new temporal variable and the old one to the
compiled formula, to express the temporal relation intended by the temporal
operator (e.g. line nr. 4-8 in Figure 5.3 and the redefinition of rule nr. 5). Note
that in order to reflect the semantics for the sometime-past operator and the
sometime-interval operator, we add some extra constraints, see line nr. 6 and
line nr. 16 and line nr. 27 - 32.

E.g. compiling the clause �[−∞,∞](a(b) ← b(b) ∧ �−∞ c(d)) results in the
Prolog clause:

1. a(T, b) :-
2. b(T, b),
3. findall(L, c(L, d), Opl),
4. largest-number(K, Opl),
5. c(K, d),
6. K < T.

The lines nr. 3 - 4 compute all solutions for the query �−∞ c(d), and lines
nr. 5 - 6 make sure that the solution for c(K, d) with the largest time stamp K
is selected.

We define HALO as the subset of MTL defined in this section for two reasons.
First of all, we only allow the past MTL operators •, �−∞ and �[a,b] because
we observe, that in the examples of context-aware aspects and event-based as-
pects described in Chapter 2, all the aspects are all triggered at a join point,
depending on whether there was some condition true at a past join point: e.g.
give a discount on checkout if promotions were active at login, give a discount
when an item is added to the shopping basket if there was a promotion active
when the item was added to the shopping basket, etc. Furthermore, when we
evaluate a pointcut at a join point, we only have access to the execution history
so far, so what semantics would we give to pointcuts referring to join points in
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1. def compile-to-prolog(temporal-var, conjunction):
2. pattern = first(conjunction)
3. if sometime-past-p(pattern):
4. new-temporal-var = gensym()
5. new-temporal-var2 = gensym()
6. add-findall(new-temporal-var, temporal-var, new-temporal-var, arguments(pattern))
7. compile-to-prolog(new-temporal-var, arguments(pattern))
8. result and= new-temporal-var < temporal-var
9. elif previous-p(pattern):
10. new-temporal-var = gensym()
11. compile-to-prolog(new-temporal-var, arguments(pattern))
12. result and= new-temporal-var is (temporal-var - 1))
13. elif sometime-interval-p(pattern):
14. new-temporal-var = gensym()
15. new-temporal-var2 = gensym()
16. add-findall2(new-temporal-var, temporal-var, new-temporal-var, arguments(pattern))
17. left = left-interval(pattern)
18. right = right-interval(pattern)
19. compile-to-prolog(new-temporal-var, arguments(pattern))
20. result and= new-temporal-var > (left + temporal-var)
21. result and= new-temporal-var > (right + temporal-var)
22. else:
23. pattern = add-argument(pattern, temporal-var)
24. result += pattern
25. compile-to-prolog(temporal-var, rest(conjunction))
26.
27. def add-findall(temporal-var, new-temporal-var, new-temporal-var2, conjunction):
28. result and= findall(new-temporal-var2,
29. compile-to-prolog(new-temporal-var2, conjunction)
30. result ,= new-temporal-var2 < temporal-var
31. result ,= Opl)
32. result and= largest-number(new-temporal-var, Opl)

Figure 3.13: Pseudo code for compiling restricted MTL conjunction to Prolog.

the future? Therefore, it seemed a natural choice to focus on the past opera-
tors in this dissertation and see what we can express using these. The reason
for restricting the semantics of the operators somewhat (e.g. for the operator
�−∞), is because this allows a reasonably efficient implementation (in relation
to garbage collection of facts, etc. all discussed in chapter 5).

3.4 Summary

In this chapter we presented the basic concepts behind logic programming and
logic theory. We introduced Prolog as an example logic programming language,
because Prolog is the basis for many logic meta programming applications. Next
we introduced the notions of logic meta programming and listed the example
applications of logic meta programming investigated so far. We noticed that
current logic meta programming research is mostly based on Prolog and we
tried to use Prolog as a basis for solving our problem: namely designing a
pointcut language that allows to write down pointcuts that relate multiple join
points in the execution of a program. We noticed that between any two such
join points, a temporal relation exists and that if we can express this relation, we
can describe the execution history of a program. The solution based on Prolog
involved extending all predicates with temporal variables, keeping a spot to
store a time stamp, and expressing temporal relations by putting constraints
on these temporal variables. Manipulating time stamps is however tedious and
we looked at temporal logic, which is a formalism dedicated to reasoning about



CHAPTER 3. LOGIC META PROGRAMMING 45

temporal relations.
Temporal logic is all about reasoning about temporal relations: a temporal

logic extends a logic with temporal operators, that abstract the explicit han-
dling of time and queries are evaluated to an implicit temporal context. Next
we introduced metric temporal logic, which allows one to reason about time
intervals, as an example temporal logic language and we chose this language,
based on its properties, we decided to base our poincut language on a subset of
metric temporal logic.



Chapter 4

A temporal logic pointcut
language

In this chapter we introduce a temporal logic pointcut language, based on met-
ric temporal logic, which has built-in predicates to express temporal relations
between join points as a declarative means to write down pointcuts that describe
a sequence of join points in the execution of a program needed to implement
stateful and context-aware aspects. Throughout this chapter, we refer to this
pointcut language as “HALO” – short for History-based Aspects using Logic –
which is the name given to the prototype implementation. Pointcuts in HALO
range over multiple join points in the execution history of a program. When a
pointcut about multiple (past) join points is evaluated in HALO, this is done in
respect to the the program state at these (past) join points, so that constraints
about past join points are checked against the program state at the occurrence
of a past join point. This makes it possible to reason about current and past
program state in HALO, furthermore it is possible to put constraints on a past
join point in a pointcut, that involve values from a later join point.

In the rest of this chapter, we define the syntax and semantics of HALO.
However, before going into details, we give a short overview of HALO by com-
paring HALO to the logic pointcut language after which HALO was designed,
namely CARMA. Next we cover the syntax and semantics of pointcuts, advices
and aspects more extensively. We then continue the chapter by explaining the
use of HALO by means of some example applications. A first example illus-
trates how HALO can be used to implement some history-based aspects in a
sample e-commerce application. A next example illustrates the use of HALO
in a video game application. These experiments illustrate the applicability and
use of HALO.

4.1 HALO versus CARMA: an overview

HALO is an instance of (temporal) logic meta programming (see Chapter 3):
this means HALO is a logic meta programming approach to aspect-oriented
programming, similar to CARMA (see Chapter 2), as will be shown. Remember
that in a LMP system, one uses a logic language as a meta language to reason
about programs written in some other language, called base language. The

46
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target base language for the prototype implementation is Common Lisp and
the meta language is based on metric temporal logic (see Chapter 3). The
general idea is that we use a temporal logic language to reason about the (past)
execution history of a Lisp program, allowing one to write down pointcuts that
match part of the execution history, rather than a single join point. As HALO
is based on CARMA, it has many of CARMA’s advantages, but also adds some
novel ideas.

HALO allows one to write down pointcuts declaratively that relate different
events in the execution of a program, so that we can match part of the exe-
cution history in a pointcut. As in CARMA, join points represent events in
the execution of a program: CARMA’s primitive pointcuts and their matching
counterparts in HALO are depicted in Table 4.1. CARMA is implemented for
Smalltalk, which is based on the message-passing model for methods, whereas
CLOS uses the generic function model, which justifies why we use “call” in
HALO as predicate name for the pointcut that describes a method invocation.
Furthermore we explicitly added a primitive pointcut “create” to describe a
class instantiation join point. This is not necessary in CARMA because in
Smalltalk an instance creation event is a message send “new”. The reason there
is no primitive pointcut in HALO for capturing slot assignments or references,
is that it is a convention in CLOS to access and modify slots through accessors,
which are simply methods that can be captured using the primitive pointcut for
method calls1.

CARMA HALO
Message reception/Method call reception(?jp, ?selector, ?arguments) (call ?methodName ?arguments)

Message send/Method call send(?jp, ?selector, ?arguments) N/A
Assignment/Access assignment(?jp, ?varName, ?oldValue, ?newValue) N/A
Reference/Access reference(?jp, ?varName, ?value) N/A
Instance creation N/A (create ?className ?instance)

Table 4.1: CARMA’s primitive pointcuts compared to HALO’s primitive point-
cuts.

Pointcuts can be composed to define complex pointcuts: in CARMA the logic
connectives are available for this purpose, but HALO also introduces temporal
operators2 based on the temporal operators in MTL. An overview is given in
Table 4.2. The purpose of the temporal operators is to use them to express
a temporal relation that relates two pointcuts. The execution of a program,
results in generating a sequence of join points: e.g. the execution of the program
Figure 3.5 can be depicted as a sequence of successive events on a time line (same
Figure). The temporal operators can express things like “event A is before event
B on the time line”. Note that the availability of these connectives in HALO is
the main difference between HALO and CARMA.

1However, it is possible to implement primitive pointcuts to capture slot access and as-
signment using the CLOS MOP, and this can be added as an extension to HALO (see next
chapter).

2Technically, temporal operators are not connectives, but rather higher-order predicates
(see MTL in chapter 3). However, since the purpose of the operators in HALO is to describe
the order in which join points occur, it makes more sense to see them as connectives for these
join points. More details in section 4.2
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CARMA HALO
logic and , a space
logic not not(pointcut ) (not pointcut)
the previous join point N/A (pointcut (prev pointcut ))

a past join point N/A (pointcut (sometime-past pointcut ))

a previous join point, within a time interval N/A (pointcut (sometime-past-interval ?l ?r pointcut ))

Table 4.2: CARMA’s composition predicates compared to HALO’s.

Similarly to accessing Smalltalk in a CARMA pointcut (by using [] syntax),
one can access Lisp in a pointcut definition to evaluate a Lisp form, allowing one
to compute a value at the base level needed to evaluate a pointcut (by means
the of escape predicate). This implies there is some form of linguistic symbiosis
[18] between HALO and Lisp, as it is possible to use the values of HALO in
Lisp and vice versa.

HALO uses, just as CARMA, logic variables and unification, instead of a wild
card mechanism, to quantify the arguments of a pointcut, which is very handy
to write advices that can refer to these variables or pointcuts that constrain the
same join point value multiple times.

Furthermore HALO allows the definition of contexts, which are predicates
used to constrain pointcuts by placing conditions on the arguments of the events
they describe: this is also possible in CARMA. An important property of HALO
is that the time on which an event takes place is taken into account, allowing
one to reason about program state (context) at a (past) join point, captured by
the use of a temporal operator in a pointcut.

Examples exploiting the properties we just discussed can be found in a sub-
sequent section, but first we cover the HALO syntax and semantics in full detail.

4.2 Syntax and semantics

An overview of the grammar (Backus-Nauer form) can be found in Table 4.3.

4.2.1 Patterns

The basic building blocks in HALO are patterns. A pattern is written down as
an s-expression (a Lisp form): it is a list whose first argument is a predicate
name and the remainder of the arguments are Lisp values or logic variables (a
Lisp symbol starting with a “?”): e.g. (A ?x 1).

4.2.2 Pointcuts

The semantics of a pointcut is that it is a predicate, associated with advice code,
that is applied to each event (join point) generated during program execution
and if the pointcut evaluates to true for an event, the advice code is executed.
Syntactically, a pointcut is defined as a list of primitive pointcuts that are
composed using logic connectives or temporal operators.

There are three kinds of primitive pointcuts:

event captures an event in the execution of a Lisp program such as a method
call or an instance creation (described by a pattern with predicate name
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advice-definition :: (defrule <advice-code> <pointcut>)
advice-code :: (advice string symbol (<term>*))
event :: <call> | <create>
call :: (call symbol (<term>*))
create :: (create symbol <variable>)
escape :: (escape <variable> <lisp-form>)
context :: (<predicate> <term>{ <term>}*)
primitive-pointcut :: <event> | <escape> | <context>
pointcut :: (<primitive-pointcut> {<pointcut>)}*
pointcut :: (<connective> {<pointcut>)}*
pointcut :: (sometime-interval number number {<pointcut>}*)
connective :: sometime-past | prev | not
predicate :: a symbol
lisp-form :: a lisp-form, can contain <variable>
variable :: a symbol starting with a question mark
constant :: a symbol
term :: <constant> | <variable>

Table 4.3: HALO grammar.

“call” or “create”, the patterns are referred to as “call pattern” and “create
pattern” respectively)

escape can be used to evaluate a Lisp form containing logic variables and bind
the value to a logic variable (described by a pattern with predicate name
“escape”, the pattern is referred to as an “escape pattern”).

context is a conditional pointcut (a new predicate defined by a rule: a pattern
using this new predicate is referred to as a “context pattern”).

The arguments of the predicates representing the different primitive pointcuts,
are the following.

call

A call pattern is a pattern of three arguments, being and representing in order:

1. call symbol as predicate name.

2. a string naming the method being called during program execution.

3. a list of logic variables and values that represent the arguments of the
method being called.

For example, the pointcut (call "checkout" (?User)) matches all method
call join points where the name of the method being called is “checkout” and
the method has only one argument, named by the logic variable ?User.

create

A create pattern is a pattern of three arguments, being and representing in
order:
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1. create symbol as predicate name.

2. a class symbol, referring to the class being instantiated during program
execution.

3. a logic variable or value, referring to the create instance.

For example, the pointcut (create User (?User)) matches all join points that
are instantiations of the class User.

escape

An escape pattern is a pattern of three arguments:

1. escape symbol as predicate name.

2. a logic variable.

3. a Lisp-form.

For example, evaluating the pointcut (escape ?Nr (nr-of-gifts ?Shop)) on
a join point, triggers a call to the method nr-of-gifts on a logic variable
?Shop which needs to be bound to an object for which the method applies and
the result of this method call (a Lisp value) is bound to the logic variable ?Nr.

context

(defrule (promo-active ?User)
((escape ?Shop (shop ?User))
(escape ?Active promo-on ?Shop)))

Figure 4.1: HALO context definition.

A context predicate is a new predicate, defined by a separate rule. For
example, in Figure 4.1 a valid context definition is depicted. The purpose of
a context predicate is to place some conditions on the arguments of an event
pattern. For example the previously defined context can be used as in this
pointcut:

((call "login" ?User) (promo-active ?User))

Now that we have seen the different predicates to define primitive pointcuts,
we cover the predicates (or connectives) to combine them with other pointcuts
into complex pointcuts. There are two kinds of connectives:

logic connectives : such as and and not.

temporal operators : such as prev, sometime-past, sometime-past-interval.

and

Pointcuts are connected by an “and” if one places the pointcuts in the same list,
there is no need to explicitly use the predicate and: e.g. the pointcut ((call
"login" ?User) (promo-active ?User)). For a poincut, which is a composi-
tion of two poincuts, by means of an “and”, to evaluate to true for a join point,
both of the connected pointcuts need to evaluate to true for the join point.
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not

The not predicate takes a pointcut as its only argument: e.g. (not (promo-active
?User)). For such a pointcut to evaluate to true, the pointcut – the argument
of the not – cannot be proven to be true (negation by failure).

previous

The previous predicate takes a pointcut as its only argument. However,
the idea is to use a previous pattern in combination with another pointcut.
E.g. ((call "authenticate" ?User) (previous (call "login" ?User))).
Such a pointcut evaluates to true for a join point at a time point t, if the point-
cut which is the argument of the previous predicate, evaluates to true for the
join point exactly one time point before t. So the example given earlier describes
an execution history that looks like as in Figure 4.2.

login authenticate

Tt - 1 t t + 1

Figure 4.2: Temporal relation previous depicted on a time line.

sometime-past

The sometime-past predicate takes a pointcut as its only argument. How-
ever, the idea is to use a sometime-past pattern in combination with another
pointcut. E.g. (call "checkout" ?User) (sometime-past (call "login"
?User)). Such a pointcut evaluates to true for a join point at a time point
t, if the pointcut which is the argument of the sometime-past predicate, eval-
uates to true for any join point at a time point before t. Note that only the
most recent join point is matched. So the example given earlier describes an
execution history that looks like as in Figure 4.3.

login checkout

Tt - x t t + 1

Figure 4.3: Temporal relation sometime-past depicted on a time line.

sometime-interval

The sometime-interval predicate takes three arguments: two integers a and b
and a pointcut. However, the idea is to use a sometime-interval pattern
in combination with another pointcut. E.g. ((call "checkout" (?User))
(sometime-interval -1 -10 (call "buy" (?User ?Shop)). Such a point-
cut evaluates to true for a join point at a time point t, if the pointcut which
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is the argument of the sometime-interval predicate, evaluates to true for any
join point at a time point within a, b time points from t. So the example given
earlier describes an execution history that might look like as in Figure 4.4.

buy checkout

Tt - 10 tt - 1

Figure 4.4: Temporal relation sometime-interval depicted on a time line.

4.2.3 Defining aspects

In HALO, aspects are not defined in a special class or some other key-worded
module, but they are defined as a set of rules, extending the advice predicate
definition. The advice predicate takes three arguments:

1. a string, referring to a name for the advice 3.

2. a function symbol, referring to the method or function implemented at
the base level (Lisp) to implement the advice (advice code).

3. a list of variables, denoting the arguments for the function that implements
the advice: this list can contain logic variables and ordinary Lisp values.

E.g. (advice "gift-on-checkout" gift (?User coupon)). Please note that
current HALO implementation only supports a before advice, and this is the
default semantics of the advice pattern. In this dissertation we focus on the
temporal pointcut language, rather than the advice language.

(defrule
(advice "authenticate" authenticate (?User))
((call "checkout" (?User))
(not (sometime-past (call "login" (?User))))))

Figure 4.5: HALO security aspect.

A rule is defined using the defrule macro as depicted in Figure 4.5. The
first argument of the macro is the head of the rule and the second argument
is the body of the rule. The rule means something like “execute the advice
authenticate if a method called checkout is called now and there was no call to
a method called login before that checkout”.

4.3 HALO by example

In this section we give two example applications to illustrate the use of HALO
more concretely. First, we discuss an e-commerce application and then we
discuss a video game application.

3Only there for debugging purposes
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4.3.1 The e-commerce application in HALO

In this section we discuss the implementation of the e-commerce application
described in section 2.4.1, because we want to illustrate that is possible to
implement the context-aware aspects using HALO more declaratively than the
implementations based on AspectJ, Reflex etc. discussed in that section.

Let’s see how we can implement some example aspects based on the pos-
sible scenarios for assigning and processing a promotion for the e-commerce
application illustrated in section 2.4.1.

A first example is Figure 4.6. It states that a user gets a 10% discount when
she checks out, and at that time there is seasonal promotion active.

;; Give 10% discount on checkout if there
;; is a seasonal promotion active at that time

;; CONTEXT definition
(defrule (seasonal-promo)

(escape ?D (christmas-p (today)))

;; ADVICE definition
(defrule (advice "discount" discount ’(?User 10)) ; head

(call "checkout" (?User)) ; body
(seasonal-promo)) ; body

Figure 4.6: HALO discount aspect. Give a user a 10 % discount at checkout if
there is a seasonal promotion active.

The implementation of the advice, the discount method, is a plain method
( Figure 4.7) and can of course be reused in another aspect definition.

(defmethod discount ((u user) percentage)
"Give the user a percentage discount on each item"
(let ((user-basket (basket u)))

(dolist (art (articles user-basket))
(setf (price art)

(- (article-price art)
(/ (* (article-price art) percentage) 100))))))

Figure 4.7: HALO advice code. Give a user a 10 % discount at checkout if
there is a seasonal promotion active. The discount method merely iterates over
all the articles in the user’s basket and applies the respective discount to those
articles.

Note that the promotion context is defined as a separate rule (seasonal-promo)
and can also be used to implement a second aspect depending on that promo-
tion context, such as an aspect responsible for displaying banners at the website
(Figure 4.8).

A second aspect is illustrated in Figure 4.9. This example illustrates that
not only past events are captured, but also past values. The activation state
of the shop is the state it had when the user logged in. The example is made
more interesting by giving customers a gift, but only when there are still gifts
left. This refers to the current state of the shop. The combination of reasoning
about past and current values does not pose any problems.

We present another example in Figure 4.10. This aspect is more complex
than the previous examples because inside the sometime-past operator we refer



CHAPTER 4. A TEMPORAL LOGIC POINTCUT LANGUAGE 54

;; Pop up banners if there is a seasonal promotion.

;; ASPECT definition
(defrule (advice "pop-up-banner" pop-up-banner ’(?User))

(create User (?User))
(seasonal-promo))

Figure 4.8: HALO banner aspect. When a user connects to the e-commerce
website, a banner is popped up if there is a seasonal promotion active.

;; CONTEXT definitions
(defrule (gifts-depleted ?User)

(escape ?Shop (shop ?User))
(escape ?Nr (nr-of-gifts ?Shop))
(equal ?Nr 0))

;; ADVICE definitions
(defrule (advice "gift-on-checkout" gift ’(?User))

(call "checkout" (?User))
(sometime-past

(call "login" (?User))
(seasonal-promo))

(not (gifts-depleted ?User)))

Figure 4.9: HALO gift aspect. A user gets a gift on checkout if there are still
gifts in stock and she logged in when a seasonal promotion was active.

to a variable ?Article that is bound in the call form for the buy event. The buy
event takes place after the login event but the pointcut for the login event puts a
condition on a variable bound by the buy event. This particular example shows
off the expressiveness of HALO but imposes some difficulties on the weaver (see
next chapter).

;; CONTEXT definitions
(defrule (stock-promo-active (?User ?Article))

(escape ?Shop (shop ?User))
(stock-overflow (?Shop ?Article)))

;; ADVICE definitions
(defrule (advice "discount" discount (?User ?Article 0.10))

(call "buy" (?User ?Article))
(sometime-past

(call "login" (?User))
(stock-promo-active (?User ?Article))))

Figure 4.10: HALO discount aspect. Give a 10 % discount on the current item
bought, as long as the promotions for that type of item were active when the
user logged in (e.g. the shop does a promotion for articles with a stock overflow).

4.3.2 Video game application

As a second example, we consider a video game application. The video game we
discuss here, is a so-called “shooter-game”; A game consists of several scenarios
called levels that each represent a virtual play field. The goal of the game is
to move one’s character to the exit of the game field, shooting monsters that
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pop up to try and kill the player, and to advance to the next level. Note that
multiple players can cooperate to complete a scenario. For example, Figure 4.11
is a graphical representation of a game-field: it is comparable to a chess board.

EXIT

START

X

Y

Figure 4.11: Graphical representation of a game field. The blue circles represent
player-controlled characters. The red circles are computer-controlled monsters.
The triangles represent obstacles, which implies the square they occupy can’t be
crossed by a character. The green arrow represents a possible path the players
can take to the exit.

From this description, we distill the UML diagram of the game in Figure 4.16
(note that get and set methods for the slots are omitted for brevity). The class
GameController is responsible for “hosting” a game, which means it creates a
game (slot playField), can pause a game (method pause) and set the game’s
difficulty (method adjustDifficulty): it is a sort of server that accepts player
connections and is responsible for creating/deleting a player character for people
that wish to join/leave the game field it hosts (method login/logout).

The class PlayField represents a game field (e.g. Figure 4.11). The field is
a chess board like plate (sizes of X-axis and Y-axis stored in slots X-size and
Y-size respectively), one special square is reserved for the exit of the field (slot
exit-coord) and another square is reserved for the start (slot start) where
players start the game. The field also has a difficulty set (slot difficulty).
The field’s square’s can be occupied by PlayFieldObject, such as monsters,
obstacles or players. The idea is that every t minutes, the play field adds a
monster on a random square, the monster is parametrized by the play field’s
difficultly (methods spawnMonsters, spawnMonster).

The last classes we need to discuss are the different PlayFieldObject. All
of them share the fact that they have hit points (slot hitPoints), which can be
affected (method addHitPoints), and they keep a reference to the square they
occupy (slot occupying); Such an object can be “killed” (method kill), this
means the object is removed from the square it removes when its hit points drop
below 0. The class PlayFieldObject is specialized for three kinds of objects.
The Player class represents a human-controlled character; The player chooses
a name for his character (slot name) an when it is created, it is parametrized by
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a type (argument type of constructor), which scales the number of hit points
and the attack power the player has: e.g. a “sniper” has less hit points than a
“soldier”, but more attack power than a “soldier”. The second special object is
the class Monster: when a monster is created, it gets a number of hit points and
attack power scaled by the difficulty the game is set when the monster is created.
Monster and player objects can move to a square (method advance) and attack
a square (method attack), which results in subtracting the hit points of the
object occupying the square being hit. The last special object is Obstacle: an
obstacle is just an immobile object that blocks a square so that no monster or
player can move on it.

There are however a great deal of crosscutting concerns that have to be
added, in order to have a complete game program, that benefit from HALO’s
expressiveness to be implemented. For example, high-scores, computed by the
number of monsters a player kills, must be kept and the scores of the different
players are displayed on the computer screen of the different people playing
(e.g. Player Sarge: 1000pts). However, to avoid confusion, each player should
have a unique name. In order to do assure this, we need to check that when
a new player is created, her chosen name is not the same as the name of a
previously created player. Similarly, in order to keep the game balanced, only
one of each type of player can be in a game at a time (e.g. only one “sniper”,
only one “soldier”). In HALO, this can be implemented quite straightforward
(Figure 4.12). There are two context predicates defined to compare the names
and types of players (name-same and type-same respectively). The pointcut of
the advice, tries to match a player created in the past with the same name or
type, using the abstract context predicate name: if the predicate name applies
for a past created join point, the function already-taken is executing, resulting
in a message to choose a new name or type by the player that is joining the
game. Note that HALO frees us from iterating over all players in a game and
checking the names or types manually.

;; CONTEXT definitions
(defrule (name-same (?Player1 ?Player2))

(escape ?Name1 (getName ?Player1))
(escape ?Name2 (getName ?Player2))
(escape ?Equal (equal ?Name1 ?Name2)))

(defrule (type-same (?Player1 ?Player2))
(escape ?Type1 (getType ?Player1))
(escape ?Type2 (getType ?Player2))
(escape ?Equal (equal ?Type1 ?Type2)))

(defrule (same (?Player1 ?Player2 "type"))
(type-same ?Player1 ?Player2))

(defrule (same (?Player1 ?Player2 "name"))
(name-same ?Player1 ?Player2))

;; ADVICE definitions
(defrule (advice "already-taken" already-taken (?Player ?Kind))

(create Player ?Player))
(sometime-past

(create Player ?AnotherPlayer)
(same (?Player ?AnotherPlayer ?Kind))))

Figure 4.12: HALO unique name aspect. Each player must have a unique name.
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Another feature we want to implement is auto-dynamic difficulty [2]. The
purpose of auto-dynamic difficulty is to scale difficulty by a factor of how “good”
a player plays. A player plays well if she kills lots of monsters and does not get
killed herself a lot. When monsters are created, their hit points and attack
power are scaled by a factor equivalent to the difficulty the game is in. When
a monster is killed, the difficulty level, represented by a counter, goes up by
a number, which is in respect to the difficulty level the game was in when the
monster was created; When the difficulty level, a counter, is raised by one whole
unit, the next spawned monsters (the method spawnMonsters uses the method
computeDifficultyLevel to calculate the difficulty level for creating new mon-
sters, which returns a “floor” of the value of the variable difficultyLevel) are
created with this new level. When a player gets killed, the difficulty levels scales
back one unit. This way, the difficulty changes gradually (e.g. Figure 4.13).

Time

create
 monster

kill
monster

DIFFICULTY 1 DIFFICULTY 1DIFFICULTY 2

create
 monster

create
 monster

kill
player

create
 monster

kill
monster

Take difficulty into account
when monster was created
when raising difficultyLevel

difficultyLevel: 1.9 2.0 2.1 1.0

kill
monster

2.3

Figure 4.13: The difficulty level of the game scales by killing monsters or play-
ers dieing. The first time line depicts the “lifetime” of player and monster
objects. The second time line depicts the value of the difficultyLevel (see
class GameField). The circles filled with the same color represent the same ob-
jects. The difficulty level scales with 10 % of the difficulty level the monster was
created in, when it gets killed. The difficulty level drops a level when a player
gets killed.

Auto-dynamic difficulty can be implemented in HALO as in Figure 4.14.
Please note that the HALO engine makes sure the ?Nr value computed by the
predicate difficulty-scale, is the value that would be gotten when evaluating
the predicate when the monster is created, because when the monster gets killed,
the difficulty level might have changed (context-aware!).

As a last example, we can extend the game play as follows. Say for example
that we add a new kind of FieldObject, namely check points. The idea is
that a player can only exit the game field when she has visited each checkpoint.
If we add a new class CheckPoint, we can implement this feature in HALO
(as depicted in Figure 4.15). To check if all checkpoints are taken when the
player moves to the exit square, we check if there was a check point created
that currently is not checked by the player (pointcut in Figure 4.15).
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;; CONTEXT definitions
(defrule (difficulty-scale (?Monster ?Game ?Nr))

(escape ?Game (getGameField ?Monster))
(escape ?Level (computeDifficulty ?Game))
(escape ?Nr (10% ?Level)))

;; ADVICE definitions
(defrule (advice "addDifficulty" add-difficulty (?Game ?Nr))

(call "kill" (?Monster))
(sometime-past

(create Monster ?Monster)
(difficulty-scale (?Monster ?Game ?Nr))))

(defrule (advice "addDifficulty" add-difficulty (?Game ?Nr))
(call "kill" (?Person))
(escape ?isAPerson (person-p ?Person))
(escape ?Game (getGameField ?Person))
(escape ?Level (getDifficultyLevel ?Game))
(escape ?Nr (/ ?Level 100)))

Figure 4.14: HALO aspect for auto-dynamic difficulty.

;; CONTEXT definitions
(defrule (check-point-on-square (?Player ?X ?Y ?CheckPoint))

(escape ?Game (getGameField ?Player))
(escape ?Square (getSquare ?Game ?X ?Y))
(escape ?CheckPoint (getOccupies ?Square))
(escape ?CheckPoint (checkpoint-p ?CheckPoint)))

;; ADVICE definitions

(defrule (advice "markCheckPoint" mark-check-point (?Checkpoint))
(call advance (?Player ?X ?Y))
(checkpoint-on-square ?X ?Y ?CheckPoint))

(defrule (advice "CheckPointsNotAllTaken" check-points-not-all-taken (?Player))
(call advance (?Player ?X ?Y))
(exit-on-square ?X ?Y)
(sometime-past

(create CheckPoint ?CheckPoint))
(escape ?Visited (visited-p ?Checkpoint)))

Figure 4.15: HALO aspect for marking checkpoints.

4.4 Summary

In this chapter we introduced the HALO aspect language for Common Lisp.
HALO is a logic pointcut language in the spirit of CARMA, but based on
temporal logic where aspects are defined in terms of logic rules. We defined a
set of primitive predicates to represent join points in the execution of a program
and a set of higher-order predicates, based on the temporal operators in metric
temporal logic, to define a temporal relation between pointcuts. Evaluating a
pointcut is done in respect to (past) program state. In fact, HALO makes it
possible to reason about past and current state of a program. Furthermore, you
can put constraints on variables in pointcuts about a past join point, that will
be bound only later, at the occurrence of a new join point.

We concluded the chapter by illustrating the use of HALO as a means for im-
plementing promotional aspects for an e-commerce application and some game
play aspects in a video game application. We argued that the HALO language is
more expressive than existing aspect languages for implementing aspects which
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are based on the execution history of a program, rather than a single execution
join point, and that current and past context-exposure is very declarative in
HALO. In the next chapter we sketch the implementation details of HALO.

PlayField
double difficultyLevel
Square exit
Square exit
int X-size
int Y-Size
spawnMonsters()
spawnMonster()
adjustDifficulty (Monster)
adjustDifficulty (Player)
joinPlayer(Player)
removePlayer(Player)
getSquare(int, int)
computeDifficulty ()

GameController
PlayField field
pause()
adjustDifficulty ()
login (Connection)
logout(Connection)

Auto-dynamic difficulty

*
1

11

Weapon
int bullets
int range
int attackPower

1

PlayfieldObject
Square occupying
int hitpoints
kill()
addHitPoints(int)

Player
Weapon equiped
String  name
String type
player(difficulty, type)
advance(x,y )
attack(x,y )
equip(Weapon)
kill()

Monster
int attackPower
monster(difficulty)
attack(x,y )
advance(x,y )
kill()

Obstacle

kill()

1

Square
int x-coordinate
int y -coordinate
PlayFieldObjects occupies

*1

1

1

Figure 4.16: UML diagram for a shooter game.



Chapter 5

HALO implementation

In this chapter we cover the implementation of the temporal logic pointcut
language, HALO, discussed in the previous chapter. In the spirit of CARMA,
HALO is a logic meta programming approach to aspect-oriented programming,
focusing on expressing context-aware crosscuts that depend on multiple join
points (see previous chapter). The purpose of this chapter is twofold: it serves
as a proof that our prototype implementation – which is a language extension
for Common Lisp, written in Common Lisp – reflects the semantics of HALO
described in Chapter 4 and hence that HALO can be implemented and secondly,
this chapter serves as a blueprint for implementing a weaver for the HALO
language. The structure of this chapter is as follows.

A first section sketches the general approach followed to implement HALO.
Note that this is rather a summary of problems that need to be tackled, rather
than a detailed description of the HALO weaver: this section is intended as high
level description of the different problems that need to be tackled in order to
implement the HALO weaver and as an introduction to the follow-up sections
that describe the weaver in much more detail. Nevertheless, this section forms
the basis for some important design issues: most importantly, we prepare the
discussion on what the best resolution strategy for HALO is. As defended, we
chose to use a forward chainer and discuss an implementation based on the Rete
algorithm.

The subsequent section is a detailed description of the HALO weaver in
terms of a compiler, responsible for translating HALO rules to a Rete network,
which implements the HALO logic repository, and an interpreter responsible
for handling the querying for applicable advices. Please note that this is not a
straightforward compilation and interpretation process. The HALO language is
more complex than the subset of Prolog for which Rete was originally designed.
In fact we need to extend the original Rete algorithm by introducing new types
of nodes and we propose a more fine-grained compiler, in order to be able to
reflect the HALO semantics in the interpreter. Nevertheless, the pseudo code
in this section makes it possible to straightforwardly recreate our solution.

Finally, in a last section, we present a summary of this chapter and we
outline future work.

60
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5.1 General idea

We need to make sure that a base program and a HALO program are combined:
we need to build a weaver for HALO. The general idea is as follows. We have
a logic repository to store facts, rules and aspects (where an aspect is a set
of rules that extend the definition of the predicate advice). During program
execution, the execution history (= a sequence of join points) is reified to a
stream of logic facts and at the occurrence of a new event (= join point) at
runtime, this trace is scanned and matched against the bodies of the aspect rules
in the rule repository – or in other words, the pointcuts of the advices of the
aspects–; Successful matches return the head of these rules. These instantiated
patterns, representing advices, are reified to execution, meaning the piece of code
that implements the advice is executed and hence is inserted in the execution
history. Figure 5.1 is a graphical representation of this idea. From this high
level description and the HALO semantics described in the previous chapter,
we anticipate that there are quite a few problems we need to tackle.

Program:
do A;
do B;
do C;

Interpreter

! ?
! ?

event(A)

event(B)

event(C)

1

2

3

event(D)

!

Aspect
repository

D if B
event(A)
event(B)
event(C)! ?

Figure 5.1: HALO implementation: general idea.

In order to implement a working HALO weaver, we need to address the
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following problems. A first problem we need to tackle, is how do we gener-
ate/advise join points or in other words how do we make sure that each join
point is saved as a fact and applicable advices are executed? Second, we need
to implement a query interpreter for the pointcut language, namely we want
to be able to evaluate pointcuts on a join point reflecting the HALO seman-
tics defined in the previous chapter; As HALO is based on Prolog (for which
a great deal of interpreters exist), the main problem we face is implementing
the semantics of the temporal operators. Another issue we need to address is
the fact that an object’s state changes during program execution, but if you
have a rule that poses some requirement on an object in the past (ergo when
it is constrained under the influence of a temporal operator), we need to make
sure, that whenever this rule is evaluated, we evaluate it in relation to the past
state of the object. Finally, we need some form of garbage collection for facts,
as representing all join points as facts and saving them all in a logic repository
forever, is just begging for memory overflow.

In the subsequent sections, we describe how these problems affect the im-
plementation and we outline the possible solutions.

5.1.1 Generating and advising join points

On each method call or instance creation, a fact has to be recorded in the
logic repository so that pointcuts can reason about it in the future. This is
achieved by use of the CLOS MOP [24], which allows extending the default
CLOS semantics. Facts about such events are stored in the form (call T ...)
or (create T ...) where T stands for a time stamp which is generated by a
global event counter. The default CLOS semantics are also extended to include
queries of the logic repository for applicable advices and their possible execution.

5.1.2 HALO interpreter

The logic repository consists of a set of HALO rules and facts. At each join
point, the logic repository is queried for applicable advices. We chose to use a
Prolog interpreter to implement the HALO interpreter, as HALO = Prolog +
temporal operators. Before a rule is added to the logic repository, the rule is
compiled to Prolog analogous to the translation from metric temporal logic to
first order logic defined in [9] (see Chapter 3).

The basic idea is as follows. Each predicate gets an extra argument, namely a
temporal variable, that keeps a spot to store the time stamp to which a formula
is evaluated. The temporal operators are compiled away by putting constraints
on this argument. As an example, consider the following formulas compiled to
Prolog.

MTL

1. a(A) :- sometime-past(b(B))
2. a(A) :- previous(b(B))
3. a(A) :- sometime-interval(x, y, b(B))

Prolog

1. a(T1 A) :- findall(T, and(b(T2, B), greater(T1, T)), Opl),
largest(Time, Opl),
b(Time, B).

2. a(T1 A) :- b(T2, B), T2 is T1 - 1
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3. a(T1 A) :- findall(T, and(b(T2, B),
greater(T1, T),
greater(T, T1 + x),
greater(T1 + y, T)),

Opl),
largest(Time, Opl),
b(Time, B).

Now, if we want to evaluate a query a(A), this query itself is translated to
a pattern that includes a time stamp, namely a(now, A) (the value of now is
the value of the global event counter (= nr of events that occurred so far, see
previous section) and evaluated in relation of the logic repository containing the
compiled HALO rules.

Note the semantics of the sometime-past operator. Namely, we want a rule
containing a sometime-past to evaluate to true, only for the most recent event
that makes it true. For example, if we have a logic repository containing the
following facts and rule:

(call 1 "login" bob)
(call 15 "login" bob)
(advice "already authenticated" print
(?User "you have already authenticated yourself") if
(call "authenticate" ?User)
(sometime-past (call "login" ?User))

and we query (advice "already logged in" log (?Name)), we want this
query to return (advice "already logged in" log (bob)) once (for the fact
(call 15 "login" bob)). In the examples we showed before, we compiled
away the sometime-past using a forall (line nr. 1) in order to get this se-
mantics. However, we can optimize this, if we use a Prolog “cut”. E.g. as in
:

((advice "addDifficulty" add-difficulty (?Game ?Nr))
(call "kill" (?Monster))
(sometime-past
(create Monster ?Monster)
(difficulty-scale (?Monster ?Game ?Nr)))))

becomes

advice(?T, "addDifficulty", add-difficulty, [?Game, ?Nr]) :-
call(?T, kill, [?Monster]),
create(?U, Monster , ?Monster),
?U < ?T,
difficulty-scale(?Monster, ?Game, ?Nr),
!.

We define an algorithm for compiling HALO to Prolog as follows. Compiling
a HALO rule, results in compiling the head of the rule and the body of the rule,
and creating a Prolog rule from the compiled head and the compiled body (see
pseudo code in Figure 5.2). Compiling the body of a clause (see pseudo code in
Figure 5.3), results in compiling each pattern in the conjunction and joining each
such compiled pattern, using a ∧ (in pseudo code, stored in variable result).
If the pattern being compiled is an atom, the temporal variable is put as an
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extra argument in the atom. A new temporal variable is generated each time a
pattern with one of the temporal operators as predicate name is encountered,
and an appropriate constraint is added to the result.

result = nil.
def compile-rule(rule):-

temporal-var = gensym()
compile-to-prolog(temporal-var, head(rule))
head = result
result = nil
compile-to-prolog(temporal-var, body(rule))
body = result
result = nil
return rule(head, body)

Figure 5.2: Pseudo code for compiling restricted MTL clause to Prolog.

def compile-to-prolog(temporal-var, conjunction):
pattern = first(conjunction)
if sometime-past-p(pattern):

new-temporal-var = gensym()
compile-to-prolog(new-temporal-var, arguments(pattern))
result and= (< new-temporal-var temporal-var)
result and= cut

elif previous-p(pattern):
new-temporal-var = gensym()
compile-to-prolog(new-temporal-var, arguments(pattern))
result and= (= new-temporal-var (- temporal-var 1))

elif sometime-interval-p(pattern):
new-temporal-var = gensym()
left = left-interval(pattern)
right = right-interval(pattern)
compile-to-prolog(new-temporal-var, arguments(pattern))
result and= (> new-temporal-var (+ left temporal-var))
result and= (< new-temporal-var (+ right temporal-var))
result and= cut

else:
pattern = add-argument(pattern, temporal-var)
result and= pattern

compile-to-prolog(temporal-var, rest(conjunction))

Figure 5.3: Pseudo code for compiling restricted MTL conjunction to Prolog.

5.1.3 Saving object State

The HALO rules reason about program execution and the objects involved in
the execution. However, an object’s state changes during program execution, as
fields get set. When one writes a rule about an object in the past, the HALO
semantics is such, that whenever the rule is evaluated, the rule is evaluated in
relation to the past state of the object. Take for example the rule:

(defrule (advice "discount" discount (?User 0.10))
(call "checkout" (?User))
(sometime-past
(call "login" (?User))
(promo-active (?User))))

When we evaluate a query (advice "discount" (lotte t-shirt 0.10)),
we need to evaluate the body of the rule for truth, so:
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1. (call "checkout" (lotte))
2. (sometime-past
3. (call "login" (lotte))
4. (promo-active (t-shirt))))

When we evaluate the conditions under the sometime-past operator (line nr.
2-4), this needs to be done in respect to the state the object lotte had at the
time the (call "login" (lotte)) event was recorded. Of course, this is the
responsibility of the HALO interpreter.

If we choose a backward chainer as a basis for the HALO interpreter, we
need to make sure we make a (deep) copy of the arguments of a recorded event
when the event happens. When a query is evaluated at a later point, this deep
copy can be used to evaluate constraints. So in the same example, when the
fact (call "login" lotte) is recorded, make a copy of the object lotte and
when line nr. 2-4 is evaluated, do so using this copy.

However, if we choose a forward chainer as a basis for the HALO interpreter,
we can evaluate the constraints as events are generated. E.g. in the same exam-
ple, when the event (call "login" lotte happens), evaluate the condition
on line nr. 4. So there is no need to take deep copies of the objects involved in
the event. Alas, not all conditions can be pre-evaluated.

There are rules that put constraints on variables used inside a temporal
operator that are not always bound when the event happens. For example,
take aspect 3 (Figure 4.10) of the previous chapter. It states that a user gets a
discount on an article if there was a stock overflow for that particular article at
the time the user logged in. The problem is that when the login event happens,
we cannot possibly know at that time what article the user will buy. So we
cannot compute the result of the promo-activated condition. This variable is
bound when the buy event takes place. However at that time we must evaluate
the promo-activated condition in respect to the state of the shop when the user
logged in.

Therefore, whenever a method call is recorded with such advices, as can be
derived from the rule definitions, we must take a deep-copy from the arguments
and this copy is used to evaluate the promo-activated condition later on. This
is similar to the notion of taking “snapshots” of the system state in the Reflex-
based extension described in Section 2.4.4.

5.1.4 Garbage Collection

It is not very economic to store each method call and instance creation (as a fact)
forever because it is very likely that the systems runs out of memory as many
methods are called during program execution. However, we observe that there is
some optimization possible due the semantics of the temporal operators. Some
facts become obsolete as new facts are inserted, because they are “replaced” by
these facts in order to resolve a query. This knowledge can be used to build a
garbage collector.

The general idea behind the garbage collector is as follows. The garbage
collector iterates over the facts present in the logic repository and considers a
fact garbage if deleting the fact has absolutely no effect on the result of any
query. Of course, we need some guidelines to decide whether a fact is garbage.

We can derive from the rules whether a certain fact can be needed to resolve
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a query. If we take one rule, and the fact can be unified with one of the patterns
in that rule, the fact is possibly needed to resolve a query. E.g. take the rule
(A ?x) :- (call B ?x), (> ?x 1), then the fact (call B 5) can possibly
be needed to resolve a query (A ?x), because it unifies with the pattern (call
B ?x). Now, depending on whether the pattern is the argument of a (temporal)
operator and the presence of many unifying facts, we can decide if a fact becomes
garbage when there exists another fact that can be used to resolve a query.

no temporal operator

Given a rule R and a fact F that unifies with a pattern P present in the body
of a rule, which isn’t the argument of a temporal operator, we consider the fact
F garbage for the rule R, at a time point t, if the time stamp of the F is smaller
than t. E.g. consider a fact (call B 5) and the rule R:

(advice ?a) :- (call B ?b), (> ?b 2)

There is no past reference to a fact of form (call B ?b) needed to resolve
a query (advice ?a).

sometime-past

Given a rule R and a fact F that unifies with a pattern P present in the body of a
rule, as an argument to the sometime-past operator, and that sometime-past
form is not an argument of another temporal operator (0), we consider the fact
F garbage for the rule R, if:

1. the query Q resulting from unifying F with the argument list of the
sometime-past operator cannot be resolved (1)

2. there exists a fact F ′, with timestamp(F ′)> timestamp(F ) and target(F )
= target(F ′) so that resolving the query Q yields the same result as re-
solving the query Q′ resulting from unifying F ′ with the argument list of
the sometime-past operator (2)

where we define timestamp: Fact→ Number, a function that returns the time
stamp of a fact and target: Fact → Object, a function that returns the first
argument in the argument list of F . E.g. if F = (call 1 "login" (*lotte*)),
then timestamp(F ) = 1 and target(F ) = *lotte*.

If (1) is true, it is obvious that the fact is garbage for the rule, because it
cannot be used to resolve the rule. If (2) is true, it means that only F ′ will ever
be used to resolve the rule as the semantics of the sometime-past operator is
such that there must exist only one fact such that a query (sp ...) is true
and we defined this to be the most recent of all those facts.

E.g. if we have a rule and execution history like:

(defrule
(advice "buy-one-get-one-free" book-for-free (?User ?Article))
(call "checkout" (?User))
(sometime-past (call "buy" (?User ?Article))

(t-shirt-p ?Article)))

1. (buy *lotte* *book*)
2. (buy *lotte* *t-shirt*) ;; assume that *t-shirt* is a T-shirt
3. (buy *lotte* *cd*)
4. (buy *lotte* *t-shirt*)
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Then, at time 4, we consider fact nr. 1 and 3. garbage because the query Q =
((call "buy" *lotte* *book*)(t-shirt-p *book*)), given fact nr. 1 fails
(1) – and a similar query for fact nr. 3 fails. Because of (2), we also consider fact
nr. 2 garbage, because given fact nr. 4, which has a larger time stamp, the query
Q′ = ((call "buy" *lotte* *t-shirt*)(t-shirt-p *t-shirt*)) succeeds.

However, in order to resolve a query Q, there can be no variable unbound
in Q, that is bound outside Q in the rule R, because this means, we cannot
compute Q, because the value for such a variable is not fixed. Take for example
the rule:
(defrule

(advice "smth" smth (?a))
((call c ?b) (sometime-past (call B ?b) (> ?b ?a)))

We cannot determine which (call B ?b) events fulfill the (> ?b ?a) con-
straint because the value of ?a is not fixed. Therefore, we cannot decide when
a fact that unifies with (call B ?b) is obsolete. In this case, no memory man-
agement is possible.

Some explanation is needed why we require (0) to be true. If (0) isn’t true,
this means that the pattern P is an argument of a sometime-past operator
that is itself an argument of a temporal operator. E.g. as in the rule:
(defrule

(advice "buy-one-get-one-free" book-for-free (?User ?Article))
(call "checkout" (?User))
(sometime-past (call "buy" (?User ?Article))

(t-shirt-p ?Article)
(sometime-past (call "login" (?User))

(t-shirt-promo (?User)))))

0. (login *lotte*)
1. (buy *lotte* *book*)
2. (buy *lotte* *t-shirt*) ;; assume that *t-shirt* is a T-shirt
3. (buy *lotte* *cd*)
4. (buy *lotte* *t-shirt*)

For this rule, the garbage collection will bailout for the fact (call "login"
*lotte*). Though this doesn’t really matter for this example, the problem is
that, in general, when (0) is not true, we cannot throw away F if (1) or (2)
is true, because Q is relative to the occurrence of an event, that might still
happen. This is different from when (0) is true, because then Q is relative to
”now”. E.g. given some morbid rule:

(defrule
(...)
((call (a ?Obj))
(sometime-past ((call b (?Obj ?Nr))

(> ?Nr 5)
(sometime-past (call c (?Obj))))))

1. (call c o) ;; still needed though (2) is true
2. (call b o 7)
3. (call a o)
4. (call c o)
5. (call b 3 o)
6. (call a o)

We can’t throw away fact nr. 1 (as (2) says because of fact nr. 4), because Q
is relative to the occurrence of a fact that can unify with (call b (?Obj ?Nr)),
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so at time 7 fact nr. 1 is the most recent fact that can fulfill the conditions of
the rule, however if at time 7 for example a fact (call b o 9) happens, then fact
nr. 4 will be the most recent fact that can possibly resolve the query at a time
8. In general we can’t decide if a fact that unifies with (call c (?Obj)) will
ever be used to resolve the entire rule, though we can say this about a fact that
unifies with (call b (?Obj ?Nr)), given (1) or (2). 1

One might consider to be a rather harsh restriction, but we observe that
most of the examples used to illustrate HALO in the previous chapter, do not
break (0), so in practice, the garbage collection rule described in this section,
still seems to be effective.

previous

Given a rule R and a fact F that unifies with a pattern P present in the body
of a rule, as an argument to the previous operator, we consider the fact F
garbage for the rule R, if there exists no fact F ′ such that timestamp(F ) =
timestamp(F ′)−1 where F ′ unifies with a pattern P ′ that represents the event
which F precedes, unless timestamp(F ) equals the current time. E.g. if one
considers the rule R and execution history as given below, then fact nr. 3 is
garbage.

(defrule
(...)
((call (a ?Obj))
(previous (call b (?Obj)))))

1. (call b o)
2. (call a o)
3. (call b o)
4. (call c 0)

We can now define the garbage collector in terms of these rules. A fact is
garbage for a rule, if any of the previously described rules applies for the rule
and the fact; A fact is garbage if it is garbage for all the rules in the logic
repository. Figure 5.4 depicts the pseudo code for a garbage collector. Note
that the predicates no-operator-p, sometime-past-p, sometime-interval-p
and previous-p are defined in terms of the descriptions per temporal operator
given earlier in this section.

In the rest of this chapter we discuss an implementation of HALO that takes
the problems observed in this section into account.

5.2 Resolution strategy for HALO

The HALO implementation needs a logic interpreter to handle the querying for
applicable aspect rules. An important decision to make when designing this
interpreter is whether to opt for a forward chainer or a backward chainer as
resolution strategy. We remind the reader of the definitions.

The definition for forward chaining is as follows (from [34])2:

1There is room for some improvement here. We can for example change (2) to say that if
(0) is true, that F becomes garbage if the query resulting from unifying F with the argument
list of the ”highest” temporal operator, is true for an F ′. The reason we don’t do that for
now, is because then we can’t combine the garbage collection with the insertion of a new fact,
as is currently opted in the Rete implementation.

2Beware: AI terminology
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garbage-collect():-
FOR fact IN *logic-repository*
DO

IF garbage-p (fact, *rules*)
THEN remove (fact, *logic-repository*).

garbage-p (fact, rules):-
garbage = true
index = size(rules)
WHILE (garbage AND index > 0)
DO

rule = rules[index]
garbage = (no-operator-p(fact, rule) AND

sometime-past-p(fact, rule) AND
sometime-interval-p(fact, rule) AND
previous-p(fact, rule)

RETURN garbage

Figure 5.4: HALO garbage collection.

Forward chaining is an example of the general concept of data
driven reasoning – that is, reasoning in which the focus of attention
starts with the known data. It can be used within an agent to derive
conclusions from incoming percepts, often without a specific query
in mind.

Conversely, the definition for backward chaining is as follows (from [34]):

Backward chaining is a form of goal-directed reasoning. It starts
with a list of goals and works backward to see if there are data avail-
able that will support any of these goals. It is useful for answering
specific questions.

In general, forward chaining is preferred over backward chaining when it is not
known beforehand what goals need to be proved, because a forward chainer
checks each rule for applicability when a fact is added to the logic repository.
If on the other hand, it is known beforehand what goals need to be proved,
backward chaining is preferred.

In section 5.1, we said that a fact is added to the logic repository for each join
point in the execution of a program and at each join point, the logic repository
is queried for any possible advice – we don’t know which sort of advice of
which aspect – to execute, given this new join point fact. This description
matches closely to the definition of a forward chainer, where “an agent derives
conclusions from incoming percepts”. A second reason for opting for a forward
chainer involves section 5.1.3. Using a forward chaining approach, requires us
to make less deep copies of objects (if any at all), as conditions on (past) events
can be immediately evaluated when an event is stored in the logic repository.

5.3 Rete

A naive forward chainer might check each rule against the known facts, when a
new fact is added to the logic repository, deriving a conclusion if possible, then
moving on to the next rule and looping back to the first rule when finished,
until no more conclusions can be derived. Even for a logic repository with a
moderate size, this naive approach performs far too slowly. As HALO is likely
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to run with many facts and rules, we want a more efficient forward chainer for
HALO. We next take a look at the Rete algorithm. The Rete algorithm [14] is
a fast forward chaining algorithm for production systems.

A production system is a formalism for representing knowledge under the
form of condition-action rules or productions where the body of the rule rep-
resents the conditions and the head of a rule represents the action. When the
conditions of a certain rule are met, by the presence of certain facts in the logic
repository, the rule fires which means the rules’ action is executed.

The general idea behind the Rete algorithm is to represent the knowledge
base, consisting of productions and facts by means of a network of nodes. The
productions in the knowledge base are compiled to a network of filter, join and
production nodes and each of these nodes has a memory table, which are used
to store the different facts.

The compilation of a single rule will result in the following network. The
patterns in the body of the production are all compiled to (filter) nodes and
these nodes are one by one connected to one and other by means of a join node.
The join node takes two nodes as input nodes and one node as output node.
Finally, the head of the rule is compiled to a production node which is then
placed as the output node of the last created join node. Each filter node has
a label, which is the predicate name of the pattern it represents; In addition,
each filter node has a memory table associated with it, which is a mapping for
the logic variables and constants in the pattern they represent. Each join node
contains a memory table which is a mapping for the union of the logic variables
of the memory tables of its two input nodes. The filter nodes are connected as
outputs to a special node, called the root node. For example if we compile the
production:

IF flies(X) AND feathered(X) AND lays_eggs(X) THEN (add bird X)

This rule states something like: if something flies, has feathers and lays eggs,
then that something is a bird. Compiling this rule, results in the network de-
picted in Figure 5.5. The ellipsis represents the root node, while the circles
represent filter nodes, the squares represent join nodes and the triangle repre-
sents a production node. The tables next to the nodes are the memory tables
associated with the nodes.

Storing facts in now done by means of the memory tables in the nodes. To
store a fact, the fact is inserted in the network, which results in passing the fact
from one node to another, according to the following rules, depending on the
type of node the fact is inserted in:

root node : insert the pattern into all the filter nodes, which are the output
nodes of the root node.

filter node : when the predicate name of the fact matches the label of the filter
node, try to map –by means of unification (see Chapter 2)– the arguments
of the fact to the variables and constants of memory table of the filter node
and insert the fact in the output node of the filter node.

join node : note the node from which the fact is inserted, combine the fact
with all the entries in the memory table of the other input node of the
join node and insert the obtained tuples into the memory table of the
join node, if there are no variable clashes (when the input nodes of the
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flies feathe
redx X
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X lays_e
ggs

X

X

Figure 5.5: Rete network for production IF flies(X) AND feathered(X) AND
lays eggs(X) THEN (add bird X).

join node represent patterns with variables with the same name, and the
combination tries to bind that same variable to different values).

production node : fire the rule, execute the actions associated with the pro-
duction node.

For example if we insert a fact (flies daffy), in the network depicted in
Figure 5.5, this affects the memory tables as shown in Figure 5.6. The fact’s
predicate matches the label of the filter node labeled flies and consequently
an entry daffy is made for the variable X in the node’s memory table; The fact
is passed along the join node connected to that filter node, but as no entries are
made in the memory table of the node labeled feathered), nothing happens.
Now, if we next insert the fact (feathered daffy), this results in an entry
for the variable X in the memory table of the filter node labeled feathered,
and again, the fact is passed along to the join node connected to that node.
However, now there is an entry in the memory table of the join node’s other
input node (the node labeled flies) and the join node tries to combine the
entries, which succeeds as the common variables in the memory table’s headers
are assigned the same values, namely the variable X has the value daffy for
both entries we are trying to combine, and hence an entry is saved in the join
node’s memory table and past along the output node of the join node (if we
had inserted a fact (feathered donald), this would simply have resulted in
an entry in the memory table of the filter node, labeled flies). If we next
insert the fact (lays eggs daffy), the rule fires and in this case, this results
in inserting the fact (bird daffy) in the network.
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Figure 5.6: Rete from Figure 5.5 after inserting the facts (flies daffy),
(feathered daffy) and (lays eggs daffy).

In the next section we show how the Rete algorithm can be extended – by
introducing new types of nodes with their own insertion rules, reflecting HALO’s
semantics – so that the HALO rules can be compiled to Rete networks.

5.4 Extending Rete

The Rete algorithm was not originally designed with higher-order predicates
in mind, see for example [14] where the not predicate is treated as a special
case, implemented by a join node with special behavior for inserting a fact. We
take the same approach for the different temporal operators. We introduce new
types of join nodes to implement the temporal connectives, meaning that the
behavior for inserting a pattern in these nodes will be different than for inserting
a pattern in a regular join node. Next to new join nodes, we introduce new filter
nodes to implement special built-in predicates such as the escape predicate.

One might wonder – as we can compile the rules to Prolog, which removes
the higher-order predicates (see Section 5.4.2)– why we don’t just use the regular
Rete algorithm and why we need to introduce new types of nodes. Though the
translation transforms the rules into Prolog, this doesn’t assure the HALO se-
mantics completely (see state issue described in Section 5.1.3) and consequently,
as is explained in the subsequent sections, we need to introduce some new nodes
so that the HALO-specific semantics are implemented. Another reason for im-
plementing our own nodes, is that this leaves room for some optimizations.

In the next subsection we discuss the compilation of HALO rules to Rete
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networks in full detail. Basically, compiling a rule goes as follows. The body of
the rule is compiled into the Rete network by compiling each pattern to a filter
node. Depending on the type of pattern – determined by its predicate name, e.g.
escape, call, ... – a different type of node is used. In section 5.4.1 we present
an overview of the different types of nodes used to compile a pattern to a node.
Once a pattern is compiled, the resulting node is connected by means of a join
node, to another node. Again, the type of the nodes that are being connected
matters as this determines the type of join node being used. In section 5.4.1 we
discuss the different types of join nodes.

In the subsequent subsection, we discuss the interpreter, which is defined
in terms of the behavior of inserting facts in a Rete network. We remember
that inserting a fact in a Rete network results in passing around the fact to the
different nodes in the network. Depending on the type of node we insert a fact
in, different actions are performed. A detailed overview of behavior per node is
given in 5.4.2.

A third section explains how we can combine the garbage collector discussed
in Section 5.1.4 by combining the behavior with the insertion mechanism behind
the interpreter.

The last subsection discusses some specific implementation problems con-
cerning rule definitions and garbage collection we deliberately avoid in section
5.4.1 and 5.4.2 to obtain lesser complicated subsections.

5.4.1 Compiler

The general idea is as follows. Say we have some global variable *rules* that
stores a list of all the HALO rules added via the macro defrule (see chapter
4). Then in order to get a Rete that represents this set of rules, we compile
them all. In pseudo code, the compiler looks something like Figure 5.7. The
compiler just loops through the different rules and compiles them one by one
via the function compile.

def compile-rules():
for rule in *rules*

compile(rule).

Figure 5.7: Pseudo code for compiling a set of HALO rules.

In order to compile a single rule, we first compile the body of the rule, which
is a conjunction of patterns. This compilation returns the last (join) node that
was created during this compilation and to this node we connect a production
node, representing the head of the rule. The pseudo code for compiling a single
rule is shown if Figure 5.8.

def compile-rule(rule):
body = body(rule)
head = head(rule)
node = compile-conjunction(0, body)
production-node = production-node(head)
output(node) = production-node
input(production-node) = node

Figure 5.8: Pseudo code for compiling a single HALO rule.
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Compiling a conjunction goes as follows. We compile the first two patterns
in the conjunction, which we then join using a join node; Then we grab hold
of the next pattern in the conjunction and compile it and we join the resulting
node to the previously created join node. We repeat this until no more patterns
are left in the conjunction to compile. Pseudo code can be found in Figure 5.9.
Note that the function compile-conjunction takes a mystery parameter level
– more on this later.

def compile-conjunction(level, conjunction):
rest-to-compile = conjunction
first = first(conjunction)
second = second(conjunction)
fnode = compile-pattern(level, first)
snode = compile-pattern(level, second)

fnode = join(level, fnode, snode, pattern-type(second)

while (length(rest-to-compile) > 0)
do

snode = compile-pattern(level, first(conjunction))
fnode = join(level, fnode, snode, pattern-type(first(conjunction)))
rest-to-compile = rest(rest-to-compile)

return
/* return the last created join node */
fnode

Figure 5.9: Pseudo code for compiling a conjunction of HALO patterns.

Compiling a pattern always returns a node; Depending on the “type” of
pattern being compiled, a different kind of node is returned. There are 7 dif-
ferent patterns we distinguish, depending if the predicate name of the pattern
is sometime-past, previous, sometime-interval (one of the temporal oper-
ators), escape, call, create or some random name. As can be seen in the
pseudo code (Figure 5.13), depending on the type of the pattern, a different
compilation strategy is followed:

1. Event patterns

Remember that event patterns are patterns that reflect the events in program
execution, such as method calls and instance creations (see chapter 4). A call
pattern is of the form (call ?fname (?arg1 ... ?argn)) and a create pat-
tern is of the form (create ?class ?instance). The compilation of such a
pattern results in a filter node. The label the node gets is either call or create;
The memory table’s header consists of the arguments of the patterns + a newly
generated variable representing a temporal variable (this keeps a spot to store
a time stamp (see section 5.4.2)). The filter node is connected to the root node
(e.g. Figure 5.10).

2. Escape patterns

Remember that an escape pattern is of the form (escape ?x lisp-form) and
that the idea is that a lisp-form is evaluated at the Lisp level and that the
logic variable is bound to the result. Hence an escape pattern is not the sort of
pattern for which facts will directly be inserted in the logic repository, therefore
an escape pattern is not simply compiled to a regular filter node. In fact, an
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pirate " lotte"

Figure 5.10: Rete for the pattern (call "login" (?User)) The table header
contains a temporal variable T, a constant "login" and a variable User.

escape pattern is compiled to a special filter node. It contains the lisp-form
and a memory table with as header the logic variable. This filter node is not
connected to the root node (e.g. Figure 5.11) – it is connected as a one input
join node to another node (see below).

X(+ 1 1)

Figure 5.11: Rete for the pattern (escape ?X (+ 1 1)).

3. Patterns where the predicate name is a temporal operator (or not)

The argument of a pattern where the predicate name is a temporal operator
(sometime-past, sometime-interval, previous) or not, is a conjunction of
patterns, and consequently compiling such a pattern requires to compile this
conjunction (Figure 5.9) ((e.g. Figure 5.10 can be the result of compiling the
pattern (sometime-past ((call "login" (?User))))).

4. Pattern with random predicate name

A pattern with a predicate name that is not one of the event predicates, escape
predicate or temporal operators, is compiled to a plain filter node. The label is
the pattern’s predicate name and the the memory table’s header is the argument
list of the pattern. The filter node is connected to the root node (e.g. Figure
5.12).

Now that we know how to compile patterns to nodes, we need to join them
(see use of function join in Figure 5.9 and see Figure 5.17). Joining two nodes
means they are connected to one another using a join node. Depending on the
”type” of the second node 3, a different kind of join node is used (Figure 5.17):

3The ”type” of the second node = the predicate name of the pattern it represents.
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pirate " lotte"

Figure 5.12: Rete for the pattern (pirate "lotte").

def compile-pattern(level, pattern):
type = pattern-type(pattern)
case
sometime-past-pattern?(type) then return compile-conjunction(level+1, arguments(pattern))
sometime-interval-pattern?(type) then return compile-conjunction(level+1, arguments(pattern))
previous-pattern?(type) then return compile-conjunction(level+1, arguments(pattern))
escape-pattern?(type) then

return escape-filter-node(lambda=lambda(pattern),memory-table=var(pattern))
create/escape?(type)

node = filter-node(label=predicate(pattern),
memory-table=union((generate-temporal-variable), arg(pattern)))

*root* add= node
return node

else /* a regular pattern*/
node = filter-node(label=predicate(pattern), memory-table=arg(pattern))
*root* add= node
return node

Figure 5.13: Pseudo code for compiling a single HALO pattern.

1. Joining a node and an escape filter node

There are two cases we need to consider: (1) there are no variables used in the
escape filter nodes’ lisp-form that are not matched by a variable in the header of
the first node or (2) there are variables used in the escape filter nodes’ lisp-form
that are not matched by a variable in the header of the first node.

When the first case applies, we put the escape filter node as output of the
other node and we update the header of the escape filter node by adding the
header of the memory table of the first node (e.g. Figure 5.14).

When the second case applies, we can’t just put the escape filter node as
output of the other node, because the escape filter nodes’ lisp form cannot be
evaluated when there are unbound logic variables (see section 5.1.3). Instead,
we put a special type of node as output of the first node, namely a “copy node”,
which has the same memory table of the first node (e.g. Figure 5.15). The
escape filter node itself is put away and will be joined to another node at a later
point in the compilation (see pseudo code in Figure 5.16).

2. Joining a node and node, where the second node represents a
pattern with predicate name = temporal operator

The general idea is that for each temporal operator, we have a special join node.
For example, if we join a node with a node that was the result of compiling a
pattern with predicate name = sometime-past, we get the following network.
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login T " login " User

(promo-on User) T " login " User Active

Figure 5.14: Rete for the conjunction ((call "login" "User") (escape
?Active (promo-on ?User))).

login T "login" User

copy T "login" User
(promo-on

Article)
Active

will be added to the network at a later point

Figure 5.15: Rete for the conjunction ((call "login" "User") (escape
?Active (promo-on ?Article)).

We create a join node of type ”sometime-past” and its memory table’s header
is the result of taking the union of both the nodes that are being joined their
memory table. In addition we join the resulting join node with an escape pattern
of the form (< T K) where T = the temporal variable of the (most left) filter
node connected to the first node and K = the temporal variable of the (most
left) filter node connected to the second node. Next to that, we try to join some
of the escape filter nodes that couldn’t be joined previously (e.g. as in 5.4.1).
The pseudo code is depicted in Figure 5.18 and an example in Figure 5.19.

Similarly, a special node is used to join two nodes, where the second node
was the result of compiling a pattern with predicate name = previous or
sometime-interval and similarly the resulting join node is joined with an
escape pattern of the form (= K (- T 1) and ((> K (+ T left-interval))
(< K (+ T right-interval)) respectively.
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def join-escape(level, left, right):
jnode = left
if(there are free variables in the action of the right

node (= escape node) that are not present in the
variable list of the memory table of the left node)

then /* add a promis to join the right node later in
compilation phase */

*map-of-nodes-to-be-added* join= (level, right)
/* make a node to take a copy of variables that are bound in left*/

a-copy-node(variables(memory-table(left)))
input(a-copy-node) = left
output(left) = a-copy-node

else
input(right) = left
output(left) = right
/* update memory table of right to contain header of left */
header(memory-table(right)) union= header(memory-table(left))
jnode = right

return
jnode

Figure 5.16: Pseudo code for joining a node and an escape filter node

def join(level, fnode1, snode, type):
jnode = nil
case

sometime-past-pattern?(type) then jnode = join-sometime-past(level, fnode, snode)
sometime-interval-pattern?(type) then jnode = join-sometime-interval(level, fnode, snode)
previous-pattern?(type) then jnode = join-previous(level, fnode, snode)
escape-pattern?(type) then jnode = join-escape(level, fnode, snode)
not-pattern?(type) then jnode = join-not(level, fnode, snode)

else /* a regular pattern*/
fnode = join-node(level, fnode, snode)

return
/* return created join node */
jnode

Figure 5.17: Pseudo code for joining two nodes. Depending on the given type,
a different join function is used to join the nodes.

3. Joining a node and a node

If we try to join two nodes, where the second node’s predicate name is neither
create, call, sometime-past, etc, we simply use a plain Rete join node (see
section 5.3).

5.4.2 Interpreter

Inserting a fact in the network, means the fact is propagated through the dif-
ferent nodes in the network. Depending on the type of node a fact is inserted
in, the fact is either discarded, stored in a memory table or passed along to the
node its output node. We next review the behavior for the different types of
nodes.

Root node

If a fact is inserted in the root node of the network, it is just inserted in all the
root node’s output nodes (ergo the fact is inserted in all the filter nodes).
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def join-sometime-past(level, left, right):
jnode = sometime-past-join-node(left-input = left,

right-input = right,
memory-table = union(memory-table(left),

memory-table(right))

/* set time stamp constraints, i.e. join a escape constraint to
the created join node */
T1 = leftest-timestamp(left)
T2 = leftest-timestamp(right)
jnode = join-escape(level, jnode, compile-pattern(< T2 T1))
/* try to join one of the unjoined escape nodes*/
join-escape-nodes(level, jnode)
return

jnode

def join-escape-nodes(level, jnode):
tryouts = fetch all pairs in *map-of-nodes-to-be-added*

where the level of the pair >+ level
for tryout in tryouts

join-escape(level(tryout), jnode, tryout)

Figure 5.18: Pseudo code where the second node represents a pattern with
predicate name = temporal operator

Filter node

The result for inserting a fact in a filter node is as follows. If the fact matches
the filter node, the fact is stored in the filter node by saving all the arguments
of the fact in the memory table of the node, and the fact is inserted in the
output node of the filter node. A fact matches a filter-node if: 1) the predicate
name is the same as the node’s label and 2) the argument list unifies with the
header the memory table. For example, the fact (call "login" jeff) matches
the filter node depicted in Figure 5.20, because the label of the filter node is
equal to the predicate name of the fact, namely call, and the arguments of
the fact, namely ("login" jeff) unify with the filter node’s memory table’s
header, namely ("login" ?User). Consequently, an entry ”jeff” is made for
the variable ?User in the memory table and the fact is inserted in the output
node of the filter node. For example, the fact (call "logout" lotte) does
not match the filter node depicted in Figure 5.20, because the arguments of
the fact, namely ("logout" lotte) do not unify with the filter node’s memory
table’s header, being ("login" ?User), and consequently no entries are made
in the fact isn’t saved in the filter node nor inserted in the output node of the
filter node.

Escape filter node

When a pattern is inserted in an escape filter node, the lisp-form of the escape
filter node is evaluated, using the variable bindings in the memory table from in
its input node to bind the logic variables in the the lisp-form, and the returned
value is entered in the memory-table of the escape filter node. Next, the pattern
is inserted in the escape filter node’s output node.
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call T2 "login" UsercallT1 "checkout" User

(promo-on
User) T2 "login" User Active

sometime-past T2 "login" User Active T1 " checkout"

(< T2 T1) T2 "login" User Active T1 " checkout"

Figure 5.19: Rete for the conjunction ((call "checkout" (User))
(sometime-past (call "login" (User)) (escape ?Active (promo-on
?User))).

Copy filter node

When a pattern is inserted in a copy filter node, a deep copy4 of all the pattern
arguments is taken and entered in the memory table (this implements 5.1.3).

Finally for all types of filter nodes, if the inserted pattern matches the filter
node, it is inserted in the output node of the filter node. Next, the pattern is
inserted in the copy filter node’s output node.

Join nodes

The behavior strongly depends on the type of join node one is inserting a pattern
in. We define the behavior per join node type:

join node : if the pattern is inserted in the left input: For each pattern stored
in the memory table of the right input, see if you can combine it with the
inserted pattern into one pattern – if unification for the common variables
succeeds – to store in the memory table of the join node; Else if the
pattern is inserted in the right input, do the same, but for the tupels in
the memory table of the left input. Insert each combination in the output
node of the join node.

sometime-past join node : if the pattern is inserted in the left input: For
each pattern stored in the memory table of the right input, if we can

4In our current implementation, deep copies are taken using the generic function copy. The
HALO programmer can implement a method copy for the types of objects for which copies
are taken; This way, the programmer can avoid to copy irrelevant state.
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 ...

T " login " User
call

Figure 5.20: Rete filter node for the pattern (call "login" ?User)

combine it with the inserted pattern into one pattern – if unification for
the common variables succeeds – to store in the memory-table of the join
node and insert each combination in the output node of the join node.
Otherwise, if the pattern is inserted in the right input, we do not try
to combine it with the tuples already inserted in the left input. This is
because tuples in the right input represent facts that are supposed to be
inserted before any fact inserted in the left input, and consequently if we
insert a pattern in the right input, all the facts inserted in the left input
were inserted before the one we are inserting now. In other words, we
know that in this case that the condition comparing the time stamps of
patterns we are trying to combine, will always fail. E.g. upon inserting
the fact (call 3 buy lotte cd) in the right input of the sometime-past
join node depicted in Figure 5.21, we do not try to combine it with any
of the patterns that were inserted before in the join node’s left input.

previous join node : if the pattern is inserted in the left input, for a pattern
stored in the memory table of the right input, see if you can combine it
with the inserted pattern into one pattern – if unification for the common
variables succeeds and the time stamps are only one time unit apart –
to store in the memory table of the join node; if it comes from the right
input, discard it. Insert the combination in the output node of the join
node.

Production nodes

When a fact is inserted in a production node, the advice is executed, by applying
the function that implements the advice on the arguments bound in the inserted
pattern. When the insertion of a fact in a network, results in inserting multiple
patterns in a production node, the production node is fired for the first pattern
inserted.
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call T2 "buy" User Article

1 lotte book

3 lotte cd

callT1 " checkout" User

2 lotte

sometime-past T2 "buy" User Article T1 " checkout"

1 lotte book 2

(< T2 T1)

(3 "buy" lotte  cd)

(call 3 "buy" lotte  cd)

don't combine

(call 3 "buy" lotte  cd)

Figure 5.21: Inserting the fact (call 3 "buy" lotte cd)

5.4.3 Combining insertion and garbage collection

We can combine the garbage collection described in section 5.1.4 and the inser-
tion mechanism: this involves deleting facts from the network, when a new fact
is inserted.

Rule 5.1.4 says we can delete all facts (for a rule) that do not match with any
pattern in the rule that is the argument of a temporal operator. We can mark
the filter nodes during the compilation process that are captured by a temporal
operator (e.g. extend the pseudo code for compiling a pattern by adding a line
that marks the nodes). Now, whenever a call or create fact is inserted in an
unmarked filter node, we immediately delete the fact from the network, once
the network has stopped processing the insertion of the fact.

Rule 5.1.4 - 5.1.4 defines when we can delete a fact (for a rule) that matches
with any pattern in the rule that is the argument of a temporal operator. Basi-
cally, we can delete a fact, if we insert a new fact that matches all the conditions
placed on the arguments of the pattern except if there are conditions that in-
volve variables bound outside the scope of the temporal operator. When we can
insert a fact in a sometime-past join node, we immediately delete the previously
inserted facts that were inserted in the sometime past join node, if there are
no escape filter nodes as output of the sometime past join node, because that
implies the exception from section 5.1.4.

For example, imagine we have only one HALO rule, namely:

(defrule (advice "discount" discount (?User ?Article 0.10))
(call "buy" (?User ?Article))
(sometime-past
(call "login" (?User))
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(escape ?On (promo-active (?User)))))

This rule is compiled to the Rete network depicted in Figure 5.22. Consider
now that we have the following execution history:

1. (login lotte)
2. (login lotte)
3. (buy lotte book)
4. (buy lotte comic)
5. (buy lotte cd)

A user lotte logs in to the shop, logs in again, and next buys a book, cd and
a comic5, which results in inserting the facts:

1. (call 1 "login" lotte)
2. (call 2 "login" lotte)
3. (call 3 "buy" lotte book)
4. (call 4 "buy" lotte comic)
5. (call 5 "buy" lotte cd)

in the network depicted in Figure 5.22.
The advice we defined earlier, gives a discount at every “buy” event if the

user logged in when the promotions were active. According to the garbage col-
lection rules described in section 5.1.4, we can delete all of the facts, except the
fact (call 2 "login" lotte) (the crossed rows in Figure 5.22 reflect deleted
facts). The facts nr. 3 - 4 are immediately deleted after they are inserted in the
network and the fact nr. 1 is deleted after the fact nr. 2 is inserted.

5.4.4 Encountered difficulties

There are a number of difficulties for implementing HALO by means of Rete
networks, we initially did not consider. We next discuss them one by one and
explain how they are dealt with currently.

Rule definitions

The original Rete algorithm is written for production systems, where there are
only productions, a sort of if-then rules that fire when certain facts are added
in the logic repository, which results in adding/removing a new fact in the logic
repository. We can try to see HALO rules as productions, however, there are
some problems with HALO rules that make use of the escape predicate.

Consider for example the rules (remember we call all rule definitions that do
not extend the definition of the predicate advice contexts, whereas the rules
that do extend the predicate advice are called advices):

1. (defrule (stock-promo-active (?User ?Article))
2. (escape ?Shop (shop ?User))
3. (escape (stock-overflow ?Shop ?Article)))

4. (defrule (advice "discount" discount (?User ?Article 0.10))

5The symbol lotte refers to an instance of the class User and the symbols book, cd and
comic refer to instances of the class Article.
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call

T1 "buy" User Article
3 lotte book
4 lotte comic
5 lotte cd

call

sometime-past

advice

(< T2T1)

(promo-active
User)

T2 " login " User
1 lotte
2 lotte

T1 "buy" User Article T2
3 lotte book 2
4 lotte comic 2
5 lotte cd 2

Figure 5.22: Crossed rows = deleted facts

5. (call "buy" (?User ?Article))
6. (sometime-past
7. (call "login" (?User))
8. (stock-promo-active (?User ?Article))))

How do we compile this to Rete? Do we simply compile the advice and the con-
text rule as usual (Figure 5.23)? Then how do we make sure (stock-promo-active
(?User ?Article)) facts are generated? Well, we can assure this if we say that
firing the context rule, results in adding such a fact to the network. However,
to what node do we connect the Rete gotten from compiling the context rule?
We can’t just attach it to the root node. The problem is that the Rete gotten
from compiling the context rule needs input for the variables variables ?User
and ?Article...

We have opted to solve this as follows. All the advices are recompiled so
that all occurrences of patterns that refer to context rules are replaced by the
body of the context rule (pseudo code in Figure 5.25). If there are multiple
rules defined for the same context predicate, we generate multiple new advice
rules. For the example discussed earlier, we replace the context rule and advice
by one rule:

(defrule (advice "discount" discount (?User ?Article 0.10))
(call "buy" (?User ?Article))

(sometime-past
(call "login" (?User))
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callT1 "buy" User Article call

sometime-past

advice

(< T2 T1)

T2 " login " User

T1 "buy" User Article T2

promo-
active User Article

join

(shop User)

(stock-overflow
Shop Article)

promo-active

?

Figure 5.23: To what node do we connect the Rete generated for a context rule?

(escape ?Shop (shop ?User))
(escape (stock-overflow ?Shop ?Article))))

The advantage of dealing with context rules this way, is that we don’t need
to change anything to the compiler defined in Section 5.4.1 (see Figure 5.24).
A drawback however, is that we can’t deal with recursive rules this way.

5.4.5 Future work

The presence of certain facts prevents objects from being garbage
collected

Events are stored under the form of facts in the logic repository. E.g. executing
the piece of code (buy *lotte* *book*) results in storing a fact (call "buy"
*lotte* *book*)where *lotte* and *book* represent variables bound to an
instance of the class User and Book respectively (strong references). Normally,
the fact garbage collector makes sure a fact is deleted from memory when the
fact can’t possibly be needed to resolve a query, assuring that the objects *book*
and *lotte* can be collected by the (Lisp) garbage collector. However, there
are rules for which it cannot be decided by the fact garbage collector if the fact
is garbage (i.e. if it isn’t needed to resolve any possible query (see section 5.1.4)).
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callT1 "buy" User Article call

sometime-past

advice

(< T2T1)

T2 " login " User

T1 "buy" User Article T2

(shop User)

(stock-overflow
Shop Article)

copy

Figure 5.24: Rete for Figure 5.23

Take for example the following rule and execution history 6:

(defrule (advice C c (?X ?Y))
(call A ?X)
(sometime-past (call B ?Y) (escape ?Greater (> ?Y ?X))))

1. (call A *number1*)
2. (call A *nulber2*)
3. (call B *number3*)

The variables number refer to instances of a class Number. The fact garbage col-
lector cannot decide whether the fact (call A *number1*) is garbage, because
there might come a fact (call B *someNumber*) for which the query (advice
C c (?X *someNumber*)) yields a different result depending on whether (call
A *number1*) or (call A *number2*) is used to resolve the query. In short,
the facts (call A *number1*) and (call A *number2*) are never removed

6Whether or not this example makes “sense” is not its purpose. It is just here to show a
problem that could occur.
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compile-advice(advice):
repeat

advice = replace-context-patterns(advice)
until

there are no more context patterns in the advice
return

advice

replace-context-patterns(advice):
for all context-pattern in advice
do

advice = replace-pattern-by-context-body(advice, context-pattern)
return advice

Figure 5.25: Pseudo code for compiling context-patterns out of an advice rule,
where a context-pattern is a pattern that unifies with a context rule’s head.

from the logic repository and consequently there exists forever a reference to
the objects bound to *number1* and *number2* such that these objects will
never be garbage collected. This is something the HALO programmer should
be aware of, as rules like this can be very memory consuming. Perhaps it can
be useful to give the HALO programmer control over the fact garbage collector,
the same way as control over the (Lisp) garbage collector is given by means of
weak references [31], so that facts like this can be deleted. However, for this dis-
sertation, we did not consider to grant user control to the fact garbage collector.
Furthermore, we should make an estimate of how often this problem occurs.

5.5 Summary

In this chapter we presented the ideas behind the implementation of HALO.
We started the chapter by giving an overview and description of the (HALO
specific) difficulties for implementing the weaver.

We dedicated a next section to explaining the Rete algorithm, as we chose to
implement the HALO engine using a forward chainer. We proposed to represent
the logic repository by means of Rete networks. Next we introduced the changes
we needed to make to the Rete algorithm, involving a compilation scheme ded-
icated to HALO rules; We introduced new types of nodes that can be used to
represent HALO specific patterns, such as call, create, escape patterns and new
types of join nodes to represent the temporal operators in a HALO rule, and a
special copy node. Specific behavior was introduced for inserting facts in these
new types of rules, reflecting the HALO semantics for evaluating a rule.

Finally, we concluded the chapter with an overview of encountered difficulties
involving garbage collection and implementing the support of abstraction by
means of rule definition in HALO.



Chapter 6

Conclusions

6.1 Summary

Full separation of concerns through modularisation using a traditional object-
oriented, functional or procedural programming language is difficult to achieve,
because a program can be modularised in only one way at a time. Concerns that
do not align with a particular modularisation are called croscutting concerns:
their implementation is scattered over different modules, leading to tangled
code, which is hard to understand, reuse and maintain.

In Chapter 2, we discussed aspect-oriented programming (AOP), a novel
paradigm aiming to modularise crosscutting concerns. In AOP, crosscuts are
defined in terms of join points, where join points are well-defined points in (the
execution of) a base program affected by (the implementation of) a crosscutting
concern. An AOP language is a language extension for a base language that
makes it possible to implement a crosscutting concern in a separate module,
called an aspect. We discussed two different aspect languages, namely AspectJ
and CARMA to illustrate AOP. In both languages, the idea is to declare point-
cuts, which describe a set of join points, and connect these pointcuts to a piece
of advice code. This advice code is then assured to be executed – by a weaver
program – at any join point described by the pointcut. The major difference
between CARMA and AspectJ, is that CARMA is a logic meta programming
approach to AOP, introducing the idea of using of a full-fledged logic meta lan-
guage as pointcut language, which leads to a very declarative and open pointcut
language. Next, we explained that past AOP research focused on expressing as-
pects that are triggered on the occurrence of a single join point.

Recent research evolved towards aspects that are triggered on the occurrence
of a sequence of join points: they were dubbed stateful aspects, event-based
aspects and context-aware aspects. We discussed AOP environments that offer
some support to implement these kinds of aspects (EAOP, Reflex, JAsCo). We
concluded that so far, no pointcut language based on temporal logic, or adequate
in reasoning about past program state has been proposed. However we believe
that a dedicated pointcut language can improve the expressiveness of such an
AOP system.

We designed our pointcut language after the following description of pro-
gram execution. Program execution generates a (dynamic) join point at each

88
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computational step. All the join points that are generated this way, can be
placed on a time line, reflecting the order in which they occurred and we ob-
serve that there exists a temporal relation between any two join points on this
time line. If we can express this temporal relation, we can describe the sequence
of events in a pointcut.

In Chapter 3 we discussed logic meta programming in full detail. First we dis-
cussed the origins of logic programming, by introducing the reader to Prolog and
then we continued the chapter by introducing the ideas behind logic meta pro-
gramming, namely to reason about programs, written in some (object-oriented)
base language by means of logic programs. We covered some applications of
logic meta programming, including aspect-oriented programming and noticed
that all logic meta programming approaches to aspect-oriented programming,
currently being developed propose a logic meta language based on Prolog. We
tried to solve our problem using Prolog as well. The solution consisted of in-
troducing an extra variable to each predicate, which saves a spot for adding a
time stamp; Then we could express temporal relations by putting constraints on
these temporal operators. However, manipulating time stamps is very tedious
and error-prone. Therefore, we explored temporal logic, a formalism dedicated
to reasoning about time and temporal relations. Temporal logic is an umbrella
term for a set of logic languages that allow the representation of temporal infor-
mation. These logics introduce new types of logic connectives, called temporal
operators, into an existing logic and temporal logic formulas are evaluated in
relation to an implicit temporal context. Depending on the definition of time
applied, these temporal operators have different meanings. A form of metric
temporal logic we investigated, defines time as a linear sequence of time points
and the temporal operators define temporal relations in terms of intervals of
time points. This definition matches well on our problem description, and con-
sequently we used a subset of this form of metric temporal logic as a basis for
designing our pointcut language.

In Chapter 4 we covered the syntax and semantics of our pointcut language,
which we named HALO – short for history-based aspects using logic. HALO is
a full-fledged logic language that comes with a library of predicates to describe
single join points in the execution of a program (method call, instance creation)
and temporal predicates that can be used to express a temporal relation between
different pointcuts. Evaluating a pointcut that relates different join points in
the execution of a program is done in respect to the state the program was in
when each such join point occurred. This makes HALO suitable to reason about
the past and current state of a program. In addition, you can put conditions
on a variable that will be bound only later. To evaluate HALO – and hence
validate our thesis – we implemented the e-commerce application used in several
papers about context-aware and stateful aspects as an example application, as
well as some other examples.

Chapter 5 discusses the implementation of HALO. First, we explained the
general idea behind the HALO weaver. The weaver is responsible for generat-
ing/storing a logic fact for each join point and for querying the logic repository
at each step in the execution of a program, in order to find applicable advice
code. We carefully analyzed the problems we needed to tackle due the semantics
of HALO and outlined the solutions:

• generating and advising join points through CLOS meta object protocol
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• interpretation of HALO programs through translation of HALO programs
to Prolog

• saving object state at well-defined moments in time

• garbage collection of facts based on the idea that some facts can’t be used
to resolve a query after a while

We defended the use of a forward chainer to implement the HALO interpreter
and we chose to use the Rete algorithm, where logic rules are represented as
networks of nodes. However, the logic language for which the Rete algorithm was
originally written, is much less complicated than HALO and hence Rete doesn’t
support the HALO-specific properties such as rule definitions, the problems
discussed above, higher-order predicates such as HALO’s temporal operators
etc. . Therefore we needed to extend the Rete algorithms with new types of
nodes and write a HALO-specific rule compiler, taking these HALO-specific
needs into account.

6.2 Contributions

In this dissertation we showed that it is possible to reason about the execu-
tion history and past program state, in order to implement certain crosscutting
concerns, through:

• the use of a logic meta language,

• the use of temporal logic,

• the use of a forward chainer, our own extension of the Rete algorithm.

We noted that the lack of a dedicated pointcut language makes it hard to
write aspects to implement crosscuts that affect join points in the execution
of a program, based on the occurrence of other join points in the past and
depending on the current and past program state, though crosscuts like these
are omnipresent. We designed a pointcut language, named HALO, to cope with
this need.

HALO is a logic pointcut language – in the spirit of CARMA, but based on
temporal logic – where aspects are defined in terms of logic rules. We defined a
set of primitive predicates to capture join points in the execution of a program
and a set of higher-order predicates, based on the temporal operators in metric
temporal logic, to define a temporal relation between pointcuts. Evaluating a
pointcut about multiple (past) join points in HALO, is done in respect to the
the program state at these (past) join points, so that constraints about past
join points are checked against the program state at the occurrence of a past
join point. This makes it possible to reason about current and past program
state in HALO, and furthermore, it is possible to put constraints on a past join
point in a pointcut, that involve values from a later join point.

We have implemented HALO for Common Lisp. This implementation in-
volves the design of a dedicated forward chainer, for which we needed to extend
the Rete algorithm. In short, the design and implementation of HALO are the
main contributions of this dissertation.
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6.3 Future work

We based HALO on a subset of the temporal operators in metric temporal logic,
being the past temporal operators. Perhaps it might be useful to include the
future-oriented temporal operators as well. Of course we need to think about a
well-defined semantics for these operators. We could for example define them
as follows. We could introduce the operators sometime-next and next and
define their semantics in terms of the current execution history. For example, a
pointcut sometime-next (call "logout" (User))) would be false, if this is
evaluated ”now”, i.e. at the current time point. However this does not imply
the future operators would be useless: they could be useful when used in com-
bination with a past temporal operator, so that such a future pointcut evaluates
against that past context. For example, this could be used in a pointcut

(sometime-past (call "login" (User))
(not (sometime-next (call "logout" (User)))))

that only matches the last login event if it was not followed by a logout event.
It is arguable that this is more expressive than writing a pointcut

((sometime-past (call "login" (User))) (logged-in (User)))

that matches the most recent login event if that implies the User is still logged
in now, because this requires the presence of some state variable to keep track
of the ”login” state of a user.

There are other temporal logics out there that introduce different kinds of
operators, that might be worthwhile to include in HALO. For example, in [26] a
new temporal operator N is introduced. The authors of that paper explain that
N should be read as ”from now on” and that this temporal operator can be used
to evaluate temporal formulas that ignore parts of the past in their evaluation.
Maybe we can turn this construct into a means of control over the fact garbage
collector (we discussed in chapter 5 that giving the programmer control over the
fact garbage collector might be beneficial).

Currently, we implemented HALO from scratch for Common Lisp, but per-
haps it is interesting to investigate an implementation of HALO on top of an
existing AOP approach, such as Reflex for Java. Nevertheless, we should pursue
to make the current HALO implementation based on our extension of the Rete
algorithm more efficient. For example, there certainly is room for improvement
for the fact garbage collector. For example, we identified that we cannot decide if
certain facts ever become garbage, because they can be used to resolve pointcuts
that rely on the occurrence of a future event. Nevertheless, we could offer some
support for warning the HALO programmer when she is writing such pointcuts
and offer some form of control over the fact garbage collector. In addition, the
compile-away tactic used to implement rule definitions should be rethought, to
make recursive rule definitions possible in HALO, as this would greatly improve
HALO’s power. In this light, it is maybe worthwhile to investigate the use of a
mixed resolution strategy.

In this dissertation we evaluated HALO on a few example applications, but
we really should evaluate the use of HALO in a large-scale system, for example
to find out if HALO’s expressiveness can be improved and how well the current
implementation based on an extended version of the Rete algorithm performs.
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6.4 Related work

In this section we cover related work: we take a look at AOP languages that al-
low the implementation of aspects based on multiple join points in the execution
history of a program we highlight the differences with our approach. Of course,
we point out that already several of these approaches were discussed in Chapter
2, such as EAOP, JAsCo and Reflex. Remember that all these approaches lack
a (sufficiently) declarative pointcut language.

6.4.1 Alpha

Alpha [30] is a logic-programming-based approach to AOP for a prototype Java-
like language, whereas HALO is implemented for Common Lisp. It is possible
to reason about the execution history of a program in Alpha: events such as
method calls are represented by relations that have explicit time stamps. A
number of predicates is defined to express the order between time stamps and
these are used to express the order of events in a pointcut. In our approach
however, temporal operators are higher order predicates: this allows us to easily
express that certain conditions must hold at the time a specific event occurs and
the conditions inside a temporal operator can refer to variables bound by a later
event. Our mechanism assures to evaluate pointcuts in relation to past program
state automatically.

6.4.2 Tracematches

Tracematches [1] is an extension to AspectJ that enables the programmer to
trigger the execution of advice code by specifying a regular pattern of events
in a computation trace. Tracematches includes a free-variables mechanism in
which events can be matched not only by the event kind, but also by the values
associated with the free variables (pointer equal), whereas in our approach the
past program state is taken into account. Furthermore, in this dissertation our
main goal, was expressiveness. Our Logic pointcut language makes it possible
to abstract pointcuts by rule definition and make use of unification, which is
much more expressive than a pointcut language based on regular expressions.

6.4.3 J-Lo

J-LO [4] is a tool for checking temporal assertions in Java programs. These
temporal assertions are written down as LTL formulas in the form of Java
annotations in the source code. LTL [21] is a logic that extends propositional
logic with (future-oriented) temporal operators to arrange propositions on a time
line. In J-LO, AspectJ pointcuts are the propositions. J-LO also supports a free-
variables mechanism, which can be used to refer to variables bound earlier in the
execution history, but not to variables bound at a later stage in the execution
history, as is possible in HALO. Another difference with HALO is that J-LO uses
a future-oriented logic, whereas HALO is based on a past temporal logic, which
requires a different way of thinking about program execution. Furthermore,
J-LO focuses on verification (model checking) and is not used to implement
aspects or insert code: J-LO is not used as a pointcut language. In addition,
J-LO doesn’t offer a mechanism to refer to past program state, as HALO does.
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6.4.4 Extending the RETE Algorithm for Event Manage-
ment

In [3] an extension of the Rete algorithm is proposed to integrate event man-
agement in a rule engine. The author introduces the concepts of “events” and
of “temporal constraints” between events and extends the OPS5 language to
include constructs to define these. Events are a special type of facts that are
time stamped and the idea is to use temporal constraints, to express a tempo-
ral relation between two events in terms of time intervals: e.g. event A occurs
within 5 time steps from event B. These time intervals are used to derive “ex-
piry dates” for events and the Rete algorithm is extended so that these expiry
dates are checked at each time step to see if an event can be deleted. However,
the language extension proposed in that paper is very different from HALO.
For example, temporal constraints can only express that certain events happen
within a limited number of time steps. The author claims that this is necessary
to make it possible to throw away events. However, in HALO, we allow point-
cuts to refer to past events (unrestricted how far in the past), but this does not
make it impossible to throw away events. Also, in [3], no extension of Rete is
discussed to support a language symbiosis mechanism between the rule language
and another language such as our extension (e.g. see the copy mechanism and
reordering strategy of constraints to implement the escape predicate).
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