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Samenvatting

De opkomst van mobiele netwerken heeft de nood voor applicaties met de ca-
paciteit te verhuizen van apparaat naar apparaat aangewakkerd. Hoewel er al
oplossingen voor dit probleem zijn, komen deze meestal neer op de mobiliteit
van aparte entiteiten.

In deze verhandeling onderzoeken we de verschillende types van relaties tussen
bewegende objecten die men tegenkomt in mobiele omgevingen. Om deze relaties
eenvoudig te kunnen opleggen, stellen we voor de huidige oplossingen uit te brei-
den met declaratieve annotaties van velden. We valideren deze techniek door, aan
de hand van een programmeertaal uitgebreid met deze annotaties, een reizende
TrafficWare routeplanner te implementeren.



Abstract

The uprise of mobile networks has generated the need for parts of mobile applica-
tions to be capable of moving from one device to another. While there are already
solutions for moving applications, they are mostly constrained to the mobility of
single entities.

In this dissertation, we investigate the different types of relations between
moving objects that can be found in mobile environments. To easily impose these
relations we propose extending the current solutions with declarative field an-
notations. We validate this technique by using a language extended with it to
implement a moving TrafficWare route planner.
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1
Introduction

With the uprise of mobile devices equipped with wireless connectivity, not only
the ease for the users, but also the application complexity have increased. Most
of these mobile devices are equipped with wireless units with limited commu-
nication range. At the same time their physical mobility capability allows them
to move out of communication range. Applications written for these devices are
becoming more and more environment aware. Thus the applications might de-
pend on resources (software and/or hardware services) running on remote devices.
Network partitions, caused by users walking out of communication range, would
result in those services becoming unavailable, possibly resulting in stalling the
applications. A possible solution for this scenario might be moving the running
applications in such a way that the used resources stay available. This calls for
the need of code mobility, the ability to move running programs from one device
to another.

1.1 Problem Statement
Code mobility is not a new concept. In the past, several mechanisms and facilities
have been implemented to move code along the nodes of a network. These imple-
mentations however mostly boil down to the addition of one move operator to the
programming language. This enables programmers to move single objects from
one device to another. The problem with these solutions lies in the fact that these
languages are only focused on the mobility of single objects in the system, while

1



CHAPTER 1. INTRODUCTION 2

applications are usually composed of groups of objects working together on tasks.
The evolution in mobile software engineering might be compared to the up-

coming of object-oriented programming. In the beginning, research was focused
on the development of “single object systems” with the coming of SIMULA I and
SIMULA 67 [Dha01]. Subsequent research was conducted on how to create the
objects using classes and inheritance. However, as these systems were actually
being used more and more, it became clear that not only the design of the objects
themselves is important, but also the design of the relationship between objects.
This resulted in so-called design patterns. Focusing on such mechanisms during
a system’s development can yield an architecture that is smaller, simpler, and far
more understandable than if these patterns are ignored [EGV94].

1.1.1 Single Entity Mobility
While single moveable objects serve as starting point for applications, exploiting
the mobility of a programming language, like objects are the starting point for
object-oriented applications, they are not sufficient for good mobile program de-
sign. Objects in applications are usually not isolated computational entities. They
rely on other objects, representing other parts of the application or resources for
the application. On moving a computational entity from one device to another, it
is very probable that something also needs to happen to the cooperating objects
and/or resources of the moved object. Languages only based on the single en-
tity mobility feature will result in program code cluttered with mobility specific
statements, written to handle the mobility of interlinked objects.

1.1.2 Multiple Mobility Semantics
For programs written in single entity mobility languages, in which the mobility
situation for certain objects has to change according to the state of the application,
the situation would even be worse. Such programs are characterized by branched
mobility code fragments. In some cases it might even be necessary for program-
mers to extend functions which have nothing to do with mobility, with mobility
specific code, because of the state changes these functions imply.

Imagine a drawing program for example. After only drawing a few squares
and circles it will probably be faster to redraw the canvas when moving the ap-
plication instead of moving the state of the canvas over the network. This could
be achieved by re-applying the performed operations to the recreated canvas. In
other cases however, the optimal solution might be different. If one would draw
some fractal which takes a long while to generate, it might be faster just to move
the current state of the canvas.
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1.2 Proposed Solution
In order to avoid this code cluttering due to single entity mobility, there is the
need for well-defined relations between moving objects and their resources, an
easy way to impose and an easy way to change these relations.

In [AFV98], Alfonso Fuggetta already pointed out the need for different mo-
bility semantics depending on the type of resource. He presented a list of possible
relations between moving objects and their resources. Unfortunately current mo-
bile systems do not provide support for easily applying these mobility semantics.
They all rely on one or two of the possible mechanisms as default behaviour,
leaving the non-standard work to the program designer and his eventual mobile
program code.

1.2.1 Multiple Entities Mobility
By examining code mobility as mobility applied to groups of objects working to-
gether on a problem, we identify the different possible relations between moving
objects in different scenarios. To easily impose the different relations, we propose
extending mobile programming languages with a declarative field annotation sys-
tem. This way the fields of moveable objects can be annotated with mobility
semantics based on the relations we identified. In order to easily change the mo-
bility semantics, we advice to use a dynamic annotation system rather than a static
one.

1.2.2 Advantages of Declarative Field Annotations
The annotation mechanism will enable programmers to write mobile applications
with less code entanglement, making the code better structured and clearer. Sec-
ondly the programmer does also not have to think about the different mobility
scenarios any more. He is presented with a list of possible annotations which he
can use to define the mobility relations between different objects in his program.

1.3 Outline
In this dissertation we will show how to extend a programming language designed
for mobile networks, with the declarative field annotations for mobility. We will
also explain which annotations should be installed by default. Finally we will
validate our solution by using these annotations to implement a real-world appli-
cation. The document is organized as follows:
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In chapter 2 we will describe mobile networks and a programming paradigm
specially designed for these dynamic environments. Secondly we will present a
concrete language of the paradigm called AmbientTalk. In chapter 3 we will look
at code mobility more thoroughly. We will point out why we want code mobility
in the first place and which type of mobility is the most feasible. We will also
implement this type of mobility in AmbientTalk. In chapter 4 we will identify the
different mobility scenarios and propose the use of typeboxes as dynamic declar-
ative field annotation system. Next we will extend the version of AmbientTalk we
created in chapter 3 with an implementation of these typeboxes and we add default
typeboxes based on the identified mobility scenarios. In chapter 5 we will validate
our solution and show how it can be used in real-world examples. We finish the
dissertation in chapter 6, where we draw conclusions from the accomplished goals
during our research.



2
Ambient-Oriented Programming

in AmbientTalk

This chapter introduces ambient-oriented programming. We will show how it
simplifies the task of programming distributed applications for mobile networks.
Since this is the type of network in which our research is based, this is the ideal
paradigm as starting point. Then we will see a concrete ambient-oriented pro-
gramming language called AmbientTalk. The language is designed as a reflective
kernel. This allows language engineers to easily adapt the language in order to
experiment with language constructs. The language will be used as basis for our
research experiments.

2.1 Mobile Networks
Software development for mobile devices is given a new impetus with the advent
of mobile networks. Mobile networks surround a mobile device equipped with
wireless technology and are delimited dynamically as users move about. Mo-
bile networks turn isolated applications into cooperative ones that interact with
their environment [JDM06]. Such mobile networks have four main characteristics
which distinguish them from other other types of networks:

• Connection Volatility. Two devices which perform a meaningful task to-
gether cannot assume a stable connection. The limited communication

5
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range of wireless technology combined with the fact that users can move
out of range, can result in broken connections at any point in time. How-
ever on re-establishing a broken connection, users typically expect the task
to resume.

If possible, it might even be better to avoid this situation by moving the
two parties to one device, so network partitions between the parties are not
possible anymore.

• Ambient Resources. Because the availability of a resource may depend on
the location of a device, users who walk around with their mobile device
might cause these resources to become dynamically (un)available in the en-
vironment. This is in contrast with stationary networks in which references
to remote resources are obtained based upon the explicit knowledge of the
availability of the resource.

• Autonomy. Most distributed applications today are developed using a server-
client approach. The server often plays the “higher authority” which coor-
dinates interactions between clients. In mobile networks such a “higher
authority” is unavailable because every device should be able to act as an
autonomous client en an ever changing environment.

• Natural Concurrency. In a client-server setup, a client might explicitly
wait for the result of a request to a serving device. Since waiting under-
mines the autonomy of a device, we conclude that concurrency is a natural
phenomenon in software running on mobile devices.

Developing software for mobile networks in conventional programming lan-
guages is extremely hard. The main reason is that contemporary programming
languages lack abstractions to deal with the mobile hardware characteristics. For
instance, in traditional programming languages, failing remote communication is
usually dealt with using a classic exception handling mechanism. This results in
application code polluted with exception handling code because failures are the
rule rather than the exception in mobile networks. Observations like these justi-
fied the need for a new programming paradigm, the Ambient-Oriented Paradigm
(AmOP for short) which consists of programming languages which explicitly in-
corporate potential network failures in the very heart of their basic computational
steps.

2.2 The Ambient-Oriented Programming Language
This section presents a collection of language design characteristics that discrimi-
nate the AmOP paradigm from classic concurrent distributed object-oriented pro-
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gramming. These characteristics are directly derived from the hardware phenom-
ena we summarised in section 2.1. Until now, it seems that the object-oriented
paradigm is the most successful one with respect to dealing with distribution and
its induced concurrency, because it successfully aligns encapsulated objects with
concurrently running, distributed software entities [JPBL98]. Therefore, our most
basic research assumption is that ambient-oriented programming languages nec-
essarily are concurrent distributed object-oriented languages. However, ambient-
oriented programming languages differ from conventional distributed concurrent
object-oriented programming languages in at least one of the four ways presented
below.

2.2.1 Classless Object Models
As a consequence of argument passing in the context of remote messages, objects
are copied back and forth between remote hosts. Since objects in class-based pro-
gramming languages cannot exist without their class, the copying of objects im-
plies classes have to be copied as well. However, a class is, by definition, an entity
which is conceptually shared by all its instances. From a conceptual point of view
there is only one version of any class on the network, containing the shared class
variables and method implementations. Since objects residing on different ma-
chines can autonomously change class variables, or update the implementation of
“their” version of the class, a classic distributed state consistency problem among
replicated classes arises. Allowing programmers to deal with this phenomenon re-
quires a full reification of classes and the instance-of relation. However, languages
like Smalltalk and CLOS already illustrate that, even in the absence of wireless
distribution, this results in extremely complex meta-machinery.

A much simpler solution consists of getting rid of classes and the sharing
relation they impose on objects all together. This is the paradigm defined by
prototype-base languages like Self [US87].

2.2.2 Non-Blocking Communication Primitives
Autonomous devices communicating over volatile connections necessitate non-
blocking communication primitives since blocking communication would harm
the autonomy of mobile devices. First, blocking communication is a known source
for (distributed) deadlocks which are extremely hard to resolve in mobile net-
works since not all parties are necessarily available for communication. Second,
a program or a device could block for a unwanted long period of time upon en-
countering volatile connections or temporary unavailability of another device.
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2.2.3 Reified Communication Traces
Non-blocking communication implies that devices no longer communicate syn-
chronously. However, two devices working together on a task might need to com-
municate synchronised, to avoid ending up in an inconsistent state. When such
an inconsistency is detected, both parties should be able to restore their state to a
consistent one. Therefore the AmOP language should provide the programmers
with an explicit representation (i.e. a reification) of the communication details
which led to inconsistent state.

2.2.4 Ambient Acquaintance Management
The fact that autonomous devices detect ambient resources dynamically while
they are roaming about, means that they do not necessarily depend on a third-
party to interact with each other. As opposed to the client-server model, where
the server directs communication between clients, devices do not need explicit
reference to one another beforehand. This distributed naming provides a way to
communicate without knowing the address or location of the ambient resource.

2.3 An Ambient-Oriented Language: AmbientTalk
Now we are familiar with the basic characteristics for AmI1 languages, we present
a concrete descendant called AmbientTalk [JDM06]. It is designed as a reflec-
tively extensible kernel, as a language which enables language designers to ex-
plore the realm of language features which facilitate AmOP. Since this makes the
language perfectly fit for our research, we are going to use this language as basis
for the rest of the dissertation. In this section we begin by explaining the essential
characteristics of its object model.

2.3.1 A Double-layered Object Model
AmbientTalk has a concurrent object model that is based on the model of ABCL/1.
This model features active objects which consist of an interminable running thread,
an updateable state and a message queue. These concurrent active objects com-
municate by the use of asynchronous message passing. Upon reception, these
messages are stored in the receiving active object’s message queue, and are pro-
cessed sequentially. By excluding simultaneous message processing, race condi-
tions on the updateable state are avoided. The advantage of this model is that it

1AmI: Ambient Intelligent
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Receiver
Passive Objects Active Objects

Parameter Passive Objects Reference Copy
Active Objects Reference Reference

Table 2.1: Parameter Passing in AmbientTalk

combines imperative object-oriented programming and concurrent programming
without suffering from possible race conditions.

In order to avoid programs to be equipped with explicit concurrency provi-
sions, and to avoid that every message send in a program must be considered to be
a concurrent one, a more fine-grained model which distinguishes between active
and passive objects is used. This allows programmers to only deal with concur-
rency when strictly necessary. Since passive objects are always handled by one
and the same thread, synchronous message passing is used. However, if we are
combining active and passive objects, we must make sure a passive object is never
shared by two active ones. Otherwise this would easily lead again to race condi-
tions. AmbientTalk’s object-model ensures this by obeying to the following two
principles:

• Containment. A passive object is always contained in at most one active
object. Thus there is no sharing of passive objects between active ones.
The only thread which can enter a passive object, is the thread of the active
object in which the passive object is contained.

• Parameter Passing. When an asynchronous message from one active ob-
ject to another is sent, a passive object might be passed as an argument.
In order not to violate the containment-principle, this passive object will
be passed by copy. Since message sending to active objects obeys the pa-
rameter passing principle by definition, if we pass these type of objects as
argument, it will simply be by reference. Of course, arguments passed while
sending synchronous message to passive objects will always be passed by
reference. These type of messages to not cross the border of active objects
so there is no possible containment violation. (See table 2.1)

The synchronous message-sending used by passive objects is not reconcil-
able with the non-blocking communication characteristic for AmI programming
languages, derived in section 2.2.2. Therefore active objects are the unit of distri-
bution in AmbientTalk. This means that active objects are the basis for concurrent
as well as distributed programming. This implies that Applications written in
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AmbientTalk are conceived as suites of active objects deployed on multiple au-
tonomous devices.

Passive Objects

Following the design of standard object-oriented languages, passive objects in
AmbientTalk are implemented as a set of slots mapping names to objects and
methods. These passive objects are created by using the object(...) form.
The state of the object is the resulting environment of the evaluation of the ex-
pression passed as argument. Since environments in AmbientTalk are lexically
scoped, so are passive objects. This has as effect that variables in the surround-
ing environment can be used inside the passive object. Fields can be mutable
and private (declared with :) or immutable and public (declared with ::). Both
field selection and synchronous method invocation use the dot notation. When
selecting a method, without invoking it, this will return a first-class closure encap-
sulating the receiver-object, which can be called as any other function. The code
below shows an example of the use of passive objects. It is a code fragment which
creates the abstract data type “queue”.

Listing 2.1: Passive Objects in AmbientTalk
1 makeQueue ( ) : o b j e c t ({
2
3 queue : [ [ ] ] ;
4 t a i l : queue ;
5
6 enqueue ( e l e m e n t ) : : {
7 t a i l [ s i z e ( t a i l ) ] : = [ e lement , t a i l [ s i z e ( t a i l ) ] ] ;
8 t a i l := t a i l [ s i z e ( t a i l ) ]
9 } ;

10
11 dequeue ( ) : : {
12 i f ( queue = [ [ ] ] ,
13 e r r o r ( ” Queue i s empty ” ) ,
14 { r e s u l t : queue [ 1 , 1 ] ;
15 queue [ 1 ] : = queue [ 1 , 2 ] ;
16 i f ( queue = [ [ ] ] , t a i l := queue ) ;
17 r e s u l t } )
18 }
19 } )

As illustrated by makeQueue(), objects can be created in the body of func-
tions. Such a function will be referred to as a constructor function. It is Ambient-
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Talk’s equivalent to the object instantiation role of classes. Objects can also be cre-
ated by extending existing objects. This by the use of the form extend(parent,...).
It creates a new object, whose parent is parent, and whose additional fields are
defined by the evaluation of the second argument. Messages not understood by
the child object, will automatically be delegated to the parent object. Manual del-
egation is also available by the use of the super keyword. By use of the this
keyword, most specific methods for an object can be found from within parent-
objects. Finally passive objects can also be cloned. For this purpose AmbientTalk
features a special type of methods called cloning methods. An object which would
implement a method with the name cloning.methodname(parameters),
could be sent the message object.methodname(arguments). Ambient-
Talk will respond to this by copying the original object and executing the body of
the cloning method as initialization in the newly created instance.

Next to passive objects, AmbientTalk also features the standard built-in ele-
ments: numbers, strings, a null value void and native functions.

Active Objects

Active objects in AmbientTalk, as explained in section 2.3.1, have their own mes-
sages queues and an interminable thread which processes incoming messages one
by one by invoking corresponding methods. These actors, as active objects in
AmbientTalk are also called, only have one thread, such that state changes by the
assignment operator := doesn’t cause race-conditions. Actors are created by use
of the form actor(object), in which object is the object specifying the
behaviour of the newly created actor. To obey the containment principle stated in
section 2.3.1, the object passed as argument is deep copied into the new actor. Oth-
erwise the object would be shared by the newly created actor and the actor which
created the new actor, hence allowing race conditions once more. After creating
an actor, the first message it will automatically receive is the init() message.
This message will be used to initialize the actor. Equivalent to the this keyword
for passive objects, actors can refer to themselves by the use of the thisActor
keyword. The code below exemplifies the use of actors. The code implements an
actor which holds a frame with a button. Messages show() and hide() can be
sent to the actor to show or hide the frame in the actor.
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Listing 2.2: Active Objects in AmbientTalk
1 c r e a t e F r a m e ( ) : a c t o r ( o b j e c t ({
2 frame : vo id ;
3 b u t t o n : vo id ;
4
5 i n i t ( ) : : { d i s p l a y ( ” I n i t i a l i z i n g frame−a c t o r ” , e o l n ) ;
6 f rame := Frame ( ”New Frame ” ) ;
7 b u t t o n := Bu t ton ( ”New But ton ” ) ;
8 f rame . add ( b u t t o n ) ;
9 t h i s A c t o r ( ) # show ( )

10 } ;
11
12 show : : { f rame . show } ;
13 h i d e : : { f rame . h i d e }
14 } ) )

An actor can be sent asynchronous messages by using the # primitive, in
the same fashion as the dot-operator is used for passive objects. Using the dot-
operator on actors is of course considered an illegal operation, since all message
passing to active objects needs to happen asynchronously. When selecting a mes-
sage of an actor, without invoking it, this will yield a first-class message encap-
sulating the sender, the receiver and the message name. On passing objects as
arguments of a message to an actor, those objects are crossing the boundaries of
the actor containing the object. As a logic consequence, to preserve the contain-
ment principle the object must be passed by copy, as explained in the parameter
passing principle in section 2.3.1.

Because the internal design of actors in AmbientTalk is important for fur-
ther reading of this dissertation, we will go further into detail upon the imple-
mentation. Internally actors are represented by two different types of Java ob-
jects. The first one, AGLocalActor represents the actual actor with all its in-
ternals as visible for programmers who write programs in AmbientTalk. It im-
plements an actor which is available on the local device. The second type is
the AGRemoteActor. This is the local representation for an actor which is re-
motely available. When passing an active object as a parameter over the network,
the WriteReplace mechanism of Java will automatically take care of sending out
an AGRemoteActor pointing to the device where the AGLocalActor actu-
ally resides. This AGRemoteActor is polymorph to its local version, but in-
stead of processing the messages itself, it will forward them to the corresponding
AGLocalActor.
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2.3.2 First-Class Mailboxes
The AmbientTalk model presented until now satisfies two of the four language
constraints stated in section 2.2. To support the other two, AmbientTalk extends
the standard actor model with eight first-class mailboxes.

Reified Communication Traces

The first four mailboxes are used to support reified communication traces of sec-
tion 2.2.3. The single message queue is replaced by mailboxes representing the
four different states in which a message can be: an outgoing message not received
yet, an outgoing message known to be received, a received but unprocessed mes-
sage and an incoming message which has already been processed. Every actor has
access to its mailboxes through their identifiers outbox, sentbox, inbox and
rcvbox

Ambient Acquaintance Management

In order to comply with the required Ambient Acquaintance Management pre-
sented in section 2.2.4, the next four mailboxes are: providedbox, requiredbox,
joinedbox and disjoinedbox. An actor that wants to make itself avail-
able for collaboration can add a description for the service it provides in the
providedbox. Actors requiring services can add descriptions for requested
services in the requiredbox. When two actors, one providing a service, and
the other requiring the same service, come into communication range, a reso-
lution object containing the service-description and a reference to the providing
actor will be added to the joinedbox of the requesting actor. Conversely, when
two previously joined actors move out of communication range, the resolution is
moved from the joinedbox to the disjoinedbox. A programmer can add
observers to these boxes, so actors are capable of reacting to changes in their
environment.

2.3.3 AmbientTalk with Language Symbiosis
For the validation of this thesis, we do not use the standard version of Ambient-
Talk. Instead we use a version that was extended with language symbiosis with
Java, for this dissertation2. By using the extended version we are able to create
graphical user interfaces etc. from within AmbientTalk. In the following part we
will briefly explain how this symbiosis-system works.

2For a more complete technical overview about the implementation of symbiosis in Ambient-
Talk see [Ver06]



CHAPTER 2. AMBIENT-ORIENTED PROGRAMMING 14

Fall-back to Java

Upon referring to a non-existing variable in an AmbientTalk environment, the
variable lookup will fall-back to the symbiosis-system. It will check if there is a
Java-package with the same name as the referred variable name. If such a package
exists, it will be returned to AmbientTalk as a reference. By calling the dot-
operator on packages, we can access sub-packages or classes in a package. In the
same way we can also refer to methods of classes. New instances of Java-classes
can be created by invoking class constructors as if they were mere AmbientTalk
functions.

Like any ordinary Java method, class constructors can take arguments. This
implies the need for a conversion mechanism between Java and AmbientTalk val-
ues. In this way we can pass AmbientTalk values to Java methods, as they were
Java values.

Because Java supports overloading, the system features a method resolution
algorithm which will automatically find most specific method for the given ar-
guments, if any. Because this algorithm might be slow for highly overloaded
methods, you are also able to guide this system.

Variables are first looked up in the AmbientTalk environment before looking
into the symbiosis-system, so AmbientTalk can mask certain Java packages by
defining AmbientTalk variables with the same name as the masked Java package.

Interfaces

Some Java-methods do not just take Java-values as argument, but also anonymous
classes implementing a requested interface. This is mostly used to insert func-
tionality into user interface components, known as listeners. To accomplish this
from within AmbientTalk, the symbiosis-system was extended with a mechanism
in which AmbientTalk actors can be passed as anonymous class. Internally all
calls to the anonymous class will be converted into messages which are sent asyn-
chronously to the given actor.

Semantic Grid

The main semantical extensions implied by adding the symbiosis-system to Ambient-
Talk can be summarized in the following grid:
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Package Class Object Method
a root package reference class reference object reference method reference

a() class instantiation invocation
a[] signature selection

a.b
package traversal static member member reference
class reference reference

a.b()
class instantiation static method method invocation

invocation

a.b[]
static signature signature selection
selection

All combinations not listed in this grid have no semantics and are thus erroneous.
Next we will give an example of how the symbiosis-system can be used in

AmbientTalk. The code creates a Java AWT frame with a blue background colour
and a height and width of one hundred.

Listing 2.3: Example of Symbiosis Code in AmbientTalk
1 {
2 l i s t e n e r : a c t o r ( o b j e c t ({
3 a c t i o n P e r f o r m e d ( e ) : : {
4 d i s p l a y ( ” Bu t ton C l i c k e d ” , e o l n )
5 }
6 } ) ) ;
7
8 f : j a v a . awt . Frame ( ” T e s t ” ) ;
9 f . s e t B a c k g r o u n d ( j a v a . awt . Co lo r . b l u e ) ;

10 f . s e t S i z e ( 1 0 0 , 1 0 0 ) ;
11
12 b : j a v a . awt . Bu t ton ( ” Bu t ton ” ) ;
13 b . a d d A c t i o n L i s t e n e r ( l i s t e n e r ) ;
14
15 f . add ( b ) ;
16 f . show ( )
17 }

2.4 Summary
This chapter introduced ambient-oriented programming. We identified the prob-
lem in object-oriented programming languages. Then we showed how ambient-
oriented programming languages can help in the automation of communication-
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specific code and what should be the minimum requirements for a language to
be called AmI. Then we introduced an AmI language called AmbientTalk. We
pointed out how AmbientTalk fulfills the requirements for AmI languages. We
chose this paradigm and language because of its design characteristics which
match the reasons for using code mobility. The design of the paradigm based
on the type of network makes the paradigm ideally fit for moving around objects
from device to device. The language AmbientTalk has even the extra advantage
of being explicitely designed to experiment with new language constructs. That is
why we will use this language in the next chapters as growing ground for a strong
mobility implementation.



3
Mobile Applications

in AmbientTalk

This chapter introduces mobile computations in AmbientTalk. By mobile compu-
tations we mean the ability to start a computation on a site, suspend the execution
of the computation at some point, migrate the computation to a remote site and
resume its execution there [Car99].

In this chapter we are first going to introduce the computational concepts
which are considered when talking about mobility, as well as the different flavours
of mobility. Next we give an overview of object-oriented languages in which
strong mobility is incorporated. As we will see, programming language design
for mobility is pretty much unexplored. Existing language proposals mostly boil
down to the addition of a move operator to the language. This implies that those
languages only concentrate on moving single active objects from one host to an-
other. Finally we are going to extend AmbientTalk with strong mobility using
move-methods.

3.1 Reasons for Code Mobility
Before we start explaining how code mobility should be handled, we will show
why we need code mobility in the first place. In this section we will identify three
main sources for mobility.

17
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3.1.1 Intentional Mobility
By intentional mobility we mean that code mobility is explicitly requested by the
program. This means that code mobility is a part of the goals of the designer of
the code. The designer can have several reasons to do so:

• Resource optimization. This is the classic load balancing case for mobility.
At some point in time, two active objects in the system might be generating
so much network traffic that it would be more interesting to move one of the
objects to the other object’s location.

• Software engineering. Mobility might also be caused by design consid-
erations. Designers of mobile applications might consider some objects to
“logically belong together” even though there are no quantitatively measur-
able reasons for allocating them to a certain machine. This might mean that
these active objects have to “move along” with another object.

• Identity preservation. If we want an object in a system to be a singleton,
we will want local references to the object to be redirected to the moved
object on the new host, after sending it over the network. By doing this, at
all times we only have one object that is the “real one”. An example of such
objects which are necessarily entities is electronic money. Obviously this
money should not be copyable.

3.1.2 Distribution-Caused Mobility
When passing around passive objects in a distributed systems, they will be copied
from host to host. So when we use a passive object received as a parameter, we
know that that object is local. On the other hand if an active object is passed
as parameter, standard behaviour states that it will be passed as reference to the
actual object residing on some device. When an active object is now received as
a parameter, the object could be local as well as remote. It could be possible that
the programmer explicitly wants the active object to be locally available after it is
being passed as an argument. This while the passed object could even still have a
full message queue. To make this possible we need mobility to be able to move
the active object from one device to another.

3.1.3 Mobility for Mobile Computing
A last source of mobility is particularly relevant with respect to ambient-oriented
programming as explained in chapter 2. Here we combine the differences between
mobile computation (software entities that roam networks) and mobile computing
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(hardware that roam physical locations) [AFV98]. Consider for example a PDA
on which someone is writing an email using a web browser showing a free on-
line email-service. When arriving at a location with a personal computer, with
a better keyboard for example, one could want to be able to transfer the running
application to the personal computer to continue writing more efficiently. This is
an example to illustrate that mobile hardware has a high probability of generating
the need for mobile software in the near future.

3.2 Choosing Code Mobility
This section is burdened with choosing the type of mobility. It will explain the
differences between the different available types, and point out why we prefer one
over another.

3.2.1 The Computational Context
In order to distinguish between the different kinds of mobility it is useful to con-
sider the computational context [Meu04] of an actor. The computational context is
the knowledge a language processor has about the actor it is executing. This com-
putational context is divided into data context, a control context and a resource
context. This distinction helps us to classify the different kinds of mobility.

The data context or state of a running actor consists of the variable bindings
that are accessible by and allocated for the actor at that moment in time.

The control context of a running actor consists of the status of the computa-
tion. This information usually takes the form of the combination of a reference
to a point in the code (like a program counter or a “current expression”) and a
description of those past states of computation that are still relevant to determine
the future states of the computation (which typically takes the form of a runtime
stack or a continuation).

The resource context of an actor consists of the bindings of the actor which are
not used by the actor alone. These bindings are bindings in the internal memory
of the operating system (e.g. libraries) as well as bindings to external resources
(e.g. a database).

3.2.2 Kinds of Mobility
Based on the different types of contexts specified in the previous section, four
different types of mobility can be identified. These four different types are sum-
marized in table 3.1. However, since only strong mobility and weak mobility are
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data context control context resources context
weak mobility 6 6 6

semi strong mobility 4 6 6

strong mobility 4 4 6

full mobility 4 4 4

Table 3.1: Types of Mobility

interesting and opportune [Meu04], we are only going to go into detail on those
two.

• Weak Mobility means that “dead code” is able to travel over the network.
The code is considered to be dead because no contextual information what-
soever is provided. This means that when the code arrives on its new des-
tination, it will start running as it never ran before. There are two ways
to initiate weak mobility: the sending device can send code to a receiving
device (called “remote evaluation”) or a receiving device might undertake
the initiative and ask code to be downloaded from a sending device (called
“code on demand”).

Most people know weak mobility because of its popularity due to Java ap-
plets. Web browsers can download stateless Java code in the form of an
applet, and run it on the client that initiated the download.

• Strong Mobility occurs when actors have the ability to move from one
device to another, taking into account both the data context and the control
context. It allows a running process to migrate without manually having to
halt or restore the computation it is performing.

To write full mobile programs, strong mobility is preferable over weak mobil-
ity [DHH01]. Weak mobility is easier to incorporate in a programming language,
but programs using it will be written in an “unnatural” non-modular programming
style. It will also be more difficult to reason about such programs, thus making
them harder to debug. This results from the fact that you can only send dead code
over the network. To move specific parts of code, you would manually need to
prepare the dead code from the runtime state. This means that algorithms would
have to be explicitly divided along the mobility lines.

3.2.3 Move Methods
When integrating strong mobility into programming languages, the next decision
to make is how to perform the move from one device to another. Different ways
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to implement mobility have been presented in the past. We consider three tech-
nologies [AFV98].

• Pull technology is also called “code on demand” or “fetch technology”. The
idea is that code is download from one machine to another, to be executed
on the downloading device. The initiator for the code movement is the
downloading machine. The classical example for pull mobility are Java
applets.

• Push technology is the second kind, which is also called “ship technology”.
In this type of systems, the initiator is the sending machine rather than the
receiving one. The receiving device will execute the code, and possibly
send the result of execution back to the initiator.

• Agent technology is the last type. In systems based on agent mobility, the
running processes themselves decide to move from one device to another.

Since we are moving running processes instead of “dead code” as is the case in
weak mobility, it is mostly agent technology which appears to be closely linked to
strong mobility. Now to implement a system based on this agent technology, it is
important to consider the three parties involved in moving active objects:

• The Sending Device is the device or program which actually sends the ob-
ject to another location. Since it is the device containing the object that will
be sent, it can choose how much of the object graph to send to the other
device.

• The Moved Object itself does not only involve a designated object, but
also, in cooperation with the sending device, the full object graph which
has to be sent. Together with the receiver it will need to make sure that an
amount of resources of the object are rebound, recreated, etc. on arrival.

• The Receiving Device is the device which will accept the moved object. It
will need to provide the object with access to local resources, such that the
moved object can rebind to them.

In order to exclude security violations stated in the dissertation by De Meuter
[Meu04], which seem to be inherent in the standard mobile agent approach, both
the receiving device as the moved object will need to take part in the decision
to move the object. So neither objects should be able to push themselves to other
devices, nor remote devices should be able to pull objects. Mobility should be
based on a two-party contract between objects or programs which are going to
move, and objects or programs on the receiving device, requesting the object to
move.
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Free Fixed Fixed
Transferable Transferable Not Transferable

identifier Move Network reference Network reference
(Network reference)

value Copy Copy Network reference
(Move, Network reference) (Network reference)

type Rebind Rebind Rebind
(Copy, Move, Network reference) (Copy, Network reference) (Network reference)

Table 3.2: Bindings, Resources and Data Space Management Mechanisms

In the message-oriented mobility model, actors can declare that they are al-
lowed to be moved by other actors by implementing a new type of methods, called
move methods. An actor on a receiving device can then request the moveable actor
to move to its location by sending a move message. By sending the move message,
the receiving actor actually pulls the moveable object to its location. The move-
able object will then be moved while processing the message.

3.2.4 Data Space Management
A last aspect of mobility, but a very important one, too often neglected in pa-
pers discussing strong mobility, is the data space management of the moved ob-
ject [AFV98] (i.e., rearranging the set of bindings to resources accessible by the
moved object). This is why, as stated in the introduction of this chapter, we con-
sider most mobility implementations to be immature. When arriving on a new
location, there are several different possibilities for what should happen with the
data members of the moving object. This may be voiding bindings, re-establishing
new bindings or even migrating some resources to its new location. The choice
should obviously depend on the nature of the resources, the type of the binding to
the resource and the requirements posed by the application.

Fuggetta models resources as a triple Resource =< I, V, T > where I is
a unique identifier, V is the value of the resource and T is the type, which de-
termines the structure of the information contained in the resource as well as its
interface. The type of the resource determines also whether, in principle, it can
be migrated over the network or not. Of course this is not only defined by “hard
constraints” on the resources. While a database for example, could be migrated
over the network, it would not be feasible to do so.

Next Fuggetta states that there are three forms of bindings which should con-
strain the data space management mechanisms that can be exploited upon migra-
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Figure 3.1: Resource Rebinding

tion.

• By identifier is the strongest type of binding. It means that the binding is
required to be linked to a specific resource, which can not be substituted by
some other equivalent resource.

• By value declares that, at any moment, the resource must be compliant with
a given type, and its value can not change as a consequence of migration.
This kind of binding is used when an actor is interested in the contents of a
resource rather than the actual resource itself. An actor will probably want
to access the resource locally after moving of a resource rather than the
identity. An actor will probably want to access the resource locally after
moving.

• By type is the weakest form of resource binding. In this case an actor is not
interested in the identity or value of a resource, but rather in the type. This
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could be used for example to bind to a local set of speakers, or a display.
Secondly, it could also be used for resources remotely available on the new
location, like a network printer.

From this list of bindings, combined with the type of resource linked by the
binding, we can distil table 3.2 specifying what should happen with bindings after
moving an object. If we would for example have a resource bound by type, which
is free and thus transferable, most common behaviour will be to rebind to a local
resource of the same type. Of course we could also keep a network reference
to the resource we were using before the move. We could also copy or move
such a resource to the new device. An alternative to copying a resource could be
recreating the resource. Which of these possibilities mechanisms is going to be
used, should be specified by the programmer.

As default behaviour it might be best to turn resource references into network
references, since this mechanism is a possibility for all resources and can thus be
used without knowing the type of resource or the type of binding.

What could happen to any resource-binding based on table 3.2 without looking
to type of binding or type of resource, can be seen in figure 3.1. There are five
different scenarios possible. The first is the default behaviour, a binding to a
resource which is turned into a network reference. This could be useful for a
database which we do not want to move. The second specifies rebinding locally to
a resource, which could be used for a set of speakers. The third is related closely to
the second and is about remote rebinding. This comes down to a resource bound
by type, which is not available locally. Hence it will be rebound remote. This
could be useful for a printer, which might not be installed on the working device,
but on a device available on the network. As fourth we can have a resource which
we want to move along with the moving object, for example for a library used only
by the moving application. The last possible behaviour is copying or recreating a
resource, which would be needed to rebind to a local logfile for example.

3.3 Languages with Strong Mobility
In this section we are going to take a look at how current programming languages
incorporate strong mobility. Of course we especially look closely to the use of
a data space management system in these languages. Since they all use strong
mobility, they all have a unit of mobility, which will also be identified for all
languages.

• Ara has got moveable agents. These agents are unable to share resources,
except for system resources. These system resources are removed on move.
[PS97]
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• Agent Tcl allows programmers to move a thread from one device to another.
Since threads on one device do not share data-space, the only resources they
can share are system resources. On moving a thread, these resources are
removed. [Gra95]

• Obliq as stated by De Meuter [Meu04] is arguably a mobile programming
language. It has no explicit mobility operators. But with some effort it is
possible to get objects to move themselves. As for data space management,
all objects which are passed over the network are seen as fixed transferable
resources, so they can be copied if necessary. As default behaviour they are
turned into network references.

• Emerald can move active objects from one device to another. As default be-
haviour all resources used by this object are turned into network references.
Because it might be useful to move multiple objects together, Emerald al-
lows programmers to attach objects to each other. This attachment-system
is transitive. [EJB88]

• Telescript has got moveable agents. Telescript has an ownership-system
to make it possible to define owners of agents. When arriving on a new
location, resources owned by the moved agent are moved along. All other
resource-bindings are automatically removed. [Whi96]

As should be noticed, none of these systems provide a solution for all possible
data space management mechanisms.

3.4 Mobile AmbientTalk
After making different mobility design choices in the previous sections, we are
going to use them to extend AmbientTalk with a strong mobility implementation.
This implementation will be used in the next chapter as starting point for our
mobility extensions.

3.4.1 Actors as Unit for Mobility
In AmbientTalk, as stated in section 2.3.1, actors are the objects with a thread
running through them. Because of their asynchronous message passing they are
also the unit of distribution. Passive objects can be passed around from one active
object to another, but this always happens by copy. Active objects on the other
hand are passed by reference. When an active object is passed as parameter from
one active object on a device, to another active object on another device, this is
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also done by reference. This clearly indicates that if we apply strong mobility to
AmbientTalk, this should be done on active objects (or actors as they are called in
AmbientTalk).

3.4.2 Move Methods
Concluding from the choice made in section 3.2.3, we are going to add a new type
of methods to AmbientTalk actors, the move-methods. To be conform with other
special methods in AmbientTalk, like the cloning-methods discussed in section
2.3.1, we are going to use a similar syntax for move-methods. For a method of an
active object to be a move-method, it has to be prefixed with move.. For example,
we could now define the method move.come(resources)::{...} on actor
A1. If an actor A2 on a remote device would send the message A1#come(r),
the actor A1 would move to the device on which A2 is residing.

Before an actor moves from one device to another, it should be able to do some
preprocessing on itself. This because the actor could have open file-descriptors,
windows, etc. on the sending device, which it needs to finalize before moving
away. For this reason we definitely include a pre-move part in the move-method.
It would not be a good reason to allow an actor to send messages to other actors
in this part of the move-method. If the actor would send a move.*(...) to
another actor, this could lead to unexpected results. At the time of processing the
move.*(...), the sending actor, which is moving too, could still be residing
on its old location, but could just as well be moved to its new device. This results
in non-determinism on the new location of the receiving actor. To prevent this sit-
uation from happening, we freeze the outboxes during the pre-move-method. This
means that messages can still be added, but they will only be sent after arriving
on the new device.

Right after moving an actor, it should also be able to do some post processing.
The reason is that the actor should be able to reconfigure itself, integrating in
its new environment. For example, if the moving actor has closed a window, a
file-descriptor, etc. on his old location, the odds are good that the actor wants to
re-open it on the new location.

Since the move-method should be divided into two parts, a pre move and a
post move part, we are going to extend the environment of the move-method with
a moveNow() method. This method can only be called from within a move-
method, and can only be called once in the move-method. All code before the
moveNow() call will be executed on the sending device. All code after the call
will be executed on the receiving device. If no moveNow() call is added to the
body of a move-method, all code of the move-method will be executed on the
sending device, and the moveNow() will automatically be called at the end of
the body. The next piece of code is an example of a “frame-actor” implementing
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a move-method:

Listing 3.1: A Mobile AmbientTalk Actor
1 A1 : a c t o r ( o b j e c t ({
2 f : n i l ;
3
4 i n i t ( ) : : {
5 f := Frame ( ”A Frame ” ) ;
6 f . show ( )
7 } ;
8
9 move . come ( ) : : {

10 f . h i d e ( ) ;
11 moveNow ( ) ;
12 f . show ( )
13 }
14 } ) )

3.4.3 Implementation of Move Methods
Unifying Remote and Local Actor Address

Of all actors, there should only be one instance. As explained in section 2.3.1,
for every actor there is a AGLocalActor object on the device where the actor
actually resides. On the other devices there is a AGRemoteActor object which
links to the actual position of the actor. To ensure that all internal pointers to these
objects will always point to the current state of the actor on a device (local or re-
mote), we add an extra abstraction layer to actors, called AGActorAddress. An
AGActorAddress is a container for an AGLocalActor or an AGRemoteActor.
In this way we can easily move actors from one device to another. We just have to
replace the AGRemoteActor on the receiving device by the AGLocalActor
on the sending device. On the sending device we replace the AGLocalActor
by a new AGRemoteActor pointing to the new device.

Move Process

As shown in figure 3.2, the moving of an active object happens in steps, to ensure
that the actor always stays available for communication. In the figure we have
three devices with three local representations for an actor, originally residing in A.
B as well as C are AGRemoteActor references to A. When an actor on the de-
vice where B lives, sends a move-message to the actor, which calls moveNow(), a
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Figure 3.2: Strong Mobility in AmbientTalk
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copy of the AGLocalActor in its current state (behaviour, continuation-frames)
will be put in the AGActorAddress B. B will get an own message queue, so
it can start receiving messages locally. The new AGLocalActor in B is not
activated yet. In the next step (image 2 to 3), the old AGLocalActor will
be replaced by the new AGRemoteActor reference pointing to the new loca-
tion, this after sending the contents of the message-queue on the old location to
the new AGLocalActor. These messages will of course be added to the new
message-queue in front of the messages received on the new device. Then the new
AGLocaActor is re-activated.

The final step in moving an actor is updating all references to the actor on
other devices than the sending or receiving device. When sending a message to
an AGRemoteActor like C, this message should directly be forwarded to the
correct device. The receiving device thus needs to have a AGLocalActor in
the AGActorAddress. If this is not the case, this means that the actor has
moved to the AGRemoteActor in the receiving device (from A to B). In this
case the receiving devices informs the sending device about the new location of
the actor. The sending device C will then update its local AGActorAddress
with the new AGRemoteActor and will try to send the message again following
the new AGRemoteActor (to B).

Race Conditions on Mobile Actors

An import security aspect of the implementation of mobility are race conditions
on mobility. The problem is presented in figure 3.3. Imagine we would have three
actors on three different devices as in part one. If both actor A and actor C would
request for B to move to their location, we could end up in the three different
scenarios presented in part two, three and four. In the third and the fourth part,
we have the scenarios were A or C requested the move a little bit earlier. This
results is the second request to be forwarded to the new location of B (the device
of the actor who requested the move first). As a result the actor will be moved
to the location of the actor who requested the move a little bit later, where the
actor will stay until further notice. These scenarios are not problematic situations
from language engineering point of view, since there is no change in the program
environment because of the subsequent moves.

The scenario in part two however is critical for the program logic. In this
scenario two actors have requested a move right at the same time. Because ac-
tors run different threads, as race condition it could occur that multiple actors ask
one actor to move at the same time to different locations. If the moving actor
would respond directly to the call, we could end up with multiple versions of
the moved actor on different locations. This scenario is automatically avoided in
the AmbientTalk implementation of mobility by using move methods (and corre-



CHAPTER 3. MOBILE APPLICATIONS IN AMBIENTTALK 30

Figure 3.3: Race Conditions in Mobility

sponding move messages). If an actor requests another one to move, it must send
a move message to the other actor, which will be put in the inbox of this other
actor. The actor which will be requested to move handles all its messages one by
one. Since they are handled one by one, an actor can only respond to one move
request at a time. So even if we would have multiple move requests at the same
time, we would always end up in scenario three or four.

3.4.4 Data Space Management
Until now we are not going to define special data space management semantics
on the strong mobility system of AmbientTalk. As stated in 3.2.4, it is feasible to
turn all resources into network references after a move, since this behaviour is a
correct solution for all resource-types and all types of bindings to resources. Since
AmbientTalk already automatically turns active objects, after passing them over
the network, into network references, as pointed out in section 2.3.1, this goal
is automatically achieved by just passing the behaviour of the AGLocalActor
over the network. Because passive objects in AmbientTalk are passed by copy,
these will also be copied to the new AGLocalActor when copying the be-
haviour.
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3.5 Summary
In this chapter we introduced code mobility. Then we specified how strong mobil-
ity should be implemented, by defining all necessary characteristics. We looked
closer to how the resources of a moving application should be handled, and how
existing mobility implementations handle this. Finally we defined a strong mobil-
ity system for AmbientTalk based on the characteristics. In the current chapter we
only focussed on incoming references1. This implementation will be used as basis
for the next chapter, where we will extend the current model to allow program-
mers to perform proper data space management. This means we will also focus
on outgoing references in that chapter.

1Incoming references: external objects referring to the moved object



4
Declarative Field Annotations

in Mobile AmbientTalk

In this chapter we are going to extend the AmbientTalk model with strong mo-
bility, prepared in section 3.4, with a system to define mobility semantics for full
applications. We start from the observations about the data space management in
section 3.2.4. We are going to specify a solution in the first part of the chapter and
then we will go further into detail upon the implementation in the second.

4.1 Declarative Field Annotations
When we discussed the implementation for strong mobility in AmbientTalk, we
fulfilled the task of updating all incoming pointers to the moving object. Since
incoming pointers always should point to the actual object, the implementation
is pretty straightforward and the update can be done automatically by the system
without any further knowledge of the semantics of the program and without af-
fecting these semantics. Updating outgoing pointers on the other hand, pointers to
other active objects which are the resources for the moving object, can not be done
in an automated way, since the location of resources partly defines the semantics
of the application.

In section 3.4.4, we specified that resource references as default behaviour
should automatically be turned into network references. Passive objects on the
other hand should be passed by copy. Now programmers should be able to easily

32
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change this default behaviour. Without special language constructs, programmers
are forced to write large move methods specifying explicitly in which way ob-
jects should be changed during the move. Even worse, if the mechanism for a
resource would have to change during the lifetime of the active object, the re-
sulting code would probably be cluttered with if-else-branches. To avoid this,
we suggest extending the language definition with declarative field annotations
declaring on-move semantics on fields.

4.1.1 Dynamic Annotations
A standard way to add field annotations, or a typing system, to a language, is
by introducing keywords in the programming language, stating the nature of the
annotated fields. Known examples for this way of annotating are the private/pub-
lic/protected of Java or C++. However, since we are working in a duck typed
language [Wik], this kind of statical keywords would break the dynamism of the
language. This is already a first reason for a more dynamic solution. The second
and more important reason with respect to our research, is that programmers might
want to change the way a resource is dealt with while moving, dynamically. Be-
cause of these two reasons we opt for the use of a more dynamic solution, adding
a number of first-class so-called typeboxes to the definition of the language, in the
same way as first-class mailboxes were added (section 2.3.2).

These typeboxes are disjunct sets of variable-names, for which the typebox
specifies what should happen to the value of the variable, when the active object
it would move. If one would prefer to introduce keywords in the language too,
this could easily be achieved with typeboxes. The keywords would be nothing
but syntactic sugar for the addition of a field to a specific typebox declared by the
keyword.

4.1.2 Dynamic Mobility Types
To not only make the declarative annotations for fields dynamic, but also the set
of available mobility-types, we suggest the addition of a native to easily create
new typeboxes for a specific active object. This native should take two closures
as parameter, which specify what should happen to an object annotated with the
typebox before and after the actual move. These two closures are required in the
line of the design of move methods in section 3.2.3. There we pointed out that
some objects might need pre- and post-processing. Since typeboxes will be used
to automate mobility, and thus shorten move methods, pre- and post-processing-
functions are required for typeboxes too. For example if one uses a lot of Frame-
objects in a moving actor, which have to be moved to the new device as part of a
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Figure 4.1: Multiple fields using the same resource

moving graphical user interface, one could want to add a typebox in the following
way:

Listing 4.1: Typebox for a moving GUI
1 framebox : c rea t eTypeBox (
2 f u n c t i o n ( o b j e c t ) → { ‘ preMove ‘
3 o b j e c t . h i d e ( )
4 } ,
5 f u n c t i o n ( o b j e c t ) → { ‘ postMove ‘
6 o b j e c t . show ( )
7 }
8 )

4.1.3 Disjunct Typeboxes
Typeboxes should be disjunct, since every binding can only be handled by one mo-
bility mechanism. So typeboxes should make sure that every field is only included
in one typebox and any time. We suggest this to be the last typebox to which a
field was added. So when adding a field to a typebox it has to be removed from all
other typeboxes. Secondly we also have the possibility that multiple fields point
to the same object or resource while moving. In figure 4.1 we see three fields
pointing to a resource. If we would be able to define two different scenarios for
fields A and B, what should happen for binding C is undetermined. To prevent
this scenario from happening, we define that only one mechanism can be applied
to one object or resource for any actor. This will also be by default, the last type
applied to any field pointing to the object at move-time.

4.1.4 Default Typeboxes
After adding a way to add new typeboxes to an active object, we are now going
to define which typeboxes should be added by default. Thus specifying which
mobility annotations should always be available. We claim that there are five
default typeboxes necessary. These typeboxes are derived directly from the five
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scenarios listed in section 3.2.4 (figure 3.1) and need to represent the following
behaviour:

• defaultTypeBox. Fields added to the default box will be turned in the net-
work references if the value is an active object. The field will be moved
along if the value is a passive object. On the one hand, this typebox is not
necessary, since this behaviour is implied by default mobility policies. On
the other hand, this addition might serve as an easy way to switch back from
any other kind of behaviour to the default.

• localRebindTypeBox. These fields will be overwritten with a binding to a
(similar) local resource on the device to which the moving actor is migrat-
ing.

• ambientRebindTypeBox. This typebox is comparable to the localRebind-
TypeBox, but in this case the value will be overwritten with a binding to a
remote resource.

• moveAlongTypeBox. This typebox will request the objects bound by its
fields to move along. Since only active objects are subject to message send-
ing and strong mobility, only fields with bindings to these kinds of objects
should be added to this box.

• recreateTypeBox. Fields added to this box will recreate their value upon
arrival on the destination of the moving actor.

4.1.5 Further Typeboxes
One could remark that perhaps also other typeboxes are necessary, typeboxes
defining semantics for combinations of actors moving together. However, we state
that the current typeboxes are sufficient for standard objects and resources1, what-
ever the form of the resource graph is at moving-time. We do this by looking at
a case where we have indirect mobility semantics on resources. We claim that
all the semantics which can be appointed to the graph, are already automatically
imposed by using combinations of the current typeboxes.

The most typical case for a difficult binding graph with indirect pointers is
the diamond-shaped graph shown in figure 4.2. Here we have an actor A relying
on two other actors B and C. These two actors then rely further on one and the

1We do not state anything about objects (mostly passive, but possibly also active objects) need-
ing special treatment before/after the move. For such objects, like the moving frames-actor in
example code 4.1, typeboxes are used for very specific needs. This is only a convenient surplus of
the createTypeBox function.
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Figure 4.2: Diamond-Shaped Resource Bindings

same actor D. The scenario could be related to the problem in section 4.1.3, where
we showed that we only want one mobility mechanism to be applied to resource-
bindings. However updating resource-references in one actor that moves is not
the same as updating resources in multiple actors. The reason lies in the fact
that actors are objects which work individually (section 2.3.1). Their contact only
happens via asynchronous message sending. This implies that a move of an actor
is completely decoupled from the mobility of its fellow actors. Actors can of
course request other actors to follow them, but when the other actors will respond
to this request depends on the state of their message queue at the time of receiving.
This first remark implies that an automatic mechanism to solve these relations is
impossible.

The second remark will show that such a mechanism is unnecessary and strong
mobility with current typeboxes is as powerful as any programming language
would be with the addition of typeboxes for such combined indirect relations.

Any moving application with a shape as shown in figure 4.2 will only have
semantical difficulties if A moves from one device to another and A expects B and
C to move along, but for the bindings to D to be changed into something else. This
can mean, based on the different mobility scenarios proposed, that D has to be
recreated or rebound (locally or remote). If D is asked to be turned into a network
reference, or to be moved along, the pointers in B as well as C will stay linked to
one and the same object (the original one) and no special care has to be taken2. In
that scenario, in the line of what was explained in section 4.1.3, about one actor
having multiple bindings to one resource, one could also expect the bindings to D
from B as well as C to be redirected to the same new resource replacing D. To be

2Remark that if D has to be moved along, only one of the actors A,B or C has to send a move
message. However if in the implementation of move methods a move message received from an
actor on the local device would mean to ignore the move message, it would be no problem for
multiple actors to request a move along at the same time.
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able to answer the question about how to solve this riddle, it is useful to look at
how this structure was created in the first place. There are a few different designs
for this structure to arise from:

• Binding by Type: B and C.
B as well as C require a resource of a specific type. “By accident” they are
bound to the same resource.

• Binding by Type: A.
A has required a resource of a specific type and asks B as well as C to use
this resource in their work.

• Binding by Type: B or C.
B (or C) has acquired a link to a resource of a requested type and has passed
this resource to C (or B) to work with the same resource.

• Binding by Value: B and C.
B and C have the resource D in their local environment and both bind to
it. This can be “by accident”, or because the programmer intended this to
happen. In the last case, there must be some link between B and C which
is available at the time the resource is shared, otherwise the sharing of the
same resource has no meaning. This can be a direct link, or a mutual parent-
link from an actor as A in the figure.

• Binding by Value: A.
A has a binding to a resource and passes this binding to B and C to use in
further computations.

• Binding by Value: B or C.
B (or C) has a binding to a resource and passes this binding to C (or B) to
use.

In this list we make a distinction between the intentional and non-intentional
diamond-designs. For the design of typeboxes we are only interested in maintain-
ing structures that were intentionally created by the programmer. For this reason
we do not consider the first possible origin for the diamond structure. The cases
which are considered intentional can be categorized into two different categories:

• By Communication. In this category the diamond construction is obtained
by passing the resource binding from one actor to another. This can happen
in two ways. A can be the origin of communication. In this case A will pass
the binding to D to B and C. The other possibility is that, instead of having
an actual diamond structure with no connection from B to C (or the other



CHAPTER 4. DECLARATIVE FIELD ANNOTATIONS 38

Figure 4.3: Diamond-Shaped Resource Bindings Unfold

way around), we have a structure as presented in figure 4.3. In this situation
the binding to D is passed from B to C (or the other way around). We call
the actor who originally found or created the resource the dominating actor.
The actors depending on the dominating actor to provide the resource are
the dominated actors.

In these cases there was always communication between actors from which
the structure originated. To move and recreate this structure, the same thing
must happen. The dominating actor has to move before the dominated ac-
tors. After arrival it has to rebind or recreate the resource. The actor will
probably do this by use of the typeboxes. Then the dominating actor is
responsible for also moving along the dominated actors3 and passing its
new resource binding. Since the dominating actor sends the move message,
by using the typeboxes it can pass along the new binding automatically by
adding it to the resources.

While these scenarios are solvable with the normal typeboxes, they do im-
pose an order on the processing of those typeboxes. A programming lan-
guage using typeboxes must always make sure that typeboxes changing
bindings are processed before messages using these bindings are sent to
the outside world (before the move along typebox is being used).

• By Construction. The only origin of the diamond model which is by con-
struction, is the Binding by Value: B and C. This means that a programmer
intended for B and C to point to the resource D. To do so he wrote the code
in such a way that both B and C see D in their scope. Because both B and
C are also bound in A, this must mean that A has both B and C in its scope.

3While we would initially think that in a setting as presented, A is going to request both B and
C to move, actually A will only ask the dominating actor to move along. This dominating actor (B
in the figure) will then ask C to come along.
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By combining these two scope constraints, we know that also B and C must
be in the same scope. Now since there is a contact possible between B and
C, this setting can be handled in the same way as the intentional designs by
communication.

4.2 Extending AmbientTalk with Typeboxes
In this section we are going to extend the version of AmbientTalk in which we
already incorporated strong mobility in section 3.4 with an experimental imple-
mentation of the typeboxes presented in the previous section.

4.2.1 Adding Typeboxes
Based on the decision we made in section 4.1.2, we add a function to AmbientTalk
which enables us to easily create new typeboxes. This function called
createTypeBox(preMove,postMove) relies on an object which repre-
sents the available typeboxes in an actor, typeBoxes. To allow actors to choose
themselves if they want to use typeboxes, we add also a native next to, and based
on the moveNow() which we defined in section 3.4.2, namely
moveNowWithResources(resources). The native requires resources
as parameter, which represents a set of resources which will be available on the
device to which the actor is moving. This parameter will be used by the typeboxes
for rebinding to local resources. The resources will be passed to the preMove
and postMove closures, which have to accept three parameters:
function(object, resources, config). The first parameter is the
object which has to be pre- or post-processed. The third parameter is a table con-
taining the precedence-id of the field followed by the extra arguments specified
while adding the field to the typebox. Typeboxes can thus require to pass along
extra arguments to fulfill there pre- and/or post-move processing.

Listing 4.2: Implementation of moveNowWithResources
1 ‘ When t h e moveNowWithResources i s used , t h e ‘
2 ‘ t y p e b o x e s w i l l be p r o c e s s e d a t t h e moment ‘
3 ‘ be tween t h e pre− and pos t−move p a r t o f t h e ‘
4 ‘ move method ‘
5 moveNowWithResources ( r e s o u r c e s ) : : {
6 typeBoxes . preMove ( r e s o u r c e s ) ;
7 moveNow ( ) ;
8 typeBoxes . postMove ( r e s o u r c e s )
9 }
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Figure 4.4: An Unchangeable Passive Object Pointing to a Resource

4.2.2 A Design Choice
In AmbientTalk there are two possible ways for implementing typeboxes: in Java,
the language in which the AmbientTalk-interpreter is written, or in AmbientTalk-
code. This is similar to how Smalltalk is mostly implemented in Smalltalk. To
keep the core language as small as possible we preferred to implement the type-
boxes in AmbientTalk.

Because of this design choice, in combination with the fact that we need some
reflection in AmbientTalk, and access to the the communication layer of Java, we
will need to add three native functions to the AmbientTalk interpreter.

The first native we will add is an extension of the reflection of AmbientTalk.
getField(String) has to be added to get the actual value for String defin-
ing a field. We add strings as field-description to typeboxes because, as with other
declarative annotations, we want to annotate a field, not an (initial) value of a field.

The second and the third native come from the design choice made in section
4.1.3 where we stated that all pointers from an actor to one and the same resource
should undergo the same mobility mechanism. This might imply that a binding
to a resource is changed by a binding to another resource, which is local on the
arriving device. Since AmbientTalk is written in Java, and all of its pointers are
Java-pointers to internal objects representing AmbientTalk-objects, we have to
be able to redirect a set of Java-pointers from an AmbientTalk-object, to another
AmbientTalk object. An example goes as follows and is also represented in figure
4.4:
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Listing 4.3: A Passive Object Encapsulating a Resource-Binding
1 a c t o r ( o b j e c t ({
2 B : vo id ;
3 O: vo id ;
4
5 c r e a t e L o c a l R e s o u r c e ( ) : {
6 a c t o r ( o b j e c t ({
7 p r i n t ( ) : : d i s p l a y ( ” I am a l o c a l r e s o u r c e ” , e o l n )
8 } ) )
9 } ;

10
11 i n i t ( ) : : {
12 B:= c r e a t e L o c a l R e s o u r c e ( ) ;
13
14 ‘We e n c a p s u l a t e t h e r e s o u r c e− l i n k i n s i d e t h e ‘
15 ‘ unchangeab le o b j e c t which w i l l be moved a long ‘
16 0:= o b j e c t ({
17 l o c a l B i n d i n g : B ;
18 do ( ) : : l o c a l B i n d i n g # p r i n t ( )
19 } ) ;
20
21 ‘On moving t h e r e s o u r c e has t o be r e c r e a t e d ‘
22 r e c r e a t e T y p e B o x . add ( ”B” , c r e a t e L o c a l R e s o u r c e )
23 } ;
24
25 move . come ( r e s o u r c e s ) : : {
26 moveNowWithResources ( r e s o u r c e s )
27 }
28
29 do ( ) : : {
30 B# p r i n t ( ) ; O. do ( )
31 }
32 } ) )

The example shows a forged implementation of an actor A with a binding to
a resource B it created itself. On moving to another device, the actor A wants to
recreate the resource, for any reason. The actor also has a pointer to an object O
which holds a binding to the resource B himself. In this example, because A is
going to be recreated, this could lead to two different possible solutions.

• Without typeboxes. In the first solution we are going to redirect the resource-
pointer B, but since we have no way of changing O (the object does not pro-
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vide any mutators on its local version of the resource-pointer), this object
will keep on pointing to the old resource residing on the old device after
moving A. If we would now send the message A#do(), this would result in
a display of the I Am A Local Resource message on both devices.
One initiated by A itself, on the new device. The other one on the old de-
vice, sent by the passive object O. The only way to end up with feasible
semantics, is by also recreating O on arrival at the new location. Even while
in some cases this solution might be “powerful” enough, it will probably
fail for some cases too. In any case this style of programming will result in
“waterfall code”. This means that if we would have an object Z pointing to
O, it is possible that also this object needs to be recreated, and so on.

• With typeboxes. The most logical solution would, unlike the solution with-
out typeboxes, be to also automatically update the pointer inside the ob-
ject O. Unfortunately this is not possible in plain AmbientTalk code, as we
pointed out by this example. Because we want to allow programmers to be
able to use this kind of scenarios, without having to worry about the internal
workings of updating the pointer, we enrich typeboxes with the capabilities
to automatically deal with this situation. In the next part we will show how
we do this. Notice that this will make mobility with typeboxes more pow-
erful than “normal” single entity mobility.

In order allow typeboxes to do such kind of “magic”, typeboxes in Ambient-
Talk must be able to access the communication-layer of AmbientTalk. To be more
precisely, it needs access to Java’s ReadResolve and WriteReplace. These are the
only moments when moving objects in Java can redirect all incoming pointers
to another object. Because we chose to implement typeboxes in AmbientTalk
code, and standard AmbientTalk has got no access to that layer, we need to extend
AmbientTalk so typeboxes do have access to it:

• writeReplace(oldobject, newobject) will be used for exam-
ple to change the pointer to a resource of a field, to a similar resource on
the new device. The function will annotate the oldobject for the mov-
ing actor in such a way that when Java is WriteReplacing the object, it
knows it has to change it by newobject.

• readResolve(closure) will create a new AmbientTalk-object used
to send a description of an object over the network. The description which
takes the form of a closure, will be ReadResolved into the actual object
(by executing the closure) after arriving at the new location.
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Since these two natives would allow programmers to circumvent the commu-
nication layer of AmbientTalk while message-sending, they are only made acces-
sible from the pre-move part of move methods, the part where the preprocessing
of typeboxes also takes place. Recall that in this part of the move method message
sending is not allowed and that this is enforced by freezing the outbox of an actor
in this part as discussed in section 3.4.2. Also the fact that readResolve gener-
ates objects which could be used as parameters in messages, sent in the pre-move
part of a move-method, which are stored in the outbox without actually sending
them, is no problem. When the outbox of the actor is moved to the new device, be-
fore it is reactivated, the arguments will already be ReadResolved into the actual
objects.

Notice that if we would implement the typeboxes in plain Java-code, as ex-
tension of the core language, these two last natives would be unnecessary. The
“magic” could be done automatically by encoding it into the Java implementa-
tion.

4.2.3 Default Typeboxes in AmbientTalk
Now we have a way to easily add new typeboxes to AmbientTalk, we add the
typeboxes which we specified to be required (section 4.1.4) to AmbientTalk:

• moveAlongTypeBox.add(String) will cause a move message
object#come(resources) to be sent to the object bound to the
field with name String. This implementation implies that a standard
move method should be implemented by the actor which will be requested
to move along.

• recreateTypeBox.add(String, closure) will call closure
on the device to where the actor is moving, and will replace the value of
field with name String by the result of the evaluation.

• localRebindTypeBox.add(String, localResourcePattern)
can be used to replace a resource bound at field String by a local resource
defined by pattern localResourcePattern.

• ambientRebindTypeBox.add(String, ambientResourcePattern)
works in the same way as the localRebindTypeBox but will be used
for resources which are not necessarily local.

• defaultTypeBox.add(String) is a typebox which does no special
pre- or post-processing. Adding to this box means removing it from all the
other boxes, which implies that the default mobility behaviour is going to
be applied to the given resource.
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The actual implementation of these typeboxes can be found in appendix A. They
can be used as a reference to create new typeboxes.

In section 4.1.5 we mentioned that an order should be imposed on the process-
ing of the typeboxes. This because all rebinding should be finished before we start
sending out messages using these reestablished bindings. However, since in sec-
tion 3.4.2 we chose to freeze the outboxes before moving and because resources
are rebound before the unfreezing of these outboxes4, we do not have to manu-
ally encode this order. It is automatically imposed by the prohibition of message
sending until after rebinding in general.

4.3 Summary
This chapter focussed on the mobility of full applications instead of the mobility
of one actor. Therefore we first identified the five different scenarios for mov-
ing interconnected objects. Next we extended the mobility model of chapter 3
with a dynamic declarative field annotation system. This system uses first-class
typeboxes, which can be added on-the-fly. For standard mobility situations, the
typeboxes are used to annotate fields with one of the five mobility semantics we
identified. In the next chapter we are going to use this implementation in Ambient-
Talk to validate the use of mobility annotations.

4This automatically results from the fact that ReadResolve and WriteReplace is used to rebind,
as seen in section 4.2.2.



5
Case Study:

Mobile Route Planner

Now we have a concrete example of a programming language implementing the
proposed declarative field annotations, it is time to validate the solution. This
chapter will do so by using this extended version of AmbientTalk to create a mov-
ing TrafficWare application, based on a scenario requested by the inter-university
project CoDaMoS [cod04].

5.1 Scenario
Doctor Healthy is in a hurry to get to a patient. Unfortunately he does not know
the route to where she lives. When she called he typed in her address in his Traf-
ficWare program on his office computer. TrafficWare now uses the global posi-
tioning system, GPS, to find out its own position and calculates the shortest route.
In the meanwhile Dr. Healthy asks TrafficWare to move to the board computer
of his car to keep him informed of the route while he is driving. As he starts his
car, the board computer automatically gets switched on too. The wireless connec-
tion established between the car and his office computer makes it now possible
for the TrafficWare program to migrate to the board computer of the car, as was
requested. On installing itself on the board computer, TrafficWare uses the board
computer’s gestalt manager to reconfigure itself to fit on the screen. Then Traf-
ficWare reconnects to GPS to stay updated about the position of the car, so it can
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Figure 5.1: A Mobile Route Planner Program

recalculate the itinerary if it appears that doctor Healthy is deviating from the
originally calculated one.

On arriving back at the office after the visit, TrafficWare informs the “monthly
expenses program” running on the office computer about the travelled distance.
Before shutting down the car, doctor Healthy asks TrafficWare to move back to
his office computer. This scenario is visualized in figure 5.1.

5.2 Analysis and Implementation
In the scenario we presented a route planner called TrafficWare on the move. For
every part of the program we will analyse the type of binding we need and show
how to implement this. Since the TrafficWare interface is the most interesting part
from a mobile application engineering point of view, we will mostly focus on the
implementation of that part of the program. The eventual design is visualized in
figure 5.21.

In the beginning, the program is running on the office computer. Before start-
ing to calculate the route, it uses the GPS to figure out its own position. So the
it will need a ambient reference to a GPS. Of course after moving the program
we want to reconnect, so the field must be annotated to rebind to this ambient re-
source after moving. In the next piece of code we extend the standard TrafficWare
behaviour with GPS support.

1Notice the comparison with figure 3.1
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Figure 5.2: Mobile Route Planner Analysed
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Listing 5.1: GPS: Ambient Rebind
1 mixinGPS ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
2 gps : vo id ;
3 i n i t ( ) : : {
4 s u p e r ( ) . i n i t ( ) ;
5 gps := ambien tRef ( ” GPS ” ) ;
6
7 ‘ On moving t h e a p p l i c a t i o n , we want t o r e c r e a t e ‘
8 ‘ a l o c a l proxy f o r t h e GPS ambien t s e r v i c e ‘
9 ‘ i d e n t i f i e d by t h e p a t t e r n ”GPS” ‘

10 ambientRebindTypeBox . add ( ” gps ” , ”GPS ” )
11 }} )

TrafficWare has a graphical user interface which will be recreated after the
program has moved. To establish a good integration on new devices, it uses the
gestalt manager to figure out the resolution of the screen. Of course the gestalt
manager is a local resource and will be needed to be rebound locally after the
move. The following code will show how the graphical user interface is being
recreated, as well as how the gestalt manager is being rebound.

Listing 5.2: GUI: Recreate, Gestalt Manager: Local Rebind
1 m i x i n G U I G e s t a l t ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
2 g u i : vo id ;
3 g e s t a l t M a n a g e r : vo id
4
5 c r e a t e G u i ( ) : { ‘ T h i s f u n c t i o n w i l l c r e a t e a GUI ‘ } ;
6
7 i n i t ( ) : : {
8 s u p e r ( ) . i n i t ( ) ;
9 g u i := c r e a t e G u i ( ) ;

10 r e c r e a t e T y p e B o x . add ( ” g u i ” , c r e a t e G u i )
11 ‘ By d e f i n i t i o n , on f i r s t c r e a t i o n o f t h e a c t o r , ‘
12 ‘ a l o c a l g e s t a l t manager a c t o r w i l l be a v a i l a b l e ‘
13 ‘ i n t h e scope o f t h e a c t o r . ‘
14 g e s t a l t M a n a g e r : l o c a l G e s t a l t M a n a g e r ;
15 ‘ We e x p e c t an a c t o r who r e t r i e v e s us t o pas s ‘
16 ‘ a long l o c a l r e s o u r c e s c o n t a i n i n g t h e ‘
17 ‘ ” Gesta tManager ” r e s o u r c e ‘
18 loca lReb indTypeBox . add ( ” g e s t a l t M a n a g e r ” , ” G e s t a l t M a n a g e r ” )
19 }} )

At the moment when the car arrives back home, the travelled distance has to
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be sent to the “monthly expenses program”. Since TrafficWare was already linked
to the program when it was still residing on the office computer, this resource has
to be handled in a default way. This means that while the application is on the
board computer of the car, the program will be thought of as a remote resource. In
the code below you can see that nothing special needs to be done for the “default”
fields. If you want to ensure this behaviour is used at some point in the program,
the command defaultTypeBox.add("field") can be used.

Listing 5.3: Monthly Expenses: Default Behaviour, Become Network Reference
1 mix inExpenses ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
2 ‘ By d e f i n i t i o n , on f i r s t c r e a t i o n o f t h e a c t o r , ‘
3 ‘ a l o c a l mon th l y e x p e n s e s a c t o r w i l l be a v a i l a b l e ‘
4 ‘ i n t h e scope o f t h e a c t o r . ‘
5 month lyExpenses : l o c a l M o n t h l y E x p e n s e s ; } )

The TrafficWare itself will be designed as a two-layered program. First we
have the interface to the outside world. This actor has links to all the external
resources and will communicate with the outside world. The second actor is the
controller of the program. It does the actual route calculating. Since these parts
work closely together, if one moves it automatically means that the other has to
move too. In this case the controller will always be asked to follow the inter-
face because the latter does the communication. The following code features two
needed parts of the program. The first part shows how to extend the controller to
become moveable. The second part shows how to automatically let a moveable
field be fetched when moving yourself.

Listing 5.4: TrafficWare Controller: Move Along
1 ‘ The e x t e n d e d b e h a v i o u r f o r t h e now moveable ‘
2 ‘ T r a f f i c W a r e c o n t r o l l e r ‘
3 m i x i n M o b i l i t y ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
4 move . come ( r e s o u r c e s ) : : {
5 moveNowWithResources ( r e s o u r c e s )
6 }} )
7
8 ‘ The b e h a v i o u r f o r t h e T r a f f i c W a r e i n t e r f a c e ‘
9 m i x i n C o n t r o l l e r ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{

10 c o n t r o l l e r : vo id ;
11 i n i t ( ) : : {
12 c o n t r o l l e r := a c t o r ( t w C o n t r o l l e r B e h a v i o u r ) ;
13 moveAlongTypeBox . add ( ” c o n t r o l l e r ” )
14 }} )
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Since mobility is done by using move methods as seen in section 3.2.3, devices
accepting programs need some sort of a device manager. A program who wants to
move to a device needs to send a migration request to the manager. This manager
can then choose to allow the migration by responding with a move message, or
choose to deny the request ignoring the message. Because TrafficWare wants to
move between the office computer and the board computer of the car, both of them
will need a device manager. Both of the devices already have a gestalt manager,
so we will extend this actor to also fulfill the duty of “gatekeeper”. The last piece
of code is divided into two parts. The first part extends the TrafficWare interface
again. This time with graphical user interface code to allow users to request the
move to another device. The second part are extensions for the gestalt manager.
With the extensions it is able to forward a move request of an application to the
linked device on the one hand. It is also able to accept a request by replying with
a move message on the other hand.

Listing 5.5: Making a Program Moveable
1 ‘ The b e h a v i o u r f o r t h e T r a f f i c W a r e i n t e r f a c e ‘
2 mixinMoveable ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
3 f : vo id ;
4
5 ‘ C re a t e move−b u t t o n i n t h e g u i ‘
6 c r e a t e G u i ( ) : : {
7 f : j a v a . awt . Frame ( ” M o b i l i t y I n t e r f a c e ” ) ;
8 b : j a v a . awt . Bu t ton ( ” Reques t Move ” ) ;
9

10 ‘ Use t h e t r a f f i c w a r e as a c t i o n L i s t e n e r ‘
11 b . a d d A c t i o n L i s t e n e r ( t h i s A c t o r ( ) ) ;
12 f . show ( ) ;
13 f
14 } ;
15
16 ‘ Because t h i s a c t o r w i l l a l s o p l a y a c t i o n L i s t e n e r ‘
17 a c t i o n P e r f o r m e d ( e ) : : {
18 ‘ The g e s t a l t manager knows how t o f i n d ‘
19 ‘ t h e o t h e r d e v i c e , so i t i s go ing t o send ‘
20 ‘ o u t t h e r e q u e s t . The o t h e r d e v i c e s h o u l d ‘
21 ‘ r e spond by s e n d i n g ’ come ’ t o t h i s A c t o r ( ) ‘
22 g e s t a l t M a n a g e r # sendRequestMove (
23 t h i s A c t o r ( ) # come
24 )
25 } ;
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26
27 ‘ Make t h e T r a f f i c W a r e i n t e r f a c e a c t u a l l y moveable ‘
28 move . come ( r e s o u r c e s ) : : {
29 moveNowWithResources ( r e s o u r c e s )
30 } ;
31
32 i n i t ( ) : : {
33 f := c r e a t e G u i ( ) ;
34 r e c r e a t e T y p e B o x . add ( ” f ” , c r e a t e G u i )
35 }} )
36
37 ‘ The m o b i l i t y e x t e n s i o n s f o r t h e g e s t a l t manager ‘
38 m i x i n M o b i l e A p p l i c a t i o n s ( b e h a v i o u r ) : : e x t e n d ( b e h a v i o u r ,{
39 ‘ The g e s t a l t m a n a g e r k e e p s an a m b i e n t R e f t o t h e ‘
40 ‘ o t h e r d e v i c e . T h i s i s t h e example f o r t h e ‘
41 ‘ d e s k t o p computer ‘
42 o t h e r : ambien tRef ( ” MyCar ” ) ;
43
44 sendRequestMove ( r e s u l t M e s s a g e ) : : {
45 ‘ Prepare t h e message as i f i t came from t h e ‘
46 ‘ a p p l i c a t i o n r e q u e s t i n g t o send a r e q u e s t o u t ‘
47 message : o t h e r # reques tMove ;
48 message . s e t S o u r c e ( t h i s M e s s a g e ( ) . g e t S o u r c e ( ) ) ;
49 message . s e t A r g s ( [ r e s u l t M e s s a g e ] ) ;
50 ‘ Send o u t t h e message ‘
51 message . send ( t h i s ( ) )
52 }
53
54 ‘ Method t o be a b l e t o answer t o a move r e q u e s t ‘
55 reques tMove ( r e s u l t M e s s a g e ) : : {
56 r e s u l t M e s s a g e . s e t S o u r c e ( t h i s A c t o r ( ) ) ;
57 ‘ The g e s t a l t manager h a n d l e s l o c a l r e s o u r c e s ‘
58 r e s u l t M e s s a g e . s e t A r g s ( [ r e s o u r c e s ] ) ;
59 ‘ Send o u t t h e message ‘
60 r e s u l t M e s s a g e . send ( t h i s ( ) )
61 }
62 } )
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5.3 Summary
In this chapter we showed by example how strong pull mobility based on move
messages extended with declarative field annotations can easily be used to engi-
neer mobile applications. With only a few lines of code, a full application de-
pending on a lot of different types of resources can be moved back and forth from
device to device. The fields containing resources just have to be annotated with
mobility semantics defining what should happen to linked resource while moving
an application and the actual moving, rebinding, etc. is handled by the program-
ming language.



6
Conclusions

As explained in chapter 1, programs designed for mobile networks are easily going
to be required to be mobile themselves too. This is caused by the characteristics
of these type of networks which are different from stationary networks.

6.1 Problem Statement Revisited
There are already a number of programming languages providing support for this
feature. Unfortunately they only consider the mobility of single entities in a pro-
gram. If we would want to write actual mobile applications in these languages, it
would most likely result in code cluttered with mobility-specific code.

This brings us to the goal of our research, extending programming languages
featuring computational mobility with declarative field annotations in order to
easily impose and change mobility relations between interconnected objects and
resources.

6.2 Annotations in a Nutshell

6.2.1 Ambient-Oriented Mobility in AmbientTalk
We used the ambient-oriented programming paradigm as basis for our research
because of the design reasons for the paradigm. It is designed to automatically
cope with the characteristics of mobile networks. The advantage of this situation
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is that the programming language is set up perfectly to start with. To be more spe-
cific we chose the ambient-oriented programming language called AmbientTalk.
The reason was that AmbientTalk is designed as a reflective kernel, to allow pro-
grammers to easily adapt the language in order to experiment with new language
constructs.

We extended this programming language with strong mobility. This choice
came from the fact that we want to move running applications from one device
to another, thus excluding weak mobility. Weak mobility focusses on sending
or retrieving “dead code” to or from remote devices, for evaluation. Although
moving running processes is doable by using only weak mobility, it will most
certainly result in a bad coding style. When using weak mobility, in order to
move running code, the runtime state needs to be saved and restored manually.
This makes code non-modular, hard to reason about and thus harder to debug.

Move Methods

We are using AmbientTalk where actors are the unit for distribution. Therefore
actors are also used as unit of mobility. Passive objects in AmbientTalk are already
moveable from one device to another. As a security measure, we decided to use
move messages to initiate the move of an actor. This implies that on the one hand,
the moveable actor has to implement a move method (the actor must agree to be
moveable), and on the other hand that the message must be sent from the accepting
device (the device must agree to accept the moving actor). An extra advantage of
using this model in AmbientTalk is that it automatically excludes race conditions
on mobile actors, since an actor in AmbientTalk processes its asynchronously
received messages one by one. This ensures that actors only react to one move
message at a time.

Because several objects might need some pre- and/or post-processing (think
of file-descriptors or windows which need to be closed on the device from which
the actor is leaving, or opened on the device on which the actor is arriving) the
move method is divided into two parts. A pre-move part, of which all code will
be executed on the sending device. Secondly a post-move part, of which all code
will be executed on the receiving device.

Updating Pointers

When moving objects in a programming language, the language must make sure
that all object pointing to the moved object are automatically updated. There are
two aspects in our solution. First we decided to add an extra abstraction for actors,
internally containing a local or a remote representation of the actor. In this way
pointers on the sending and receiving device do not have to be updated since they
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keep pointing to the abstraction. To move an actor we replace the old local by
the new remote representation and the old remote by the new local. As second
step third-party pointers are updated when they are used to send a message to the
actor. The new remote will inform the third-party pointer with the new location of
the actor.

6.2.2 Declarative Field Annotations for Mobile Applications
Since this strong mobility implementation only defines what should happen to
pointers pointing to the moved object, the next step is to look what should happen
to outgoing pointers. For incoming pointers there is only one scenario possible.
All pointers should always point to the actual object, wherever it resides. For
outgoing pointers on the other hand, we identified five different scenarios. As an
easy way to define which of these scenarios applies to which pointer, we suggested
adding a declarative field annotation system to the programming language. In this
way programmers can easily annotate fields with mobility semantics and further
fully neglect the inner workings of moving an application.

Dynamic Annotations

We added two levels of dynamism to this system. First we made sure that the
annotation of a field can be changed. This by using first-class disjunct sets of field-
names, called typeboxes, instead of static typing. This is one of the requirements
of adding annotations concerning mobility, since the mobility semantics of a field
might change in the lifetime of an active object.

Then we added a way to easily add new types of mobility semantics for fields,
by introducing a native which can create new typeboxes. These typeboxes all
have to specify a pre- and a post-processing mechanism, in the line of the design
of the two-sided move methods. Even while this is not explicitly a requirement it
might prove very useful for objects with similar mobility behaviour for multiple
resources, deviating from the standard behaviours specified in this dissertation.
Adding typeboxes could be thus be used as extra abstractions by the programmer.

Standard Types of Resources

We pointed out that in every language using typeboxes, there should be five default
typeboxes available, which are deduced from the five scenarios we identified for
the outgoing pointers of moving active objects. We distinct between remote and
local resources which have to be rebound, resources which have to stay at their
original location, resources which have to be recreated and resources which have
to be moved along with the moving object. When the resource stays behind or
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moves along, the pointer from the moving object to the resource stays the same.
In the other three cases the pointer has to be changed by a pointer to the new
resource replacing the old one.

6.3 Future Work
In this section we present some topics which are related to this dissertation and
which may be interesting for future research.

• Race Conditions on Strong Mobility. Even while we presented a solution
for this problem, which is acceptable from a language engineering point of
view, the result might not be feasible for the programmer. In our result, we
do not get any logic errors, but the position of an actor depending on the
order of incoming messages also presents fuzzy semantics.

• Multiple Annotations for One Object. All objects in one moving actor,
in the current annotation system, will only be moved in one and the same
fashion. The design reason is explained in section 4.1.3. As a solution we
decided to just use the last annotation applied to an object, in the same line
as adding a field-name to a typebox cancels a previous addition to another
typebox. As this might be a good and logical solution, there may also be
a more logic solution. For example one might impose precedence rules on
typeboxes.

• Mobile Symbiosis. In our current solution Java objects are represented as
passive objects. These Java objects internally may spawn multiple threads.
From within AmbientTalk programmers are allowed to pass AmbientTalk
code as interface-implementing objects, mostly used for listeners. To keep
the AmbientTalk part thread-safe, we only allow programmers to pass ac-
tors, to which synchronous calls will be translated into asynchronous mes-
sages.

This solution has a few problems which we did not address, but which could
be interesting for future use. One of the problems of this solution is that
these messages are asynchronous. This implies that calls to the interfaces
always return a null-pointer, while some of the Java object actually might
want a real return value.



A
Typeboxes Implementation

Here you find the implementation of the default typeboxes in AmbientTalk, as
specified in section 4.2.3.

Listing A.1: Typeboxes in AmbientTalk
moveAlongTypeBox : : c rea t eTypeBox (

lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {
‘ Pre−Move , no pre−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
vo id

} ,
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Post−Move , a come−message i s s e n t ‘
‘ t o t h e a c t u a l o b j e c t ‘
o b j e c t #come ( r e s o u r c e s )

}
) ;

r e c r e a t e T y p e B o x : : c rea t eTypeBox (
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Pre−Move , t h e o b j e c t i s go ing t o ‘
‘ be w r i t e R e p l a c e d w i t h an o b j e c t ‘
‘ d e f i n e d by t h e c l o s u r e pas se d ‘
‘ w h i l e add ing t h e f i e l d t o t h e box ‘

57
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‘ T h i s i s t h e f i r s t argument , t h u s ‘
‘ t h e second e l e m e n t o f c o n f i g ‘
w r i t e R e p l a c e ( o b j e c t , r e a d R e s o l v e ( c o n f i g [ 2 ] ) )

} ,
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Post−Move , no pos t−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
vo id

}
) ;

loca lReb indTypeBox : : c rea t eTypeBox (
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ The o b j e c t i s go ing t o be ‘
‘ w r i t e r e p l a c e d w i t h a l o c a l ‘
‘ r e s o u r c e d e f i n e d by t h e pas se d ‘
‘ argument ‘
w r i t e R e p l a c e ( o b j e c t , r e s o u r c e s . g e t ( c o n f i g [ 2 ] ) )

} ,
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Post−Move , no pos t−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
vo id

}
) ;

ambientRebindTypeBox : : c r ea t eTypeBox (
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ The o b j e c t i s go ing t o be ‘
‘ w r i t e r e p l a c e d w i t h an ambien t ‘
‘ r e s o u r c e d e f i n e d by t h e pas se d ‘
‘ argument ‘
w r i t e R e p l a c e ( o b j e c t ,

r e a d R e s o l v e ( lambda ( ) → {
ambien tRef ( c o n f i g [ 2 ] )

} )
)

} ,
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Post−Move , no pos t−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
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vo id
}

) ;

d e f a u l t T y p e B o x : : c r ea t eTypeBox (
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Pre−Move , no pre−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
vo id

} ,
lambda ( o b j e c t , r e s o u r c e s , c o n f i g ) → {

‘ Post−Move , no pos t−p r o c e s s i n g i s ‘
‘ n e c e s s a r y ‘
vo id

}
)
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