
Vrije Universiteit Brussel
Faculteit Wetenschappen

Departement Informatica en Toegepaste Informatica

Software Composition through Linguistic
Symbiosis

Dissertation submitted in partial fulfillment of the requirements for the degree of
Licenciaat in de Informatica.

Lieven De Keyzer

Promotor: Prof. Dr. Theo D’Hondt

Advisors: Dr. Wolfgang De Meuter & Kris Gybels

August 2006

c© Vrije Universiteit Brussel, all rights reserved.

Samenvatting

Het is moeilijk om grote, complexe softwaresystemen te ontwikkelen en nog moeili-
jker om ze te onderhouden. In component-gebaseerde applicatie-ontwikkeling, worden
applicaties gecreëerd door een aantal reeds bestaande componenten te hergebruiken.
Deze componenten worden aangepast en samengeplugd in een hogere-ordescripting
taal. Deze taal moet een manier voorzien om componenten geschreven in andere talen
te kunnen gebruiken.

Dit probleem lijkt erg op het definieren van een taalsymbiosetussen twee program-
meertalen, zodat de talen op een transparante manier data kunnen uitwisselen en func-
tionaliteit geschreven in de andere taal kunnen uitvoeren.

We beschouwen het gebruik van zo een taalsymbiose als manierom eenscripting
taal componenten geschreven in andere talen te laten gebruiken. We vergelijken deze
aanpak dan met de aanpak van Piccola, een taal die specifiek werd ontwikkeld om
componenten aan te passen en samen te pluggen.

We stellen ook een manier voor om een onderscheid te maken tussen aanpassin-
gen aan componenten die enkel een interfacemappinguitvoeren en aanpassingen die
nieuwe functionaliteit aan een component toevoegen.

i

Abstract

Large and complex software systems are hard to build and evenharder to maintain. In
component-based development, applications are built by reusing a number of already
existing components. These components are adapted and composed in a high-level
scripting language. To be able to also use components written in other languages, the
scripting language should provide a way for exchanging datawith other languages.

This problem is very similar to the one of defining a symbioticrelationship between
two languages, such that the languages can transparently exchange data and invoke
each other’s behaviour.

We contemplate the use of linguistic symbiosis for a scripting language to be able to
access components written in another language. This is contrasted with inter-language
bridging, the approach used by Piccola, a language specifically designed for adapting
components and expressing compositions.

An approach to discriminate between adaptation code that purely maps interfaces
and adaptation code that adds new functionality to a component is introduced.

ii

Acknowledgments

The completion of this thesis would not have been possible without the help of many
people. Therefore, I would like to express my gratitude towards:

Prof. Dr. Theo D’Hondt for promoting this thesis.

Dr. Wolfgang De Meuter and Kris Gybels for being excellent advisors. Apart from
coming up with the subject, they also kept me on the right track through every stage of
this work, from preparation to proofreading.

Jan Meskens for linguistic proofreading of this document.

All members of the Programming Technology Lab for their valuable comments during
the thesis presentations.

My friends and fellow students for their support and for distracting me once in a while
when writing this thesis.

TheVrije Universiteit BrusselandDepartement Informaticafor providing an excellent
education.

My parents for supporting me and giving me the opportunity tostudy in the best possi-
ble circumstances.

iii

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Dissertation Roadmap . 2

2 Component-Based Software Development 3

2.1 Origin . 3

2.2 Components and Frameworks . 4

2.3 Scripting . 5

2.3.1 What is Scripting? . 6

2.3.2 What is a Scripting Language? 6

2.4 Compositional Mismatches and Glue10

2.4.1 What is Glue? . 10

2.4.2 Glue problems . 11

2.5 A Conceptual Framework for Composition 12

3 The Piccola Programming Language 14

3.1 An Overview of Piccola . 14

3.1.1 What is Piccola? . 14

3.1.2 Language Model . 15

3.2 Forms . 15

3.2.1 Semantics of Forms . 15

3.2.2 Unification of Concepts . 17

iv

CONTENTS v

3.2.3 Forms vs. Objects . 20

3.3 Accessing External Components From JPiccola 2 21

3.3.1 JPiccola’s Virtual Machine 22

3.3.2 Bridging between Two Nested Language Models 23

3.3.3 JPiccola’s Bridging Approach 24

3.3.4 Problems with JPiccola’s Bridging Approach 25

3.4 JPiccola’s Bridging Approach Revisited 28

3.4.1 Overview of the Revised Strategy 28

3.4.2 Illustration of the Revised Bridging Strategy 29

4 The Pico Programming Language 31

4.1 Properties and Purpose of Pico . 31

4.2 Syntax and Semantics . 32

4.3 Lazy Evaluation through Call-by-Function 32

4.4 Pic%: Adding OO to Pico . 34

4.4.1 A Simple Object Model . 35

4.4.2 A More Advanced Object Model 37

4.4.3 Object inheritance . 38

4.5 Sic% . 40

4.6 A Conceptual Model for Linguistic Symbiosis 40

4.6.1 Overview of the Model . 40

4.6.2 Linguistic symbiosis between Pico% and Smalltalk 41

4.6.3 Linguistic Symbiosis at the Meta Level 43

4.6.4 Actual Implementation . 46

5 Pic% as a Scripting Language 50

5.1 Piccola Black-Box Problem . 50

5.2 Piccola’s Bridging Strategy vs. Linguistic Symbiosis Model 53

5.2.1 Passing Plain Forms to Smalltalk 55

CONTENTS vi

5.2.2 Passing an External Form back to Smalltalk56

5.3 Separation of Interface Mapping and Behavioural Adaptations 58

6 Conclusions 60

6.1 Summary . 60

6.2 Conclusions . 61

Bibliography 62

List of Figures

2.1 Comparison of programming languages, based on their level of abstrac-
tion (higher-level languages execute more machine instructions for a
typical language statement) and their degree of typing [Ous98]. 9

2.2 A framework for component-based development [Sch03]. 13

3.1 A Piccola form as interface to an external component. 20

3.2 Nested language models (up level and down level) [Sch01]. 24

3.3 Passing down Piccola forms. 26

3.4 The revised inter-language bridge [Sch01]. 30

4.1 The Pico semantic grid [MGD99]. 33

4.2 A simple environment layout. 35

4.3 Object state duplication with the simple object model [Lie05]. 37

4.4 Cloning Pic% objects [DM03]. 38

4.5 Conceptual overview of linguistic symbiosis between two languages A
and B, showing both base and meta levels [GWDD06]. 41

4.6 Linguistic symbiosis between two languages A and B at themeta level:
A and B have meta-level representations that have differentprotocols
that need to be bridged [GWDD06]. 44

4.7 Linguistic symbiosis in more detail, focusing on the left and right ap-
pearance relationships and their equivalent relationships on the meta
level [GWDD06]. 45

4.8 Semi-formal description of meta operation mapping fromSmalltalk to
Pic% . 46

4.9 Semi-formal description of meta operation mapping fromPic% to Smalltalk 47

vii

LIST OF FIGURES viii

4.10 Implementation of language symbiosis [GWDD06]. 47

4.11 Folding of language symbiosis in the actual implementation of Pic% in
Smalltalk [GWDD06]. 48

4.12 Semi-formal description of base and meta level operation mapping in
actual implementations with overlap of base and meta levels. 49

5.1 Self-sending semantics in Piccola and Pic%. 53

5.2 Passing a plain Piccola form to Smalltalk in linguistic symbiosis terms. 55

5.3 Passing an external component between Piccola and Smalltalk in lin-
guistic symbiosis terms. 57

5.4 Adapting an external component in Pic% and passing it back to Smalltalk. 57

5.5 Passing a component up and down while changing theupoperation. . 58

5.6 Separation of interface mappings and behavioural adaptations. 59

List of Tables

2.1 Comparison of some applications implemented twice, once using a
scripting language and once using a system programming language
[Ous98]. 10

3.1 The Piccola primitives [Sch01]. .. 23

ix

Listings

3.1 Defining forms in Piccola . 16

3.2 Example of polymorphic extension in Piccola 17

3.3 Example of projection in Piccola .18

3.4 Example of application in Piccola18

3.5 Example of restriction in Piccola 19

3.6 Example of inspection in Piccola .19

3.7 Dynamic extension in Piccola . 21

3.8 Problems with external Piccola forms [Sch01]. 27

4.1 A recursive implementation of the factorial function inPico 32

4.2 Example of call-by-function in Pico 34

4.3 Boolean arithmetic in Pico . 34

4.4 A while iterator in Pico . 35

4.5 A simple object definition in Pic%.35

4.6 A analogous object definition in Scheme [ASS96]. 36

4.7 Message sending in Pic% by means of Pico dictionary qualifiers. . . . 36

4.8 Inheritance in Pic% through nested scopes. 39

4.9 A Smalltalk implementation of aNeonSign component. 42

4.10 Example of the language symbiosis between Smalltalk and Pic% . . . 42

5.1 Implementation of Smalltalk classesButton andJuggler 52

5.2 Adapting and plugging together external components in Piccola. . . . 53

5.3 Component adaptation and composition using Pic%. 54

5.4 Passing a plain Piccola form as an argument to a Smalltalkmethod. . 56

x

Chapter 1

Introduction

Building large, complex software systems is a hard and time-consuming task. The
best way to increase productivity when constructing such software, is to reuse already
existing software. There exist various techniques to put this idea of software reuse
into practice, one of the more dominant ones being component-based development. In
this approach, the existence of a large collection of reusable software components is
assumed. It will typically not be possible to reuse such a component “as is”; adaptation
of the component, by means of glue code, will be necessary to make it compatible with
other selected components. Thus, building applications becomes a matter of selecting,
adapting and composing components.

Specifying how components are to be composed is done using scripting languages
because they allow for fast development, are dynamic and provide high-level abstrac-
tions. Most of these languages, however, only allow composition according to a single
compositional style. Consider Unix shell languages, for example, which are based on
a pipes and filters approach.

The Piccola programming language [AN01, ALSN01] is designed especially to adapt
components and express compositions. It does not constrainthese components to ad-
here to a certain compositional style, but rather allows theprogrammer to specify differ-
ent styles of composition. As such, Piccola is said to be a general-purpose composition
language.

The architecture of Piccola is based on a formal semantic model, called theπL-
calculus [Lum99]. This is an extension of theπ-calculus, which was introduced by
Milner et al. [MPW92] to describe concurrent computationalprocesses. Therefore, it
is possible to reason about component compositions specified in Piccola.

When adapting and composing components, we do not want to limit the available
components to those written in the scripting language itself. The language should
provide abstractions that allow accessing components written in other languages.

This problem is very similar to the one of defining a symbioticrelationship between
two languages [IMY92]. Such languages can transparently exchange data and invoke

1

CHAPTER 1. INTRODUCTION 2

each other’s behaviour. Gybels et al. [GWDD06] introduce a conceptual model that
allows implementing linguistic symbiosis between two languages.

Piccola does indeed allow components to be written in a separate implementation
language. It employs an approach, called bridging by Schärli [Sch01], to pass data
between Piccola and other languages.

1.1 Contributions

We contemplate the use of linguistic symbiosis for a scripting language to be able to
access components written in other languages We contrast this with the approach used
by Piccola to pass data from another language to Piccola, andvice versa, to pass data
from Piccola to another language.

Consequently, we identify some problems in how external components are accessed
when using Piccola as a composition language. We solve theseproblems by using
Sic% [Gyb04], a language that implements the conceptual symbiosis model, and as
such is in linguistic symbiosis with Smalltalk. This means we define the properties a
composition language should possess for manipulating external components.

We also introduce an approach to discriminate between adaptation code that purely
maps interfaces and adaptation code that adds new functionality to a component.

1.2 Dissertation Roadmap

In chapter 2, we first give an outline of how component-based development origi-
nated. Then some terminology and common techniques are discussed. Finally, a con-
ceptual framework for composition [Sch99] is presented. The Piccola programming
language is designed with this framework in mind, and an overview of its syntax and
semantics is given in chapter 3. We also discuss the approachthat Piccola implemen-
tations should use for accessing components written in a different language. Chapter
4 introduces the Pico programming language [MGD99] and its object-oriented vari-
ation Pic% [DM03]. This leads to the presentation of a specific implementation of
Pic% called Sic%, which engages in a symbiotic relationshipwith Smalltalk. An high-
level overview of this feature’s implementation and the conceptual model behind it
finishes the chapter. In chapter 5, Piccola’s bridging strategy is evaluated against the
linguistic symbiosis model, and we present an approach to separate interface mapping
adaptations and behavioural adaptations. We conclude thisdissertation with some final
remarks in chapter 6.

Chapter 2

Component-Based Software
Development

In this chapter we describe what is meant by component-basedsoftware develop-
ment. The origin of the field is sketched in section 2.1. What is meant exactly by the
term component is explained in section 2.2. Components are adapted and composed
by means of respectively glue code and scripts, which are discussed in sections 2.4 and
2.3. Section 2.5 presents a conceptual framework for composition.

2.1 Origin

An ideal way of developing software, would be for the developer to identify some
needed code modules, what order they should be executed and what information should
be passed between them. Freshly written modules would then be combined with exist-
ing ones to form new applications. A similar way of working can be seen in other fields,
like electronics engineering. Hardware components are thesmallest units making up
an electrical circuit. They are both interchangeable and reliable.

This kind of component programming is not a recent notion. A proposed solution for
the software crisis in the late sixties was calledcomponent-oriented software construc-
tion. It introduced the idea that software should be built from prefabricated compo-
nents, which are black-box entities [McI68]. The goal was toreuse these components
for different applications to lower development costs and to establish a market for soft-
ware components. This vision could not be established at thetime. Some of the reasons
being the ideas that components should be built system independently or that a compo-
nent catalogue must be available, allowing application developers to choose the right
component for a specific problem [Sch99].

3

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 4

2.2 Components and Frameworks

Today, component-oriented programming still receives much attention from both the
industrial and research point of view. Nevertheless, it is not always clearly understood
what is exactly meant by the termsoftware component. Schneider [Sch99] claims it
is closely related to the termcomponent frameworkand the two cannot be defined in
isolation. Indeed, Lumpe et al. [LSNA97] define a component this way:

A software component is acomposable element of a component frame-
work.

Although this seems to be a circular definition, Schneider claims it does a very good job
capturing the crucial properties of components: components are designed to work to-
gether with other components. A component that is not part ofa component framework
is a contradiction in terms. Furthermore, a component cannot function outside a well-
defined framework. We will see a formal definition of the term component framework
later in this section.

Just as is the case in electronics engineering, a component could function by itself,
but it is of much more value when combined with other components. The whole inten-
tion of designing components is to plug them together, so we could say:

A software component is astatic abstraction with plugs. [ND95].

By static, it is meant that a component is a long-lived (i.e. stable) entity that can be
stored in a software base, independently of the applications it has been used in before.
It is anabstraction, because it puts a more or less opaque boundary around the software
it encapsulates and provides some priorly known functionality. Finally, a component
hasplugs, which are not only used to provide services but also to require them. All fea-
tures or dependencies of a component are exposed by means of such public plugs; there
exist no hidden dependencies. Plugs are the most important prerequisite for composi-
tion: required services of a component are connected with suitable provided services
of another component. The nature of the interface, and how these interfaces may be
plugged together will differ from one component framework to another.

Some other aspects of components are given by Szyperski [Szy02] through the fol-
lowing definition:

A software component is a unit of composition with contextually specified
interfacesand explicit contextdependenciesonly. A software component
can bedeployed independently, is subject tothird-party composition, and
hasno persistent state.

We have already mentioned that for a component to be composable (by third-parties),
it must explicitly specify the services it provides (i.e. interfaces) but also the services
it requires (i.e. dependencies). This means the component has to be sufficientlyself-
contained. For a component to be independently deployable, it needs tobe well sep-
arated from its environment and other components. Therefore, a componentencap-
sulatesits features and can never by deployed partially. Thus, a component needs to

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 5

encapsulate its implementation and interact with its environment through well-defined
interfaces. The last statement blurs the distinction between stateless component fac-
tories and stateful component instances. As such it might cause some confusion since
components, like buttons or windows, usually do have state.We are thus not working
with the abstract component classes, but with their instances. It’s therefore useful to
distinguish between design-time and runtime of a component[Ach02]. At design-time,
the developer chooses the properties that are set when the component is instantiated at
runtime.

We have used the term component framework a few times withoutproperly defin-
ing it, although we have seen that the definition of a component and the notion of a
component framework are closely related to each other. Schneider [Sch99] gives the
following definition:

A component framework is acollectionof software components with a
software architecturethat determines the interfaces that components may
have and the rules governing their composition.

In an object-oriented language, a realization of a framework might be an abstract class
hierarchy, but there is no reason for components to be classes or for frameworks to
be abstract class hierarchies. In such an object-oriented framework, an application is
generally built from subclassing framework classes that adhere to certain application
requirements, a component framework on the other hand focuses on object and class
composition (i.e. black-box reuse).

As is also the case for components, there exist more than one definition of the term
component framework. Szyperski [Szy02] describes a component framework as a set
of interfaces and rules of interaction that govern how components plugged into the
framework may interact. He points out that an overgeneralization of that scheme has
to be avoided in order to keep actual use of frameworks practicable.

All of the above definitions no longer regard components as isolated parts. Compo-
nents adhere to a particular component architecture or architectural style that defines
the plugs, the connectors and the corresponding composition rules [Sch01].

2.3 Scripting

Components and frameworks alone are not sufficient for building real applications.
We need a mechanism to specify which components are to be plugged together (i.e.ex-
press compositions). Think of a playscript that tells actors how to play variousroles in
a theatrical piece. The whole idea behind component-based development is that only a
small amount of such wiring code has to be written to create connections between com-
ponents. Flexibility is obtained by detaching the components from the specification of
their composition.

This wiring technology, also calledscripting, can take various forms depending on
the nature and granularity of the components, the nature andproblem domain of the
framework, and the composition model [Sch99]. Compositionmay occur at different

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 6

times in the development process: at compile-time, at link-time or at run-time. It may
be very rigid and static (e.g. the syntactic expansion that occurs when C++ templates
are composed [MDS01]) or very flexible and dynamic (e.g. the composition supported
by Tcl [Ous94] or other scripting languages [Ous98]). It’s not easy to give a generally
accepted definition of the terms scripting and scripting language. Nevertheless, in the
following sections, we will try to give an overview of what iscommonly meant when
they are used.

2.3.1 What is Scripting?

The essence of scripting is that of performing routine operations with existing tools.
The main purpose of CGI-scripts for example, is to dynamically generate web pages,
however, they do not perform all the necessary computationsthemselves. Various com-
ponents, residing on the server system the scripts are run on, are used. Most of the code
of the CGI-scripts just sets off and coordinates computations of the components.

Sometimes scripts are described asgluebetween components [NTdMS91]. This is
a metaphor to emphasize that scripting is done using ahigh-levellanguage that takes
entitiesoutsidethe programming language (e.g. system facilities) to do thework of an
application. Thus, the glue is ahigh-level of abstraction. However, the term glue code
is used in a much narrower sense in most references, as we willsee in section 2.4.

Szyperski [Szy02] says that scripting is quite similar to application building. Script-
ing admits that the actual wiring may need more than just connections: scripting allows
small programs (i.e. scripts) to be attached to connections(i.e. connectors). This can
be either at the source end (e.g. for events) or at the target end (i.e. hooks) of con-
nections. Scripts usually do not introduce new components,but simply plug already
existing ones together: they introduce behaviour, but no state. Or in other words:

Scripting aims atlate and high-level gluing.

Summarizing the main properties of scripting given above, we could say that the
principal purpose of scripting is to build applications by connecting a set of already
existing components. Cox [Cox86] generalizes this notion by defining scripting as
follows:

Scripting is ahigh-level binding technologyfor component-based systems.

This definition implies that there exist other binding technologies for component-based
systems. It also doesn’t name any language features needed for scripting. We will
discuss and analyze these in the next paragraph.

2.3.2 What is a Scripting Language?

There are two major directions used by researchers for describing scripting lan-
guages: by their usage and by their features.

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 7

As mentioned above, the purpose of a script is to coordinate aprogrammable system
and to establish connections between components. Therefore, one might argue that
any programming language that supports these activities can be called a scripting lan-
guage. We could label any language that is used to drive another system as a scripting
language, as opposed to a programming language, wherein theprogram itself is the
main action.

Of course, the way a language is used depends strongly on the features it supports.
By describing a language’s usage, as well as its features andcharacteristics, we can
analyzewhy it is used in that specific way.

Kanavin [Kan02] gives the following definition of a scripting language, which al-
ready includes a lot of typical features:

A scripting language eliminates the need for compilation, manages mem-
ory automatically and includes high-level data types. Its power is connect-
ing existing components together into a working application.

One of the most important properties of scripting languagesis that it should be rela-
tively easy to interconnect components not written in the scripting language itself.

Other important aspects are covered by the following definition:

A scripting language should i) be interpreted, not compiled, ii) be dynam-
ically typed (so that a variable can have different types during its lifetime),
iii) offer abstractions for introspection, iv) be embeddable and extensible,
and v) have a simple syntax.Brent Welch[Sch99].

Embeddability and extensibility are two important properties of scripting languages
because they make reuse a lot easier. A versatile way for adapting and extending an
existing component is embedding a script into this component. Extensibility on the
other hand is needed in order to incorporate new abstractions (i.e. components and
connectors) into the language, making it easier to integrate legacy code.

An interesting reference about scripting and scripting languages is a paper by Ouster-
hout [Ous98]. He categorizes programming languages into three major groups. Assem-
bly languages, system programming languages, and scripting languages.

In assembly languages, virtually every aspect of the machine is reflected in the pro-
gram. Each statement represents a single machine instruction and programmers must
deal with low-level details such as register allocation andprocedure calling sequences.
As a result, it is difficult to write and maintain large programs in assembly language.

System programming languages differ from assembly languages in two ways: they
are higher level and they are strongly typed. The term higherlevel means that many
details are handled automatically by the programming environment (e.g. register al-
location), so that programmers can write less code to get thesame job done. The
functionality of a single instruction in a system programming language, usually takes
several instructions in an assembly language. Ousterhout defines typing as the degree

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 8

to which the meaning of information is specified in advance ofits use. In a strongly
typed language, the programmer declares how each piece of information will be used
and the language prevents the information from being used ina different way. In a
weakly typed language there are no a priori restrictions on how information can be
used: the meaning of information is determined solely by theway it is used, not by any
initial purposes. System programming languages are designed to handle the same tasks
as assembly languages, namely creating applications (and components) from scratch.

Ousterhout defines a scripting language as follows:

Scripting languages are designed for gluing applications.They provide a
higher level of programming than assembly or system programming lan-
guages, much weaker typing than system programming languages, and an
interpreted development environment. Scripting languages sacrifice exe-
cution efficiency to improve speed of development [Ous98].

Ousterhout claims scripting languages represent a very different style of program-
ming than system programming languages. They aren’t intended for writing applica-
tions from scratch: their primary purpose is plugging together components. Scripting
languages are also rarely used for implementing complex algorithms and data structure,
as features like these are usually provided by the components. Scripting languages are
sometimes referred to as glue languages or system integration languages.

Scripting languages tend to be weakly typed, in order to simplify the task of con-
necting components. A weakly typed language makes it easierto hook together com-
ponents, even in different ways for different purposes not foreseen by the designer.

Scripting languages are higher-level than system programming languages, in the
sense that a single statement does more work on average. A typical statement in a
scripting language executes hundreds or thousands of machine instructions, much more
than a typical statement in a system programming language. Much of this difference is
because the primitive operations in scripting languages have greater functionality than
those in system or assembly programming languages.

Since performance and resource usage will be dominated by the components and not
the scripts, the performance of the scripting language willusually not be a problem. It is
however much more important that high-level abstractions for connecting components
are provided; the language should give a high-level view of services implemented in a
lower-level language.

Figure 2.1 shows a graphical comparison of these three programming language cat-
egories. Table 2.1 delivers anecdotal support for the claimthat scripting languages
speed up the development process.

Above definitions already make up a list of certain characteristics of scripting lan-
guages:

• The main purpose of a scripting language is to plug together existing components
in order to build applications.

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 9

Figure 2.1: Comparison of programming languages, based on their level of abstrac-
tion (higher-level languages execute more machine instructions for a typical language
statement) and their degree of typing [Ous98].

• Scripting languages prefer high-level abstractions to execution speed.

• Scripting languages are interpreted and offer automatic memory management.

• Scripting languages are dynamically and weakly typed and offer support for run-
time introspection.

• Scripting languages are extensible: adding new abstractions (e.g. new com-
ponents and connectors) to the language and incorporating components imple-
mented in other languages should be straightforward.

• Scripting languages are embeddable: they can be embedded into existing com-
ponents, offering a versatile way for adaptation and extension.

• Scripting languages offer explicit support for architectural styles and can there-
fore be considered as executable architectural description languages (ADLs).

Not all of the features listed above are essential for scripting. Considering only the
essential properties, Schneider defines a scripting languages as follows:

A scripting language is a high-level language used to create, customize,
and assemble components into a predefined software architecture [Sch99].

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 10

Application
(Contributor)

Comparison Code
Ra-
tio

Effort
Ra-
tio

Comments

Database ap-
plication (Ken
Corey)

C++ version: 2
months; Tcl ver-
sion: 1 day

60 C++ version imple-
mented first; Tcl ver-
sion had more func-
tionality

Security scan-
ner (Jim Gra-
ham)

C version: 3000
lines; Tcl version:
300 lines

10 C version imple-
mented first; Tcl
version had more
functionality.

Query dis-
patcher (Paul
Healy)

C version: 1200
lines; Tcl version:
500 lines

2.5 4-8 C version imple-
mented first, uncom-
mented; Tcl version
had comments, more
functionality.

Spreadsheet
tool

C version: 1460
lines; Tcl version:
380 lines

4 Tcl version imple-
mented first.

Table 2.1: Comparison of some applications implemented twice, once using a scripting
language and once using a system programming language [Ous98].

2.4 Compositional Mismatches and Glue

2.4.1 What is Glue?

In practice, it is often not possible to just select some components with the needed
functionality and plug them together. Many researchers [H9̈3, YS97, Sam97] have
identified that “as-is” reuse is very unlikely to occur, and that in almost all cases, a
component has to be adapted in some way to fit the compositional requirements of an
application or a system. For this adaptations, glue techniques are required. To under-
stand in what ways a component can fail to match the compositional requirements, first
consider the following definition:

Software compositionis the process of constructing applications by inter-
connecting software components through their plugs [ND95].

It might not always be possible to interconnect some components in a desired way:
their plugs could not beplug-compatible[H9̈3]. A nice analogy is a traveller who is
unable to plug his razor he uses at home into the plugs of various other countries. These
kind of situations are known asarchitectural mismatchesandadaptorsare needed to
bridge the different interfaces.

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 11

Even if components can be successfully interconnected, this does not mean they will
be able to interoperate successfully:

Interoperabilityis the ability of software components to communicate and
cooperate with each other [Kon95].

Reconsider the example of the razor; the form of the plugs is not a problem anymore,
but different countries may use different voltages. Even when using an adaptor, the
components are not compatible: composition is possible, but interoperability is not.
We need atransformerto solve this kind of problems, known asinteroperability mis-
matches.

Architectural and interoperability mismatch both belong to a problem domain that
can be referred to ascompositional mismatch[Sam97]. A compositional mismatch
occurs whenever it is impossible to successfully interconnect components with existing
connectors. As we will see in section 2.4.2, architectural and interoperability mismatch
are not the only situations where a compositional mismatch may occur.

Schneider [Sch99] formally defines glue as follows:

Glueis the part of an application that overcomes compositional mismatches.

We use this definition of glue because it plays a role in the composition language Pic-
cola and the conceptual framework the language is based on. We will take a look at
Piccola in chapter 3 and at the framework in section 2.5. Other references, however,
might use different definitions; the notion of glue often refers to any kind of abstraction
that can be used to plug components together. We will differentiate between the no-
tions ofscriptingandglue: the former refers to abstractions for connecting components
while the latter makes mismatched components composable.

2.4.2 Glue problems

Schlapbach [Sch03] identifies different levels on which compositional mismatch can
occur: at thearchitecture platform level, where components are not designed for the
platform they are supposed to run on. At thecross-platform level, where components
are running on different component platforms. At theinteraction level, where com-
ponents use different protocols. At thearchitectural level, where components make
different assumptions about the architecture on which theyare supposed to run, lead-
ing to architectural mismatch.Versioningconflicts can lead to compositional mismatch
as well.

There exist various techniques for adapting components to overcome compositional
mismatch. They can be categorized either as black-box or white-box techniques. White-
box techniques adapt mismatched components by changing or overriding their internal
specifications while black-box techniques only adapt theirinterfaces.

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 12

2.5 A Conceptual Framework for Composition

Today, the object-oriented programming paradigm is the most dominant one. The
languages and design techniques utilizing it are nearly ideal for implementingcompo-
nents, but it seems they hinder component-based development in a number of signifi-
cant ways [SN99, Ach02]:

• Reuse comes to late:object-oriented analysis and design methods are largely
domain-driven. This leads to designs based on domain objects and non-standard
architectures. Most of these methods make the assumption that an application is
being written from scratch and they incorporate the reuse ofexisting components
too late in the development process (if at all).

• Overly rich interfaces: Instead of sticking to small, restricted and plug-compatible
interfaces and standard interaction protocols, OOA and OODlead to rich inter-
faces and interaction protocols.

• Lack of explicit architecture: For a programming language to support component-
based development, it must offer a way to state both what is tobe computed by
a component (i.e.computational) and the way components interoperate (i.e.
compositional) [ND95]. Object-oriented source code exposes the inheritance hi-
erarchy instead of the object interaction. How the objects are plugged together is
typically distributed amongst the objects themselves. As aconsequence, adapt-
ing an application to new requirements requires detailed analysis.

• Little code reuse: Instead of providing reusable abstractions for object collab-
orations, object composition is often implemented according to design patterns.
While we can (and should) reuse design, we often cannot reusethe actual code.

Schneider [Sch99] claims that complex software systems areincreasingly required to
be open, flexible aggregations of heterogeneous and distributed software components
rather than monolithic heaps of code. He says this places a strain on old-fashioned
software technology and methods that are based on the maxim

Applications = Functions + Data.

The object-oriented approach already went a step further and does a fairly good job
encapsulating state and behaviour. It is based on

Applications = Objects + Messages.

However, as we have seen above, object-oriented technologyis often applied in a way
that hinders component-based development. Achermann et al. [ALSN01] say that
the flexibility and adaptability needed for component-based applications to cope with
changing requirements will be improved if we not only think in terms of components,
but also in terms of architectures, scripts, coordination and glue. It is claimed that the
following paradigm should be applied for application development:

CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT 13

Figure 2.2: A framework for component-based development [Sch03].

Applications = Components + Scripts.

Components act as black-box entities, encapsulating services behind well-defined in-
terfaces. Scripts on the other hand, specify how the components are related to each
other.

Schlapbach [Sch03] extends the equation to also contain theglue code, needed for
overcoming compositional mismatch as we have seen in section 2.4.

Applications = Components + Scripts + A Drop of Glue.

Figure 2.2 illustrates this framework for component-baseddevelopment.

Chapter 3

The Piccola Programming
Language

This chapter gives an overview of the language Piccola. Piccola’s purpose and archi-
tecture are presented in section 3.1. Section 3.2 discussesforms, which are Piccola’s
only first-class values. Section 3.3 focuses on the originalapproach used to access
external components and the problems this approach causes.A revised version of the
approach is presented in section 3.4.

3.1 An Overview of Piccola

3.1.1 What is Piccola?

Piccola is a scripting and composition language. It is designed with the conclusions
of section 2.5 in mind. It cannot only be used to express how software components writ-
ten in a separate implementation language should be configured, but also to provide the
connectors, coordination abstractions and glue abstractions to plug those components
together on a higher level [AN01, ALSN01].

Most of the scripting languages of the the fourth generation, have a rich set of pro-
gramming constructs and built-in features that facilitatecomposition of components
according to a predefined compositional style [AN01]. For instance, Unix shell lan-
guages are designed around the pipes and filters approach; the composition rules tell
us which compositions are valid (e.g. it is impossible to make circular pipes and fil-
ter chains). Another example is Perl [WS91], which providesregular expressions to
work on a number of string buffers. Piccola, on the other hand, is asmall, pureand
general-purposecomposition language [Sch01]:

• Small: Piccola has only a small syntax and a limited number of primitives,
needed for specifying different types of compositional styles.

14

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 15

• Pure: Piccola is a pure composition language, because there is only a small set
of primitives providing the necessary composition abstractions. All the other
features of the language are provided by exchangeable components. Even basic
programming entities such as numbers and strings are represented by dynami-
cally reconfigurable components.

• General-purpose: Piccola is a general-purpose composition language because
it supports composition of components corresponding to different kinds of com-
positional styles. This means that Piccola allows us to specify our own styles that
define a kind of component algebra. According to Achermann [AN01], another
example of a general-purpose scripting language is the popular language Python
[vR95].

3.1.2 Language Model

In order to have the simplest possible framework to define compositional styles, Pic-
cola has a small set of primitives that unify various concepts [AN00]:

• Forms embody structure: A form is an immutable set of bindings that associate
labels with values. They can be extended with additional bindings, which yields a
new form. Forms unify objects, services, keyword-based arguments, namespaces
and interfaces.

• Agents embody behaviour: Agents are concurrent, communicating entities
whose behaviour is specified by a script. Agents implement the connections
between components, and they unify communication and concurrency.

• Channels embody state:Channels are the mailboxes that agents use to commu-
nicate. They unify synchronization and communication.

3.2 Forms

Forms are Piccola’s only first-class values, and consequently they represent all first-
class entities. We start this section by presenting the syntax of forms and the operations
defined on them. Then, we show how they are used to model different language aspects.
Finally, we compare them to the object-oriented model.

3.2.1 Semantics of Forms

Forms are immutable sets of bindings that associate labels with values. Syntactically
speaking, there are two ways to define forms: using nested, comma-separated, paren-
thesized lists of bindings or by indenting bindings, where the indentation indicates the
nesting level. Semantically, there is no difference between the two. Both styles are
exemplified in listing 3.1.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 16

A form with 2 bindings: x and y
aPoint = (x=1, y=2)

Indentation indicates nesting levels
aCircle =

centre =
x = 3
y = 4

radius = 5

The previous definition is equivalent to this one
aCircle = (centre=(x=3, y=4), radius=5)

Listing 3.1: Defining forms in Piccola

The following operations are defined on forms [Sch01]:

Polymorphic Extension. Polymorphic extensionF, G of a form F with a form
G yields a new form containing all the bindings of the formG and the bindings of
the formF whose labels are not used within the formG. This means that bindings of
the formGoverride bindings with the same label of the formF in the resulting form.
Polymorphic extension is illustrated in listing 3.2. When extending a form, it is of
course also possible to use the indentation syntax that is shown in listing 3.1.

Projection. Projection allows us to retrieve the form bound to a certain label. This
meansF.t returns the form bound to the labelt within the formF. A runtime excep-
tion will be thrown if the formF does not contain a binding labeledt . An example of
projection is given in listing 3.3.

Application. Services are Piccola abstractions, which represent functions or proce-
dures. Because everything in Piccola is a form, services arealso represented as forms.
They are bound with: instead of= and might introduce named arguments. The appli-
cationF Ginvokes the service represented by the formF with the formGas argument
and yields the resulting form. An alternative syntax that can be used, isF(G) . A form
can have bindings and represent a service at the same time. Application is exemplified
in listing 3.4.

Restriction. Removing a bindingt from a formF is possible through restriction.
If no binding labeledt exists within formF, an error is generated. A label (e.g. the
left side of t = 1) is a first-class value in Piccola; it can be passed to and returned
from services. In order to get hold of a label with a certain name, the primitive service
label can be used. This service takes a form as argument and returnsan arbitrary
label that is bound in that form. So when passed a form that contains only one binding,
the label of that binding will be returned. Such a label then provides arestrict
service, that when invoked with a form as argument, will return the argument form
minus the label. The code snippet in listing 3.5 gives an example of restriction.

Inspection. To find out whether a form contains bindings, represents a service or

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 17

A nested form with 3 bindings:
name, age and size
F =

name = "Lieven"
age = 23

The label size is bound to the
form (m = 1, c = 80)
size =

m = 1
c = 80

A nested form with 2 bindings:
age and size
G =

age = 24
size = m = 1, c = 82

println (F, G) # prints (name = "Lieven",
age = 24,
size = (m = 1, c = 82))

Listing 3.2: Example of polymorphic extension in Piccola

is the empty form, inspection is used. See listing 3.6 for an example. The primitive
serviceinspect is curried. As a first argument it takes the form that gets inspected.
The second argument should contain three services, labeledisLabel , isEmpty and
isService . Depending on the structure of the inspected form, the rightservice gets
invoked. If a form contains bindings, inspection can be usedto retrieve an arbitrary
first-class label that is available within the inspected form.

There exist no syntactical structures for restriction and inspection, above mentioned
primitives have to be used. Note that iteration over the bindings of a form can be
accomplished by combining restriction and inspection.

3.2.2 Unification of Concepts

Since forms are the only first-class citizens in Piccola, they are used to model differ-
ent language concepts. Schärli [Sch01] gives the following overview:

• Data structures: Piccola uses (nested) forms to define data structures. These
data structures are basic objects that may consist of structure and behaviour (ser-
vices).

• Services: Services represent functions or procedures. Internal services are de-
fined by Piccola scripts, external services are provided by external components.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 18

A nested form with 3 bindings:
name, age and size
F =

name = "Lieven"
age = 23

The label size is bound to the
form (m = 1, c = 80)
size =

m = 1
c = 80

F.name # Prints: Lieven
F.size # Prints: (m = 1, c = 80)
F.size.m # Prints: 1
F.weight # Error! (F does not contain a

binding labeled weight)

Listing 3.3: Example of projection in Piccola

The form F gets defined as a service
taking an argument X
F X: # Alternative definition:

F = \X: ...
value = X
predecessor = X - 1
successor = X + 1

println (F 3) # Prints: (value = 3,
predecessor = 2,
successor = 4)

Listing 3.4: Example of application in Piccola

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 19

A form with two bindings labeled name and age
F =

name = "Lieven"
age = 23

The service label returns an arbitrary first
class label bound in the argument form.
Here, it returns age because this is the only
label in the argument form
labelAge = label(age = ())
G = labelAge.restrict F # Form restriction

println F # Prints: (name = Lieven,
age = 23)

println G # Prints: (name = Lieven)

Listing 3.5: Example of restriction in Piccola

Define the three services for the second
argument of the inspect service
Cases =

isEmpty = println "Form is empty"
isService =

println "Form is a service and has no bindings"
isLabel = println "Form with label" + L.name()

inspect () Cases # Prints: "Form is empty"

inspect (\X: X) Cases # Prints: "Form is a service
and has no bindings"

inspect (a = 5) Cases # Prints: "Form with label a"

Listing 3.6: Example of inspection in Piccola

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 20

Figure 3.1: A Piccola form as interface to an external component.

Both internal and external services are represented as forms. This allows us to
define higher-order services.

• Keyword-based arguments:The structure of forms permits the strictly monadic
Piccola services to use keyword-based arguments with optional default values.

• Namespaces:Piccola supports both static and dynamic namespaces, whichare
modeled as nested forms.

• Channels: As we have mentioned in section 3.1.2, channels are the mailboxes
that agents use to communicate. New channels are created by the primitive ser-
vice newChannel , which returns a form that gives access to a channel. This
form consists of two services for sending respectively receiving.

• Labels: Piccola has the notion of first-class labels, which provide anon-syntactic
alternative for form extension (bind), restriction (restrict) and projection
(project). They can also be used to find out whether a form contains a specific
label (exists).

• External components: Piccola represents external components (respectively
their interfaces) as forms. Figure 3.1 shows an external Piccola form that rep-
resents the object 3. All the (public) methods of the object are mapped to the
corresponding labels of the form. Thus, the external objectcan be considered an
interface or a proxy for the associated object. We will discuss the mechanisms
Piccola uses to provide external objects as Piccola forms insections 3.3 and 3.4.

3.2.3 Forms vs. Objects

• No self: There is kept no reference to the active form (i.e. the form where the
currently executed service is defined).

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 21

printDate X:
println X.month + "/" + X.day + "/" + X.year

Defines a form representing a date
date =

month = "6"
day = 1
year = 2006

printdate date # Prints: "6/1/2006"

Defines a form representing a date and a time
dateAndTime =

date
hour = 7
minute = 22 # Prints: "6/1/2006"

printdate dateAndTime

Listing 3.7: Dynamic extension in Piccola

• Immutability: Forms are extensible but immutable data structures. There is
no need for a copy semantics. Altering a form in any way (e.g. extension or
restriction) will always yield a new form and leave the original one unchanged.

• Prototype-based instantiation: Forms may be built by adding bindings to or
removing bindings from an already existing form. There is noneed to specify a
class to instantiate it. This approach is similar to the one used in prototype-based
object-oriented languages.

• Dynamic extension:Polymorphic extension can be used as a primitive subclass-
ing mechanism. As is the case with traditional subclassing in object-oriented
languages, extended forms are compatible with the originalforms. This means
an extended form can play the role of the original one. Form extension is com-
pletely dynamic and directly applies to forms as runtime entities.

The example in listing 3.7 uses a serviceprintDate that prints the date rep-
resented by its argument form. This service expects that itsargument provides
at least the bindingsmonth , day andyear . First, we invoke the service with
a form that represents a date and contains only the required bindings. Next, we
extend the form with bindings specifying the time and show that it is still com-
patible with the service.

3.3 Accessing External Components From JPiccola 2

Piccola is originally implemented on top of Java and this implementation is appro-
priately called JPiccola. This means the parser and virtualmachine are both written

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 22

in Java, whereas other parts (e.g. simple development environment, small library) are
built in Piccola by using Java components. Piccola is designed to be a composition
language, so using external components is a core principle of JPiccola, which conse-
quently influences its implementation.

3.3.1 JPiccola’s Virtual Machine

The JPiccola virtual machine consists of a special part called the inter-language
bridge, which reflects the fact that Piccola is a compositionlanguage. It allows access-
ing external components and their methods from within Piccola. Instead of providing
a large set of primitives to perform basic system operationssuch as integer arithmetic,
like most virtual machine implementations do; the JPiccolavirtual machine delegates
these operations to external components via the inter-language bridge.

Altogether, the JPiccola virtual machine consists out of the following parts:

• Interpreter

• Runtime data structures (forms)

• Primitive services

• Inter-language bridge

The interpreter directly operates on the parse trees. Interpretation of these parse trees
result in forms, which are the only first-class values in Piccola. Every form is repre-
sented by a Piccola runtime data structure that is an instance of a Java class providing
the five basic form operations shown in section 3.2.1.

When a Piccola service is invoked, the interpreter executesthe Piccola code that
is associated with the service. This is not true for all services however. Some of
them trigger the execution of a virtual machine primitive. Such primitive services are
typically used by virtual machines to perform basic operations that cannot be performed
or can only be performed inefficiently without a primitive. But while most virtual
machine implementations provide lots of primitives for arithmetic operations, arrays
and streams, input/output, storage management, and systemoperations, Piccola only
needs the four primitives that are shown in table 3.1.

Every other basic operation of Piccola is delegated to external components that are
accessed through the inter-language bridge. This part of the Piccola virtual machine
allows passing of runtime entities across the language boundary; not only from Java to
Piccola but also from Piccola to Java.

1Note that the primitive to access external components depends on the host language. Thus, the name
and the semantics of this service are implementation dependent.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 23

Primitive Description

run Spawns a new asynchronous agent executing the ser-
vice that is bound to the labeldo of its arguments.

newChannel Creates a blocking communication channel.

inspect Inspection is used to find out whether a form contains
bindings, represents a service or is the empty form. If
the form contains bindings, inspection returns an arbi-
trary label that is used within the form.

external Provides access to external components1.

Table 3.1: The Piccola primitives [Sch01].

3.3.2 Bridging between Two Nested Language Models

Because Piccola is implemented on top of Java, we are dealingwith two nested
language models. The Piccola model one the one hand, where forms are the only
runtime entities. On the other hand there is the Java model, where everything is an
object. Because Piccola is running in the Java model, every Piccola form is actually
a Java object. Java objects are, however, incompatible withthe form-based Piccola
model and so they cannot be accessed within Piccola.

Terminology

To discuss this concrete situation at a more abstract level,we will first define some
terminology. Thedown levelrefers to the (object-oriented) implementation language,
in this case Java. The termup leveldenotes the level of the language that is imple-
mented and evaluated by the down level. A more standard name of the down level
is themeta level, while the up level is more commonly referred to as thebase level.
The down level is assumed to supply some object-like first-class entities, which will be
calledobjects. The first-class entities of the up level are namedforms. When an object
is passed from the down level to the up level, the object is said to be passed upwards.
Consequently, a form is passed downwards when it is passed from the up level to the
down level. The two language models and the terminology are illustrated in 3.2.

Passing objects upwards

The language model of the up level cannot handle the generic objects of the down
level, so they have to be converted into forms to be of any use.As such, the inter-
language bridge has to provide an appropriate representation for every object that
crosses the language boundary upwards. If the passed objectis already a down level
representation of a form, nothing has to be done and the inter-language bridge can
simply forward the form.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 24

Figure 3.2: Nested language models (up level and down level)[Sch01].

As a result, their exists two different kinds of forms in the up level. The simplest
ones are the forms that areex nihilocreated within the up level. A form of this kind
might be the empty form or one that is created by binding values to labels within Pic-
cola. The other forms are the ones that are automatically created by the inter-language
bridge whenever objects are passed upwards. Schärli [Sch01] calls the former kind
plain formsand the latter oneexternal forms. External forms are actually just up level
representations of down level objects, thus every externalform has anassociated ob-
ject.

Passing forms downwards

Because a form is just an object in the down level’s language model, a form does not
need to be converted and can be passed downwards as it is. Although this is what we
want for plain forms, it is often not the expected behaviour for external forms, which
represent down level objects. We want the down level to operate on the associated
object of the external form rather than on the form itself. The inter-language bridge
thus has to decide which one of the two entities it has to pass down.

3.3.3 JPiccola’s Bridging Approach

In this section, we look at the bridging approach that is usedin JPiccola [Sch01,
ALSN01].

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 25

Up. Passing Objects from Java to Piccola.

A. If the object already represents a form, it is passed directly to the Piccola lan-
guage.

B. Otherwise, the following happens:

B1. The object is converted into a form that contains a label for every public
method of the object’s class, whether it is implemented or inherited. Each
of these labels is than bound to a service that represents this method for the
given object. The object serves asself when the service is called.

B2. Forms representing special objects like numbers, booleans or strings are
extended with additional bindings to make them more appropriate from a
Piccola point of view.

The external forms we have discussed before are the ones created by stepUp.Bof the
inter-language bridge. Note that a form that has been yielded by extending or restricting
an external form is no longer regarded as an external form.

Down. Passing Forms from Piccola to Java.

A. If the form is an external one, the associated object is passed down to Java.

B. Otherwise the form itself (actually, the object representing it) is passed down to
Java.

Figure 3.3 illustrates how forms are passed down.

3.3.4 Problems with JPiccola’s Bridging Approach

As we have seen in the previous section, JPiccola’s inter-language bridge does what
it is supposed to do: making external components accessibleby wrapping them up as
forms. However, Schärli [Sch01] points out that the employed strategy is still not flexi-
ble enough. The external forms as provided by the bridge cause many incompatibilities
with Piccola’s core concepts. The problems are coupled in such a way that users cannot
work around some of them without running into other ones.

Incoherent Behaviour of External Forms

Because Piccola uses external components even for basic operations, the programmer
should be able to use forms transparently, whether they are internal or represent such
an external component. This is especially important for extension. As we have seen
in section 3.2.3, form extension can be used as a very simple but dynamic subclassing
mechanism in Piccola. This means we can extend a form with newbindings, where
the newly created form remains compatible with the originalform. This extended form
can play the role of the original one in a way that resembles a subclass playing the role

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 26

Figure 3.3: Passing down Piccola forms.

of its base class. Piccola’s semantics assure this is alwaysthe case for a form, provided
it is used inside Piccola.

Unfortunately, this basic Piccola concept does not hold forforms that are passed
to external services. Once an external form is extended, it will not be considered an
external form anymore and it will behave differently when passed to the down level.
While an external form gets converted into the associated external object (Down.A),
a plain form is not converted, and the object representing the form is passed to the
down level (Down.B). It is not possible for the user to find out whether a certain form
is external, and as such it is also impossible to know whetherextending the form will
influence the way it is dealt with by the bridge.

The code snippet in listing 3.8 demonstrates this problem. First, a servicenewButton ,
which builds an external form representing a button and extends it with a service
setText , is created. Then, we invoke the servicenewButton to create a new button
and set its label with thesetText service. Eventually, we want to add the button to
a Java panel, but Piccola does not behave as one might expect.Because the argument
okButton has been modified, it is not regarded an external form anymore, and the
inter-language bridge passes the object representing the form (Down.B) and not the
associated button object (Down.A) to the down level.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 27

This service creates a new button and extends
it with an additional interface binding
newButton:

’button = javaClass("java.awt.Button.).new()
button
setText(S):

button.setLabel(val = "Piccola-Button: " + S)

okButton = newButton()
okButton.setText("Ok") # Uses interface binding to

set the label

XPiccola.piccolaPanel.buttons is a Java panel
of the Piccola user interface
panel = XPiccola.piccolaPanel.buttons

Unexpected behaviour! The object representing the
Piccola form and not the original button object is
passed down
panel.add(val = okButton)

Listing 3.8: Problems with external Piccola forms [Sch01].

Direct Mapping

When an external component is converted into a Piccola form,this is done in a very
direct way. JPiccola maps the method interface of the objectentirely onto the resulting
form. Consequently, Piccola almost operates on the level ofthe host language. This
leads to a couple of problems:

No separation between the language levels. Most of the components used by
JPiccola are Java objects. Because of the direct bridging strategy, handling these com-
ponents can quickly become “Java programming within Piccola”. Because both lan-
guages have very distinct philosophies, this results in code that does not fit the Piccola
paradigm. Moreover, such code is inherently Java dependentand cannot be used on
other Piccola hosts.

External forms are cluttered with lower level services. Due to the rich object inter-
faces Java usually provides, the corresponding Piccola forms contain many bindings.
This makes them very complex and contradicts Piccola’s philosophy. Within Piccola,
Java objects are considered components that contain a smallset of services used to plug
them together according to a certain compositional style. Thus, most of a Java object’s
public methods should not be visible on the composition level.

Hard to use components with incompatible interfaces. Because of the lack of
abstraction for accessing external components, it is not possible for the programmer to
use components with incompatible interfaces. Instead of directly using these interfaces,
the bridge should convert them according to the current compositional style.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 28

Hardcoding

In stepUp.B2, the inter-language bridge adds some special bindings to external forms
representing some of the more commonly used Java object. Although this provides a
solution for some of the direct-mapping problems, it is not aflexible solution, because
the extension is hardcoded in the virtual machine. Piccola is designed to be a general-
purpose composition language, which means it should be ableto use it for varying
problem domains. This domains might have very different requirements on the used
components. When the structure is hardcoded in the virtual machine, it is completely
static, and no changes are possible without substituting the entire virtual machine.

3.4 JPiccola’s Bridging Approach Revisited

After having analyzed the problems described in the previous section, Schärli [Sch01]
presents a bridging strategy that adheres more closely to the philosophy of Piccola.
This strategy is based on two main concepts:

• Separating the various aspects of external forms.

• Moving the variable part of the inter-language bridge onto Piccola’s meta level.

3.4.1 Overview of the Revised Strategy

As in the previous sections, we use the termexternal formto denote a form that
represents an external object within Piccola. All other forms are calledplain forms. As
a first change to the bridging strategy, Schärli says an external form must have a nested
structure consisting out of two parts. The top level part represents the Piccola interface
of the object and hence is called theinterface formor shortly interface. This form
contains a labelpeer , which is bound to a nested form representing the identity of
the external object. This subform is called thepeer formor justpeer. Only forms that
satisfy these structural conditions are considered external forms. A form with a label
peer that is not bound to a peer form (i.e. a form representing an external component),
for example, is not an external form.

To make the inter-language bridge more flexible, it is separated into two parts. The
generic partis situated in Piccola’s virtual machine while thevariable part can be
found inside Piccola. If an external object is passed up to Piccola, both of these parts
may build an interface for this object. Note that these interfaces usually include glue
code. The interfaces built by the generic and the variable part of the bridge are called
thegeneric interfaceand thespecific interface, respectively. Consequently, an external
form created by the generic part of the bridge is named ageneric formand one created
by the variable part is called aspecific form.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 29

3.4.2 Illustration of the Revised Bridging Strategy

Figure 3.4 illustrates the structure of the inter-languagebridge and how entities of
both levels are passed across the language boundary. We can see that the bridge is
divided into two parts. The generic part is implemented in the virtual machine, which
is part of the down level while the variable part is situated in Piccola’s meta level.

On the left side of figure 3.4 is shown what happens when an object that does not
represent a form is passed upwards. In the generic part of theinter-language bridge,
the object is converted to fulfill the requirements for external forms that were set in
section 3.4.1. This external form consists of a generic interface and the peer form that
represents the identity of the object. This form is then passed to the variable part of the
inter-language bridge on Piccola’s meta level. Here, the generic interface gets replaced
by a specific one that can be declared by the programmer. This resulting external form
can be used in Piccola. The variable part is not obliged to provide a specific interface.
It can just pass an external form with a generic interface to Piccola.

In the middle is illustrate how forms are passed downwards. In the first step, the
inter-language bridge picks out the nested form bound to thepeer label if it exists.
In all other cases, it takes the form itself. If the currentlyhandled form is a peer form,
the associated object is passed to the down level, otherwise, the form itself is passed
downwards. Thus, an external form is converted to its associated external object while
a plain form is passed down as it is.

On the right side, an object that represents a form is passed upwards. This is a trivial
case, and the bridge directly passes the form to Piccola.

CHAPTER 3. THE PICCOLA PROGRAMMING LANGUAGE 30

Figure 3.4: The revised inter-language bridge [Sch01].

Chapter 4

The Pico Programming
Language

Sections 4.1, 4.2, and 4.3 give an overview of the language Pico. A prototype-based
extension of Pico, called Pic%, is presented in section 4.4.Section 4.5 introduces Sic%,
a Pic% implementation, which is in linguistic symbiosis with Smalltalk. A conceptual
linguistic symbiosis model, on which Sic% is based, is discussed in 4.6.

4.1 Properties and Purpose of Pico

Pico [MGD99] is a high-level programming language, featuring strong and dynamic
typing, garbage collected tables (i.e. arrays), higher-order functions and reflective
meta-programming. But as its name underlines, Pico is aboveall very small.

Pico was originally designed to teach computer science concepts to students in other
sciences than computer science. Pico can be seen as a derivative of the Scheme pro-
gramming language, combining the latter’s simple semantics and powerfulness (in the
sense that everything is first class) and the standard infix notation students are used to
from ordinary calculus. De Meuter et al. [MDD04] claim that there are indications that
essential programming concepts can be acquired using Pico in less than half the time it
takes using Scheme.

From a research point of view, Pico is an ideal candidate for extension. The com-
pactness of its implementation makes it very easy to add new experimental language
features. It has been used in experiments related to distributed programming [CM04,
CMM+04], prototype-based inheritance [DM03], mobility of software agents [BFVD01,
Meu04], language symbiosis [Pee03, Lie05] and actor-basedprogramming [Ded06].

31

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 32

{
fac(n):

if(n <= 0,
1,
n * fac(n - 1));

display("fac(10) = ", fac(10), eoln)
}

Listing 4.1: A recursive implementation of the factorial function in Pico

4.2 Syntax and Semantics

The syntax of Pico is exemplified in listing 4.1, with an implementation of the fac-
torial function in Pico. The first expression defines a function calledfac , which takes
one argument. The body of this function contains only one expression, an application
of the if conditional1. The second expression calls thefac function and prints the
result to the standard output. Although it may seem like it, this code snippet does
not consist out of twostatementssince Pico does not make a distinction between ex-
pressions and statements. All Pico expressions return a value and syntactically, any
expression can be nested in any other.

Pico has a small and easy to remember syntax. A key notion is the invocation,
which is either a variable, a tabulation or an application. Such an invocation is used in
three modes: reference, definition and assignment. By combining the three invocation
types into the tree modes, nine different Pico expression types are constructed, as is
shown in the simple 3 by 3 grid in figure 4.1. Some of Pico’s language extensions have
added additional operators. Version two of the Pico language, for example, defines a
dictionary qualification operator.

An important property Pico shares with Scheme is that it botharehomoiconic[McI60]
programming languages. This means the primary representation of a program, is also
a data structure in a primitive type of the language itself. Scheme programs are rep-
resented aslists, whereas Pico usestablesfor this purpose. Compiled languages like
C++ and Java usually lack this property since their program trees are compiled and
translated to machine code. Because of this feature, code and data can be treated in
exactly the same way and this lies at the basis for reflection in Pico.

4.3 Lazy Evaluation through Call-by-Function

The majority of programming languages differentiate between ordinary expressions
and special forms. Tasks like defining a new variable or assigning a new value to one
are usually taken care of by special forms. For example, Scheme makes a difference

1Note that theif conditional is syntactically expressed as a function. As will be shown in section 4.3,
this is also the case semantically.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 33

Figure 4.1: The Pico semantic grid [MGD99].

betweenprocedure callsand special forms. Whereas procedure calls are evaluated
using applicative-order evaluation2, Scheme does something special for special forms.
Consider for example theif control construct:(if (< 1 2) x y) . Scheme will
evaluate the first argument passed toif . Depending on the returned value, either the
second or the third argument will be evaluated while the other one remains unevaluated.

Contrary to Scheme, Pico does not require special forms. Equivalent expressions are
in Pico defined as functions. This is possible because it has richer parameter binding
semantics than Scheme. When a function is defined, a formal parameter can be spec-
ified as an invocation. If the parameter is specified as a reference, it will be bound by
value at application time (i.e.call-by-value); but if it is specified as an application,
we will have an extension ofcall-by-name, which is calledcall-by-function[MDD04].
Listing 4.2 contains an example: the functionmaps behaves like its Scheme counter-
part. In this example the call-by-value parametertable will be bound to the value
of [1, 2, 3, 4, 5] while the call-by-function parameterfunc(val) will be
bound to the expressionval * val . This means that during the application ofmap, a
local variablefunc will be bound to a closure consisting of the parameterlist(val) ,
the bodyval * val and the calling environment ofmap3.

Even boolean arithmetic in Pico is implemented in Pico itself using this lazy eval-
uation mechanism. The code in listing 4.3 implements thetrue , false and if
functions. As can be seen in this code snippet, Pico’s boolean system is based on the
famousChurch booleans, which were first introduced in Alonzo Church’sλ-calculus
[Chu41]. Although slightly adapted for imperative languages, the idea remains the
same: to define booleans as functions that choose between twooptions supplied as ar-
guments. Theif implementation takes advantage of this model by passing itsthen
andelse branches to the Church boolean representing theif condition. Since only

2Languages using applicative-order evaluation evaluate anoperator and all of its supplied arguments
before executing the operation.

3Note thatval has dynamic scope

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 34

{
map(func(val), table):

{
result[size(table)]: void;
for(i: 1, i <= size(table), i:= i + 1,

result[i]:= func(table[i]));
result

};

’Prints [1, 4, 9, 16, 25]’
display(map(val * val, [1, 2, 3, 4, 5]))

}

Listing 4.2: Example of call-by-function in Pico

{
true(yes(), no()): yes();
false(yes(), no()): no();
if(cond, then(), else()): cond(then(), else())

}

Listing 4.3: Boolean arithmetic in Pico

one of the branches has to be evaluated, they have to be passedin a lazy way instead
of as an evaluated value. As we have already seen, this can be achieved in Pico by
declaring the parameter functional (i.e. by using the() syntax after the parameter
name). This is a very elegant solution to a problem normally solved by wrapping code
in lambdaexpressions (Lisp, Scheme) orblocks(Smalltalk). What is more, the user
need not to perform the wrapping at the calling level since the laziness of evaluation
is already specified at the definition level. This leads to a much cleaner syntax and
semantics.

Consider the implementation of a Picowhile iterator shown in listing 4.4 as a last
example of call-by-function parameter binding.

4.4 Pic%: Adding OO to Pico

Pic% [DM03] is the object-oriented extension of the Pico programming language. It
is a prototype-based language, based on Agora [Ste94].

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 35

while(predicate(), expression()):
{

loop(value, boolean):
boolean(loop(expression(), predicate()), value);

loop(void, predicate())
}

Listing 4.4: A while iterator in Pico

Figure 4.2: A simple environment layout.

4.4.1 A Simple Object Model

Object-orientation in Pic% is obtained by lettingfirst-class dictionaries, a feature
which is already present in Pico, act as objects. Pico uses these dictionaries to store
variable bindings into. A typical implementation would organize them as linked lists,
as is graphically illustrated in figure 4.2. The only thing that needs to be added is a
native functioncapture that returns the current environment as a first-class value.

Listing 4.5 shows how an object definition in Pic% might look like. An expression
like c: Counter(0) will now define a variablec , bound to a counter object with
attributen initialized to zero and two methodsincr and decr , which change the
state of the object. These will be stored in the closure that is created when the function
Counter is applied.

Scheme users may notice the similarity with the object system presented by Abelson
and Sussman [ASS96]. The only difference is the absence of adispatch function.

Counter(n): {
incr(): n:= n + 1;
decr(): n:= n - 1;
capture()

}

Listing 4.5: A simple object definition in Pic%.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 36

(define (make-counter n)
(define (incr)

(set! n (+ n 1)))
(define (decr)

(set! n (- n 1)))
(define (value)

n)
(define (dispatch msg)

(cond
((eq? msg ’incr) incr)
((eq? msg ’decr) decr)
((eq? msg ’value) value)
(else

(error "Message " msg " not understood."))))
dispatch)

Listing 4.6: A analogous object definition in Scheme [ASS96].

{
‘ invocation of a method in a dictionary ‘
object.aMethod(10, 100);

‘ variable reference in a dictionary ‘
object.attribute;

‘ table indexing in a dictionary ‘
object.collection[2]

}

Listing 4.7: Message sending in Pic% by means of Pico dictionary qualifiers.

In an environment-based object model, such a function returns an appropriate function
when a message is sent to an object, as can be seen in listing 4.6. Scheme needs this
dispatch function because it does not support first-class dictionaries.

Since dictionaries act as objects, the dictionary qualification operator serves as a
message sending mechanism in Pic%. A qualification instruction evaluates an invo-
cation (variable reference, table indexing or function application, see section 4.2) in
the given dictionary object. To follow the fashion of popular object-oriented languages
like C++, Java and Python, Pic% uses the dot-operator syntaxto express qualification.
For a few examples, take a look at listing 4.7.

This simple object model, however, has a notable disadvantage. When aconstructor
function like Counter creates a new object, this object will have bindings for its
instance variables, as well as for all the methods associated with it. Thus, the method
bindings are duplicated in each instance. Figure 4.3 illustrates this code duplication

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 37

Figure 4.3: Object state duplication with the simple objectmodel [Lie05].

graphically.

4.4.2 A More Advanced Object Model

The problem of method entry duplication is solved in Pico% byusing aprototype-
basedmodel. In such a model, some objects contain method entries,while other objects
contain a reference to the object holding those method entries. The object containing
the entries is called a prototype. The reference to the prototype is typically called
thedelegation linkor parent link [Lie86]. In some languages, it is the responsibility
of the programmer to create this link, but in most languages this reference is created
automatically through a process calledcloning, a reuse mechanism comparable with
instance creation in class-based languages. The clone operator creates a new object,
and copies the attributes of the prototype into this new object. However, as we have
seen in the previous section, not all of them need to be copied. Some should remain
shared with the prototype, so prototype-based languages that use this approach need a
mechanism to distinguish between the two types of bindings.

Pic% achieves this by differentiating betweendeclarationanddefinitionfor binding
variables in a dictionary. The semantics of the definition operator (name:value) is
not altered; just as in Pico it adds a mutable key-value binding to the current envi-
ronment dictionary. Dictionaries, however, are organizeddifferently in this model.
Pic% dictionaries consist of avariable and aconstantpart. As their names point
out, variable entries can be altered, whereas constant entries are immutable. Adding
an entry to the constant part of a dictionary is done by using the declaration opera-
tor (name::value). When a dictionary object is cloned, its variable part is deeply
copied, whereas the constant part is linked using a reference. The result of this cloning

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 38

Figure 4.4: Cloning Pic% objects [DM03].

process is illustrated in figure 4.4. To handle this change indictionary structure, the
clone native is introduced.

To allow for object state encapsulation, Pic% also restricts message sends to vari-
ables and methods that are declared, as opposed to defined, thus aligning declara-
tion with public visibility. Aside from the zero argument clone operator, a second
clone(object) is provided, to clone an arbitrary given object.

In the model described above, the constant part of a dictionary contains function
closures, which are bound to the object that they are defined in. Thus, when an object is
cloned, these constant functions should be bound to the clone. Rebinding the closures,
however, would require a deep copy of the constants, and we would once again have no
code sharing. Pic% solves this problem by removing the lexical bindings of functions
to their defining environment. An environment, upon reception of a message, will
activate the function bound to that message with respect to itself (i.e. self). In the
case of a self-send (i.e. the absence of an explicit receiver), self will be bound to
the current environment. Hence, Pic% usesdynamic scopingin contrast with thestatic
scopingof Pico.

4.4.3 Object inheritance

Inheritance in Pic% is introduced by using nestedmixin methods. To see what mixin
methods, sometimes calledmodular inheritance, are, consider the example in listing
4.8.

The code snippet defines a typicalstackdata structure. The parametern specifies the
maximum size of the stack, the variableT holds the stack’s contents, and the variable

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 39

Stack(n):
{

T[n]: void;
t: 0;
empty():: t = 0;
full():: t = n;
push(x):: T[t:= t + 1]:= x;
pop()::

{
x: T[t];
t:= t - 1;
x

};
makeProtected()::

{
push(x)::

if(full(),
error("overflow"),
.push(x));

pop()::
if(empty(),

error("underflow"),
.pop());

clone()
};

clone()
}

Listing 4.8: Inheritance in Pic% through nested scopes.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 40

t keeps track of the top index. The semantics of the methodsempty , full , push
andpop should be obvious. At the end ofStack ’s body, theclone native is called
to return the object.

The stack definition also contains a mixin methodmakeProtected . WhenmakeProtected
is called, a new environment will be created, extending the stack object it is called
from. The declarations withinmakeProtected will extend the stack object with
new bindings forpush andpop , thusoverriding their implementations. At the end
of the definition ofmakeProtected , clone returns a new protected stack object.
Super sends are also possible, by using the.message() syntax, which starts method
lookup in the parent object.

4.5 Sic%

Sic% [Gyb04] is a Smalltalk implementation of the Pic% language. As such, it im-
plements all the properties of Pic% we have discussed in the previous sections. An
additional feature of Sic% is its linguistic symbiosis withthe underlying Smalltalk sys-
tem, which allows Pic% and Smalltalk objects to seamlessly send each other messages.
We will discuss the conceptual model for linguistic symbiosis on which Sic% is based
in the next section.

4.6 A Conceptual Model for Linguistic Symbiosis

As we have seen in section 3.3, it is sometimes necessary for different computer
languages to interact and establish some inter-language communication. There exist
different techniques to accomplish this; some are bidirectional while others work in
only one direction. In all techniques, however, a mutual intent to make the interoper-
ability between the languages astransparentas possible, can be identified. If this need
for transparency becomes a key concern, the participating languages can become so
closely entangled that they engage in asymbioticrelationship [Lie05].

The termlinguistic symbiosiswas originally defined by Ichisugi et al. in the work
on RbCl [IMY92], a concurrent programming language that engages ina symbiotic
relationship with its implementation language. This concept was further refined by
Steyaert [Ste94].

4.6.1 Overview of the Model

Gybels et al. [GWDD06] define linguistic symbiosis between two languages as fol-
lows:

Two languages are in linguistic symbiosis when they can transparently
exchange data and invoke each other’s behaviour.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 41

Figure 4.5: Conceptual overview of linguistic symbiosis between two languages A and
B, showing both base and meta levels [GWDD06].

This means that through linguistic symbiosis (see figure 4.5), data of one language can
be represented in the other, and behaviour specified in one language can be invoked
from the other. They propose a model to achieve linguistic symbiosis, consisting of
two elements, adata mappingand aprotocol mappingthat is needed between the two
languages:

Data mapping. The process of passing data between programs written in different
languages should be as transparent as possible. Therefore it is important that data of
language B, when passed to language A is, syntactically speaking, not distinguishable
from native data of language A. Thus, from within a language it should be possible to
apply operations on such passed data as if it was native data.This requires a translation
of these operations to the language from where the data was passed.

Protocol mapping. Making the data of language B accessible for programs written
in language A is accomplished by making it possible for the meta representations of
that data to be passed between the interpreters of the languages. Since the meta repre-
sentations of both languages will usually understand different protocols, it is necessary
to make the passed meta representations understand the metaoperations of the inter-
preter they are passed to. The data mapping at the syntactic level thus actually boils
down to a protocol mapping at the language implementation level.

This linguistic symbiosis model is mere a conceptual framework that needs to be
instantiated. It does not say how protocol mappings for concrete languages can be
established; to show how this might be accomplished, we willdiscuss the data and
protocol mapping for a concrete case.

4.6.2 Linguistic symbiosis between Pico% and Smalltalk

For Pic% and Smalltalk to participate in a symbiotic architecture, there should exist
transparent ways for exchanging data and invoking behaviour, according to the defini-
tion of linguistic symbiosis. Exchanging data means it should be possible to pass Pic%
objects to Smalltalk and the other way around to pass Smalltalk objects to Pic%. It

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 42

Smalltalk defineClass: #NeonSign
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames:
classInstanceVariableNames: ’’
imports: ’’
category: ’’

NeonSign>>receiveAdvertisement: ad
Transcript show: (ad getText)

Listing 4.9: A Smalltalk implementation of aNeonSign component.

{
sign: NeonSign.new();

MakeAd():
{ getText():: "lieven";

clone()
};

anAd: MakeAd();
sign.receiveAdvertisement̃ (anAd)

}

Listing 4.10: Example of the language symbiosis between Smalltalk and Pic%

should also be possible to send messages to Pic% objects fromwithin Smalltalk and
to send messages to Smalltalk objects from within Pic% to satisfy the requirement of
the definition concerning behaviour invocation. These processes should be transparent:
within Pic%, a Smalltalk object should appear as a Pic% object that can be sent mes-
sages in the same way native Pic% objects can be sent messages. The same should be
true for Pic% objects in Smalltalk programs.

An example

Listing 4.10 shows an example of a Pic% program that uses linguistic symbiosis with
Smalltalk, using the Smalltalk class shown in listing 4.9:

• The first expression defines a variablesign to hold a newly created instance
of the Smalltalk classNeonSign : the referenceNeonSign will return the
Smalltalk class as a Pic% object to which the messagenew is sent.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 43

• The second expression defines a functionMakeAd which can be called to pro-
duce an object with only one method:getText .

• The third expression defines a variableanAd to hold an instance of a new Pic%
object.

• The last expression sends the messagereceiveAdvertisement to the sign
with the Pic% object as argument. Since thesign variable contains a Smalltalk
object, the message and its argument are passed to Smalltalk, which means a
Pic% object is passed to Smalltalk.

Data Mapping

Accessing Smalltalk objects from Pic%. Smalltalk classes are accessible from
within Pic% asregular Pic% objects. To create new instances, the constructors are
invoked through Pic% methods. Listing 4.10 shows how a Smalltalk class is accessed
from Pic%. When the name of a Smalltalk class is used as a reference, the variable
lookup will return this class as a Pic% object. New instancescan then be created by
using Pic% messages likenew() . Smalltalk objects can also appear in Pic% if they
are passed as arguments to messages to Pic% objects.

Passing Pic% objects to Smalltalk. The only possibility for Pic% objects to wind
up in Smalltalk is when they are used as arguments in messagesto Smalltalk objects
from within Pic%. In the last expression of the code of listing 4.10, the message
receiveAdvertisement ∼() is sent to the Smalltalk objectNeonSign , with
the Pic% objectanAd as argument.

4.6.3 Linguistic Symbiosis at the Meta Level

As we have already explained in section 4.6.1, linguistic symbiosis provides a data
mapping at the base level which is implemented as a protocol mapping at the meta
level. The interpreters of the languages should be able passtheir meta representations
to each other, and apply their own meta operations on meta representations coming
from another interpreter. This means the protocols of the different representations have
to be mapped to each other. This is graphically illustrated in figure 4.6: the meta level
contains the meta representations of data of language A and language B, and on this
meta level, the protocol differences of these representations are to be resolved.

We will now show how this is accomplished in Pic% and Smalltalk. The choice of
the meta language in which this interpreter are written doesn’t really matter for showing
how the protocol mapping at the meta level works. We will however show, in the next
section, how the conceptual model explained here is used in the actual implementation.
In that case one of the two languages is implemented in the other one and there is no
clear separation between the meta level and base level. To clearly show the difference
in how the mappings occur then, we already use one of the two base languages, namely
Smalltalk, on the meta level as well. The important point here is that there is a clear
separation of the base and meta levels, and that a common language is used on the meta
level for the two base level languages.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 44

Figure 4.6: Linguistic symbiosis between two languages A and B at the meta level:
A and B have meta-level representations that have differentprotocols that need to be
bridged [GWDD06].

On the meta level, there are two interpreters, one for Pic% and one for Smalltalk.
As we have assumed Smalltalk to be the meta level language forthe implementation
of these interpreters as well, these interpreters are written as a number of cooperating
objects of different classes. Two important classes are theones that implement the base
level objects themselves: a classSmalltalkObject and a classPicooObject .
Instances of these classes are thus meta level objects that represent base level objects.

Each of the two classes of meta objects understands a fairly similar protocol that
implements the message sending of the base level. BothSmalltalkObject and
PicooObject have methods that are the implementations of base level message
sending. Of course, this protocol is similar but not entirely the same: the classSmalltalkObject
supports the meta operationsendSelector: withArguments: while the class
PicooObject supports the meta operationsendMessage:withArguments: 4.

As is shown in figure 4.7, the data mapping of the base level canbe split inleft and
right relationships which allow base language data of one language to appear in the
other language. On the meta level, there are meta representations for this base data, and
theleft andright relationships of the base level require equivalent protocol mapping re-
lationships at the meta level. A clean equivalent relationship and way of implementing
the symbiosis is to introduce wrapper classes that take careof mapping the protocol dif-
ferences: in the case of Pic% and Smalltalk, a classSmalltalkWrappedPicooObject
and a classPic%WrappedSmalltalkObject can be introduced. Instances of
these classes repectively wrap around aPicooObject instance and support theSmalltalkObject
protocol, or wrap around aSmalltalkObject instance and support thePicooObject
protocol. So for example in the figure, the base level Smalltalk object labeled(1) is
represented by the meta object labeled(2) and appears in Pic% as a Pic% object(3),
which is implemented as aPic%WrappedSmalltalkObject wrapper around the
SmalltalkObject instance(2). One desirable property of theleft andright rela-
tionships is that they cancel each other out: applying theright relationship to a wrapped
meta object produced by theleft relationship should yield the original meta object, and

4There is not really a protocol difference here, but the different names will suffice to explain the concept
of the model and how the mappings should be specified.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 45

Figure 4.7: Linguistic symbiosis in more detail, focusing on the left and right appear-
ance relationships and their equivalent relationships on the meta level [GWDD06].

vice versa.

The protocol mappings used on the meta level between Pic% andSmalltalk meta
objects should have the following effect on the base level for messages between Pic%
and Smalltalk objects:

Sending messages from Pic% to Smalltalk objects. In Pic% variables, Smalltalk
objects appear as regular Pic% objects, and can be sent messages in the same way as
other Pic% objects. For this to work, a mapping is needed thatmaps messages sent
to Smalltalk objects in Pic% to Smalltalk messages, taking into account the different
syntax used for messages in the two languages. Smalltalk messages consist of multiple
keywords, whereas Pic% messages consist of a single name. AnPic% message is thus
constructed from a Smalltalk message by concatenating the keywords. This is normally
done in Smalltalk by appending colons to each keyword. For instance, the message
at: index put: value is represented byat:put: . It is however impossi-
ble to use this symbol as a message qualifier in Pic%, because the parser cannot handle
colons in symbols, as the colon is reserved for definition. Asa replacement character,
the tilde character (∼) is adopted. As such the Smalltalk messagedata at: 10
put: ’lieven’ is translated into Pic% asdata.at put (10, "lieven") .
The same mapping is used for invoking constructors on classes.

Sending messages from Smalltalk to Pic% objects. When contained in Smalltalk
variables, Pic% objects can be sent messages to by Smalltalkobjects in the same way
as the latter would send messages to other Smalltalk objects. A Smalltalk message sent
to a Pic% object is constructed from a Pic% message in the inverse way as described
above.

A critical point in the mappings performed by the protocol wrappers is to ensure that
the appropriate left and right relationships are applied when mapping arguments from
one protocol to the other. When aSmalltalkWrappedPicooObject maps a

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 46

receiversendSelector:#name
withArguments:{argument1, argument2, ... argumentn}

==
right[result]

m

left[receiver] sendMessage:#name
withArguments:{left[argument1], left[argument2], ...

left[argumentn]}
==

result

Figure 4.8: Semi-formal description of meta operation mapping from Smalltalk to
Pic%

SmalltalksendSelector:withArguments: operation to the Pic%sendMessage:withArguments:
operation, the arguments involved in the message send are Smalltalk meta objects
which also need to be converted to Pic% ones. Thus, the mapping done by this wrapper
semi-formally comes down to what is shown in figure 4.8.

The rule simply describes the same protocol mapping solution for sending Smalltalk
messages to Pic% objects as described above, but illustrates the point of needing to
convert the receiver and arguments to Pic% objects. Applying the left relationship on
the receiver, which is in this case theSmalltalkWrappedPicooObject wrapper,
simply results in the unwrapped Pic% meta object. Similarly, the left relationship ap-
plied to the arguments either wraps them or unwraps them, depending on whether they
were wrapped Pic% meta objects produced by the right relationship, or plain Smalltalk
meta objects in the first place. As also illustrated, the result of the mapped message
also needs to be mapped back using theright relationship to turn in from a Pic% object
into a Smalltalk object.

The converse rule for mapping Pic% messages to Smalltalk messages is very similar
and can be without further explanation as illustrated in figure 4.9. Note that this rule
is easily derived from the rule above using the fact that theleft andright relationships
cancel each other out (i.e.left[right[x]] = x).

4.6.4 Actual Implementation

The conceptual model for linguistic symbiosis explained inthe previous section is
readily applicable to actual implementation schemes wherethe two languages in sym-
biosis are implemented as interpreters in a third common implementation language.
There is however a differing scheme possible, namely that the interpreter of one lan-
guage is written in the other language, and that a linguisticsymbiosis is defined be-
tween the first language and its implementation language rather than with a language
that is also implemented in that implementation language. In this section we will ex-
plain how to conceptual model maps to this scheme.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 47

receiversendMessage:#name
withArguments:{argument1, argument2, ... argumentn}

==
left[result]

m

right[receiver] sendSelector:#name
withArguments:{right[argument1], right[argument2], ...

right[argumentn]}
==

result

Figure 4.9: Semi-formal description of meta operation mapping from Pic% to
Smalltalk

Figure 4.10: Implementation of language symbiosis [GWDD06].

This scheme essentially means that the meta level of one language is made to overlap
the base level of the other language. As is illustrated in figure 4.11, the interpreter for
the one language is written in the other language, and there is no interpreter for the other
language at this level. One reason for this variation of thatin practice it is typically
easier to implement a new language in the one with which it should be in linguistic
symbiosis, rather than in a common language, or that such an implementation already
exists. Note that while we already used one of the base languages as meta language as
well in the explanation of the conceptual model, we still made a distinction between the
meta level and the base level. The variation we are referringto here is that, as illustrated
in figure 4.11, the meta representations of one language - Pic% in the figure - exist one
the same level as the values of the other language. This deviation of the conceptual
model has an effect on how the linguistic symbiosis is actually implemented , as we
will discuss in more detail in the remainder of this section.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 48

Figure 4.11: Folding of language symbiosis in the actual implementation of Pic% in
Smalltalk [GWDD06].

Linguistic Symbiosis Implementation

One effect of the overlap is that theright relationship maps a Pic% valuedirectly
to a wrapper. Contrast this with the pure conceptual model offigure 4.7, where the
right relationship allows a Pic% value to appear in Smalltalk, andthis appearance is
implemented as a wrapper around the meta object representing the value. Here, the
right relationship maps directly to the wrapper. Furthermore, this wrapper is a base
level Smalltalk object, rather than a meta level object as inthe pure conceptual model.
Thus the wrapper translatebaselevel Smalltalk messages tometaoperations on the
Pic% meta object.

The important point to note about this difference in how the mappings work is that
the mappings in the conceptual model more clearly show the protocol difference that
is being solved. This is the reason for clearly separating the base level and meta level
in the conceptual model. Because in the actual implementation, wrappers map be-
tween base level and meta level operations, this differenceis no longer as obvious.
The mapping performed by theright wrappers in the actual implementation for Pic%
and Smalltalk is for example the one given in figure 4.12. Noteagain that thebase
level Smalltalkmessage with namename: is mapped to the Pic% meta operation
sendMessage:withArguments: , while previously it was the Smalltalkmetaop-
erationsendSelector:withArguments: that was mapped to the Pic% meta
operation.

The left operation is similarly affected. Making a Smalltalk objectappear in Pic%
for example involves wrapping the Smalltalk object in a wrapper that maps the Pic%
meta protocol to the Smalltalk base level, instead of as in the conceptual model where
it maps it to the Smalltalk meta protocol.

CHAPTER 4. THE PICO PROGRAMMING LANGUAGE 49

receivername:{argument1, argument2, ... argumentn}
==

right[result]

m

left[receiver] sendMessage:#name
withArguments:{left[argument1], left[argument2], ...

left[argumentn]}
==

result

Figure 4.12: Semi-formal description of base and meta leveloperation mapping in
actual implementations with overlap of base and meta levels.

Chapter 5

Pic% as a Scripting Language

In chapter 3, we discussed Piccola, a programming language especially designed
for adapting and composing software components written in other languages. Despite
software composition being the language’s primary purpose, there are a few potential
pitfalls, which might introduce unexpected behaviour or lead to malfunctioning com-
positions. We will discuss these problems and the situations in which they might occur
in the following sections. Comparable experiments as thosethat cause trouble when us-
ing Piccola are performed using Pic%, the small, prototype-based language, which we
have discussed in chapter 4. More particularly, we will use Sic%, introduced in section
4.5, because it has a symbiotic relationship with the underlying Smalltalk system.

Piccola was originally implemented in Java, but we will use the same Smalltalk
components for the Piccola experiments as for their Pic% counterparts. This is not
a problem, since there exists a Smalltalk implementation ofPiccola as well, called
SPiccola, which can access external Smalltalk components instead of Java ones.

5.1 Piccola Black-Box Problem

As we have seen in section 3.4, a Piccola form representing anexternal component
has a nested structure consisting of two parts. The top levelpart represents the Piccola
interface of the object. This form contains a labelpeer , which is bound to a nested
form representing the identity of the external object.

The programmer can declare and implement a specific interface in Piccola, in which
thepeer label can be used to send messages to the peer form and as such to the ex-
ternal component This glue code is thus actually nothing more than a simple wrapper
around the external component. Such a wrapper usesmessage forwarding, also known
asconsultation[KRC91], to interact with the object it wraps. Since most of the com-
ponents used in Piccola are externalobjects, it is possible to run into the so called
self-problem[Lie86].

50

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 51

In inheritance systems, the pseudo-variableself is automatically bound to the re-
ceiver of a message when the code of the method associated with that message is ex-
ecuted. During method lookup, the self variable is not rebound when going from a
class to its superclass. As such, self sends that occur in methods implemented in su-
perclasses will go to the initial object. When a user sends a message, however, self is
always rebound.

To see why this can lead to problems, consider the Smalltalk classesButton and
Juggler shown in listing 5.1. The purpose of aButton object is to attach another
object to it, which theButton object will notify when it gets clicked. Attaching
an object is possible by using the methodattach: , which assigns its argument to
Button ’s instance variableattachedObject . Since theButton class is a sub-
class ofUI.ApplicationModel , it has to specify a method that will be invoked
when a displayed instance gets clicked. Thepush method is implemented for this
purpose. This method just forwards the messagepush to the attached object held by
theattachedObject variable.

TheJuggler class contains three methods,startJuggling , stopJuggling ,
anddropBall . To keep it clear and simple, their implementations only print a string
to theTranscript . Note thatdropBall contains a self send.

We want to attach an instance of theJuggler class to aButton object such that
every time the button is clicked, the juggler receives either the messagestartJuggling
or the messagestopJuggling , depending on which one of these it received last
[Van04]. Merely passing theJuggler instance as an argument toButton ’s attach:
method will cause problems because theJuggler class does not contain a method
calledpush . Furthermore, if the juggler receives astartJuggling orstopJuggling
message, it will execute the implementations of these message selectors even if the jug-
gler respectively has already started juggling or is not juggling. We thus want to adapt
a Juggler object such that it keeps track of the fact whether it is juggling or not,
and contains a push method that invokes either thestartJuggling method or the
stopJuggling method according to the current state.

The Piccola code shown in listing 5.2 shows how a specific interface is declared.
The wrapJuggler service will receive the generic form created by the inter-language
bridge as an argument. Note that we extend this generic form with the specific in-
terface form, so all the labels of the generic interface thatare not overridden by the
specific interface can still be projected on. After registering the wrapper service, every
Juggler component instance that is passed from Smalltalk to Piccolais adapted to
contain the servicespush andalterState . The wrapper also adds the local label
state , which contains a variable that will alternately be bound totrue or false de-
pending on whether the juggler is juggling or not. The bindings startJuggling
andstopJuggling override the equally labeled services of the generic interface.
They first update the juggler’s state and then invoke the external component’s methods
with the same name through the peer form.

Now suppose thestartJuggling service of the form contained by thejuggler
label has been invoked. The servicedropBall of the generic interface was not over-
ridden, so when this service gets invoked, the messagedropBall will be forwarded
to the external component. As can be seen in listing 5.1, the execution of the appropri-
ate method in the Smalltalk class will send astopJuggling message to the external

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 52

Smalltalk defineClass: #Button
superclass: #{UI.ApplicationModel}
indexedType: #none
private: false
instanceVariableNames: ’attachedObject’
classInstanceVariableNames: ’’
imports: ’’
category: ’’

Button>>attach: anObject
attachedObject := anObject

Button>>push
attachedObject push

Smalltalk defineClass: #Juggler
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ’’
classInstanceVariableNames: ’’
imports: ’’
category: ’’

Juggler>>startJuggling
Transcript show: ’Started juggling’

Juggler>>stopJuggling
Transcript show: ’Stopped juggling’

Juggler>>dropBall
Transcript show: ’Dropped my ball’.
self stopJuggling

Listing 5.1: Implementation of Smalltalk classesButton andJuggler .

object itself. Consequently, thestate variable in the glue code will not reflect the
real state of the juggler any longer.

We can adapt the SmalltalkJuggler component of listing 5.1 in a similar way
using Pic%, as is illustrated in listing 5.3. The native function extend , introduced
by Lievens [Lie05], returns a new object that is an extensionof a given object, ex-
tended with the code given as a second parameter, thus basically acting as a mixin
[BC90]. As we have discussed in section 4.4.2, Pic% uses prototype-based delega-
tion as a reuse mechanism. As a consequence, the extended object will delegate to
the Smalltalk object. Due to the late binding of self, adropBall message sent to the
jugglerToggle object will invoke thestopJuggling method ofjugglerToggle
instead of the one of the external object. The difference between the Piccola mecha-
nism and the Pic% mechanism is illustrated in figure 5.1. It ishowever not possible to
let these adaptations be carried out automatically when theobject passes the language
barrier.

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 53

wrapJuggler Juggler:
’state = newVar()
’state.set(false)
alterState:

state.set(state.get().not())
startJuggling:

alterState()
peer.startJuggling()

stopJuggling:
alterState()
peer.stopJuggling()

push:
if state.get()

then: stopJuggling()
else: startJuggling()

registerWrapper "Smalltalk.Juggler" wrapJuggler

juggler = Host.class("Smalltalk.Juggler").new()
button = Host.class("Smalltalk.Button").new()
button.add(juggler)

Listing 5.2: Adapting and plugging together external components in Piccola.

Figure 5.1: Self-sending semantics in Piccola and Pic%.

5.2 Piccola’s Bridging Strategy vs. Linguistic Symbio-
sis Model

The bridging strategy used in Piccola is conceptually similar to the linguistic sym-
biosis model. Programs written in Piccola should be able to access components written

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 54

{
juggler: Juggler.new();

jugglerToggle: extend(juggler,
{ state: false;

push():: {
if(state, stopJuggling(), startJuggling())

};

alterState():: { state:= not(state) };
startJuggling():: if(not(state),

{ alterState();
.startJuggling() },

false);
stopJuggling():: if(state),

{ alterState();
.stopJuggling() },

false);
clone()

});

button: Button.new();
button.add˜(jugglerToggle)

}

Listing 5.3: Component adaptation and composition using Pic%.

in Smalltalk. There still are, however, a few problems with the revised bridging ap-
proach we have seen in section 3.4. These problems do not occur when implementing
linguistic symbiosis as proposed by the conceptual model discussed in the previous
chapter. We will therefore, in this section, compare Piccola’s inter-language bridge
with the model, and analyze what is wrong with the Piccola approach. These are not
mere theoretical problems, since they affect the way adapted components can be used
or plugged together.

The Piccola bridging strategy and the linguistic symbiosismodel utilize different
terms for the processes of passing data of one language to another language: theup
anddownoperations we have discussed in section 3.3 are respectively equivalent to the
left andright operations of the linguistic symbiosis model.

Piccola has a symbiotic relationship with the language in which it is implemented,
and as such we should compare it with the variation of the conceptual model, which
we have described in section 4.6.4.

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 55

Figure 5.2: Passing a plain Piccola form to Smalltalk in linguistic symbiosis terms.

5.2.1 Passing Plain Forms to Smalltalk

Plain Piccola forms are forms that do not represent an external component, and were
created inside Piccola. The process of passing down such forms to Smalltalk is speci-
fied in the revised bridging strategy as “a plain form is passed down as it is”. In terms of
the linguistic symbiosis model, “as is” means that when the form is passed to Smalltalk,
its meta representation will be used on this level. This is graphically illustrated in figure
5.2. Contrast this with the linguistic symbiosis between Pic% and Smalltalk as shown
in figure 4.11.

To understand why this can be a major problem, consider the snippet of Piccola code
shown in listing 5.4. A Piccola formperson is defined with the local labelnameand
the servicegetName , which returns the value bound to the labelname. The Smalltalk
classVisitingCardMaker is instantiated and the serviceprintCard is invoked
with theperson form as argument. Because no specific interface is specified for the
external form, the message will be forwarded to the externalobject. This means the
argument form will be passed to Smalltalk. Now suppose the external object’s imple-
mentation ofprintCard sends thegetName message to its argument, in this case
theperson form. While this would work in Pic%, which is based on the linguistic
symbiosis model, it does not have the expected behaviour in Piccola.

When theperson form is passed to Smalltalk, it winds up there as its meta rep-
resentation. This representation can receive Piccola metaoperations but can neither
understand the Smalltalk messagegetName nor map this message to thegetName
Piccola service.

This problem arises from the fact that Piccola exchanges data with the same lan-
guage as it is implemented in: Smalltalk. Piccola’s meta representations thus exist on
the same level as the regular Smalltalk values. We have seen that for this to work,
the Piccola meta representations should be wrapped by base level Smalltalk objects

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 56

person =
’name = "lieven"
getName: name

vcm = Host.class("Smalltalk.VisitingCardMaker").new()
vcm.printCard(person)

Listing 5.4: Passing a plain Piccola form as an argument to a Smalltalk method.

when passed down. These wrappers are to map base level Smalltalk messages to meta
operations on the Piccola meta object.

Because the meta representation of a passed down form is not wrapped, it only un-
derstands Piccola meta operations. This means a Piccola form cannot be sent regular
Smalltalk messages as if it was a Smalltalk object.

5.2.2 Passing an External Form back to Smalltalk

The Piccola code shown in listing 5.2, has another flaw besides the one mentioned
in the previous section. If the button generated by that piece of code would be clicked,
no push method would be found injuggler , which was assigned to the instance
variable of thebutton component. Although we have written code to make sure
Juggler components are adapted if they are passed to Piccola, these adaptations get
lost when passing the adapted component back to Smalltalk.

The problem is that the glue code to adapt an external component, is contained in the
interface form, which is never passed to Smalltalk. If an adapted external component is
passed back to Smalltalk, first the interface form is stripped off, and only the peer form,
the Piccola level representation of the external component, is passed back to Smalltalk.
This results in the original component winding up in Smalltalk again. These processes
are illustrated in terms of the linguistic symbiosis model in figure 5.3.

Compare this illustration with figure 5.4, which shows what happens when an exter-
nal component adapted in Pic% is passed down to Smalltalk again. We have already
seen an example of this behaviour in the Pic% code of listing 5.3. A component is
adapted by creating a newregular Pic% object, which delegates to the Smalltalk com-
ponent. Thus, when passing this regular Pic% object to Smalltalk, its meta representa-
tion will be wrapped to map regular Smalltalk messages to Pic% meta operations. If a
method cannot be found in the regular Pic% object, it will delegate to the external com-
ponent. This means the adaptations specified in Pic% are preserved when the adapted
component is passed to Smalltalk again.

A related problem is that theupanddownoperations for respectively passing Smalltalk
objects to Piccola and passing these objects back from Piccola to Smalltalk do not al-
ways have the property of cancelling each other out. Schärli [Sch01] says that theup
operation, orleft operation from the viewpoint of the linguistic symbiosis model, can

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 57

Figure 5.3: Passing an external component between Piccola and Smalltalk in linguistic
symbiosis terms.

Figure 5.4: Adapting an external component in Pic% and passing it back to Smalltalk.

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 58

Figure 5.5: Passing a component up and down while changing theupoperation.

be altered dynamically. Now suppose an external component is passed up to Piccola,
back down to Smalltalk and finally up again to Piccola. If in between the down process
and the last up process, the specification of the up operationis changed, these two last
operations will not be inverses.

This problem is exemplified in figure 5.5: Theup operation is altered to add a label
bar instead of a labelfoo . Passing down a form that was created with the first version
of the up operation, and then passing it up to Piccola again, after thechanges to the
operation, will not result in the same form that was passed toSmalltalk.

5.3 Separation of Interface Mapping and Behavioural
Adaptations

As we have seen in section 3.4.1, Piccola provides a generic interface for compo-
nents that are passed from another language. It is however possible to alter theup
operation in a reflective manner, so that this generic interface is replaced by a specific
one. Such reflective control over theup operation might also prove very valuable in
Pic%, when using the language and its linguistic symbiosis relationship for component
composition.

However, despite the fact that the form created by the altered up operation is called
the specific interface form, such a form may also adapt the component to contain new
functionality. We believe that when adapting components, it might be useful to be able
to separate glue code that purely implements interface mappings and glue code that
adds new functionality to components, like the code in listing 5.2.

To understand when this feature might prove valuable, consider the illustration in
figure 5.6. An external component instance(1), someCollection type, is passed up
to Pic% and appears as a regular Pic% object at that(2)level. We first extend this object
with code containing an interface mapping, resulting in a new Pic% object(3). This
object will understand the messageadd , which is mapped to the methodat ∼put ∼.

CHAPTER 5. PIC% AS A SCRIPTING LANGUAGE 59

Figure 5.6: Separation of interface mappings and behavioural adaptations.

We then again extend this new object, now with glue code that adds new behaviour
to the component. The methodaddToBack ∼ will add its argument to the back of
the collection and is implemented in terms of theadd method. Finally, the resulting
object (4) is passed to Smalltalk again and winds up there as a wrapped Pic% meta
representation(5).

We now want the regular Pic% object that contains the behavioural adaptations(4) to
understand the messages declared in the interface mapping.A reason for declaring such
an interface mapping might be to provide the component with an interface that suits the
used compositional style. When this object is passed to Smalltalk (5), however, we do
not want the object to understand the messages declared in the interface mapping. It
makes more sense, on this level, to send the Smalltalk messages from the original
component when we want to invoke that behaviour. This prevents the interfaces on the
Smalltalk level from getting cluttered.

When sending a message to the adapted component(5) from within Smalltalk, the
Pic% object(4) will not delegate to the object containing the interface mappings(3),
but directly to the representation of the original component (2), and as such to the
original component. When sending a message to the adapted component from within
Pic%, the interface object(3) will be delegated to, making the methods that perform
the mappings accessible.

Chapter 6

Conclusions

6.1 Summary

The aim of this dissertation was to discuss the benefits of using linguistic symbio-
sis to let scripting and composition languages transparently exchange data with other
languages.

In chapter 2, we discussed component-based development. Wepresented a brief
history of the field and clearly defined what is meant by the terms component and
component framework. The term scripting was defined and an overview of the features
that a scripting language should provide was given. We also discussed the notion of
glue code, which is different from other scripting code in that it adapts components that
do not satisfy certain requirements. Finally, a conceptualframework for composition,
which specifies that applications should be defined in terms of components, scripts,
and glue, was presented.

Chapter 3 explained Piccola, a composition language that isdesigned with the con-
ceptual framework for composition in mind. We first discussed the syntax and seman-
tics of the language, followed by a presentation of its original approach to access exter-
nal components. This strategy, called bridging, was identified to have some problems
and so a revised version of it was also presented.

Chapter 4 presented Pico, a high-level programming language that can be seen as
a derivative of Scheme. We explained its purpose, syntax, and semantics. We also
introduced Pic%, a prototype-based extension of Pico, and an implementation of of
Pic%, called Sic%. A special property of Sic% is its linguistic symbiosis with the
underlying Smalltalk system, which allows Pic% and Smalltalk objects to seamlessly
send each other messages. This led to an explanation of the conceptual model on which
this linguistic symbiosis implementation is based.

In chapter 5, we contemplated the use of linguistic symbiosis to adapt and compose
components written in an external implementation language. We contrast this with
the bridging strategy used by Piccola, which is another approach to access external
components.

60

CHAPTER 6. CONCLUSIONS 61

6.2 Conclusions

We have seen that, when adapting an component, the glue code should not merely
forward messages to this component. If new operations are invoked in the behaviour
executed by the message forward, only the original component will be aware if these
operations, rather than the whole adapted component. This is due to the self-problem
and can be solved by using proper delegation. The glue code thus should delegate to
the external component instead of consulting the latter.

When using a scripting language to compose components written in another lan-
guage, we do not only want to access these components from within the scripting lan-
guage. We also want to be able to pass data created in the scripting language to the
component’s implementation language. Typically, this is done by using such data as
arguments to operations invoked on the external component.It is important to ensure
that from within the component’s implementation language,the behaviour specified on
the passed scripting language data can be invoked. Some needed functionality can then
be implemented in the scripting language itself, for example to create a prototype of a
component, and be invoked from within the component language when passed to it.

After we have adapted an external component, we would like our modifications to
still be reachable when the adapted component is passed backto the original com-
ponent’s implementation language. An approach to achieve this is by combining the
features discussed in the previous paragraphs. The glue code that adapts an external
component should be encapsulated as regular scripting language data, delegating to the
external component. Now, if the behaviour specified in the scripting language can be
invoked from within the component’s implementation language, the adaptations will
also be visible on that level.

Thus, when passing an adapted component back to the implementation language of
the original component, the adaptations will be preserved.We can, however, differen-
tiate between two types of adaptations. On the one hand thosethat are made purely to
map the interface of an external component to another interface, for example to bet-
ter suit the scripting language’s philosophy. On the other hand, the adaptations that
add new functionality to a component. It does not make much sense however, to also
maintain adaptations of the former category when an adaptedcomponent is passed to
the original component’s implementation language, as thiswill only result in cluttered
interfaces. We showed an approach that allows to differentiate between the two cat-
egories when implementing glue code, and will disregard theinterface mappings if
messages are sent from within the component’s implementation language.

Bibliography

[Ach02] Franz Achermann.Forms, Agents and Channels — Defining Composition
Abstraction with Style. PhD thesis, University of Bern, January 2002.

[ALSN01] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nier-
strasz. Piccola — a small composition language. In Howard Bowman
and John Derrick, editors,Formal Methods for Distributed Processing
— A Survey of Object-Oriented Approaches, pages 403–426. Cambridge
University Press, 2001.

[AN00] Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In
Jürg Gutknecht and Wolfgang Weck, editors,Modular Programming
Languages, volume 1897 ofLNCS, pages 77–89, Zürich, Switzerland,
September 2000. Springer-Verlag.

[AN01] Franz Achermann and Oscar Nierstrasz. Applications= Components +
Scripts — A Tour of Piccola. In Mehmet Aksit, editor,Software Archi-
tectures and Component Technology, pages 261–292. Kluwer, 2001.

[ASS96] Harold Abelson, Gerald J. Sussman, and Julie Sussman. Structure and In-
terpretation of Computer Programs. MIT Press, Cambridge, MA, USA,
1996.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. InOOP-
SLA/ECOOP ’90: Proceedings of the European Conference on Object-
Oriented Programming on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 303–311, New York, NY, USA, 1990.
ACM Press.

[BFVD01] Werner Van Belle, Johan Fabry, Karsten Verelst, and Theo D’Hondt. Ex-
periences in mobile computing: the cborg mobile multi-agent system.
In TOOLS ’01: Proceedings of the 38th conference on Technologyof
Object-Oriented Languages and Systems. IEEE Computer Society Press,
2001.

[Chu41] Alonzo Church.The Calculi of Lambda Conversion.Princeton Univer-
sity Press, Princeton, NJ, USA, 1941.

[CM04] Tom Van Cutsem and Stijn Mostinckx. A prototype-based approach to
distributed applications. Licenciaatsthesis, Vrije Universiteit Brussel,
June 2004.

62

BIBLIOGRAPHY 63

[CMM+04] Tom Van Cutsem, Stijn Mostinckx, Wolfgang De Meuter, Jessie
Dedecker, and Theo D’Hondt. On the performance of soap in a non-
trivial peer-to-peer experiment. InProceedings of 2nd International Con-
ference of Component Deployment., pages 215–218. Springer, 2004.

[Cox86] Brad J. Cox. Object-Oriented Programming: an Evolutionary Ap-
proach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[Ded06] Jessie Dedecker.Ambient-oriented Programming. PhD thesis, Vrije Uni-
versiteit Brussel, 2006.

[DM03] Theo D’Hondt and Wolfgang De Meuter. Of first-class methods and dy-
namic scope. InActes de LMO’03: Langages et Modèlesà Objets, 2003.

[GWDD06] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. Inter-
language reflection – a conceptual model and its implementation.Journal
of Computer Languages, Systems and Structures, 32(2-3):109–124, July
2006.

[Gyb04] Kris Gybels. Sic%: Smalltalk implementation of pic% [online]. http:
//prog.vub.ac.be/ ∼kgybels/Sicoo/sicoo.html , 2004.

[H9̈3] Urs Hölzle. Integrating independently-developed components in object-
oriented languages. InECOOP ’93: Proceedings of the 7th European
Conference on Object-Oriented Programming, pages 36–56, London,
UK, 1993. Springer-Verlag.

[IMY92] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. Rbcl: A re-
flective object-oriented concurrent language without a run-time kernel.
In Proceedings of International Workshop on New Models for Software
Architecture (IMSA): Reflection and Meta-Level Architecture, pages 24–
35, Tama City, Tokyo, November 1992.

[Kan02] Alexander Kanavin. An overview of scripting languages [online].http:
//www.sensi.org/ ∼ak/impit/studies/report.pdf ,
2002.

[Kon95] Dimitri Konstantas. Interoperation of object-oriented applications. In Os-
car Nierstrasz and Dennis Tsichritzis, editors,Object-Oriented Software
Composition, pages 69–95. Prentice-Hall, 1995.

[KRC91] Günter Kniesel, Mechthild Rohen, and Armin B. Cremers. A manage-
ment system for distributed knowledge base applications. In Verteilte
Künstliche Intelligenz und kooperatives Arbeiten, 4. Internationaler GI-
Kongress Wissensbasierte Systeme, pages 65–76, London, UK, 1991.
Springer-Verlag.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. InOOPLSA ’86: Conference Pro-
ceedings on Object-Oriented Programming Systems, Languages and Ap-
plications, pages 214–223, New York, NY, USA, 1986. ACM Press.

BIBLIOGRAPHY 64

[Lie05] Wouter Lievens. A symbiosis between delegation-based and inheritance-
based object-oriented programming languages. Licenciaatsthesis, Vrije
Universiteit Brussel, June 2005.

[LSNA97] Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz, and Franz Acher-
mann. Towards a formal composition language. In Gary T. Leavens and
Murali Sitaraman, editors,Proceedings of ESEC ’97 Workshop on Foun-
dations of Component-Based Systems, pages 178–187, Zurich, Septem-
ber 1997.

[Lum99] Markus Lumpe.A pi-Calculus Based Approach for Software Composi-
tion. PhD thesis, University of Bern, Institute of Computer Science and
Applied Mathematics, January 1999.

[McI60] M. Douglas McIlroy. Macro instruction extensions of compiler lan-
guages.Commun. ACM, 3(4):214–220, 1960.

[McI68] M. Douglas McIlroy. Mass-produced software components. In J. M. Bux-
ton, Peter Naur, and Brian Randell, editors,Software Engineering Con-
cepts and Techniques (1968 NATO Conference of Software Engineering),
pages 88–98. NATO Science Committee, October 1968.

[MDD04] Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker. Pico: Scheme
for mere mortals. InECOOP 2004: Lisp and Scheme Workshop, 2004.

[MDS01] David R. Musser, Gilmer J. Derge, and Atul Saini.STL tutorial and ref-
erence guide, second edition: C++ programming with the standard tem-
plate library. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[Meu04] Wolfgang De Meuter.Move Considered Harmful: A Language Design
Approach to Mobility and Distribution for Open Networks. PhD thesis,
Vrije Universiteit Brussel, 2004.

[MGD99] Wolfgang De Meuter, Sebastián González, and TheoD’Hondt. The de-
sign and rationale behind pico. Technical report, Vrije Universiteit Brus-
sel, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i.Inf. Comput., 100(1):1–40, 1992.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-oriented software tech-
nology. In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-
Oriented Software Composition, pages 3–28. Prentice-Hall, 1995.

[NTdMS91] Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey, and Marc Stadel-
mann. Objects + scripts = applications. InProceedings, Esprit 1991
Conference, pages 534–552, Dordrecht, NL, 1991. Kluwer Academic
Publishers.

[Ous94] John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1994.

[Ous98] John K. Ousterhout. Scripting: Higher-level programming for the 21st
century.Computer, 31(3):23–30, 1998.

BIBLIOGRAPHY 65

[Pee03] Adriaan Peeters. Language symbiosis through a joint abstract grammar.
Licenciaatsthesis, Vrije Universiteit Brussel, August 2003.

[Sam97] Johannes Sametinger.Software Engineering with Reusable Components.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[Sch99] Jean-Guy Schneider.Components, Scripts, and Glue: A conceptual
framework for software composition. PhD thesis, University of Bern,
Institute of Computer Science and Applied Mathematics, October 1999.

[Sch01] Nathanael Schärli. Supporting pure composition by inter-language bridg-
ing on the meta-level. Diploma thesis, University of Bern, September
2001.

[Sch03] Andreas Schlapbach. Enabling white-box reuse in a pure composition
language. Diploma thesis, University of Bern, January 2003.

[SN99] Jean-Guy Schneider and Oscar Nierstrasz. Components, scripts and glue.
In Leonor Barroca, Jon Hall, and Patrick Hall, editors,Software Architec-
tures — Advances and Applications, pages 13–25. Springer-Verlag, 1999.

[Ste94] Patrick Steyaert.Open Design of Object-Oriented Languages. PhD the-
sis, Vrije Universiteit Brussel, 1994.

[Szy02] Clemens Szyperski.Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[Van04] Wim Vanderperren.Combining Aspect-Oriented and Component-Based
Software Engineering. PhD thesis, Vrije Universiteit Brussel, May 2004.

[vR95] Guido van Rossum.Python Reference Manual. Amsterdam, The Nether-
lands, The Netherlands, 1995.

[WS91] Larry Wall and Randal L. Schwartz.Programming Perl. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1991.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol specifications and com-
ponent adaptors.ACM Trans. Program. Lang. Syst., 19(2):292–333,
1997.

