
c© Vrije Universiteit Brussel, all rights reserved.

Abstract

The common object-oriented languages suffer from the “tyranny of dominant
decomposition”. As such, they are not able to cleanly modularize every concern.
This means that crosscutting concerns arise, which are typically scattered over
the software system, and tangled with other concerns. The principle of AOP
is a proposed solution to the problem of crosscutting concerns. It strives to
refactor the crosscutting concerns into aspects. In the light of AOP, there is a
demand for aspect mining techniques that automatically mine a legacy system
for all crosscutting concerns potentially to be turned into aspects. Such a legacy
system is characteristically of large scale, complex and poorly documented;
properties that make it practically infeasible to manually mine for crosscutting
concerns.

In this dissertation, we investigate the extent to which cluster analysis can be
used to perform aspect mining. Cluster analysis is an unsupervised learning
technique. It is concerned with grouping objects that are similar, according to
a user-provided distance measure. We propose five aspect mining techniques
that use cluster analysis. The proposed techniques differ in the distance mea-
sures they use to group source code methods in the legacy system. We further
compare these techniques to one another, and to aspect mining techniques au-
thored by other researchers. This comparison is performed in terms of both
aspect mining results and analysis properties.

Acknowledgements

I would have never finished this dissertation without the help of a lot of people.
Therefore I would like to express my gratitude towards:

Prof. Dr. Theo D’Hondt for promoting this thesis.

Andy Kellens for being an excellent advisor. Not only did he come up with the
subject of this dissertation, he also guided me throughout the whole process
of creating this thesis, from the implementation to the writing stages. He
continuously provided suggestions, ideas and feedback, in addition to proof-
reading everything. Without his help, this dissertation would never have seen
the light of day.

Prof. Dr. Kim Mens for his guidance in the early stages of this thesis.

The researchers at the Programming Technology Lab for their invaluable feed-
back and help throughout the past year.

The Vrije Universiteit Brussel and Departement Informatica for an excellent
education.

Last but not least my parents, girlfriend, family and friends for their continuous
support.

Contents

1 Introduction 1

1.1 The Fundamental problem . 1

1.1.1 A Solution: AOP . 2

1.2 Aspect Mining . 2

1.3 Cluster Analysis and Aspect Mining 3

1.4 The Aim of the Dissertation . 3

1.5 Outline of the Dissertation . 4

2 Aspect-Oriented Programming 5

2.1 Crosscutting Concerns . 5

2.2 Aspect-Oriented Programming 6

2.2.1 Some Interesting AOP Approaches 7

2.2.2 AspectJ . 8

2.3 Summary . 10

3 Edit Distance 11

3.1 String Edit Distance . 11

3.2 Tree Edit Distance . 13

3.3 Summary . 19

4 Cluster Analysis 20

4.1 What is Cluster Analysis? . 20

4.2 Distance Measures . 23

4.2.1 Jaccard Distance . 23

4.2.2 Cosine Similarity . 24

4.3 Single Pass Clustering . 25

4.4 Partitional Clustering . 25

4.4.1 K-means . 25

i

4.4.2 K-medoids . 27

4.5 Hierarchical Clustering . 27

4.5.1 Lance-Williams . 29

4.5.2 CURE . 30

4.5.3 ROCK . 31

4.5.4 CHAMELEON . 31

4.6 Density-based Clustering . 31

4.6.1 DBSCAN . 32

4.6.2 OPTICS . 33

4.7 Grid-based Clustering . 34

4.7.1 STING . 34

4.8 Subspace-based Clustering . 36

4.8.1 CLIQUE . 36

4.9 Model-Based Clustering . 37

4.9.1 EM . 38

4.10 Cluster Evaluation . 39

4.10.1 Silhouette Coefficients . 40

4.11 Overview . 40

5 Aspect Mining 43

5.1 What is Aspect Mining? . 43

5.1.1 Common Terms in Aspect Mining 44

5.2 Clone Detection Techniques . 44

5.2.1 Relation to Aspect Mining 44

5.2.2 PDG-based Clone Detection 45

5.2.3 AST-based Clone Detection 49

5.2.4 Token-based Clone Detection 49

5.2.5 Discussion . 50

5.3 Automated Identification of Aspect Candidates 51

5.3.1 Detecting Unique Methods 51

5.3.2 Fan-in Analysis . 51

5.3.3 Natural Language Processing on Source Code 52

5.3.4 Analyzing Recurring Patterns of Execution Traces 53

5.3.5 Clustering of Similar Method Names 56

5.3.6 Clustering Based on Method Invocations 57

ii

5.3.7 Formal Concept Analysis of Execution Traces 59

5.3.8 Formal Concept Analysis of Identifiers 63

5.3.9 Aspect Mining Based on PDG’s 64

5.4 Summary . 65

6 JHotDraw 66

6.1 Motivation for our Choice of JHotDraw 66

6.2 Architecture of JHotDraw . 66

6.3 Design Patterns and AOP . 67

6.3.1 Observer . 68

6.4 Crosscutting Concerns in JHotDraw 71

6.4.1 Undo . 72

6.4.2 Error Handling . 73

6.4.3 Decorator . 73

6.4.4 Adapter . 75

6.4.5 Visitor . 76

6.4.6 Composite . 76

6.4.7 Command . 77

6.4.8 Other Concerns . 78

6.5 Summary . 79

7 Five New Aspect Mining Techniques 81

7.1 Our Approach to Cluster Analysis 81

7.1.1 A Choice of Cluster Algorithms 82

7.1.2 Cluster Features . 83

7.1.3 Automatic Selection of a Clustering in the Hierarchy . . . 84

7.2 The Working Definition of Crosscutting 84

7.2.1 The Definition . 85

7.3 An Overview of the Five Aspect Mining Techniques 89

7.4 Implementation Notes . 91

7.4.1 The Presentation of the Aspect Mining Results 91

7.4.2 The Underlying Code Analysis Workbench 91

7.5 Logic Clustering . 92

7.5.1 Pre-filtering . 92

7.5.2 Post-filtering . 93

7.5.3 Call Clustering . 94

iii

7.5.4 Type Clustering . 96

7.5.5 Ngram Clustering . 96

7.5.6 Tree Clustering . 98

7.6 Method Clustering . 103

7.6.1 Name Clustering . 103

7.7 A Comparison with Existing Aspect Mining Techniques 104

7.8 Summary . 106

8 The Experiments 107

8.1 Matching Cluster Algorithms to Aspect Mining Techniques . . . 107

8.2 The Aspect Mining Experiments 108

9 The Aspect Mining Results 110

9.1 Overview of the Results . 110

9.2 Newly-Discovered Crosscutting Concerns 112

9.2.1 Condition Checking . 112

9.2.2 Duplication . 114

9.2.3 CollectionsFactory . 114

9.2.4 Inheritance Gap . 115

9.2.5 Concurrency . 116

9.3 Logic Clustering . 117

9.3.1 Ngram Clustering . 117

9.3.2 Call Clustering . 118

9.3.3 Tree Clustering . 119

9.3.4 Type Clustering . 123

9.4 Name Clustering . 125

9.5 Selected Crosscutting Concerns 125

9.5.1 Error Handling . 125

9.5.2 Decorator . 125

9.6 Undetected Crosscutting Concerns 127

9.7 With Respect to Existing Aspect Mining Techniques 128

9.8 Conclusions . 130

10 Conclusions 132

10.1 Summary . 132

10.2 Contributions . 134

10.3 Possibilities for Future Work . 135

iv

Bibliography 137

v

List of Figures

2.1 A Logging aspect, illustrative of pointcuts and advice. 8

2.2 A Logging aspect, illustrative of inter-type declarations. 9

3.1 The three edit operations on trees. 14

3.2 A mapping from one tree to another. 16

4.1 The diagram shows a clustering of 5 objects. 21

4.2 Three natural clusters and one outlier, in two-dimensional Eu-
clidean space. 21

4.3 This dendrogram represents a hierarchy of five initial objects. . . 28

4.4 This diagram represents a hierarchy of five initial objects. 28

4.5 A cluster visualization technique of OPTICS. 33

4.6 A grid imposed by STING on a two-dimensional data space. . . . 35

4.7 CLIQUE divides 1D and 2D into cells, in a two-dimensional data
space. Dense cells are bold. 37

5.1 An example lattice resulting from a Formal Concept Analysis. . . 60

5.2 The sparse version of the lattice in Figure 5.1 60

5.3 The resulting concept lattice for Table 5.8 62

6.1 UML diagram of the core architecture of the JHotDraw framework. 67

6.2 UML diagram of the Observer design pattern. 70

6.3 A simplified UML diagram of the Undo concern in JHotDraw. . . 72

6.4 UML diagram of an instance of Decorator in JHotDraw. 74

6.5 UML diagram of an instance of Adapter in JHotDraw. 75

6.6 UML diagram of an instance of Visitor in JHotDraw. 76

6.7 UML diagram of an instance of Composite in JHotDraw. 77

6.8 UML diagram of an instance of Command in JHotDraw. 78

7.1 The AHC process, as determined by using the technique of clus-
ter features. 83

vi

7.2 The hierarchy distance between two classes. 87

7.3 An illustration of Call Clustering’s cluster feature solution. . . . 95

7.4 The parse tree of the upper method in Figure 7.5. 98

7.5 Two near-clones. 98

9.1 The CollectionsFactory concern crosscuts the handles method. . 114

9.2 An instance of Inheritance Gap: identical implementations lack-
ing a common ancestor. 115

9.3 The common tree structure amongst the methods in Cluster 5. . 120

9.4 Tree structures associated with redelegation, with a matching
code example for each. 126

vii

List of Tables

3.1 An alignment between two strings of DNA. 12

3.2 A dynamic programming algorithm for string edit distance. . . . 13

3.3 The algorithm for retrieving the optimal edit script that trans-
forms one string into another. 14

3.4 The recurrence relation for tree edit distance. 17

3.5 A sketch of Zhang and Shasha’s dynamic programming algorithm
for tree edit distance. 19

4.1 The discussed cluster algorithms and their input parameters. . . 41

4.2 The discussed cluster algorithms and various properties. 41

5.1 Example code fragment and program dependence graph. 45

5.2 An example where backward slicing falls short. 46

5.3 Clone detection approaches and the obstacles they can overcome. 50

5.4 Example of an execution trace in Dynamit. 54

5.5 A trace problematic to purely dynamic analysis of recurring pat-
terns. 55

5.6 An execution trace with static information. 56

5.7 Example association rules. 59

5.8 The execution traces for the Search and Insertion use cases. . . 62

6.1 AspectJ refactorings of design patterns and improvement in mod-
ularity properties. 68

6.2 AspectJ refactoring of the Observer design pattern. 69

6.3 The crosscutting concerns we have documented. 71

7.1 The working definition of crosscutting in Case 1. 87

7.2 The working definition of crosscutting in Case 2. 89

7.3 The aspect mining techniques and their characteristics in imple-
mentation. 90

viii

7.4 A comparison of aspect mining techniques. 105

8.1 Comparing silhouette coefficients for each aspect technique. . . . 109

8.2 The subsets of JHotDraw that were used to evaluate the cluster
algorithms. 109

8.3 The relative score of each cluster feature solution. 109

8.4 How we matched each technique to a cluster algorithm. 109

8.5 The subset of JHotDraw mined for aspects. 109

9.1 The number of clusters detected for each already familiar concern.111

9.2 The number of clusters detected for the newly-discovered concerns.111

9.3 Some additional statistics regarding the mined clusters. 111

9.4 Aggregate Cluster Analysis compared to other aspect mining
techniques. 128

ix

Chapter 1

Introduction

1.1 The Fundamental problem

Many existing programming languages, including object-oriented, procedural
and functional languages, can be classified as generalized-procedure (GP) lan-
guages. Their means of abstraction and composition are founded on forms of
generalized procedure (object, method, procedure). After many years of the
practical use of these languages, they have shown a particular weakness: they
are not able to cleanly encapsulate each concern in a generalized procedure of
its own. (A concern should be understood to be any piece of interest or focus in
a software system.) As a consequence, crosscutting concerns arise [KLM+97].
A crosscutting concern is characterized by:

1. scattering, meaning that the concern is spread out over different general-
ized procedures in the software system, instead of being localized in one
place in the source code;

2. tangling, which is the term used to indicate that a generalized procedure
encapsulates more than one concern.

“The holy grail of software engineering” as it is sometimes called, separation
of concerns is essential in the software development process. The aim of this
principle is to break the software system into distinct modules that overlap in
functionality as little as possible. The desired advantages are to [BK04]:

• facilitate software evolution;

• improve program comprehensibility;

• improve program adaptability;

• increase program maintainability;

• allow reuse of code.

1

It should be clear that crosscutting concerns violate the separation of concerns,
and that they are thus of note to any programmer and programming language
engineer.

1.1.1 A Solution: AOP

Aspect-Oriented Programming (AOP) [KLM+97] is a relatively new program-
ming paradigm. It strives to cleanly encapsulate the crosscutting concerns into
aspects, which are a new kind of module. Novel languages for writing aspects
were invented (e.g. AspectJ [KHH+01]) that are complementary to a “defi-
cient” GP language (Java in the case of AspectJ). The complemented language
is called the base language, while the software system written in that language
is called the base system. At run- or compile-time, the aspects are woven into
the base system.

1.2 Aspect Mining

Commonly, AOP languages are used to build software from the ground up,
or to extend an existing software system with new functionality. However,
another scenario is the migration of an existing software system to being an AOP
solution. This means that the crosscutting concerns in the system are refactored
into aspects. In research, this migration is divided into two consecutive steps
[KM05]:

1. An aspect mining step Aspect mining is the activity of discovering
those crosscutting concerns that potentially could be turned into aspects,
from the source code and/or run-time behaviour of a given software sys-
tem.

2. An aspect refactoring step Aspect refactoring is the activity of actu-
ally transforming the identified aspect candidates into real aspects in the
source code.

A legacy system is characteristically poorly documented, large and complex.
Thus, in the case of a legacy system, it is particularly hard (if not unfeasible in
practice) to carry out the aspect mining step by hand. That is why the main
focus of aspect mining research lays on tools that aide the developer in mining
for aspects. There exist dedicated browsers that assist the developer in tracing
the scattered path of a crosscutting concern, using some form of intelligence or a
query language. Additionally, there are those aspect mining techniques that aim
to automatically uncover all aspect candidates in the legacy system. However,
at the current time, a fully-automatic aspect mining technique seems unlikely.
Our research is concerned with the second category of aspect mining approaches.
More specifically: we investigate the extent to which cluster analysis can be used
to automatically mine for aspects.

2

1.3 Cluster Analysis and Aspect Mining

Cluster analysis is often said to be a machine learning technique [Mit97]. The
analysis requires two inputs: a set of objects, and a (binary) distance measure
between these objects. The distance measure relates a degree of dissimilarity
between the objects. Thus, indirectly, it also provides a notion of similarity.
Cluster analysis aims to group objects into clusters, i.e. groups of objects, such
as to maximize:

• cluster cohesion, which is the degree to which objects in the same cluster
are similar to one another;

• cluster separation, which is the degree to which objects in different clusters
are dissimilar to one another.

Aspect mining and cluster analysis have intersected twice before. The aspect
mining technique of Shepherd et al. [SP05a] uses methods in the legacy system
as the objects in cluster analysis. The deployed distance measure considers
two methods to be similar, only if they have similar names. This technique
effectively groups similarly named methods into the same cluster. The under-
lying hypothesis is that crosscutting concerns are often implemented through a
rigorous use of naming conventions, and that they can thus be detected using
lexical analysis techniques as this one.

The other aspect mining technique groups methods as well [LHH05], but in
computing the distance between two methods, it analyzes the method bodies
in which both the methods are called. The methods in a resulting cluster tend
to be called together in method bodies. The idea is that a recurring pattern of
method calls can hint at a crosscutting concern.

1.4 The Aim of the Dissertation

The purpose of this dissertation is to investigate the extent to which cluster
analysis can be used to perform aspect mining. We consider the suitability of
different cluster algorithms that implement cluster analysis. This assessment
is made through implementation and experimentation work, as well as through
(literature) study. As our main work, we propose several aspect mining tech-
niques that use cluster analysis to automatically mine for all aspect candidates
in the legacy system. (Although a manual post-processing step is still at order
in the use of each technique.) Finally, we evaluate the proposed aspect mining
techniques.

The aspect mining techniques we propose differ in the source code properties
they analyze. Tree Clustering is a more structural analysis, because it considers
parse trees of methods. Call Clustering is the most semantical, because of how
it mines for recurring patterns of method calls. Ngram and Name Clustering
are largely lexical analysis techniques, as they process strings extracted from

3

method names and bodies, respectively. Type Clustering specifically analyzes
typing information.

We take different approaches to evaluating our aspect mining techniques. On
one hand, we discuss the individual mining results of the techniques, and com-
pare the techniques through their individual results. We additionally compare
our techniques to work by other researchers, in terms of the characteristics of
the analyses. In another leg of the evaluation, we compare the mining results
of our techniques with those of techniques by other researchers. This is done
through a paper by Ceccato et al. [CMM+05]. In this paper, the results of
three aspect mining techniques are compared. We extend the comparison with
our own results.

The benchmark used in our experiments (and those of Ceccato et al.) is JHot-
Draw [JHo], a relatively large-scale Java system. We present an extensive list
of crosscutting concerns in JHotDraw, composed through literature study and
manual investigation of the system. It is in the context of this list that we
perform much of the evaluation work described above.

1.5 Outline of the Dissertation

In Chapter 2, we discuss the problem of crosscutting concerns, and how the
AOP principle strives to leverage this problem. In Chapter 3, the edit distance
between strings and trees is explained, as are approaches that compute this
distance. (It is the edit distance between trees that is used in the Tree Clustering
technique we propose.) Chapters 4 and 5 survey cluster analysis and aspect
mining, respectively. Chapter 6 discusses JHotDraw, the benchmark used in
our experiments. In Chapter 7, we present our aspect mining techniques, as well
as our approach to cluster analysis. This chapter further includes a comparison
of our work to existing aspect mining techniques, in terms of the properties
of the analyses. All our experimentation work is outlined in Chapter 8, after
which our aspect mining results are discussed and compared in Chapter 9. We
conclude with Chapter 10, in which we discuss what we have learned through
the work of this dissertation.

4

Chapter 2

Aspect-Oriented

Programming

This chapter details Aspect-Oriented Programming (AOP), a relatively new
principle that tries to leverage the problem of crosscutting concerns. Such
concerns are poorly-modularized and therefore detrimental to the overall man-
ageability of the software system. We first discuss this fundamental problem,
before presenting the general AOP principle. As an example, we conclude with
a quick introduction to AspectJ, the best-known realization of AOP.

2.1 Crosscutting Concerns

A key feature of programming languages is the manner in which they allow
the developer to: (1) build abstractions, and (2) further combine the abstrac-
tions to compose new abstractions. Most traditional languages are generalized-
procedure (GP) languages. Their means of abstraction and composition are
based on forms of generalized procedure (e.g. class, method, procedure). Also,
GP languages know one dominant dimension of decomposition (it is for instance
the class hierarchy in object-orientation). In the context of GP languages, a
concern to be implemented is [KLM+97]:

• a component, if it can be cleanly modularized in a generalized procedure;

• an aspect, if it can not be encapsulated as such.

An aspect typically leads to two malicious symptoms in code. The first is that
of scattering. This means that the aspect is implemented over several GP’s,
rather than being implemented in one locality in the source code. The second
is that of tangling. A GP is tangled if it encapsulates more than one concern.
In general, it is said that an aspect crosscuts the base composition – or, that it
is a crosscutting concern.

Logging and error handling are prototypical crosscutting concerns. Let us give
an example. In an object-oriented system, the same logging statement might

5

be present in many methods. Furthermore, the primary roles of these methods
might be entirely different concerns than logging. In that case, the logging con-
cern is scattered over different methods, which are in turn tangled. Alternately,
a special-purpose logging method might be implemented in several classes that
are otherwise unrelated to logging. This puts the crosscutting at a different
level of granularity than in the previous example.

The notion of “separation of concerns” is fundamental in the software develop-
ment process. It signifies the goal to break the software system into distinct
modules, in a manner that those modules overlap in functionality as little as
possible. This idea is oft-compared to the Roman principle of “divide and con-
quer”. It is more efficient to solve a general problem, if that problem is broken
into subproblems, and each subproblem is then considered separately. In terms
of a given software system, adhering to the separation of concerns is beneficial
to [BK04]:

• software evolution, which is facilitated;

• the degree to which code can be reused;

• (system) comprehensibility;

• adaptability;

• maintainability.

The last three properties are also called the “ilities” of the software system. It
should be clear that crosscutting concerns violate the separation of concerns.
They hence pose a significant problem. This is especially true because cross-
cutting concerns are practically unavoidable in software systems of considerate
scale. As a general statement, it can be said that GP languages suffer from
“the tyranny of dominant decomposition” [TOHS99]. Especially in the context
of this dissertation, it is important to note that the traditional object-oriented
languages commonly suffer from this tyranny.

2.2 Aspect-Oriented Programming

The concept of Aspect-Oriented Programming (AOP) [KLM+97] is a proposed
solution to the problem of crosscutting concerns. AOP languages strive to
cleanly encapsulate the crosscutting concerns into aspects, which are a new
kind of module. (From this point on in the text, we take “aspect” to denote the
module in AOP – rather than taking “aspect” to be a synonym to “crosscutting
concern”, as in the previous section). To this end, an AOP language offers
constructs to specify aspects. The aspects are complementary to a base system,
which is written in the base language. At run-time or compile-time, a weaver
integrates the aspects into the base system. An AOP language utilizes a join
point model (JPM). Commonly, a JPM is specified as:

6

1. The places, or run-time events, in the base system where the aspects can
be applied. These places (events), are called the join points.

2. The ways in which a condition can be specified through the quantification
of join points. Such a condition is called a pointcut.

3. The ways in which behaviour can be specified as resulting from the event of
a particular pointcut being met. Behaviour that is attached to a pointcut
is called advice.

An AOP programmer writes aspects by specifying pointcuts and advice. Given
a particular base system, the set of join points is determined by the JPM
(thus AOP language). As an example, a basic AOP language could utilize a
JPM where: (1) the join points are method calls as they occur at run-time,
(2) pointcuts are specified as disjunctions of join points, (3) advice is specified
as code, written in the base language, that must be executed when a particular
pointcut is met. Using this AOP language, one could for example create an
aspect that logs a message to the stream, each time one of selected methods
is called. In the case of this aspect, the advice is the code that performs the
logging, while the selection of methods is determined in the pointcut to which
the advice is attached.

AOP is sometimes characterized as “quantification + obliviousness” [FF00].
Quantification is the manner in which part of the base system, or part of its
behaviour, can be captured through join points and pointcuts. The above
example of a basic AOP language is also basic in its quantification. There exist
more intricate ways in which a pointcut can logically relate to a wide array of
join points. For example, a set of join points can be specified through a single
wildcard or string pattern. Pointcuts can commonly be composed out of other
pointcuts, using different logical connectives.

Quantification is often considered to be dynamic or static. Dynamic quantifi-
cation captures run-time behaviour of the base system, so that advice can be
attached to the detection of this behaviour. Static quantification captures a
subset of the base system in its static form, so that this subset can be modified
or augmented (e.g. with new classes or methods).

Obliviousness relates how the base system should not contain a single trace
of the aspects that apply to it. This means that the base system should not
be annotated, or contain statements, such that there exists a physical link
between the base system and its aspects. This principle benefits the separation
of concerns.

2.2.1 Some Interesting AOP Approaches

Stateful Aspects In the next section, we present AspectJ, the most popu-
lar AOP language. Another interesting AOP approach is that of stateful as-
pects. An AOP language that implements this approach (e.g. EAOP[DFS04],

7

aspect Logging {

// the pointcut

pointcut move():
call (void Figure.move(int))

// the advice

before (): move() {
GlobalLogStream.println(”about to move”);

}
}

Figure 2.1: A Logging aspect, illustrative of pointcuts and advice.

JAsCo[VSCF05]) has a JPM where a pointcut specifies a protocol.1 In this
context, a protocol is a pattern of join points (e.g. method calls) that could
occur at run-time. Advice is specified as having to be executed at the run-time
detection of a particular protocol. The idea behind stateful aspects is that a
pointcut (protocol) can be specified using a specialized, declarative language. In
an AOP language without a stateful aspects mechanism, the programmer typ-
ically needs to manually implement a state machine to detect protocols. This
involves mixing advice code with control code that determines the applicability
of an aspect, which is undesirable.

Adaptive Programming In an AOP language that implements the adaptive
programming approach (e.g. JAsCo [VSV+05], DJ [OL01]), an aspect can spec-
ify a traversal through a data structure. Advice can be executed at the visiting
of the objects in the structure. The idea behind adaptive programming is that
a traversal can be specified using a specialized, declarative language. The com-
mon example in this context is that of the Visitor design pattern (Section 6.4.5
for an explanation of this design pattern). Without AOP, the traversal of the
visitor must be hardcoded into the data structure itself. In AOP without adap-
tive programming, the traversal must still be completely specified – for lack of
a specialized, declarative language.

2.2.2 AspectJ

AspectJ [KHH+01] is an AOP language. It allows to specify aspects that are
complementary to a software system written in Java. AspectJ models aspects
as modules that can contain advice, pointcuts and inter-type declarations.

Figure 2.2 illustrates an aspect in AspectJ. It is a logging aspect, for printing
information to a stream whenever the Figure.move method is called. The
aspect defines a move pointcut to capture the execution points at which the
logging must be performed. The call construct inside the move pointcut is a
pointcut itself; layers of abstraction can be built through composing pointcuts

1This is a somewhat simplified representation of the JPM that such a language implements.

8

aspect Logging {

public interface Logger {}

declare parents: Figure implements Logger;

public LogStream Figure.logStream;

public void Figure.log() { logStream.println(”about to move”); }

...
}

Figure 2.2: A Logging aspect, illustrative of inter-type declarations.

out of pointcuts. The call pointcut is primitive, in that it is provided by
AspectJ. It must be given a parameter value to capture the method call(s) of
interest. In this case, the value is simply the name of the method. The aspect
also defines advice. It is specified using the before keyword. This means that
the advice is to be executed before the execution process designated by the
pointcut, i.e. before the Figure.move method is called.

In AspectJ, pointcuts and advice provide a dynamic mechanism, which is depen-
dent on run-time execution points. Conversely, inter-type declarations augment
the static structure of the base system. Figure 2.2 illustrates what the inter-
type mechanism can do. It is another Logging aspect, which imposes onto the
Figure class:

• the Logger interface (Figure now implements Logger – also note how the
aspect declares this interface itself);

• an instance variable logStream;

• a log method with a concrete implementation that writes to the stream.

Naturally, AspectJ allows to define more intricate aspects than the examples
here presented. Pointcuts can be composed using logical connectives on point-
cuts (e.g. ||, &&, !). Complementary to before advice, after and around

advice exist (the latter wraps around an execution point). Run-time infor-
mation can be retrieved from the base system, for use in an aspect. Naming
patterns can be specified rather than exact names. For example,

call(void Figure.set*(..))

captures all the accessor methods in the Figure class, regardless of which vari-
ables the methods access, or what formal parameters they have.

This list of features is not exhaustive. For further reference regarding AspectJ,
we point to [KHH+01].

9

2.3 Summary

We have explained what crosscutting concerns are, how they are detrimental
to the overall manageability of the software system, and how they suffer from
tangling and scattering. Our techniques (Chapter 7) belong to the research
field of aspect mining (Chapter 5), which is concerned with detecting cross-
cutting concerns in a given software system. We have also discussed AOP, a
proposed solution to the problem of crosscutting. We have characterized AOP
through the notion of join point models, and through “quantification + oblivi-
ousness”. The general field of AOP encompasses a multitude of concrete AOP
languages, some of which we have outlined in this section (AspectJ, stateful
aspects, adaptive programming).

10

Chapter 3

Edit Distance

In this chapter we introduce the principle of edit distance, between pairs of
strings and pairs of trees, respectively. We show how this distance can be
computed using dynamic programming.

3.1 String Edit Distance

The edit distance can be computed between an ordered pair of strings ([JP04]
for an introduction). This distance relies on two concepts. Firstly, there are
three edit operations that apply to a string of symbols. These operations are
given below, where the notation in between parenthesis is the commonly used
shorthand to denote the operation.

• substitution of a symbol x for a symbol y (x→ y)

• deletion of a symbol x (x→ λ)

• insertion of a symbol x (λ→ x)

The second fundamental concept is that of a scoring function σ, which assigns
a cost to each edit operation. This function maps each x → y, x → λ and
λ→ x to a positive integer. It considers the symbols x and y in doing so. Most
commonly, the scoring function takes into account whether x = y for a given
x → y. Alternatively, in some approaches a separate edit operation match is
defined specifically for when x = y.

An edit script is a series of edit operations. Its cost is simply the sum of the
costs of the operations it contains. Any string can be transformed into any
other string using such a script. The edit distance between two strings s1 and
s2 is the cost of a minimum cost edit script that transforms s1 into s2.

The concept of string alignments gives us another way of reasoning about edit
distance. Such an alignment is given in Table 3.1. Ignoring all λ with which
the strings are interspersed, it is the upper string (“ATCTGAT”) we want to

11

A T λ C λ T G A T
λ T G C A T λ A λ

Table 3.1: An alignment between two strings of DNA.

transform into the lower one (“TGCATA”). An alignment also hands us an edit
script. To retrieve this script, we read the columns from left to right. From each
column, with top symbol x and bottom symbol y, we derive an edit operation
x → y (note that x and y can be λ). A one-to-one correspondence exists
between the edit scripts that transform a particular string into another one,
and the alignments between those two strings. Hence it is sensible to talk about
the cost of an alignment. Also because of this correspondence, the problem of
computing the edit distance reduces to finding an appropriate alignment.

Suppose s1 and s2 are two strings we want to compute the edit distance for.
They are of length n and m, respectively. Let si,j denote the cost of a minimum
cost alignment between prefixes s1[1 → i] and s2[1 → j]. Hence, the edit
distance between s1 and s2 is sn,m. We have the following recurrence relation
for computing sn,m:

si,j = min

si−1,j + σ(s1[i]→ λ)
si,j−1 + σ(λ→ s2[j])
si−1,j−1 + σ(s1[i]→ s2[j])

(3.1)

One can implement a tree-recursive algorithm that starts from the initial prob-
lem sn,m. The algorithm deploys the above recurrence relation to break the
problem into (the combination of) three subproblems, which are then similarly
solved in top-to-bottom fashion. However, this algorithm has exponential com-
plexity. It is therefore not suitable to deploy in practice. This is where the
principle of dynamic programming steps in. It is based on the following obser-
vation: a tree-recursive algorithm can recompute the same subproblem many
times. In this case, there are many paths from the initial problem sn,m to the
same subproblem su,v (for several different values of u, v ≤ n,m). Because of
this, su,v is repeatedly solved in the basic tree-recursive approach. In dynamic
programming, the recursive computation strategy is reversed. That is to say,
all subproblems are systematically solved in a bottom-up manner. The key
idea is that any si,j is computed from values sx,y (x, y ≤ i, j) which were com-
puted and stored earlier. As such, computing any si,j is performed in constant
time. This gives rise to the algorithm for string edit distance in Table 3.2. The
computational complexity of this algorithm is a comfortable O(m× n).

The algorithm in Table 3.2 stores “backtracking pointers” in matrix b. The
“North”, “West” and “Northwest” pointers each relate a direction within ma-
trix b. Optimal alignments (thus edit scripts) for the strings s1 and s2 can be
constructed through following these pointers, starting from bn,m.

12

input: s1 and s2 to compute the edit distance for

Create an (n×m)-matrix b.
for i← 0 to n:

si,0 ← 0
for j ← 1 to m:

s0,j ← 0
for i← 1 to n:

for j ← 1 to m:
Compute si,j according to the recurrence relation.
Store si,j for later use.

bi,j ←

“North” if si,j = si−1,j + σ(s1[i]→ λ)
“West” if si,j = si,j−1 + σ(λ→ s2[j])
“Northwest” if si,j = si−1,j−1 + σ(s1[i]→ s2[j])

return(sn,m,b)

Table 3.2: A dynamic programming algorithm for string edit distance.

We provide a generalization of the principle of backtracking pointers. Given a
recurrence relation such as Equation 3.1, we call the left-hand side of the formula
the “bigger problem”. Each clause on the right-hand side is formulated in terms
of a “smaller problem” and (the cost of) an edit operation. When the recurrence
is deployed, the optimal clause is selected with respect to the global goal of
minimizing the cost of the edit script. The optimal clause encompasses the
optimal smaller problem and the optimal edit operation. A backtracking pointer
relates the bigger problem with the optimal smaller problem. Additionally,
the optimal edit operation is associated with the pointer. In following the
pointers from the initial problem to the smallest subproblems, the associated
edit operations form an optimal edit script. For this process to be possible, a
backtracking pointer needs to be associated with each subproblem.

The algorithm in Figure 3.3 precisely uses backtracking matrix b to print out
an optimal edit script that transforms a given string into another.

3.2 Tree Edit Distance

We outline the algorithm of Shasha and Zhang [SZ97] to compute the edit dis-
tance between trees ([Bil05] for an additional introduction to tree edit distance).
The algorithm imposes a number of conditions. More specifically the trees must
be:

• rooted;

• labeled, i.e. each node is assigned a label;

• numbered in left-to-right post-order fashion.

13

input:
We want to compute the edit script that transforms u in v.
b is the backtracking table that is achieved as a side effect of
computing the edit distance between u and v.
PrintScript(u, v, b, i, j):

if i = 0 ∨ j = 0:
return

if bi,j = “North”
print ui → λ
PrintScript(u, v, b, i− 1, j)

if bi,j = “West”
print λ→ vj

PrintScript(u, v, b, i, j − 1)
if bi,j = “Northwest”

print ui → vj

PrintScript(u, v, b, i− 1, j − 1)

Table 3.3: The algorithm for retrieving the optimal edit script that transforms
one string into another.

b c d e

a

r

b

c d

e
a

r

b

b c d e

b

r

a

b c d e

b

r

b c d e

b

r

b
c

d

e

b

r

a

a

ba

Figure 3.1: The three edit operations on trees.

14

Left-to-right post-order numbering is a depth-first numbering scheme. The
traversal processes the children of a node from left to right. A node is only
numbered after all its children have been assigned a number. (The two trees of
Figure 3.2 are numbered in this fashion.)

Again we define edit distance in terms of edit operations. The operations for
trees are displayed in Figure 3.1. They are respectively: substitution of one
node for another, deletion of a node, and insertion of a node. To denote edit
operations we use the arrow notation on node labels, unless the labels alone
do not tell us which nodes are actually meant. In case a node n is deleted, its
children are kept in the tree, where they are made children of the parent of n.
In case a node n is inserted as a child of node p, a consecutive subsequence of
the children of p becomes the children of n – without further specification as to
which subsequence.

The concepts of a scoring function, an edit script and ultimately the edit dis-
tance itself, all carry over from edit distance for strings. That is to say, tree edit
distance is the minimum accumulated cost to transform one tree into the other,
using deletions, insertions and substitutions of nodes. However, the recurrence
relation for trees is more complex. To be able to explain it, we must introduce
some new concepts and notation:

• Θ is the empty tree.

For a given tree T1:

• t[i1] is the node ∈ T1 with number i1;

• T [i1] is the subtree ⊂ T1 rooted at t[i1]

• l(i1) is the number of the left-most descendant of t[i1];

• forest(l(i1)..j1) is the forest in T1 induced by the nodes t[l(i1)] up to
t[j1] – this forest is an ordered collection of trees, where t[j1] is the root
of the right-most tree.

Note that for i1 = j1, forest(l(i1)..j1) is the subtree ⊂ T1 rooted at t[j1]. This
relation proves important throughout the rest of this text.

For an additional tree T2, where t[i2] and t[j2] ∈ T2:

• treedist(i1, i2) is the tree edit distance between the subtrees rooted at
t[i1] and t[i2];

• forestdist(l(i1)..j1, l(i2)..j2) is the edit distance between the given pair
of forests.

The concept of an alignment is replaced by that of a mapping between two
trees T1 and T2. Such a mapping is illustrated in Figure 3.2. It is a relation
M ⊂ T1 × T2 that draws lines between the nodes of the trees. Nodes in T1

15

f (7)

e (6)

g (5)

c (3)a (1)

d (4)

b (2)

f (7)

e (6)

h (5)d (3)

a (1)

c (4)

b (2)

Figure 3.2: A mapping from one tree to another.

that are not touched by a line are regarded as deleted (from the first tree).
Untouched nodes in T2 are regarded as inserted (into the second). Furthermore,
the following conditions must hold on any (t1[i1], t2[i2]) and (t1[j1], t2[j2]) in M :

t1[i1] is to the left of t1[j1] iff t2[i2] is to the left of t2[j2] (sibling order preserved)

t1[i1] is an ancestor of t1[j1] iff t2[i2] is an ancestor of t2[j2] (ancestor order
preserved)

Intuitively, and as with alignments for strings, there exists a one-to-one corre-
spondence between the edit scripts that transform a particular tree into another,
and the mappings between those two trees. Mappings thus inherit the cost of
the edit script they map to.

We now present the recurrence relation for tree edit distance, in the form of three
lemmas (Table 3.4). These lemmas presume trees T1 and T2 of which t1[i1] and
t2[j1] are the respective roots. We want to compute the edit distance between
T1 and T2. This distance is forestdist(l(i1)..i1, l(j1)..j1). We assume Lemma 1
to be self-explanatory. Likewise Lemma 3 follows directly from Lemma 2.

In Lemma 2 we seek a minimum-cost mapping between forest(l(i1)..i) and
forest(l(j1)..j). With respect to the nodes t1[i] and t2[j], a mapping can impose
the following relations:

1. t1[i] is not touched by a line in M .

2. t2[j] is not touched by a line in M .

3. t1[i] and t2[j] are both touched by lines in M .

16

Lemma 1 Let i ∈ desc(i1) and j ∈ desc(j1). Then

forestdist(Θ,Θ) = 0
forestdist(l(i1)..i,Θ) = forestdist(l(i1)..i− 1,Θ) + σ(t1[i]→ λ)
forestdist(Θ, l(j1)..j) = forestdist(Θ, l(j1)..j − 1) + σ(λ→ t2[j])

Lemma 2 Let i ∈ desc(i1) and j ∈ desc(j1). Then

forestdist(l(i1)..i, (j1)..j) =

min

forestdist(l(i1)..i − 1, l(j1)..j) + σ(t1[i]→ λ)
forestdist(l(i1)..i, l(j1)..j − 1) + σ(λ→ t2[j])
forestdist(l(i1)..l(i) − 1, l(j1)..l(j) − 1)
+forestdist(l(i)..i− 1, l(j)..j − 1) + σ(t1[i]→ t2[j])

Lemma 3 Let i ∈ desc(i1) and j ∈ desc(j1). Then

(1) if l(i) = l(i1) and l(j) = l(j1)

forestdist(l(i1)..i, (j1)..j) =

min

forestdist(l(i1)..i− 1, l(j1)..j) + σ(t1[i]→ λ)
forestdist(l(i1)..i, l(j1)..j − 1) + σ(λ→ t2[j])
forestdist(l(i1)..i− 1, l(j1)..j − 1) + σ(t1[i]→ t2[j])

(2) if l(i) 6= l(i1) or l(j) 6= l(j1)

forestdist(l(i1)..i, (j1)..j) =

min

forestdist(l(i1)..i− 1, l(j1)..j) + σ(t1[i]→ λ)
forestdist(l(i1)..i, l(j1)..j − 1) + σ(λ→ t2[j])
forestdist(l(i1)..l(i) − 1, l(j1)..l(j) − 1) + treedist(i, j)

Table 3.4: The recurrence relation for tree edit distance.

17

It is obvious that this list is exhaustive. We now examine the respective conse-
quences of the three cases:

1. (i, λ) ∈M . This gives the first clause of the recurrence in Lemma 2.

2. (λ, j) ∈M . This gives the second clause of the recurrence.

3. (i, k) ∧ (h, j) ∈ M . t2[k] ∈ forest(l(j1)..j). t1[h] ∈ forest(l(i1)..i). We
can reflect on the orientation of node i with respect to node h. Suppose
the following:

(A) h is an ancestor of i. This is impossible because i is the root of the
right-most tree in the forest.

(B) h is to the right of i. Impossible for the same reason as above.

(C) i is to the right of h. Through the sibling ordering condition on
mappings, k must be to the right of j. This is impossible for the
same reason as in (A).

(D) i is an ancestor of h. Through the ancestor ordering condition on
mappings, k must be an ancestor of j. This is impossible for the
same reason as in (B).

Hence h = i. Through an analogous proof k = j, and (i, j) ∈ M . Now,
by the ancestor condition on mappings, any node in subtree T1[i] can
only be touched by a node in subtree T2[j]. This has the consequence
that we can split the third clause of our recurrence into two independent
subproblems, which we then combine. One subproblem is the distance
between T1[i] − i and T2[j] − j. The other is the distance between the
nodes in forest(l(i1)..i) and forest(l(j1)..j) that remain.

The actual algorithm by Shasha and Zhang is based on a number of obser-
vations. Firstly, to compute any treedist(i, j) it is necessary to compute almost
all treedist(is, js) where is < i and js < j. This suggests a dynamic pro-
gramming approach to limit the amount of computations, as in the case of
string edit distance. The two for-loops in the pseudocode of the tree edit dis-
tance algorithm, in Table 3.5, realize this idea. However, when an algorithm
straight-forwardly implements the dynamic programming approach, it has time
complexity O(|T1|

2 × |T2|
2), where |T | is the number of nodes in T . This is

easily prohibitive in practice.

Secondly, when l(i) = l(i1) and l(j) = l(j1), the first recurrence in Lemma 3 is
at hand. In that case, forestdist(l(i1)..i, (j1)..j) = treedist(i, j). Thus, certain
tree distances arise as side effects from computing the distance between other
structures. That is why the algorithm in Table 3.5 computes only those tree
distances that have not yet arisen as such side effects. Ultimately, the main
procedure in Table 3.5 makes use of a subprocedure. This subprocedure simi-
larly follows the dynamic programming approach to compute forest distances.
The main procedure makes use of a permanent matrix to store tree distances.

18

input: T1 and T2 to compute the edit distance for

Create an (|T1| × |T2|)-matrix M for storing the tree distances.
for i← 1 to |T1|:

for j ← 1 to |T2|:
Use a subprocedure to compute treedist(i, j),
if it has not been achieved as a side effect
earlier in the computation process.

return M(|T1|, |T1|)

Table 3.5: A sketch of Zhang and Shasha’s dynamic programming algorithm
for tree edit distance.

The subprocedure creates a temporary matrix for forest distances, each time
it is called. The overall algorithm of Shasha and Zhang has the following time
complexity:

O(|T1| × |T2| ×min(depth(T1), leaves(T1))×min(depth(T2), leaves(T2)))

The overall space requirements is O(|T1| × |T2|).

3.3 Summary

We have introduced the notion of edit distance. This distance is defined as
the minimum accumulated cost to transform one entity (string or tree) into
the other, using deletions, insertions and substitutions (of symbols or nodes,
respectively). A scoring function assigns a cost to each edit operation. Tree-
recursive algorithms that compute the edit distance are typically expensive,
as they can repeatedly solve the same subproblem. The dynamic programming
approach avoids this repetition by using a bottom-up strategy in computing the
subproblems. However, while the dynamic program for string edit distance has
quadratic time complexity, Zhang and Shasha’s algorithm for tree edit distance
is significantly more expensive. The technique of Tree Clustering we propose
in Chapter 7 computes edit distance between parse trees of methods.

19

Chapter 4

Cluster Analysis

The aim of cluster analysis is to divide a set of data objects into clusters, such
that the objects in a cluster are similar to each other, but different from objects
in any other cluster. Numerous algorithms exist that perform cluster analysis.
We discuss different categories of such algorithms, where each category is illus-
trated with at least one concrete algorithm. We conclude with an overview of
the surveyed algorithms, and a section on cluster evaluation, which is concerned
with evaluating the result of cluster analysis.

4.1 What is Cluster Analysis?

Cluster analysis aims to group similar objects. (See [HK00], [Ber02], [TSK05],
and [And05] for general introductions to cluster analysis.) It is often said to be
a machine learning technique. Sometimes, it is labeled a statistical technique.
Throughout the past, cluster analysis has been used in various domains, from
sociology to biology.

The input to cluster analysis is two-fold. Firstly, a set of data objects is required.
Additionally, the user needs to provide a binary distance measure between pairs
of these objects.1 Given this input, cluster analysis aims to divide the data set
into clusters, i.e. groups of objects, such as to maximize:

• cluster cohesion, which is the degree to which objects in the same cluster
are similar to one another;

• cluster separation, which is the degree to which objects in different
clusters are dissimilar to one another.

All notions of proximity between objects (such as similarity, distance and dis-
similarity), are derived from the same user-provided distance measure. The re-
sult of cluster analysis is a clustering (hierarchical algorithms produce multiple

1Especially in this dissertation, it is important to note that the objects in cluster analysis
are typically not objects in object-orientation.

20

o3 o5

o4

o2

o1

Figure 4.1: The diagram shows a clustering of 5 objects.

. ..
.....

..
..
..

.. ...
.. ...
.. ...
.. ...
.. ..

.. ...

.. ...

.... .

.. ...
.. ...

.. .

....
..
.

..
...

. . .
....

. .
.
.
...

. .

....

.
....

. .

.
....

. .

.
...
..

.......
A B

C

p

.

Figure 4.2: Three natural clusters and one outlier, in two-dimensional Euclidean
space.

clusterings, see Section 4.5). Sometimes a diagram is used to illustrate a clus-
tering, as in Figure 4.1. Cluster analysis is often regarded to be the search to
capture the natural clustering in a data set. Typically, the clusters in a cluster-
ing are non-overlapping. Alternately, each object can be assigned to multiple
clusters, where the membership of an object to a cluster is weighted. This
approach is called fuzzy clustering [TSK05].

Often, the set of data objects has attributes. In that case, all objects share
these attributes, but typically have different values for them. (If the objects
are people, each person has an age, weight, etc.) Generally, an attribute is of a
certain kind; it is numerical (i.e. assumes numerical values), or categorical (the
values have no numerical interpretation). If a data set has n attributes, then
the dimensionality of that set is n. (While we adhere to the principle of having
shared attributes amongst all the objects, we commonly talk about the “at-
tribute of an object”; similarly, we often say an object to have a dimensionality,
while it is the same dimensionality for all the objects.) Alternately, when the
objects have no attributes, cluster analysis performs strictly on the basis of the
provided distance measure. In that case, cluster analysis works in a distance
space.

21

Throughout textbooks and articles, principles of cluster analysis are illustrated
in the simple case where the objects have two numerical attributes, and the
distance measure between them is standard Euclidean. This is done due to the
ease with which this case can be presented graphically. It is in this context that
some characteristics of clusters are generally explained. Figure 4.2 gives such
a graphic. Three natural clusters (labeled A, B, C) are visually apparent. We
can note the following:

• cluster A is of lower density than cluster B;

• cluster A is of globular shape, while cluster B is non-globular ;

• cluster A is of greater size than cluster C.

Some objects do not belong to any natural cluster. Such objects are called
outliers. Object p in Figure 4.2 is an outlier. Special consideration needs to be
given to outliers, to prevent them from skewing the result of cluster analysis.
Often, a special filtering phase is installed, to do away with these oft-malicious
objects.

A cluster algorithm, which implements cluster analysis, can be characterized
by a number of properties. Specifically, the following questions can be asked
regarding a cluster algorithm.

• How sensitive is the algorithm to outliers?

• Can it detect clusters of non-globular shape?

• How well can it handle a clustering in which the natural clusters are of
diverse shapes, sizes, or densities?

• Does it support distance spaces?

• Does it support non-numerical attributes?

• How well does it perform in the face of objects with high dimensional-
ity? (With more dimensions, it becomes less likely to distinguish well-
separated clusters.)

• Is it scalable (in terms of both time and space requirements)?

• What input does it require from the user? (E.g. some algorithms re-
quire the user to provide the desired number of clusters, which can put a
considerate problem into his, or her hands.)

There is a near uncountable amount of different cluster algorithms. Therefore,
the algorithms are commonly categorized according to a taxonomy. There is
always some overlap between categories, in that an algorithm can show charac-
teristics of more than one category. Also, there is not one common taxonomy.
We derive our own from both [TSK05] and [HK00]. Concretely, we take cluster
algorithms to implement the single pass clustering scheme, or to be partitional,
hierarchical, density-based, grid-based, model-based, or subspace-based.

22

4.2 Distance Measures

The process of cluster analysis relies on a distance measure. In some cases,
this measure is domain-specific (e.g. it is the edit distance between strings as
discussed in Chapter 3). However, typical distance measures exist that can
be deployed in many domains. For instance, standard Euclidian distance can
always be computed for objects with numerical attributes.

4.2.1 Jaccard Distance

An attribute can be binary, in that it either assumes value 0 or 1. When two
objects have only binary attributes, similarity between them can be computed
according to the simple matching coefficient (SMC):

SMC(object1, object2) =
number of matching attributes

number of attributes

where an attribute matches only if it has the same value in both objects. The
problem with this formula is that binary attributes can be asymmetric. This
means that one value is regarded more important than the other. Commonly,
the convention is adopted to let 1 signify the most important value, while 0 is
then of lesser importance. In this context, a matching attribute is more signif-
icant if it has value 1 in both objects.

The usual example of asymmetric attributes is that of (binary) documents.
Each attribute relates to a word. An attribute value is 1, if the document
contains that word; otherwise it is 0. Typically, there are many more words
(attributes) than a single document contains. Then, documents have many
more 0-value attributes than positives. If SMC were applied in this case, two
documents could be regarded similar on the basis of words neither of them
contain. This is generally undesirable.

The Jaccard distance measure remedies the shortcoming that SMC exhibits in
the light of asymetric attributes. This measure is computed as follows:

Jaccard(object1, object2) =
number of attr. that do not match

number of attr. not involved in “0−matches”

A 0-match occurs when two objects have value 0 for the same attribute. A
simple example can clarify the difference between SMC and Jaccard. Suppose
that in the case of (binary) documents, the attributes (thus words) are the
following:

(vehicle, automobile, benny, elita, alfredo, johnny, fred, monkey, ape)

Document d1 is about cars, it contains the words “vehicle” and “automobile”.
Thus, if we suppose that the above list of attributes imposes an ordering, the
object for d1 has the following attribute values:

23

(1, 1, 0, 0, 0, 0, 0, 0, 0)

Document d2 is about primates, it contains the words “monkey” and “ape”.
The corresponding object has the following attribute values:

(0, 0, 0, 0, 0, 0, 0, 1, 1)

As such,

SMC(d1, d2) =
5

9

Jaccard(d1, d2) =
4

4
= 1

Because the Jaccard is a distance, we convert it to a similarity through the
formula

1− Jaccard

which gives 0. Thus, while Jaccard (rightfully) recognizes no similarity between
the two documents, SMC does see a similarity based on the 0-matches.

4.2.2 Cosine Similarity

Similarly to Jaccard distance, cosine similarity is tailored for asymetric at-
tributes. In contrast, the cosine measure is not restricted to binary attributes;
more general types of numerical attributes are supported. In this case, asymme-
try signifies the importance of non-zero values over zero values. Thus, objects
must be considered similar based on the number of attributes for which they
both have a non-zero value.

Cosine similarity stems from the domain of document clustering [ZK02], in
which it is the intent to group documents that have similar content. In this
domain, an object is a document, while an attribute relates to a word. The
value of an attribute signifies the frequency with which that word appears in
the document. Since the attributes are ordered, the objects can be represented
as document vectors. As an example of a document vector, consider:

(1, 6, 3, 7, 5)

where the numbers are the attribute values. Cosine similarity is then computed
as follows:

cosine(o, p) =

∑n
k=1 okpk

√

∑n
k=1 o2

k

√

∑n
k=1 p2

k

where n is the dimensionality of the objects, and oi is object o’s value for
attribute i. The denominator in the formula normalizes by the norms of the
vectors. Hence, the magnitudes of the vectors is no factor in the computation
of the cosine measure.

24

4.3 Single Pass Clustering

Single pass clustering is one of the most inexpensive techniques in cluster anal-
ysis. The technique relies on an ordering of the data objects. It traverses this
ordering a single time. In doing the traversal, the technique maintains a set S
of clusters that have been formed so far. When an object is visited, it is either
merged with an existing cluster in S, or forms a new singleton cluster to be
put in S. A merger occurs between an object and a cluster, only if the cluster
is closest to the object of all clusters in S, and the distance between the two
candidate components is below a certain user-provided threshold.

The time complexity of the single pass scheme is O(n × m), where n and m
are the numbers of objects and clusters, respectively. Thus, the complexity is
O(n2) in the worst case, but generally lower. The space complexity is bounded
by a low O(n). On the downside, the result of the single pass depends on an
ordering of the objects, which is often taken to be arbitrary. Additionally, single
pass clustering seeks to be light-weight in its complexity, rather than to provide
a clustering of good quality. In fact, the technique has no characteristics that
ensure any degree of quality in cluster analysis.

4.4 Partitional Clustering

A partitional cluster algorithm is iterative. It starts from an initial clustering,
then iterates over that clustering until it is deemed to be a suitable solution.
In each step of the iteration, some objects are relocated from one cluster to an-
other. This is done as to increase, or decrease the value of an objective function.
In some algorithms this function is implicit. Because the objective function is
global (to every step of the analysis), the resulting clustering typically has some
desirable property. As an example, the resulting clusters can be center-based.
This means that every object is closer to the center of its cluster than to the cen-
ter of another cluster. (The exact definition of the center depends on the specific
algorithm used.) Partitional algorithms also have some potentially undesirable
properties. The resulting clustering can be highly dependent on the initial clus-
tering, which in turn is generally dependent on some input-parameters. When
a technique religiously attempts to increase (or decrease) some global objective
function, the technique can get stuck at a local maximum (minimum).

4.4.1 K-means

The well-known K-means technique [Har75] is a partitional algorithm that pro-
vides center-based clusters. In this case, the center of a cluster is its centroid.
This is not necessarily one of the objects in the cluster. Rather, the notion
of a centroid implies that it is computed, rather than selected. This has the
consequence that K-means is only applicable to numerical attributes. The basic
K-means algorithm is as follows:

25

1. Select k objects as initial centroids.

2. repeat

• Form k clusters by assigning each object to its most similar centroid.

• Recompute the centroid of each cluster.

3. until Centroids do not change

Not in all cases does the algorithm converge to a stationary positioning of the
centroids. Therefore, the halting condition of the algorithm is sometimes altered
(e.g. a fixed number of iterations is specified).

No objective function is apparent in the pseudocode of K-means. However, in
specifying a concrete instantiation of the basic algorithm, the choice of (implicit)
objective function is nonetheless important. This choice partly determines the
convergence properties of K-means. A commonly-used objective function is the
sum of squared error (SSE). It maps each clustering to a positive number, as
follows:

SSE(clustering) =
K

∑

i=1

∑

x∈Ci

dist(ci, x)2

where

Ci is cluster i in the clustering,

k is the number of clusters,

x is a data object,

ci is the centroid of Ci,

dist is the standard Euclidean distance.

SSE gives a measure of error between the objects and the centroids they are
assigned to. Naturally, this is an objective function we want to minimize; a
smaller SSE indicates a better fit of the objects to their centroids. One of the
cases in which K-means is guaranteed to converge, is the case where:

1. SSE is the (implicit) objective function,

2. Euclidean distance is the distance measure between the objects,

3. the centroid of a cluster is its mean (where the mean of a group of objects
constitutes the mean of each attribute).

26

Convergence to an optimal however, is not guaranteed in the above case. The
other issues regarding K-means include, firstly, the choice of the initial centroids.
The resulting clustering is highly sensitive to this initial setting. Sometimes the
initial centroids are taken randomly, or they are taken so that they (roughly) lie
as far apart as possible. Another option is to perform multiple runs of K-means,
starting from a different initial setting each time. Alternately, a hierarchical
cluster algorithm (Section 4.5) can determine the initial centroids in a pre-
processing step. Secondly, the user needs to provide the parameter k, of the
desired number of clusters. This puts a definite complication into his, or her
hands.

Some problems are associated with the general approach of mining center-based
clusters. Especially natural clusters of non-globular shape are hard to charac-
terize using one central object. These clusters are generally not detected by
K-means and similar algorithms. A measure like SSE is often minimized by
(globular) clusters of equal size and density – while the natural clusters might
not be that uniform. Additionally, outliers have a definite negative influence on
the computation of centers; they “pull” the centers towards them, away from
the natural centers.

On the upside, K-means is a simple and lightweight approach. Only the data
objects and centroids need to be kept in memory. Convergence typically occurs
in the early iterations.

4.4.2 K-medoids

The K-medoids algorithm [KR90] is very similar to K-means, but it does away
with the restriction of numerical attributes. That is to say, it supports distance
spaces. To this end, K-medoids replaces the concept of a centroid with that
of a medoid. Whereas a centroid is computed, a medoid is selected. More
specifically, the medoid of a cluster is its most centrally located object. In a
particular cluster, the medoid is that object with the highest average similarity
to all the other objects. As with K-means, we can compute the SSE measure
of a clustering (with respect to its medoids). Concretely, K-medoids is based
on the operation of swapping a medoid with a non-medoid. This is in terms
of making the medoid a non-medoid, and vice versa. In each iteration, the
algorithm considers which two objects it could swap. It performs the swap
that results in the highest decrease in SSE. Naturally, K-medoids inherits all
negative points of K-means. It even has an additional shortcoming, in that it
is relatively expensive. Generally, the algorithm is only for use in the case of
small data sets.

4.5 Hierarchical Clustering

A hierarchical cluster algorithm does not produce one clustering, as a partitional
algorithm does. Rather, a hierarchy is built, of which each level is a distinct
clustering. An agglomerative hierarchical cluster (AHC) algorithm starts with

27

o3 o5o4o2o1

0.3
0.4

0.6

0.9
distance

objects

Figure 4.3: This dendrogram represents a hierarchy of five initial objects.

o3 o5

o4

o2

o1

Figure 4.4: This diagram represents a hierarchy of five initial objects.

putting each object into a separate cluster. In each iteration, the two closest
clusters are merged. As such, each iteration adds a new level (thus clustering)
to the hierarchy. This process is halted when only one cluster remains, or some
condition is met. The resulting hierarchy can be illustrated in a dendrogram
(Figure 4.3), or a diagram (Figure 4.4). (Both figures illustrate the same hier-
archy, in which the clustering of Figure 4.1 is contained.) A composite cluster
is the result of a merger, while the singleton clusters are the one-object clus-
ters the AHC process starts with. Each joint in a dendrogram represents a
composite cluster; the numbers indicate the distances at which the clusters
were merged. In the AHC process, distance between singleton clusters is the
user-provided distance between objects. The most important element of a con-
crete AHC algorithm is precisely how distance between composite clusters is
computed.

Divisive hierarchical algorithms also exist. These start from one cluster that
encompasses all objects. In each iteration, a selected cluster is split, until only
singleton clusters remain. From this point on in the text, we focus on the much
more commonly-used AHC approach.

With respect to Partitional Clustering In the hierarchical approach, the
user does not have to provide the desired number of clusters. Additionally,
there is no initialisation problem as with algorithms like K-means. On the
other hand, any merging (or splitting) decision is final; when two objects are

28

put into the same cluster in AHC, they will not relocate to different clusters
at any later time. When a mistake is made early in the agglomerative process,
it can thus have a definite negative influence on the remainder of the process.
A hierarchical algorithm also does not provide any guarantee as to optimize a
global objective function; a local optimization problem is solved at each merger
or split. Finally, a basic AHC algorithm with no scalability measures has a
sometimes prohibitive time complexity of O(m2log(m)) and space complexity
of O(m2), where m is the number of objects in the cluster analysis.

4.5.1 Lance-Williams

The Lance-Williams framework [LW69] actually encompasses several different
AHC algorithms. All of these algorithms implement the AHC process in the
most straight-forward way. The only difference between them lies in the manner
in which they compute the distance between composite clusters. First, we
introduce the algorithms separately.

• MinLink The distance between two composites is the distance between
their two closest objects. This algorithm is good at handling non-globular
shapes, but is sensitive to outliers.

• MaxLink The distance between two composites is the distance between
their two most distant objects. This algorithm tends to break large clusters
and favours globular shapes. It does handle outliers better.

• GroupAverage The distance between two composites is the average of all
distances between an object from one cluster, and an object from the other.
This algorithm is kind of an intermediate algorithm, in between Min-
Link and Max-Link. It is therefore difficult to distinguish any particular
weaknesses or strengths.

• Ward The distance between two composites is the increase in SSE (see
K-means, Section 4.4.1) that results from merging these two clusters to-
gether.

• Centroid The distance between two composites is the distance between
their centroids (see K-means).

All of the above AHC algorithms fit into the Lance-Williams update formula.
Imagine we merge the clusters A and B, to form composite cluster R. For the
AHC process to be able to continue, it requires the distances between R and
each existing cluster Q. The Lance-Williams update formula precisely expresses
d(R,Q) (with d the distance function) as a linear function of d(A,Q), d(B,Q)
and d(A,B). It is given below:

d(R,Q) = αAd(A,Q) + αBd(B,Q) + βd(A,B) + γ|d(A,Q) − d(B,Q)|

29

Each of the 5 AHC algorithms outlined above can be implemented through
a setting of the parameters (αA, αB , β, γ) in the Lance-Williams formula. The
Lance-Williams formula is typically implemented using a so-called distance ma-
trix. This two-dimensional matrix contains the pair-wise distances, and is con-
tinuously updated in the agglomerative process. While it can be interesting to
discuss the 5 separate algorithms, the unifying formula is particularly handy in
implementation.

4.5.2 CURE

Another AHC algorithm is CURE (Clustering Using Representatives) [GRS98].
The main feature of this algorithm is the representation of a cluster through
a limited number of representative objects. The first representative is chosen
to be the object that is furthest away from the center of the cluster. The
others are consecutively chosen to be as far away as possible from the already-
determined representatives. The idea is that this model can easily adapt to
the geometry of a natural cluster, whether it is globular or non-globular. Of
course, because this approach has a particular interest in far away objects,
outliers need special consideration; they can otherwise skew the representation
of a cluster. Therefore, all representative objects are “shrunk” towards the
center of the cluster, with a factor α. This factor is a constant, so that far
away objects are shrunk more (from a discrete perspective). In the end, the
distance between composite clusters is taken to be the distance between their
closest representative objects.

CURE is often classified as a scalability algorithm, because it takes special
measures to ensure that larger data sets can be handled. The first measure
is that of sampling. Instead of engaging all objects into the AHC process, a
sample of the complete set is taken. After the agglomerative clustering, each
object outside of the sample is assigned to the cluster it is closest to. The
second scalability measure is that of partitioning. The data set is partitioned
into non-overlapping subsets. Each subset is clustered separately, after which
a global pass clusters the different clusters from the subsets.

As a more general approach to eliminate outliers, it is noted that clusters in-
volving outliers are typically small. This is because outliers are not close to
many objects. CURE thus interrupts the AHC process at two occasions, to
filter away the clusters that are deemed too small. This strategy is helped by
the manner in which the process of sampling additionally isolates outliers.

While it may not be directly apparant, CURE handles only numerical attributes
(e.g. consider the shrinking of the representatives). Due to some guarantees
that must be imposed on the scalability measure of partitioning, CURE requires
a choice of k, the desired number of clusters. Additional input parameters are
the factor α, and the number of representatives in each cluster (the authors of
CURE suggest a constant 10 or more for the latter).

30

4.5.3 ROCK

The authors of CURE present an algorithm that supports distance spaces,
namely ROCK [GRS99]. It is similar to CURE in terms of scalability measures
and outlier handling. Yet, a different approach to distance is taken. ROCK is
based on notions that belong to graph theory. Two objects are neighbours when
the similarity between them exceeds a certain treshold. Given two objects, there
is a link between them for every common neighbour they have.

It is a common strategy to regard the distance between composites as the
distance between two of their objects. A problem is associated with this kind
of approach: two separate natural clusters can be unjustly merged if a few of
their objects are neighbours. ROCK recognizes the natural border between the
clusters, by observing the relatively low amount of links between them. More
precisely, ROCK takes the distance between composites to be the total amount
of links between them, divided by the expected number of links. This division
is made as to prevent a bias towards merging larger clusters.

4.5.4 CHAMELEON

CURE and ROCK take a different approach in computing distance between
composites. Because CURE considers the two closest representatives of a pair of
clusters, it can be said that CURE focusses on the closeness of clusters. ROCK,
on the other hand, computes the aggregate inter-connectivity of clusters. In
that sense, MinLink is one algorithm similar to CURE, while GroupAverage is
more akin to ROCK. Both approaches turn out to have weaknesses in detect-
ing particular types of natural clusterings. Therefore, CHAMELEON [KN99]
considers both closeness and inter-connectivity.

Recall that ROCK computes the number of expected links between two clus-
ters, in order to perform some normalization of distance according to cluster
size. But this is done according to a global model of inter-connectivity. As
a consequence, the model generally fails to fit a natural clustering that shows
different characteristics in terms of inter-connectivity. CHAMELEON does not
have this shortcoming. In computing the closeness and inter-connectivity of
two clusters, it takes into account the characteristics of the clusters themselves.

It is not possible to compute closeness and inter-connectivity for single-object
clusters. Therefore, CHAMELEON relies on the construction of a so-called
k-nearest neighbour graph to build an initial partitioning. This pre-processing
step requires two input parameters: k to determine neighbourhood, and MinSize
to determine the granularity of the initial clustering.

4.6 Density-based Clustering

Density-based clustering algorithms have in common that they see a cluster as
a region of high density, surrounded by a region of low density. Such a cluster is

31

a density-based cluster. This notion of a density-based cluster differs from that
of a center-based cluster, which is build from one central object inside of it (see
Section 4.4). The important difference between these two definitions of a cluster
lies in the shapes they can adapt to. Deploying the definition of a center-based
cluster tends to result in globular clusters, whereas the definition of a density-
based cluster does away with this restriction. That is to say, density-based
clustering is better at detecting clusters of arbitrary shape. Additionally, a
density-based approach is generally more resistant to outliers than an algorithm
like K-means, which we discussed in Section 4.4.1.

4.6.1 DBSCAN

As the prototypical example of a density-based clustering algorithm, we present
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [EKSX96].
In the above introduction to density-based clustering, an important notion is
left undefined: that of density itself. DBSCAN fills in this definition of density
through a number of new concepts:

The collection of objects within a radius ǫ of a given object is called the
ǫ-neighbourhood of that object.

An object is a core object if its ǫ-neighbourhood contains at least a minimum
number MinPts of objects.

An object p is directly density-reachable from an object q, if p is within
the ǫ-neighbourhood of q, and q is a core object.

An object p is a border object if it is not a core object, but it is directly
density-reachable from a core object. A noise object is neither a core or
a border object.

An object p is density-reachable from an object q, if there is a chain of
objects p1, p2, p3, ..., pn with p1 = q and pn = p, such that pi+1 is directly
density-reachable from pi.

An object p is density-connected to object q, if there is an object o such
that both p and q are density-reachable from o.

DBSCAN is thus dependent on the parameters ǫ and MinPts. A cluster is
defined as a maximal set of density-connected objects. Concretely, DBSCAN
puts a link in between two core objects if they are directly density-reachable
from one another. Clusters are formed by collecting maximum-size connected
graphs of core objects. Border objects that are close enough to a core object are
put into the same cluster as the core object (a form of resolution is required in
this step, as a border object may be on the border of multiple clusters). Noise
objects are naturally discarded.

Aside DBSCAN’s desirable properties, the algorithm also knows a few short-
comings. The parameters ǫ and MinPts must be chosen carefully by the user.

32

Image reproduced from [ABKS99].

Figure 4.5: A cluster visualization technique of OPTICS.

Different parameter settings can result in widely different clusterings. Addi-
tionally, these parameters are global to the algorithm. This makes it difficult
for DBSCAN to handle a data set in which the natural clusters have differ-
ent densities: each cluster might require a different parameter setting to be
detected.

Due to the data structures and technicalities of the DBSCAN implementation,
the algorithm is restricted to numerical data. (Although we imagine the general
approach, as above-described, to be applicable in a distance space.) Finally,
DBSCAN has trouble with higher-dimensionality objects, as density becomes
more difficult to define in higher dimensions.

4.6.2 OPTICS

To overcome the difficulties associated with the parameters ǫ and MinPts of
DBSCAN, Ankerst et. al propose OPTICS (Ordering Points to Identify Clus-
tering Structure) [ABKS99]. This algorithm provides a result that encompasses
several runs of DBSCAN with a wide array of different parameter settings. OP-
TICS is based on the following observation regarding DBSCAN: higher density
clusters (detected using a lower ǫ) are completely contained in lower density
clusters (captured through a higher ǫ). To iterate through “several runs of DB-
SCAN”, OPTICS iteratively expands clusters with new objects (one object at a
time). This gives a succession of clusterings. Concretely, what OPTICS does is
not determine one clustering, but rather an ordering of the data objects. This
ordering defines the order in which objects are added to clusters in the iterative
expansion. The ordering is determined so that more dense clusters (with the
lower ǫ) finish first. To generate the ordering, OPTICS still uses a global ǫ
and MinPts, but the ǫ parameter can be regarded as an upper bound. To add

33

more depth to this discussion, we introduce two new concepts (concepts from
DBSCAN carry over):

The core-distance of an object p is the smallest ǫ′ that makes p a core object,
relative to the global MinPts. If p is not a core object according to the
global ǫ and MinPts, its core distance is undefined.

The reachability-distance of an object q with respect to an object p is the
greater value of the core-distance of p and the Euclidean distance between
p and q. The reachability-distance between p and q is undefined if p is not
a core object according to the global ǫ and MinPts. Reachability-distance
is denoted RD(p, q).

Intuitively, RD(p, q) is the smallest setting of ǫ′ that makes q directly density-
reachable from p if p is a core object. That is why RD(p, q) can not be smaller
than the core distance of p; because in that case, p is not a core object and
hence no object is directly density-reachable from it.

OPTICS performs a walk through the set of data objects. In doing this, it
assigns each object p two labels: (1) its core-distance, and (2) the smallest
reachability-distance with respect to an object considered before p in the walk.
When a collection of objects is a density-based cluster according to an ǫ′ < ǫ and
the global MinPts, this collection forms a subsequence of the walk. Naturally
this walk determines the ordering OPTICS outputs.

A major element in OPTICS is its visualization techniques. One such visual-
ization is given in Figure 4.5. The horizontal axis contains the data objects
according to OPTICS’ ordering. The vertical axis displays each object’s as-
signed reachability-distance. Clusters are mapped to lower areas in the plot,
while information specific to a setting of ǫ′ can be read off the plot by setting
a horizontal line at ǫ′.

4.7 Grid-based Clustering

Grid-based clustering algorithms are characterized by the grid data structure
they impose on the data objects. The primary reason for doing this is an issue
of efficiency: the performance of a cluster algorithm that takes the grid-based
approach is generally independent of the number of input objects. Rather, the
performance depends on the dimensionality of the data, and the number of cells
in each dimension.

4.7.1 STING

One prototypical grid-based clustering approach is STING (STatistical INfor-
mation Grid) [WYM97]. We assume the data objects lie in a two-dimensional
space (i.e. they have two attributes). This case can easily be generalized to
more dimensions. The grid data structure exists out of layers of cells. The root

34

Image reproduced from [HK00].

Figure 4.6: A grid imposed by STING on a two-dimensional data space.

cell contains the entire data space. At the bottom lie atomic cells. The authors
of STING, Wang et al., suggest the atomic cells to contain in between several
dozens to several thousands of data objects. A cell in a particular layer consists
out of a certain number of cells from the layer below it. (Wang et. al. suggest
this number to be 4.) This grid structure is illustrated in Figure 4.6. Each
cell is labeled with statistics concerning the data objects in that cell. These
statistics include:

• the number of data objects.

The following statistics, which a cell is labeled with, relate to one particular
attribute of the objects within that cell:

• the mean;

• the standard deviation;

• the minimum and maximum;

• the type of distribution (normal, uniform, exponential, or none if the
distribution is not known).

For the atomic cells, these statistics can be derived directly from the data
objects. (The “type of distribution” statistic can be set manually, or obtained

35

through hypothesis tests such as χ2). For the cells in a higher layer, these
statistics can be derived from the layer below.

STING is actually a broader technique than cluster analysis. It allows the user
to form “region oriented” queries in an SQL-like language. Such queries ask
for regions of data objects that satisfy a certain condition, regarding density or
otherwise. To answer a query, a starting layer is determined in the grid. Using
confidence intervals, the cells (in the starting layer) that are relevant to the
query are discriminated from those that are not. One layer below, only those
cells are considered that are part of cells that have been proven relevant in the
layer above. Confidences are again computed for the lower layer. This process
is repeated to form a divisive recursion.

Ultimately, Wang et. al. do compare STING with the classic cluster algorithms.
Of course, STING is query-independent while cluster algorithms only answer to
the query of cluster analysis. But there is the additional issue of performance.
In building the grid, STING makes a single pass over all data objects. Once this
structure has been built, answering queries takes processing time O(g), where
g is the total number of cells at the lowest layer of the grid. This number g is
usually much smaller than n, the number of data objects. Thus, the computa-
tional complexity of clustering is O(n). This compares favourably with, e.g. the
O(n log(n)) of DBSCAN and OPTICS (Sections 4.6.1 and 4.6.2, respectively).

4.8 Subspace-based Clustering

Sometimes it is worthwhile to consider only a subset of the attributes of the
objects. This is the case when certain attributes do not provide any useful
information for cluster analysis. For example, attributes might be duplicates of
each other, or an attribute’s values might be distributed uniformly. A cluster of
documents might be characterized by only a few relevant words, out of the thou-
sands of words that are the attributes of the documents. Noo natural clusters
might exist in the space of all dimensions. For all these reasons, subspace-based
clustering algorithms exist. These manage to automatically find clusters in a
suitable dimensionality.

4.8.1 CLIQUE

CLIQUE [AGGR98] is at the same time a grid-based cluster algorithm, as it is
a subspace-based cluster algorithm. But whereas STING (Section 4.7.1) follows
a divisive approach, CLIQUE works bottom-up. In CLIQUE, the space of the
data objects is divided into non-overlapping cells of equal volume. If the number
of data objects in a cell is above a treshold T , the cell is dense. A cluster is
then simply a collection of adjacent dense cells.

The bottom-up element of CLIQUE arises from the following observation: if
a cell in n-dimensional space is dense, then so are its projections in (n − 1)-
dimensional space. Consider a two-dimensional space. Figure 4.7 illustrates

36

.. ...
. .

. ..

.. ...
. .

.
. .

. ..

Figure 4.7: CLIQUE divides 1D and 2D into cells, in a two-dimensional data
space. Dense cells are bold.

the case. We can partition one dimension into intervals. This gives rise to
adjacent rectangles. After we do this for the other dimension as well, we can
take the intersection of the dense rectangles in both dimensions, to collect the
two-dimensional cells which could be dense. This is generally a subset of all
2D cells. (The dense cells in Figure 4.7 are given in bold.) CLIQUE’s bottom-
up recursion relies on precisely this process of taking the intersection of all dense
cells in (n − 1)-dimensional space, to collect the cells in n-dimensional space
which could be dense.

The performance of CLIQUE is independent of the number of input objects.
However, the run-time complexity is exponential in the number of dimen-
sions. When too many dense cells are generated in the lower-dimensional
spaces, CLIQUE runs into performance problems. On the other hand, CLIQUE
searches a space that is generally much smaller than the original space of the
objects. Again, as with DBSCAN (Section 4.6.1), the treshold for density is
global; a data set with different-density natural clusters is problematic.

4.9 Model-Based Clustering

The idea of model-based clustering is to fit a mathematical model to the data.
This generally provides a simpler representation of the data, in which clusters
can be fully characterized by a limited set of parameters. An important question
is that of which model to fit. Answering this question can be of significant
difficulty. The model-based approach can also have trouble dealing with outliers
and small-size clusters. While it can be desirable to have a strict mathematical
foundation in cluster analysis, this approach does not necessarily do a better job
at capturing the natural clusters, than techniques that have a purely intuitive
basis.

37

4.9.1 EM

The better-known approach to model-based clustering is the EM algorithm
(Expectation-Maximization, [Mit97] for an introduction). It assumes the ob-
jects were generated from a statistical process, and that each object was gen-
erated independently. The global model that EM fits to the data is a mix-
ture model. This is a collection of several statistical distributions. Each distri-
bution has a probability αi associated with it, where αi signifies the probability
that any object x was generated from distribution i. That is to say, the proba-
bility of an object x in a mixture model is:

prob(x) =
k

∑

i=1

αiprobi(x)

where 1 → k are the distributions in the mixture model, and probi(x) is the
probability of x in distribution i. Most often, 1 → k are taken to be normal
distributions, because they are simpler, easier to understand, and have proven
to work well in the past.

What EM does is estimate the parameters (e.g. mean, covariance) of the dis-
tributions in the mixture model. Concretely, it computes a suitable parameter
set Θ to fit the data. When a mixture model contains only one distribution,
this can be done through the following likelihood function:

likelihood(Θ) =
n

∏

i=1

prob(xi|Θ)

where x1→n are the data objects. The sought-for Θ is the parameter set with
maximum likelihood. That is to say, the Θ that maximizes the probability of
the data objects. When there is more than one distribution in the model, the
following likelihood function holds:

likelihood(Θ) =
n

∏

i=1

k
∑

j=1

αjprob(xi|θj)

where Θ encompasses the parameter set of each distribution, i.e. Θ = (θ1, ..., θk).
However, it is not practical to maximize the above function through differenti-
ation. To remedy this, another approach is taken. For a moment, we pretend
to know the distribution zi (∈ 1 → k) which object xi was generated from –
even though we don’t. This gives rise to the following likelihood function:

likelihood(Θ) =
n

∏

i=1

αzi
prob(xi|θzi

)

We can then calculate the expected likelihood E(likelihood(Θ)) as follows:

38

E(likelihood(Θ)) =
∑

(all possible z)

(
n

∏

i=1

αzi
prob(xi|θzi

)) prob(z)

where z = (z1, ..., zn) signifies a particular set of distribution choices. We can
more fully specify this definition through the following equations:

prob(z) =
n

∏

i=1

prob(zi|xi)

prob(zi|xi) =
αzi

prob(xi|zi)
∑k

j=1 prob(xi|θj)

A notable dependence arises. We want to compute every θi by maximizing
the expected likelihood. But to compute this likelihood, we need probabili-
ties prob(zi|xi) of distributions relative to objects. In turn, to compute these
probabilities, we need parameter settings θi. That is why EM is a two-phase
approximation algorithm. It starts from a guess of Θ, the collection of all
parameter settings of all distributions. From this guess, it calculates the prob-
abilities prob(zi|xi). This is the “Estimation” step of the algorithm. In the
second step, which is the “Maximization” step, the maximal expected likeli-
hood is calculated from the probabilities computed in the previous step. This
results in a new guess of Θ, and the two steps of the algorithm are alternated
until Θ converges, or a halting condition is met.

4.10 Cluster Evaluation

When a clustering has been produced, it still needs to be evaluated. A number
of measures exist that grade a clustering. Typically, such a measure relates a
degree of separation, cohesion, or both. Different approaches exist that rely
on a certain model of clusters. For example, when center-based clusters were
mined, cohesion can be computed off the distance between each object and
its center; separation can be derived from the distances between the centers.
One should be careful about using such center-based evaluation measures when
the natural clusters are non-globular. Contrary to unsupervised measures, a
supervised evaluation measure is computed relative to some externally provided
structure. For example, an external source could provide a “correct” label for
each object. In that case, correlation can be computed between this correct
labeling, and the partitioning provided by the clustering. Additionally, a cluster
can, if determined to “capture” a certain label, be evaluated in terms of:

• what percentage of all objects with that label are in the cluster (the
cluster’s recall);

• what percentage of objects in the cluster have that label (its precision);

39

4.10.1 Silhouette Coefficients

The technique of silhouette coefficients [KR90] takes both cohesion and separa-
tion into account. It is computed as follows. With respect to a data object o,
the average distance can be computed of o to all the other objects in its cluster.
This is ao. For a particular cluster C, such that o /∈ C, the average distance can
be computed of o to all the objects in C. The smallest such average distance,
over all possible clusters save the one o is in, is bo. The silhouette coefficient of
o is then equal to:

(bi − ao)/max(ao, bo).

If the coefficient is negative, object o is (on average) closer to the objects in
another cluster, than it is (on average) to the objects in its own cluster. When
the coefficient is positive, the closer o is to the objects in its own cluster, the
higher the coefficient is. The silhouette coefficient of a clustering can be com-
puted by averaging the coefficients of the separate objects. Naturally, one wants
the silhouette coefficient to be as high as possible.

4.11 Overview

We have surveyed several cluster algorithms. Furthermore, in Section 4.1 we
have identified a number of properties that characterize cluster algorithms. Ta-
ble 4.1 and 4.2 relate the cluster algorithms we have discussed with (some of)
these properties. (The tables are partly due to Andritsos [And05], but we have
extended them in parts.) Table 4.1 considers the input parameters that the
algorithms require from the user. Table 4.2 considers the following criteria:

• bias Does the algorithm have a bias towards clusters of globular shape?
Recall that algorithms with such a bias, which typically mine center-based
clusers, face problems when confronted with non-globular natural clusters.
Or can the algorithm detect arbitrary clusers? Grid-based clustering algo-
rithms naturally bound the clusters according to vertical/horizontal axes.

• outlier Does the algorithm take special measures to deal with outliers?

• complexity What is the time complexity of the algorithm? Where

– n is the number of objects to perform cluster analysis on;

– k is the desired number of clusters;

– i is the number of iterations in the algorithm;

– m is the number of clusters in the initial clustering of CHAMELEON.

• dist(ance) Does the algorithm support distance spaces? Most commonly,
when an algorithm requires the objects to have attributes, it further re-
quires these attributes to be numerical.

40

K-means number of clusters

K-medoids number of clusters

Lance-Williams none

CURE number of clusters

ROCK number of clusters

CHAMELEON

• α, the relative weight with which to consider
closeness, with respect to inter-connectivity

• MinSize, the granularity of the initial clustering

• k, for use in determining neighbourhood

DBSCAN ǫ, MinPts

OPTICS ǫ, MinPts

STING

• number of objects in atomic cells

• number of cells in a cell

CLIQUE

• treshold for dense cells

• proportions of the grid

EM

• initial model parameters

• convergence limit

Table 4.1: The discussed cluster algorithms and their input parameters.

bias outlier complexity dist

K-means globular no O(ikn) no

K-medoids globular no O(nik(n − k)2) no

Lance-Williams / / O(n2 × log(n)) /

CURE arbitrary yes O(n2 × log(n)) no

ROCK arbitrary yes O(n2 × log(n)) yes

CHAMELEON arbitrary yes O(nm + nlog(n) + m2log(m)) yes

DBSCAN arbitrary yes O(n× log(n)) no

OPTICS arbitrary yes O(n× log(n)) no

STING vert/hor yes O(n) no

CLIQUE vert/hor yes O(n) no

EM globular no O(n) no

Table 4.2: The discussed cluster algorithms and various properties.

41

In Table 4.2, some entries for the Lance-Williams framework are omitted. This
is because the Lance-Williams formula encompasses several algorithms. We
refer to Section 4.5.1, where we outlined the individual properties of the separate
algorithms.

42

Chapter 5

Aspect Mining

This chapter discusses aspect mining, the research field in which it is the in-
tent to uncover crosscutting concerns in legacy systems. Several approaches to
aspect mining exist, which are surveyed in this chapter. We make the distinc-
tion between clone detection techniques and automated identification of aspect
candidates.

5.1 What is Aspect Mining?

As discussed in Chapter 2, traditional object-oriented languages know an in-
herent short-coming, which leads to the presence of crosscutting concerns in
object-oriented systems. The idea behind AOP approaches is that these ill-
modularized concerns can be put into aspects. It is claimed that a software
system built using the AOP paradigm is more understandable, maintainable
and evolvable. Hence it is also desirable to refactor existing object-oriented
systems to being aspect-oriented systems (i.e. with the crosscutting concerns
put into aspects). In research, this migration is divided into two consecutive
steps [KM05]:

1. An aspect mining step Aspect mining is the activity of discovering
those crosscutting concerns that potentially could be turned into aspects,
from the source code and/or run-time behaviour of a given software sys-
tem. Such concerns are called aspect candidates.

2. An aspect refactoring step Aspect refactoring is the activity of actu-
ally transforming the identified aspect candidates into real aspects in the
source code.

The research field of aspect mining focusses on mining so-called legacy systems.
These are large, complex and poorly documented systems. In the case of a
legacy system, carrying out the above two steps by hand is hard labour, if not
unfeasible in practice. As a consequence, researchers have sought to facilitate
this migration process through a wide array of different techniques. There

43

are two general approaches that aide in the aspect mining step specifically.
The first is that of dedicated browsers. These browsers assist the developer
in manually tracing a crosscutting concern throughout the source code of the
legacy system. Most commonly, the developer is to provide a “seed” of a concern
(i.e. a locality in the source code), after which the browser attempts to provide
hotspots in the code related to that concern. Additionally, some browsers offer
a query language that the developer can use to explore the scattered path of a
concern. Examples of dedicated browsers are Concern Graphs [RM02], Aspect
Browser [Leo], JQuery [JD03] and SOUL [SOU].

The other main approach is that of techniques which aim to automatically un-
cover all aspect candidates in a given software system. Each of these techniques
has a notion of what code or run-time symptoms are associated with crosscut-
ting. However, to date no such technique can be called fully automatic: for
now a manual post-processing of the mining results is at order, no matter what
technique used. It is this category of techniques that is surveyed in the next
sections.

5.1.1 Common Terms in Aspect Mining

• False positive When an aspect mining technique wrongly identifies some
data as constituting a crosscutting concern, that data forms a false positive
in the output of the technique.

• False negative When a crosscutting concern is not detected by an aspect
mining technique, it is a false negative in the output of the technique.

5.2 Clone Detection Techniques

In clone detection [vE05], a legacy system is mined for any piece of code that
manifests itself repeatedly over different localities in the source code. The
similar code fragments are called clones. Such clones are considered malicious
much for the same reasons as crosscutting concerns: they are detrimental to
the evolvability, understandability and maintainability of the software system.
Detection of clones is no easy process, because often the clones are not precise
copies of one another. Instead, the clones typically differ to a certain degree, e.g.
the variables are named differently over the different clones, or the statements
are reordered. As a result, various intricate clone detection techniques have
been proposed. In this section, we give a small survey of selected clone detection
techniques.

5.2.1 Relation to Aspect Mining

It is the belief of Bruntink et al. [vE05] that crosscutting concerns often lead
to a high degree of code duplication. They see two reasons for this. Firstly, by
definition a crosscutting concern is not modularized. Its implementation can

44

while (isalpha(c) || c == ’_’ || c == ’-’)

if (p == token_buffer + maxtoken) if (c == ’-’)

c = ’_’

*p++ = c c = getc(finput)

p = grow_token_buffer(p)

Control dependence

Data dependence

while (isalpha(c) || c == ’ ’ || c == ’−’) {
if (p == token buffer + maxtoken)

p = grow token buffer(p);
if (c == ’−’) c = ’ ’;
∗p++ = c;
c = getc(finput);

}

Table 5.1: Example code fragment and program dependence graph.

hence not be reused over different localities in the source code. As a result, the
developer relies on copy-paste practice instead, to repeat the implementation
where necessary. Secondly, a developer may use coding conventions and idioms
to impose crosscutting functionality on different code entities, e.g. to add trac-
ing or logging to methods. Clone detection techniques thus become valuable
aspect mining techniques.

5.2.2 PDG-based Clone Detection

The program dependence graph (PDG) of a program is a graph that captures
the data flow and control flow within that program. A vertex in the graph is
either a control predicate (e.g. if, loop, while) or an assignment statement.
The edges represent dependencies between these program pieces. An edge can
be one of two types. It is either (1) a control dependence edge, where a → b
means that whenever control predicate a evaluates to true, program piece b
will be executed; or (2) it is a data dependence edge, where a→ b means that
program piece a assigns a value to a variable which may be used by program
piece b. An example PDG is given in Table 5.1.

PDG’s are commonly deployed in program slicing [Wei79]. Given the PDG
of a program, this practice is the construction of a subgraph (i.e. slice) in
that PDG, starting from a slicing criterion. This criterion is a locality in the
program, and a vertex in the PDG. The idea is that the subgraph captures that
specific subset of the program of which the run-time behaviour could affect, or
could be affected by (the execution of) the slicing criterion. Slicing is thus a

45

if (tmp−>nbytes == −1)
{

error (0, errno, ”%s”, filename);
errors = 1;
free ((char ∗) tmp);
goto free lbuffers ;
}

if (tmp−>nbytes == −1)
{

error (0, errno, ”%s”, filename);
errors = 1;
free ((char ∗) tmp);
goto free lbuffers ;
}

Table 5.2: An example where backward slicing falls short.

reduction analysis that outputs the subset of the program that is relevant to a
certain piece of code.

Slicing is often carried out as an iterative expansion. Initially, the slice consti-
tutes the slicing criterion. In each iteration, edges are followed from the slice
to vertices which are directly connected to the slice (i.e. connected through a
single edge). Then, all (or some) of these vertices are added to the slice, and
the next iteration considers the augmented slice. Recall that the edges in a
PDG are directed. In forward slicing, only those edges are followed which leave
from the slice. Forward slicing collects program pieces which could be affected
by what happens at the slicing criterion. In backward slicing, only those edges
are followed which arrive in the slice. Backward slicing collects program pieces
which could affect what happens at the slicing criterion.

Clone Detection Using Traditional PDG’s

The clone detection technique proposed by Komondoor and Horwitz [KH01]
uses PDG’s as above-described to find clones in source code. Komondoor and
Jorwitz’ algorithm requires two PDG’s as input. Assume the provided PDG’s
are PDG1 and PDG2. The algorithm then looks for any pair of subgraphs
(PDGsub1, PDGsub2) for which:

• PDGsub1 ⊂ PDG1;

• PDGsub2 ⊂ PDG2;

• PDGsub1 ∧ PDGsub2 are isomorphic.

The idea is that (PDGsub1, PDGsub2) is in fact a pair of clones, i.e. a clone
pair. The deployed sense of isomorphism is based on an equivalence relation
between the vertices. Komondoor and Jorwitz’ algorithm consists out of three
main steps:

1. Find clone pairs First, the vertices of PDG1 and PDG2 are partitioned
into equivalence classes. This is done based on the syntactic structure of
the vertices. (Recall that the vertices are program pieces.) Thus, variable
names and literal values are ignored in the equivalence. Vertices in the
same equivalence class are called matching vertices. For each pair of
matching vertices (r1, r2) ∈ PDG1 × PDG2, two isomorphic subgraphs

46

are sought, such that one contains r1 and the other contains r2. The two
subgraphs are then reported as one clone pair.

To find the isomorphic subgraphs, the algorithm performs backward slic-
ing in both PDG1 and PDG2. It is performed in iterative expansion,
as described above, and concurrently. Starting from r1 and r2 (and
hence from two singleton slices), the algorithm slices backwards along
any edge, to the direct predecessors of r1 and r2. If any two predecessors
(p1, p2) ∈ PDG1×PDG2 match, they are added to their respective slices.
Slices are extended in this manner until no further growth is possible. The
two resulting slices are the isomorphic subgraphs.

2. Remove subsumed clones A clone pair (S∗

1 , S∗

2) subsumes another
clone pair (S1, S2), if S1 ⊂ S∗

1 and S2 ⊂ S∗

2 . There is no need for the
tool to report subsumed clones, and hence these pairs are filtered from
the results of the previous step.

3. Combine pairs of clones into larger groups In some cases, clone
pairs can be combined through transitive closure, eg. (S1, S2), (S1, S3)
and (S2, S3) would be combined into the clone group (S1, S2, S3).

In the end the resulting clone groups are presented to the user as clones. How-
ever, Komondoor and Jorwitz identified two complications in this basic algo-
rithm. The first problem is that of clones that encompass the bodies of condi-
tionals and loops, but can’t be detected as a whole using backward slicing from
a particular pair of vertices. This is illustrated in Table 5.2, where the cloning
manifests itself clearly, but no backward slicing can group the statements in the
bodies. To remedy this, forward slicing from control predicates was introduced.
Also a mechanism was needed to prevent clones from crossing loops, i.e. to
prevent them from comprising out of statements before and after a loop predi-
cate, but not include the predicate itself. This loop-crossing problem otherwise
complicates refactoring of clones into new procedures.

Clone Detection Using Fine-Grained PDG’s

The clone detection technique developed by Krinke [Kri01] likewise uses PDG’s,
but operates on fine-grained graphs. A fine-grained PDG contains not only
assignment statements and control predicates, but adapts the statement and
expression nodes from the abstract syntax tree (AST) of the code to be modeled.
There are also new types of edges. Next to the traditional control and data
dependence edges, the following can hold:

• an immediate (control) dependence edge a → b, if expression b is
evaluated before expression a;

• a value (data) dependence edge a → b, if the value computed at
expression a is needed at expression b;

47

• A reference (data) dependence edge a → b, if the value computed
at expression b is stored into a variable in statement a.

Given these extensions to the PDG concept, the isomorphic subgraphs within
two PDG’s could be reported as clones (which is the approach followed by
Komondoor and Jorwitz, as discussed above). However, Krinke’s technique
focusses on similarity rather than on isomorphism. As such, it is flexible enough
to detect broader pairs of clones than just completely identical ones. Krinke
defines similarity as:

Two graphs G and G
′

are similar, if for particular vertices v ∈ G
and v

′

∈ G
′

, the following holds:

• For every path

v0, e1, v1, e2, v2, ..., en, vn

in G, there exists a path

v
′

0, e
′

1, v
′

1, e
′

2, v
′

2, ..., e
′

n, v
′

n

in G
′

, and the attributes of the vertices and edges are identical

if the two paths are mapped on each other. (Where v
(′)
i are

vertices and e
(′)
i edges of their respective graphs.)

• v0 = v and v
′

0 = v
′

. As such, v and v
′

are called the starting
vertices of their respective graphs.

The attribute of an edge is its type (e.g. value dependence edge). The attributes
of a vertex are:

• its general class (e.g. statement, expression, procedure call);

• its more specific operator (e.g. binary expression, constant);

• its most specific value (e.g. “+”, a constant value, an identifier name).

Given this definition of similarity, Krinke proposes an inductive algorithm that
takes as input two fine-grained PDG’s and a chosen vertex in each. The algo-
rithm outputs the two maximal-size similar subgraphs with the given vertices
as their starting vertices. Due to performance reasons it is undesirable to run
this algorithm with each possible pair of vertices as the starting vertices. There-
fore, Krinke leaves it up to the user to make an application-specific selection
of starting vertices. Finally, the constructed subgraphs are weighted according
to the amount of data dependence edges they contain. Graphs with more such
edges are regarded to be more valuable. This is done because structural infor-
mation, which is what control dependence edges provide, can also be achieved
through less expensive techniques (Section 5.2.3). In weighting the technique
thus focusses more on semantical information, as provided by data dependence
edges.

48

5.2.3 AST-based Clone Detection

The approach followed by Baxter et al. [BYM+98] considers near-clones, i.e.
clones that are identical save some slight differences. The proposed technique
works on the abstract syntax tree (AST) of the code. Similar subtrees are
reported as (near-)clones. For performance reasons, the amount of comparisons
between subtrees is limited through hashing. An inexpensive hash function
partitions the collection of all subtrees into buckets. Only those subtrees in the
same bucket need to be fully compared with one another. Subtrees in different
buckets are discarded as potential (near-)clones. The hash function is chosen so
that subtrees that only differ in their leaves end up in the same bucket. These
leaves represent literals in the code. The full comparison measure, to find the
(near-)clones in a bucket, is the following formula:

Similarity(subtree1, subtree2) = 2×S
(2×S)+L+R

where:
S = number of shared nodes
L = number of different nodes in subtree1
R = number of different nodes in subtree2

Further extensions to this basic algorithm cope with the facts that: (1) in
many AST representations, sequences of statements are not strictly subtrees;
(2) subsumed clones must not be reported; and (3) more general near-clones can
be found by deploying the full comparison measure on the parents of subtrees
already identified as (near-)clones.

5.2.4 Token-based Clone Detection

A key property of the CCFinder [KKI02] clone detection technique is that it
deploys a reader on the source code, to transform the raw sequence of charac-
ters into a sequence of tokens. CCFinder thus works on an intermediate level
between the original string representation of the code and its AST abstraction.
The sequence of tokens is stripped of white spaces, comments and line breaks.
Furthermore, a series of transformation rules is applied to the token sequence.
In the context of the Java language, one such rule extends the token represen-
tation of a message send that has no explicit receiver: because the semantics
of Java dictate that the run-time receiver will be the sender of the message,
a token can be introduced representing that sender as the receiver. Another
rule simply throws away the initialization lists with which Java Arrays can be
initialized with values (e.g. new int[] {1, 2, 3}). Yet another rule throws
away package names preceding class names. In general, the transformation rules
can be classified in three categories, namely those that bring the code to:

1. a more uniform representation, to ease detection of clones that are se-
mantically identical but expressed differently;

49

type near-clones non-contiguous intertwined out-of-order

PDG + + + +
TOKEN + - - -

AST + - - -

Table 5.3: Clone detection approaches and the obstacles they can overcome.

2. a more structural representation, as the technique is more interested in
structural commonalities;

3. a more context-free representation, as clones can even occur over different
applications (the interesting example of plagiarism is brought up).

After this transformation, identifiers in the code related to types, variables
and constants are each replaced with the same special token, as to further
lay the focus on structurally similar clones. In the end a suffix-tree matching
algorithm [Gus97] is deployed to find the common subsequences in a pair of
token sequences.

5.2.5 Discussion

We discriminate among clone detection approaches by considering the obstacles
they can overcome. We identify the following such obstacles:

• A non-contiguous clone encloses a code fragment, but does not include
every statement or expression within that fragment. There are gaps in
the clone.

• A set of intertwined clones all enclose the same code fragment. It is to
be understood that the intertwined clones do not in fact form one “clone
group”, i.e. a group of clones that are similar to each other. Rather,
the intertwined clones belong to different clone groups. The most proto-
typical example of intertwined clones is a code fragment where the even
statements belong to one clone group, and the uneven statements belong
to another.

• A set of clones engage in an out-of-order relationship, if they contain
the same statements (or expressions), but the ordering of the statements
(expressions) differs over the different clones. Here, the clones do form
one clone group.

• Near-clones belong to the same clone group but differ slightly, e.g. the
used variables names and literals are different.

Most, if not all clone detection techniques consider near-clones. Typically this is
done by withholding variable names and literals from the analysis, even though
this strategy consequently ignores all data flows. Some techniques do not ex-
plicitly consider non-contiguous clones in their analysis. Often a technique tries

50

to remedy this shortcoming via a post-analysis step in which clones are merged
when they sit near each other in the source code. However, this is done regard-
less of whether the merged clones belong together logically. Table 5.3 gives an
overview of which category of techniques (that we have discussed) is believed
to overcome which obstacle. It appears the PDG-based approach surpasses all
of its alternatives. However, at the current time all PDG-based clone detection
techniques are comparatively very expensive and slow.

5.3 Automated Identification of Aspect Candidates

5.3.1 Detecting Unique Methods

The work of Gybels and Kellens [GK05] is based on the observation that in
pre-AOP days, developers would often cleanly modularize the implementation
of a crosscutting concern in a kind of “pseudo aspect”. Such a pseudo aspect
is in reality a regular class in object-orientation. Its actual use must thus be
manually woven into the system, which leads to crosscutting. For example,
given one method that is the entry point to such a pseudo aspect, the manual
weaving strategy results in the scattering of multiple calls to this one method,
where the calls are tangled with other concerns. Techniques based on clone
detection have a hard time recognizing this recurring single-line pattern. Hence,
a heuristic is at order that applies to a single method. Gybels and Kellens
propose:

A unique method is:
“A method without a return value which implements a message

implemented by no other method.”

It is asked that a unique method has no return value, because it is not sensible
to move method calls that have return values to advice; these calls are clearly
part of the base functionality of the code. The unique-message condition stems
from the prototypical crosscutting examples such as logging, which are often
implemented through uniquely-named methods. The approach of Gybels and
Kellens consists out of determining the unique methods in the legacy system.
After filtering out getters and setters, as well as those methods that are called
rarely (as an approximation of the degree of scattering), the remaining unique
methods are left to manual inspection by the user. In the accompanying exper-
iment, Gybels and Kellens did find typical aspects such as tracing.

5.3.2 Fan-in Analysis

Marin et al. [MvDM04] propose the use of the fan-in heuristic for aspect mining.
The fan-in of a method is defined as the number of distinct method bodies
that can invoke that method. Because of polymorphism, a method call to m
contributes to the fan-in of: m itself, all methods refining m, and those refined
by m. Fan-in analysis follows three consecutive steps:

51

1. Fan-in is computed for each method in the legacy system.

2. Three filters are applied. They serve to disqualify:

• Methods with a fan-in below a certain threshold. Marin et al.
use a treshold of 10, which tends to keep around 5% of all methods.

• Getters and setters. In a first iteration these methods are de-
tected through their signatures (names starting with get/set), in a
second iteration through their implementations. Getters and setters
on static fields are not eliminated because they can come in handy
in the detection of the Singleton design pattern.

• Utility methods. E.g. collection manipulation methods, type con-
version methods (e.g. toString()).

3. The remaining methods are manually inspected for aspect candidates.

On one hand, this technique is bound to not detect some aspect candidates, as
it favours those with a large footprint. It can for example miss a crosscutting
design pattern, if that pattern is deployed in one isolated instance in the source
code. On the other hand, the percentage of false positives in fan-in analysis
is generally low. Statistical results, achieved from three case studies, show
that more than one third of methods with high fan-in are seeds that lead to
aspects. After filtering, almost only aspect seeds remain. There are three
prototypical situations in which a high fan-in method (suppose m) can be linked
to a crosscutting concern (suppose c).

1. m is a key element of c, e.g. it is the logging method called all over the
software system.

2. c is spread over the system and relies on particular functionality; m is part
of this functionality. Thus, c is implemented at the calling sites of m.

3. m is easily identifiable as belonging to a design pattern with known cross-
cutting nature, e.g. it is the register method of an Observer instance
(see Section 6.3.1 for the crosscutting behaviour of Observer).

5.3.3 Natural Language Processing on Source Code

The technique of Shepherd et al. [SPT05] analyzes words found in the source
code of the legacy system. The words that are analyzed are class fields, class
names, method names, and words in comments of the source code. Method
names are partitioned according to the occurrences of capital letters. Words
that do not provide much information, like “with” and “the”, are filtered away.

Rather than analyzing the words syntactically, the technique follows a seman-
tical approach. To this end, Shepherd et al. have sought inspiration in the field
of natural language processing. More precisely, their technique deploys lexical

52

chaining. This means that the technique processes the words one by one. Each
word is added to the most closely related chain of words. However, if no chain
is close enough, a word remains a singleton chain on its own. In this manner,
each resulting chain is a distinct group of closely related words. Lexical chain-
ing relies on a distance measure between the words, and additionally a distance
treshold to determine when a chain is close enough for a word to be added to it.

The semantical nature of the approach followed by Shepherd et al. stems from
the used distance measure. Based on the WordNet database [Bud01], their
technique derives a degree of semantical similarity from any two given words.
For instance, “money” and “bills” are very similar, and so are “auction” and
“sold”. Furthermore, word-sense disambiguation [IV98] is deployed, which de-
rives additional meaning of words from the context in which they appear. In
this manner, nouns can for instance be discriminated from verbs.

The idea is that each resulting chain represents a concern in the code. Shepherd
et al. have identified three properties of a chain that are desirable in the light
of aspect mining:

1. the concern represented by the chain is not already encapsulated in a class;

2. the chain contains more than one member (a singleton chain is likely a less
significant concern, and already known to the user since it is expressed
uniformly throughout the code - chains are sets, with no duplicates);

3. the members of the chain crosscut several classes in the code.

5.3.4 Analyzing Recurring Patterns of Execution Traces

Dynamic Analysis The Dynamit tool [BK04], developed by Breu and Krinke,
detects recurring patterns in the execution trace of a Java program. To this
end, the program under investigation is run. The entry, as well as exit, of any
instance method is recorded. The execution trace is formed as a chronological
sequence of these events, as illustrated in Table 5.4, where the entry of a method
is designated by “{” and the exit by “}”.

Dynamit can detect four types of patterns in the execution trace. More specif-
ically, two methods a and b can participate in the following four execution
relations:

• outside-before (a→ b)
if b is entered immediately after a is exited (immediacy is in the sense
that no event, entry nor exit, takes place in between);

• outside-after (b← a)
if b→ a;

• inside-first (a ∈first b)
if a is entered immediately after b is entered;

53

B() {

C() {

G() {}

H() {}

}

}

A() {}

B() {

C() {}

}

Table 5.4: Example of an execution trace in Dynamit.

• inside-last (a ∈last b)
if b is exited immediately after a is exited.

The set of all relations a ⋄ b that can be detected in the execution trace, with
⋄ ∈ {→,←,∈first,∈last}, is labeled S⋄. However, the detection of these relations
is not sufficient to conclude crosscutting. Therefore, Breu and Krinke impose
two additional conditions. They are:

• Uniformity A relation (a ⋄ b) ∈ S⋄ where ⋄ ∈ {→,←,∈first,∈last} is
called uniform if ∀(c ⋄ b) ∈ S⋄ : c = a. An outside-before relation a→ b is
consequently uniform if each execution of b is preceded by an execution
of a. An inside-first relation a ∈first b is uniform if b never executes any
other method than a as the first method.

• Crosscutting A relation (a ⋄ b) ∈ S⋄ where ⋄ ∈ {→,←,∈first,∈last} is
called crosscutting if ∃(a ⋄ c) ∈ S⋄ : c 6= b. That is, if the relation occurs
in more than one calling context. The calling context of a relation is its
second element.

The crosscutting condition is easy to motivate through the use of an example.
Consider the following excerpt of code:

private void setMatrixSize(int n) {
matrix = new int[n][n];
}
public void buildMatrix(int n){

setMatrixSize(n);
initMatrix ();
}

54

void Runner.doSth(A) {

void A.a() {

}

void C1.c() {

}

}

void Runner.doSth(A) {

void A.a() {

}

void C2.c() {

}

}

Table 5.5: A trace problematic to purely dynamic analysis of recurring patterns.

The following execution relations could occur in an execution trace of the above
excerpt of code:

setMatrixSize ∈first buildMatrix,
setMatrixSize→ initMatrix,
initMatrix ← setMatrixSize.

Clearly, this example shows no crosscutting, and the crosscutting condition is
thus at order to avoid patterns being falsely identified as aspect candidates.
Ultimately, the Dynamit tool mines for execution relations that are uniform
and crosscutting. It then presents them to the user as aspect candidates.

Static and Dynamic analysis Due to the dynamic nature of the analysis,
Dynamit suffers from a particular problem. Java has the property of dynamic
binding. Precisely which method is executed at run-time depends not on the
static type of the variable holding the receiver, but on the run-time type of the
receiver. This mechanism is typically responsible for a number of false positives
in the results of Dynamit. In order to make this clear, one only has to consider
the execution trace in Table 5.5. Consider the following execution relations
which hold in that trace:

A.a() → C1.c() and A.a() → C2.c()

These relations appear uniformly, as every C1.c() (respectively C2.c()) is
preceded by A.a(). The crosscutting condition also holds on these relations, as
A.a() appears in two different calling contexts.

55

void Runner.doSth(A) {

void A.a() {

}

void A.c() {

}

}

void Runner.doSth(A) {

void A.a() {

}

void A.c() {

}

}

Table 5.6: An execution trace with static information.

However, while these are two separate execution relations, they are in reality
both instances of the same pattern, namely the two-part sequence of method
calls in the following method body:

static void doSth(A a) {
a.a();
a.c ();
}

Because this pattern appears only once in the code, the two execution relations
have thus been falsely recognised as aspect candidates. A simple technical so-
lution to remedy this problem has been integrated into Dynamit [Bre04]. Since
the tool uses AspectJ to trace the execution of a program, it was sufficient to
have the tracing aspect use call pointcuts. These capture the static method
being called, as opposed to execute pointcuts that apply to the result of dy-
namic binding. Ultimately the trace in Table 5.6 results, where the run-time
types have been replaced by the original static declarations. As a consequence,
the false positives described above are no longer reported by Dynamit, as the
crosscutting condition no longer holds.

5.3.5 Clustering of Similar Method Names

Shepherd and Pollock [SP05b] focus on a particular type of crosscutting concern
in Java systems: concerns which are, or should be, implemented as interfaces.
They argue that these concerns are often inconsistently implemented across
classes – even in the case of an explicit interface, as it does not bind the concern
physically. The technique proposed by Shepherd and Pollock combines the
concept of (semi-)automated aspect mining with the idea of a specialized view.

The automated aspect mining part is implemented through cluster analysis.
The objects in the analysis are source code methods. The distance measure

56

between the methods (objects) considers their names. The idea is that a result-
ing cluster constitutes methods that have similar names. Shepherd and Pollock
work from the hypothesis that crosscutting concerns are often implemented
through naming patterns. More specifically, the distance measure is as follows:

d(m1,m2) =
1

commonSubstringLength(m1.name,m2.name)

The objects and distance measure are fed to an AHC algorithm, as discussed
in Section 4.5. Whenever two clusters are merged in the AHC process, the
composite cluster is labeled with the common substring of its children. In this
manner, the above-described distance measure can be applied to composite
clusters, rather than leaving the distance calculation between composites up to
the AHC algorithm of choice. A distance treshold is installed that stops the
AHC process if no two clusters meet it.

The specialized view consists out of three panes. The cluster pane displays
all clusters found in the legacy system. Once a cluster has been selected in
this pane, the crosscutting pane displays (the bodies of) its member methods.
When a particular method is selected, its context (i.e. class file) is displayed
in the editor pane. When a cluster was detected in the cluster analysis, the
specialized view allows the user to easily, albeit manually, explore code related
to that cluster, and detect:

• scattering and tangling in terms of the methods in the cluster being im-
plemented over different classes;

• inconsistently applied design rules, scattering, tangling, duplication, through-
out the methods in the cluster.

5.3.6 Clustering Based on Method Invocations

Lili He et al. [LHH05] combine cluster analysis with association rule mining to
uncover potential aspects. In the cluster analysis, the objects and attributes
are the source code methods in the legacy system. An attribute value is 1,
if the attribute (method) calls the object (method); otherwise the value is 0.
The Jaccard distance measure is deployed to perform the cluster analysis. (See
Section 4.2.1 for an explanation of Jaccard.) Thus, two methods (objects) are
similar based on the degree to which they appear together in method bodies.
A cluster is meant to consist out of methods that are called together.1

An Example As an example of the cluster analysis performed by Lili He et
al., consider the following three methods:

1The paper of Lili He et al. makes no mention of how their technique handles polymor-
phism, the principle through which it is impossible to determine beforehand which method is
called as the result of a message send.

57

• method1(), which calls {write(), f lush(), alert()}

• method2(), which calls {write(), f lush(), open()}

• method3(), which calls {write(), f lush(), begin()}

Further assume that these three methods are the only methods in the legacy
system that call any methods. Then, if we assume the following ordering of the
methods in the legacy system (which are thus the attributes in cluster analysis):

(method1(),method2(),method3(), write(), f lush(), alert(), open(), begin())

we can represent the object corresponding to write() as follows:

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

while flush() becomes:

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

and alert() becomes:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We can then observe the distance between these objects (methods), through
the Jaccard measure:

Jaccard(write(), f lush()) = 0

Jaccard(write(), alert()) =
2

3

Note that the deployed distance does not involve any notion of recurrence.
When two methods are called once each, but both are called in the same method
body, they have similarity 1 (i.e. perfect similarity). This is not a recurring pat-
tern. Thus, a resulting cluster consists out of methods that are called together,
often or not.

The cluster analysis is carried out using CHAMELEON (Section 4.5.4 for an
outline of this algorithm). After the initial cluster analysis, a filtering step is
applied where a cluster is discriminated against if a method it contains is not
called often enough according to a certain treshold. This is done because only
those clusters of which the methods are frequently called together are deemed
valuable. The general idea is that the recurring pattern represented by a cluster
can be extracted into advice.

The second leg of the technique uses association rule mining (ARM) [HK00]
to extract information with which to model the pointcuts for the found aspect
candidates. ARM is a database mining technique. It deals with a set of items I,
and a set of transactions T , where each transaction is a subset of I. In the
context of a shopping example, I could be the set of things one can buy, while
a transaction could be the set of items resulting from one shopping trip. Given
I and T , ARM aims to provide rules such as:

bread ⇒ milk | 80%

58

first() ⇒ conn() | 100%
close() ⇒ end() | 100%

Table 5.7: Example association rules.

The above rule means that 80% of the time, when a person has bought bread,
he or she has also bought milk. The given percentage is called the confidence
factor. The goal of ARM is to automatically mine the database for rules with
a high such factor.

Lili He et al. use ARM as follows: the items are the methods in the legacy
system that remain after the above-described filtering, plus two special desig-
nators first() and end(). Conceptually, each method calls first() before its
body, and end() after. For each method m in the legacy system, one transac-
tion is formed of which the elements are the methods called by m. Hence, the
ARM algorithm provides rules such as in Table 5.7. These indicate confidences
with which the left-hand method is accompanied by the right-hand method in
different method bodies. Some rules A ⇒ B must be filtered away, namely
those where B isn’t immediately called after A in the different method bodies.
The remaining rules guide the refactoring. An example: two methods conn()

and close() have been identified as a cluster { conn(), close() } of methods
that are called together. In case the association mining step results in the two
rules of Table 5.7, then we can refactor conn() and close() into one around
advice.

5.3.7 Formal Concept Analysis of Execution Traces

Formal Concept Analysis

Formal concept analysis (FCA) [GW97] belongs to the domain of lattice theory.
It serves to form maximal groups of objects that have common attributes. More
specifically, a context (O,A,R) consists out of the set O of objects, the set A
of attributes, and the binary relation R = O × A to indicate which object has
which attributes. A concept is then defined as a pair of sets (X ⊂ O,Y ⊂ A)
such that:

X = {o ∈ O|∀a ∈ Y : (o, a) ∈ R}

Y := {a ∈ A|∀o ∈ X : (o, a) ∈ R}

The objects X thus have the attributes Y in common, such that these objects
have no common attributes other than Y . Nor is there any object outside of X
that has Y as its attributes. X is called the extent of the concept, while Y is
the intent.

Given all concepts that can be computed from a context, a partial order be-
tween the concepts can be defined through the containment relationship on their
extents. This gives rise to a lattice. Figure 5.1 illustrates such a lattice. It is

59

Java Smalltalk C++
Scheme Prolog

{}

Java Smalltalk C++

{object-oriented}

Java C++

{static typing,
object-oriented}

Smalltalk
Scheme Prolog

{dynamic typing}

Scheme

{dynamic typing,
functional}

Prolog

{dynamic typing, logic}

Smalltalk

{dynamic typing,
object-oriented}

{}

{dynamic typing, object-oriented,
 functional, logic, static typing}

PL OO Functional Logic Static Typing Dynamic typing
Java X - - X -

Smalltalk X - - - X
C++ X - - X -

Scheme - X - - X
Prolog - - X - X

Figure 5.1: An example lattice resulting from a Formal Concept Analysis.

{}

{}

{}

{object-oriented}

Java C++

{static typing}

{}

{dynamic typing}

Scheme

{functional}

Prolog

{logic}

Smalltalk

{}

{}

{}

Figure 5.2: The sparse version of the lattice in Figure 5.1

60

based on programming languages and the properties such languages can have.
The languages are the objects and their properties the attributes. Note that
the same partial order can be defined based on the containment relationship
between intents.

Concepts that sit higher in the lattice can be regarded as more general notions,
with more objects and less applicable attributes than the more specific concepts
lower in the lattice. A more compact and readable representation of an FCA
lattice can be constructed through a sparser labeling of the concepts, as follows:

A concept is labeled with:

an attribute, if it is the most general concept carrying that attribute;

an object, if it is the most specific concept carrying that object.

The sparse rendition of the lattice in Figure 5.1 is given in Figure 5.2. Given
this representation, the extent of a concept can be read off the sparse lattice
as the union of the objects with which more general concepts, plus the concept
itself, are labeled. The manner in which intents can be read is analogous.

Formal Concept Analysis of Execution Traces Tonella and Ceccato
[TC04] provide a dynamic analysis. Their technique considers a set of use
cases, and generates an execution trace for each one. Each use case serves as an
object in the subsequent FCA, while the attributes of an object (use case) are
the methods in the corresponding execution trace. Given the resulting sparse
concept lattice, the technique then attempts to associate each use case U with a
concept that is specific of it, i.e. a concept whose extent only contains U . Note
that this is not always possible for each use case. A use-case specific concept
is then considered an aspect candidate, if the following crosscutting conditions
hold:

• Scattering The attributes (methods) of a use-case specific concept belong
to more than one class.

The authors argue that this first condition is typically not sufficient to
observe crosscutting, because a concern can be implemented over differ-
ent modules as to simply delegate functionality, which is quite ordinary.
Complementary to the first condition, a second phenomenon is to be ob-
served:

• Tangling Different methods from the same class belong to more than one
use-case specific concept.

Tonella and Ceccato’s technique is semi-automated. It is still up to the aspect
miner to define the use cases, and to instrument the legacy system so its ex-
ecution can be traced. However, the construction of the lattice is automated,
as well as the verification of the two above-described crosscutting conditions.

61

Methods in the Insertion execution trace.

BinaryTree.BinaryTree()

BinaryTree.insert(BinaryTreeNode)

BinaryTreeNode.insert(BinaryTreeNode)

BinaryTreeNode.BinaryTreeNode(Comparable)

Methods in the Search execution trace.

BinaryTree.BinaryTree()

BinaryTree.search(Comparable)

BinaryTreeNode.search(Comparable)

Table 5.8: The execution traces for the Search and Insertion use cases.

BinaryTree.insert(BinaryTreeNode)
BinaryTreeNode.insert(BinaryTreeNode)
BinaryTreeNode.BinaryTreeNode(Comparable)

Insertion

BinaryTree.search(Comparable)
BinaryTreeNode.search(Comparable)

Search

Figure 5.3: The resulting concept lattice for Table 5.8

62

As usual, manual post-processing of the mining results is required from the
aspect miner.

As an example, consider a binary search tree application. We are interested
in two use cases: insertion of a node, and the search for information in the
tree. Consequently, we require two execution traces. They are illustrated in
Table 5.8. Then, the FCA algorithm is run, resulting in the sparse lattice of
Figure 5.3. Immediately it is clear that a degree of crosscutting is detected by
the discussed technique: the concepts of insertion and search are both labeled
with methods belonging to more than one class. Additionally, the BinaryTree
and BinaryTreeNode classes are scattered over more than one concept.

5.3.8 Formal Concept Analysis of Identifiers

Tourwé and Mens [TM04] propose the use of FCA using lexical information from
the source code. (FCA was discussed in Section 5.3.7.) Classes and methods
are taken as the objects. Their names are split into substrings, according to
the location of capital letters. For example, “QuotedCodeConstant” becomes
“Quoted”, “Code” and “Constant”. Substrings with little meaning, like “with”
and “in”, are ignored. Any remaining substring becomes an attribute to any
object (class or method) whose name it appears in.

Tourwé and Mens report on an initial experiment in which they obtained 1212
concepts from 1446 objects and 516 attributes. Obviously, automatic filtering
of concepts is at order in this technique. Therefore, the technique ignores the
top concept in the lattice, if it has no attributes. Likewise, the bottom concept
is ignored if it is void of any objects. In the next step of filtering, a concept is
discriminated against if it contains only a single object. This is done because
the singleton behaviour of the concept means that the contained object displays
no relation to other objects, according to the chosen attributes.

The final experiment was carried out on the Smalltalk program SOUL as the
legacy system. A number of interesting phenomena were detected:

• Accessor Methods In Smalltalk, a naming convention is applicable to
methods that serve to reference or set an instance variable: they are
simply named as the variable they apply to. In several instances a concept
was found that groups such methods, bound by the name of the variable
as the attribute.

• Polymorphism Classes implement polymorphism through naming their
methods identically. Naturally these identically-named methods were as-
sembled in the same concept.

• Design Patterns As an example of the detection of a design pattern,
an instance of Visitor was found (see Section 6.4.5 for a discussion of this
pattern). This instance was detected through (1) polymorphism (there
is a hierarchy of Visitors in SOUL), and (2) the visit methods that are
scattered over the data structure to be traversed.

63

• Code Duplication Not surprisingly, methods with similar names often
have similar implementations.

• Class-related Behaviour Concepts were found that group one class
together with methods that relate to that class. This type of concept can
emerge from the Visitor, Builder and Abstract Factory design patterns:
because the behaviour of a pattern instance depends on a choice of class,
names of classes are embedded in the pattern instance.

Obviously, crosscutting is not inherent to some of these phenomena. Nonethe-
less, crosscutting concerns were detected with this technique (Visitor is one
example).

5.3.9 Aspect Mining Based on PDG’s

The aspect mining technique of Shepherd et al. [SGP04] uses PDG’s.2 (Sec-
tion 5.2.2 for an explanation of PDG’s.) The technique is particular, in that
it discriminates against those crosscutting concerns that are more difficult to
refactor. Concretely, the technique mines for before advice. In doing so, it
looks for patterns (clones) that occur at the beginning of method bodies.

Given a pair of methods, the proposed technique uses information from both
their AST’s and (traditional) PDG’s. It traverses through control dependence
edges only. These edges give shape to a tree structure rooted at the entry of the
PDG (method). Starting from the entries of the two methods, their PDG’s are
traversed breadth-first in lockstep, collecting the maximal common subtree. Of
course, this process relies on a concept of equality between nodes in the PDG’s.
It is defined as follows. Given two nodes, their AST’s are walked through in
lockstep; any node in one AST must match its corresponding node in the other,
where two nodes match when:

• they are variables and they are both of the same type, one is a subtype
of the other, or they both share a parent type besides Object (the global
root object in Java);

• they are literals of the same type (e.g. boolean);

• they are neither literal or variable but structurally identical (e.g. “if”
matches “if”).

The maximal common subtrees between method PDG’s are then considered
clones. Two filters are applied to the resulting set of clones, they are:

2We discuss this technique separately from the other techniques that use PDG’s, because
it is an actual aspect mining technique, rather than a clone detection technique.

64

• Similar-data-dependence Given two PDG subtrees representing
clones, this filter ensures that the underlying data dependencies are the
same in each subtree. These edges are only considered as a post-processing
step, because this manner of operating is more time-efficient than the
technique of Brinke (Section 5.2.2) which has exploding running times.

• Outside-data-dependence This filter eliminates any clone that has
data dependencies to, or from a node outside of the clone. This is mo-
tivated by the AspectJ restriction that variables inside before advice
can’t be referenced in the adviced method. Hence this filter focusses on
concerns that are difficult to refactor.

Ultimately, the remaining clone pairs are presented to the user as refactoring
candidates, after they have been coalesced where possible.

5.4 Summary

We have discussed the research field of aspect mining, which is concerned with
the detection of aspect candidates in legacy systems. Due to the scale, complex-
ity and poor documentation of legacy systems, tools have been proposed that
aim to aide the developer in mining for aspects candidates. We have surveyed
those aspect mining techniques that strive to automatically identify all aspect
candidates in the legacy system. We have additionally surveyed clone detection
techniques; those are not tailored for the automated identification of aspect
candidates, but can be used for this purpose. We will compare the surveyed
aspect mining techniques with our own; in Chapter 7, this is done in terms of
analysis properties, while in Chapter 9 the aspect mining results are compared.

65

Chapter 6

JHotDraw

JHotDraw [JHo] is a relatively large-scale Java program that serves as a frame-
work for drawing applications.1 We have used JHotDraw in our aspect mining
experiments. This chapter discusses JHotDraw and crosscutting concerns that
are present in the system. Additionally, attention is given to the position of de-
sign patterns in AOP, because many of the crosscutting concerns in JHotDraw
are in fact design patterns. The list of concerns that are documented in this
chapter is later used in the evaluation and comparison of our aspect mining
techniques.

6.1 Motivation for our Choice of JHotDraw

JHotDraw was first devised as an exercise in design patterns. One of its authors
is in fact co-author of the ground-laying Gang-of-Four book [GHJ95]. As such,
JHotDraw has the reputation that it maximally exploits the means of abstrac-
tion and composition offered by traditional object-oriented languages. Conse-
quently, JHotDraw makes for a particularly interesting case study in the field
of aspect mining. Any crosscutting concern uncovered within JHotDraw can to
a greater extent shed light on where object-orientation falls short. Adding to
the motivation behind our choice of JHotDraw, is the high quantity of papers
that discuss the system, and use it as a benchmark for aspect mining.

6.2 Architecture of JHotDraw

Figure 6.1 gives an overview of the core architecture of JHotDraw. The most
important classes and interfaces are:

• Drawing, Figure and DrawingView These three interfaces form the
core of JHotDraw. A Drawing represents a two-dimensional space. It
further contains Figures to which it can delegate commands. Examples

1The version of JHotDraw under investigation here is 5.4b1.

66

<<Interface>>

Tool

<<Interface>>

Figure
<<Interface>>

Handle

<<Interface>>

Drawing

<<Interface>>

DrawingView

notification

handles 1*

current Tool1

notification

*

*

1

Figure 6.1: UML diagram of the core architecture of the JHotDraw framework.

of concrete Figures are: an ArrowTip, a TextFigure, an EllipseFigure.
For one Drawing, multiple DrawingView can exist. Each DrawingView
provides the screen a view of the Drawing it is dedicated to. The ab-
stractive gap between Drawing and DrawingView maintains the separa-
tion between, respectively, JHotDraw’s controller logic, and JHotDraw’s
underlying graphics system (which is Swing in the version under investi-
gation).

• Tool A Tool defines a mode of a DrawingView. All input towards a Draw-
ingView is delegated to its current Tool. Among the subtypes of Tool one
finds classes with such clarifying names as DragNDropTool, ZoomTool,
SelectionTool.

• Handle Direct manipulation of a Figure is done through a Handle that
the Figure owns. A Handle knows its owning Figure and adapts it to a
common interface.

• Command (not on display in Figure 6.1) A Command object encap-
sulates a request according to the Command design pattern. For further
discussion regarding this design pattern within JHotDraw, we refer to
Section 6.4.7.

6.3 Design Patterns and AOP

A design pattern is a generic description of an object-oriented solution. De-
sign patterns have become a common vocabulary amongst software developers,
improving mutual understanding and facilitating the maintenance of software
systems. Seeing the quantity of design patterns that are present in JHotDraw,
we deem it worthwhile to take a moment to discuss design patterns in the light
of AOP.

67

Locality Reusability Composition (Un)pluggability

Transparency

Adapter yes no yes yes

State yes no n/a yes

Decorator yes no yes yes

Visitor yes yes yes yes

Command yes yes yes yes

Singleton yes yes n/a yes

Observer yes yes yes yes

Table 6.1: AspectJ refactorings of design patterns and improvement in modu-
larity properties.

While proven valuable, design patterns aren’t infallible. Some elements of
design patterns are hardly modularized and can be lost in the code, which
is detrimental to the traceability of the patterns [CS95]. Adding or remov-
ing a design pattern from a software system is often an invasive modifica-
tion [BFVY96]. Furthermore, even though design patterns draw strength from
being reusable solutions, their concrete implementations typically don’t allow
for their reuse [CS95]. When design patterns are composed, this may lead to the
pattern density problem, where the pattern implementations become entangled
to the degree of deteriorating comprehensibility [DAAC05].

Consequently, researchers have sought to leverage the aforementioned prob-
lems, some through means of AOP. Denier et al. [DAAC05] mainly focus on
the composition issue and propose aspect refactorings for Observer and Dec-
orator (and their composition). The authoritative paper on “design patterns
meet AOP” is due to Hanneman and Kiczales [HK02]. They make a case in
favour of the AOP approach for design patterns, by showing that 17 of the 23
Gang-of-Four patterns enjoy modularity improvements in their AspectJ refac-
torings. Furthermore, Hanneman and Kiczales contribute a table, as (partly)
seen in Table 6.1, where each row designates an aspect refactoring of a design
pattern, while the columns show whether the refactorings enjoy improvement in
four desirable modularity properties. These properties are: locality, reusability,
composition transparency and (un)pluggability. In order to make these four
concepts clear, we adapt the example given by Hanneman and Kiczales of the
Observer design pattern.

6.3.1 Observer

A well-known pattern, Observer serves to define a dependency between ob-
jects: when a Subject changes state, all of its dependent Observers are notified.
The pattern is illustrated in Figure 6.2. The Subject role is imposed on some
classes, whilst the Observer role is imposed on dependent classes. The Subject
maintains a collection of its dependent Observers. This collection is interfaced
by a register method and an unregister method in the Subject, for adding
and removing Observers. Completing the basic pattern is a notify method in

68

public abstract aspect ObserverProtocol {

protected interface Subject { }
protected interface Observer { }
private WeakHashMap perSubjectObservers;

protected List getObservers(Subject subject) {
if (perSubjectObservers == null) {

perSubjectObservers = new WeakHashMap();
}
List observers = (List)perSubjectObservers.get(subject);
if (observers == null) {

observers = new LinkedList();
perSubjectObservers.put(subject, observers);

}
return observers;

}

public void addObserver(Subject subject,
Observer observer) {
getObservers(subject).add(observer);

}

public void removeObserver(Subject subject,
Observer observer) {
getObservers(subject).remove(observer);

}

protected abstract pointcut subjectChange(Subject s);

after (Subject subject): subjectChange(subject) {
Iterator iter = getObservers(subject).iterator ();
while (iter .hasNext()) {

updateObserver(subject, ((Observer)iter.next ()));
}

}

protected abstract void updateObserver(Subject subject,
Observer observer);

}

Table 6.2: AspectJ refactoring of the Observer design pattern.

69

<<Interface>>

Subject

+register(Observer)

+unregister(Observer)

<<Interface>>

Observer

+update()

ConcreteSubject

+register(Observer)

+unregister(Observer)

+...()

+...()

+...()

ConcreteObserver

+update()

+...()

+...()

+...()

has Observers

has Subject

Figure 6.2: UML diagram of the Observer design pattern.

the Observer, so that the Subject can notify its dependents. (Often different
notify methods exist for different types of events.)

The crosscutting behaviour is two-fold. Firstly, there is the matter of the su-
perimposed roles, which are secondary roles to the participating classes. This
results in tangling, where methods dedicated to different concerns are encap-
sulated in the same class. Also note the scattering of the Observer pattern
over different classes. Secondly, in order for the Subject to be able to notify
its Observers, the Subject’s state-changing methods need to be crosscut with
notification code.

The refactoring proposed by Hanneman and Kiczales is illustrated in Table 6.2.
The aspect is abstract: any specific instance of the Observer pattern is to be
realized through an aspect that derives from this abstract aspect. The abstract
aspect defines two roles through means of two interfaces: one Observer interface,
one Subject interface. Derived aspects are to impose these interfaces on the
participating classes. An instance of a derived aspect keeps a data structure to
map each Subject to its Observers. The register and unregister methods
are part of the interface to the derived aspect. As such, the client needs to
access the instance of the derived aspect. More specifically, in order to define
the mapping between the Subjects and the Observers, the client is to use the
following statements:

AnObserverAspect.aspectOf().addObserver(P, S)
AnObserverAspect.aspectOf().removeObserver(P, S)

Note that this violates the condition of obliviousness in AOP (Section 2.2).
Pointcuts capture the join points at which the state of a Subject is changed.
Advice attached to these pointcuts performs the actual notification of the Ob-
servers.

We can now revisit the four desirable modularity properties of aspect refactor-
ings, and discuss them for the refactoring just described.

70

Design patterns

Undo WillChange/Changed Observer
Drawing/Moving Error Handling Composite
Persistence Serialization Visitor
CheckDamage Command Execute Command
Cloning Space State

Adapter
Decorator
Singleton

Table 6.3: The crosscutting concerns we have documented.

• Locality (improved) The Observer aspect and its concrete derivations
are now the sole location for the implementation of the pattern. The
participating classes have effectively been freed of the crosscutting roles
and code, plus any coupling between them established by the pattern has
vanished.

• Reusability (improved) The core logic of the Observer pattern is gener-
ically described in the abstract aspect. This logic can hence be reused by
every instance of the Observer pattern: each instance is to derive one
concrete aspect from the abstract aspect.

• Composition Transparency (improved) Because the implementation
of a participating class has been decoupled from the Observer pattern,
and each pattern instance sits in its own aspect, classes can participate
in multiple Observer and Subject relationships without this composition
being detrimental to comprehensibility.

• (Un)pluggability As Subjects and Observers have become oblivious to
their roles, it is possible to switch to using or not using Observer in the
software system.

6.4 Crosscutting Concerns in JHotDraw

Through literature study and manual investigation, we have compiled a list of
crosscutting concerns in JHotDraw. We now discuss this list. The main focus in
this discussion lies on the crosscutting nature of the different concerns. We work
from the assumption that a design pattern constitutes a crosscutting concern, if
Hanneman and Kiczales have determined AOP to improve the pattern in terms
of its locality (Table 6.1). We further situate the presence of the crosscutting
concerns – including design patterns – in JHotDraw.

In some cases, we detail the AspectJ refactoring of a concern, if this helps to
illustrate where the software system can benefit from such an aspect refactoring.
The AspectJ solutions for design patterns are due to Hanneman and Kiczales.

71

UndoManager

<<Interface>>

Undoable

+undo()

<<Interface>>

Figure

<<Interface>>

Activity

ConcreteActivity ConcreteUndoable
has nested class

*

has affected figures *updates
1

Figure 6.3: A simplified UML diagram of the Undo concern in JHotDraw.

However, while their AspectJ code is freely available2, the authors often do
not relate precisely how an aspect refactoring leads to improvement in the four
modularity properties. That is to say, they provide little explanation as to the
contents of Table 6.1. Therefore, we provide our own input on the matter.

We do not discuss each design pattern that we have found in JHotDraw. The
patterns that we omit from the discussion are present in Table 6.3, which gives
a global overview of all the crosscutting concerns that we have documented.

6.4.1 Undo

It is natural that the Undo concern, responsible for making actions in the
drawing editor undoable, be a very pervasive concern throughout the software
system. (Undo was discussed in [vDMM05].) A simplified representation of this
concern is given in Figure 6.3. On one hand there is the Undoable interface. Its
implementing classes are responsible for performing the actual undo operations.
The instances of those classes are maintained on a stack by the UndoManager.
It is the undo method in the Undoable interface that initiates the undo. On
the other hand, there are the various Activities that can be undone. When it
needs to be undoable, an Activity implements an Undoable as a static nested
class. So that the undo may be done, an instance of the Undoable nested class
keeps a (former) state of its enclosing Activity, and is notified each time the
Activity’s state changes. Furthermore, each Undoable instance maintains a list
of affected figures that need be taken care of when an undo is initiated. (the
simplification of this representation lays in the fact that there is no Activity in-
terface as such; concrete activities are Tools, Handles and Commands, without
a unifying interface).

2http://www.cs.ubc.ca/˜jan/AODPs

72

The crosscutting behaviour manifests itself in the following three ways:

1. The nested Undoable, even though an encapsulation by nature, crosscuts
its enclosing Activity.

2. The enclosing Activity has a factory method which returns an instance of
its Undoable nested class.

3. Methods of the Activity that perform state changes are crosscut by code
that serves to maintain the corresponding Undoable instance.

6.4.2 Error Handling

In Java’s exception mechanism, an exception is either checked or unchecked.
When a call is made to a method that could throw a checked exception (e.g.
IOException), the calling method needs to do one of two things: (1) either
declare “throws IOException” in its header to indicate that it could propagate
a IOException, or (2) catch the exception in a try-catch statement. This
policy is enforced by the compiler, which throws an error when the policy
is violated. The use of unchecked exceptions does not impose such a policy:
unchecked exceptions are caught in a try-catch statement at run-time, or
crash the system at run-time. JHotDraw defines both custom checked and
unchecked exceptions.

While error handling in itself is one of the prototypical crosscutting concerns,
the policy described above adds to the crosscutting. When a method has no
intent to produce or catch a particular checked exception, the method might
still be forced to declare that it could propagate the exception. AspectJ allows
to encapsulate catch clauses in aspects. Additionally, AspectJ knows a work-
around to the crosscutting that originates from the policy regarding checked
exceptions. This work-around is the “exception softening mechanism”, in which
checked exceptions are converted to unchecked exceptions.

6.4.3 Decorator

This design pattern serves to augment objects with new responsibilities. A
Decorator object has the same interface as the object that it decorates and owns.
Before redelegating an incoming request to this owned object, a Decorator
object adds some functionality. One instance of this pattern in JHotDraw
is quite prototypical (Figure 6.4). It is the case of adding a border to the
graphical representation of a Figure. Concretely, the class BorderDecorator
extends the abstract class DecoratorFigure, and as such implements the Figure
interface. When a Figure object is passed as an argument to the constructor of
DecoratorFigure, the Figure object is decorated with a border.

However, it is not clear to what extent Decorator is a crosscutting concern.
Marin et al. [MMvD05] list this pattern, bundled together with its cousin
Adapter, in their canonical list of elementary crosscutting concerns. (It is listed
as the Redirection Layer concern). In doing so, they refer to Hanneman and

73

<<Interface>>

Figure

+operation()

AbstractFigure

+operation()

DecoratorFigure

+DecoratorFigure(Figure)

+operation()

has child

1

BorderDecorator

+operation()

Figure 6.4: UML diagram of an instance of Decorator in JHotDraw.

Kiczales, who have come up with a refactoring for Decorator. According to
Table 6.1, this refactoring shows improvements in three of the four modularity
criteria.

On the other hand, van den Berg et al. [vdBCH06] propose an “operational-
ization of the definition of crosscutting”, in order to aide the identification of
crosscutting concerns. More specifically, they use matrices to model the rela-
tion between design elements, and then read a degree of crosscutting from these
matrices. Applying this technique to an instance of the Adapter design pat-
tern, they conclude that “this pattern does not require the utilization of AOP
because there is no crosscutting” – we presume the same to hold for Decorator,
seeing the similar nature of these patterns, both being redirection layers.

If we take a closer look at the refactoring proposed by Hanneman and Kicza-
les, we witness a simple mechanism. Each instance of the Decorator pattern
has a corresponding aspect. Those methods of the decorated object to be
added functionality to are captured through a pointcut and augmented with
advice. Precedence of one Decorator over another is declared through aspect-
precedence.

We presume that Hanneman and Kiczales evaluated this refactoring as follows:

• Locality (improved) The client is now free of the so-called “glue code”
which manually wraps the Decorators around the target objects, as each
Decorator aspect automatically applies to the target objects captured in
its pointcut(s).

• Reusability (no improvement)

74

<<Interface>>

Handle:Adapter

AbstractHandle

PolygonHandle ElbowHandle ...

<<Interface>>

Figure:Adaptee
1*

Client

Figure 6.5: UML diagram of an instance of Adapter in JHotDraw.

• Composition Transparency (improved) The aspect precedence mech-
anism gives a more localized and clear specification of the precedence of
different instances of Decorator. This contrasts with the object-oriented
solution, in which this precedence is determined through the order in
which the wrappings occur in the glue code. The glue code is often scat-
tered and unstructured.

• Unpluggability (improved) Unplugging a decoration can now be done
from within the corresponding Decorator aspect. This is easy, in compar-
ison with having to get hold of the decorated object in the base system,
to unwrap it of its decorations and pass it on stripped.

However, Hanneman and Kiczales’ refactoring has raised some remarks [DAAC05].
The aspect elements are weaved into the base system at compile-time. This
poses problems when it is required to dynamically reorder the precedence of
Decorators, dynamically enable different combinations of Decorators, decorate
only a subset of the instances of a targeted class, or decorate an object only
during specific phases. The discussed refactoring could potentially not be suf-
ficient for the above-discussed pattern instance in JHotDraw, as Figures are to
be dynamically decorated with (and stripped of) borders.

6.4.4 Adapter

When a class proves difficult to plug into a software system because its interface
is incompatible, the Adapter design pattern leverages the problem by adapting
the problematic class to the desired interface. Adapter does this via a new
class that does implement the desired interface, and of which each instance
owns an instance of the class with the incompatible interface. The owning
object translates any incoming request to a request for the owned object.

This design pattern clearly manifests itself in JHotDraw through the Handles
mechanism (Figure 6.5). All the concrete Handles implement the same interface,
but they differ in how incoming requests are translated before they are passed on

75

<<Interface>>

Figure

+visit(FigureVisitor)

<<Interface>>

FigureVisitor

+visitFigure(Figure)

+visitHandle(Handle)

+visitFigureChangeListener(FigureChangeListener)

DeleteFromDrawingVisitor

+visitFigureChangeListener(FigureChangeListener)

+visitHandle(Handle)

+visitFigure(Figure)

+...()

InsertIntoDrawingVisitor

+visitFigureChangeListener(FigureChangeListener)

+visitHandle(Handle)

+visitFigure(Figure)

+...()

Figure 6.6: UML diagram of an instance of Visitor in JHotDraw.

to the owned Figure object. We believe the discussion regarding the crosscutting
nature of Adapter to be similar to that in the previous section where Decorator
was investigated. Both patterns are namely redirection layers of sorts.

6.4.5 Visitor

The Visitor design pattern allows to add new operations to the objects in an
object structure, without modifying that structure. This allows for a cleaner
separation between the structure and algorithms that use it.

On each class that participates in the object structure, the Visitor pattern
imposes a visit method. When the object structure is to be augmented with
new functionality, the client is to do nothing but encapsulate that functionality
in a Visitor class. Each visit method takes a Visitor as its sole argument
and automatically calls the appropriate functionality within the Visitor. The
Visitor pattern is precisely crosscutting because of the visitmethods it imposes
throughout the object structure.

Visitor is used in JHotDraw over a hierarchy of Figures (Figure 6.6). There
is a Visitor for deleting a hierarchy of Figures from a Drawing, and one for
inserting a hierarchy into a Drawing. These run through the hierarchy of Figures
and collect all Figures that are affected by the deletion, respectively insertion.
Thus, it is the Figures that implement the visit methods.

6.4.6 Composite

In the Composite design pattern, of main interest to the client is the Component
interface. Composite objects consist out of several Component objects. The

76

<<Interface>>

Figure:Component

AbstractFigure

CompositeFigure:Composite

+add(Figure)

+remove(Figure)

+...()

children

*

PolyLineFigure:Leaf

...

Figure 6.7: UML diagram of an instance of Composite in JHotDraw.

Composite pattern allows to manipulate a Composite as if it were a Component.
To this end, the Composite class too implements the Component interface.
However, the Composite class has to implement some additional methods that
serve to manage the children of a Composite.

The most prominent instance of this pattern in JHotDraw is the class Compos-
iteFigure. It implements the Figure interface whilst being a collection of several
Figures (Figure 6.7).

The crosscutting behaviour lays with the “composite behaviour” of the Com-
posite class. This becomes clear once one beholds the refactoring proposed by
Hanneman and Kiczames. A designated aspect is created for each instance of
the Composite design pattern. This aspect maintains a mapping between each
Composite and its children. Additionally, the aspect encapsulates the utility
methods to manage and access the children of a Composite. It is expected from
the client that he, or she, gets hold of the instance of the aspect, in order to
call these utility methods. A such, the Composite in the base system doesn’t
even need to keep track of its children, and is effectively freed of its “composite
behaviour”.

6.4.7 Command

Command is a design pattern that serves to represent a request by a Command
object. For each kind of request there is a different concrete Command, whose
(instance) fields can be set using all kinds of properties of the request (properties
that would traditionally be passed along a method call as its arguments). Upon
calling of its execute method, a Command brings the request it represents into
practice, working with the Receiver whom the request is meant for.

Manual investigation of JHotDraw again shows a design pattern being used to
bridge view and controller logic (Figure 6.8). While the Command hierarchy
belongs to the controller logic, classes calling the Commands’ execute methods

77

<<Interface>>

Command

+execute()

AbstractCommand

+execute()

ZoomCommand

+execute()

InsertImageCommand

+execute()

...

DrawingEditor:Receiver

Invoker

Client

Figure 6.8: UML diagram of an instance of Command in JHotDraw.

derive from Swing components (recall that Swing is the underlying graphics
system for JHotDraw).

Hanneman and Kiczales propose the use of an abstract aspect. This aspect de-
clares three different roles for participating classes: (1) Command, (2) Invoker,
i.e. the object that calls the execute method of a Command, and (3) Receiver.
The selling point of this refactoring is how it frees the base system from:

• code that associates Invokers with Commands;

• code that associates Commands with Receivers;

The aspect keeps data structures to remember these associations. Additionally,
pointcuts and advice are deployed to refactor the join points at which Invokers
call execute. The intent is for the base system to be freed entirely from the
Command pattern code.

6.4.8 Other Concerns

Here we present a series of crosscutting concerns that do not require to be as
thoroughly discussed as the previous ones, because their crosscutting behaviour
is more obvious. These concerns can further be divided into two groups, ac-
cording to the applicable aspect refactoring: the first group consists of concerns
that can be remodularized through inter-type declarations (to factor out and
reimpose methods), while the second group requires pointcuts and advice.

Require Inter-type Declarations

• Persistence [vDMM05] This concern manifests itself through classes that
implement the Storable interface, which consists out of the methods write
and read. The write method serves to write a Storable object to a
StorableOutput object, which is a specialized output stream. The read

method serves to resurrect a Storable from a StorableInput object.

78

• Serialization The Java language allows an object to be converted into a
sequence of bytes, with the possibility of later resurrecting a live object
from this sequence. However, an object can be serialized in this manner
only if it implements the Serializable interface. This interface declares no
methods or fields, and serves only to identify serializable objects. If an
object requires to be handled in a particular way during serialization, it
needs to implement the writeObject and readObject methods.

• Cloning When a class implements the Clonable interface, this indicates
that it is legal for the Object.clone method to make a field-by-field copy
of an instance of the class. Clonable classes are also required to override
this clone method.

• Drawing/Moving Figures [CMM+05] Some researchers have observed
crosscutting in how Figures encapsulate some methods dedicated to draw-
ing figures, and some methods that move figures. These can be regarded
as different concerns.

Require Pointcuts and Advice

• Command Execute [vDMM05] Within the Command hierarchy, an-
other crosscutting concern is present. The AbstractCommand.execute

method does nothing but perform a check to see whether the DrawingView
associated with the Command is not null. If this condition is not met,
an exception is thrown. Methods that override this execute method are
forced to do a super call to the method.

• CheckDamage Furthermore, most execute methods conclude with a
call to checkDamage, to check whether the DrawingView has been changed.

• WillChange/Changed [SP05a] The willChange and changed methods
inform a Figure that it respectively will be changed, or has changed. This
pair of methods is often found enclosing the body of a Figure-changing
method, thus making it a prime target for aspect refactoring.

• Space [MvDM04] The StorableOutput class implements a set of methods
that write values to the stream. Each of these methods concludes with a
call to the StorableOutput.space method, in order to write a space to
the stream.

6.5 Summary

We have chosen JHotDraw as the benchmark for the evaluation and comparison
of our aspect mining techniques. This choice is due to (1) the degree to which
JHotDraw has already been deployed in aspect mining research, and (2) JHot-
Draw’s reputation as a system that has already been modularized to the most
of object-orientation’s capabilities. We have discussed how design patterns are

79

not, generally, infallible. In fact, a significant amount of the patterns can be
regarded to have a crosscutting nature. Table 6.3 lists all crosscutting concerns
that we have documented in JHotDraw, most of which were thoroughly dis-
cussed throughout this chapter. We deploy this list of crosscutting concerns in
the evaluation and comparison of our aspect mining techniques.

80

Chapter 7

Five New Aspect Mining

Techniques

The main contribution of our work is the design and implementation of five
aspect mining techniques that use cluster analysis to automatically mine for
all aspect candidates in the legacy system. A manual post-processing step is
still at order in the use of each technique, in which the developer manually in-
vestigates the outputted clusters. At the heart of each technique lies a separate
distance measure between the methods in the legacy system. Furthermore, we
contribute a working definition of crosscutting. According to this definition,
we tailor a mining technique to detect one specific category of crosscutting
behaviour. We classify a mining technique as a Logic Clustering or a Method
Clustering technique, according to whether it focusses on crosscutting in method
bodies or classes, respectively. We discuss each of the five mining techniques
according to this classification. First, we relate our approach to cluster analysis
that underlies all the aspect mining techniques we propose. We conclude with
a comparison of our work with aspect mining techniques authored by other
researchers, in terms of the properties of the analyses.

7.1 Our Approach to Cluster Analysis

Aspect Mining

Cluster Analysis

The principle of cluster analysis underlies each of the aspect mining techniques
we propose. One can illustrate our overall aspect mining work as consisting out
of two layers: an aspect mining layer, on top of a cluster analysis layer. There
is a degree of independence between both layers, in that we can experiment

81

with different cluster algorithms, while the ideas specific to aspect mining (e.g.
the choice of distance measure) stay the same. Because cluster analysis is pri-
marily an exploratory tool, we see fit to experiment with different approaches
that perform cluster analysis (e.g. algorithms). In practice, we have imple-
ment the LanceWilliams framework for cluster analysis, and secondly propose
cluster feature solutions, which deploy domain knowledge in performing cluster
analysis.

7.1.1 A Choice of Cluster Algorithms

Considering which cluster algorithm(s) to use as the basis of our aspect mining
techniques, we exercise a bias against algorithms that do not support distance
spaces. Some of our distance measures compare the parse trees of methods, or
strings. In those cases, it does not make sense to break down an object (e.g.
parse tree) into separate attribute values. Grid-based and subspace-based clus-
tering require a space formed by the object attributes (see Sections 4.7 and 4.8,
respectively). The typical algorithms that implement density-based clustering
(DBSCAN, OPTICS) require numerical attributes (Section 4.6). Hence, the
grid-based, subspace-based, and density-based schemes are of lesser interest,
because they do not support distance spaces.

The purpose of our work is to use one mining process (cluster analysis) to drive
the other (aspect mining). We lay the emphasis on the overall aspect mining
goal. In analyzing the aspect mining results, we do not wish the underlying
cluster analysis to provide extra degrees of uncertainty. Therefore, we favour
cluster algorithms that do not require parameters to be provided by the user.
The typical partitional clustering algorithms (Section 4.4) do not satisfy this
property. In the common case, they require the user to provide the desired
number of clusters.

Regarding model-based clustering (Section 4.9), we have no particular interest
in a mathematical model that captures the data. Especially if this approach
provides no guarantees to generate a higher-quality clustering.

Single pass clustering (Section 4.3) has no characteristics that ensure any degree
of quality in cluster analysis. However, the comfortable complexity of the tech-
nique, in both time and space, makes it interesting as a pre-processing step. In
our case, we often perform a single pass to group near-identical objects, as a way
of leveraging the size of the input for the main analysis. The idea is that the sin-
gle pass is not likely to make wrong decisions in grouping the objects, precisely
because it operates using a (very) strict sense of near-identity. The treshold at
which to consider objects as near-identical is determined by experimentation
and domain knowledge. For example, in grouping methods for similarity in their
names, it is easy and rewarding to first group the identically-named methods
(in a single pass), before considering different degrees of similarity (in a more
expensive analysis). This pre-processing becomes especially interesting when
near-identity, or identity, can be determined using a cheaper distance measure
than the one used in the main analysis.

82

panther ant chimpanzee

ant

an

Figure 7.1: The AHC process, as determined by using the technique of cluster
features.

By means of elimination, we arrive at hierarchical clustering algorithms. The
algorithms of this kind that we presented in Section 4.5 are agglomerative hi-
erarchical cluster (AHC) algorithms. They all support distance spaces, with
the exception of CURE. Because hierarchical algorithms construct a hierarchy
of several clusterings, they typically demand less input parameters. The algo-
rithms CURE and ROCK do request some input values, while CHAMELEON
has what we believe to be a significant amount of input parameters.

We have implemented the Lance-Williams framework for cluster analysis (Sec-
tion 4.5.1). Through the parameters in the Lance-Williams formula, this frame-
work allows to efficiently implement 5 distinct cluster algorithms: MaxLink,
MinLink, GroupAverage, Ward and Centroid. While these 5 algorithms are
conceptually simple, they nonetheless form a group that is representative of (cer-
tain) common AHC algorithms. Recall from our discussion on the CHAMELEON
algorithm, that MinLink considers the closeness of clusters, as does CURE. Sim-
ilarly, both GroupAverage and ROCK focus on the aggregate inter-connectivity
of clusters. Because Ward and Centroid rely on centroids, which must be com-
puted from numerical attributes, we have only implemented MaxLink, MinLink
and GroupAverage.

7.1.2 Cluster Features

One AHC approach is commonly omitted from textbooks on cluster analysis.
This does not surprise, as it is a domain-specific approach. More precisely, it
is the idea to use knowledge from the problem domain to compute the dis-
tance between composite clusters. We have already seen an example of this. It
is the aspect mining technique of Shepherd and Pollock (Section 5.3.5). This
technique labels the objects with strings. The distance between the objects is
a string dissimilarity measure applied to their labels. Additionally, composite
clusters are given labels too. Shepherd and Pollock take the label of a com-
posite to be the common substring amongst the two subclusters that form that
composite. To create the AHC process, the same string dissimilarity measure
is used on objects and composites alike. Figure 7.1 illustrates the AHC pro-
cess in which this strategy results. The structure in the figure is similar to
a dendrogram, with the objects at the bottom and a new composite at each

83

joint. Instead of denoting each joint with a distance, we give the label of the
composite cluster that is formed.

We suggest one such “cluster feature solution” for each of the five aspect mining
techniques (distance measures) we have designed. The act of feature derivation
is to label a composite cluster using the labels of the two subclusters that form
it. We use the term cluster feature to denote the label that is given to each
composite cluster and object. In a cluster feature solution, the idea is that
the distance measure between objects strictly operates on the cluster features,
and that we apply the same distance measure to composite clusters, in order to
create the AHC process. Additionally, we always take the feature of a cluster
to relate some information that holds for each object in that cluster.

Throughout the rest of this text, we explain each cluster feature solution by
means of (1) what constitutes the cluster feature of an object, and (2) how
feature derivation is performed. The used distance measure is implicitly taken
from the general context (aspect mining technique) in which the cluster feature
solution is proposed.

As an example, for the technique of Shepherd and Pollock, we specify:

• Feature of an Object The name of that method (which is a string)

• Feature Derivation Taking the common substring of two strings

7.1.3 Automatic Selection of a Clustering in the Hierarchy

We have implemented the technique of silhouette coefficients to evaluate the
result of cluster analysis (Section 4.10.1 for a discussion of silhouette coeffi-
cients). This evaluation measure is the only (common) measure that considers
both cluster separation and cohesion, whilst not having a bias towards partic-
ular types of clusters (e.g. center-based clusters).

The manner in which we use this measure is two-fold. One one hand, the
outcomes of different cluster algorithms must be compared. On the other hand,
an AHC algorithm produces a hierarchy of several clusterings. Such a structure
can be a wealth, but it is nonetheless practical to have a starting point in the
hierarchy, i.e. one particular clustering that seems most fit. We consider the
clustering with the highest silhouette coefficient to be that fittest clustering. In
fact, it is this fittest clustering that our post-filtering steps analyze, and that is
ultimately presented to the aspect miner.

7.2 The Working Definition of Crosscutting

Each aspect mining technique is based on its own notion of what symptoms
are associated with crosscutting. We remark that each technique relies on an
implicit working definition of crosscutting. For example:

84

• to fan-in analysis (Section 5.3.2), a crosscutting concern is a method that
can be called from many different places in the code, and that meets some
additional conditions;

• to techniques based on clone detection (Section 5.2), a crosscutting con-
cern is a set of clones with certain properties.

Note that the working definition of a particular technique is generally much
narrower than what the authors of the technique believe to be crosscutting.
That is why we call it a working definition: it is strictly meant for use in the
actual mining process.

One contribution of our work is a new working definition of crosscutting. It is
less restrictive than the implicit definitions that can be found in techniques such
as fan-in analysis and clone detection techniques. However, we do not propose a
mining technique that methodically looks for all concerns that meet our working
definition. Rather, each of our aspect mining techniques relies on the definition
to a certain degree. We have derived various pre- and post-filtering steps from
the definition, which accompany the cluster analysis. In fact, we have precisely
designed the definition because we identified a need for filters in earlier aspect
mining experiments. The filters we have implemented are able to:

1. Reduce the input to the cluster analysis. On one hand this is beneficial
to the time and space requirements of the (rather expensive) cluster anal-
ysis. On the other hand, the cluster analysis is more likely to produce an
interesting aspect mining result, if the pre-filtering step does a good job
at filtering uninteresting data.

2. Reduce the output of the cluster analysis. This limits the amount of post-
processing work the user has to perform manually. (This manual work is
generally tedious and error-prone.)

7.2.1 The Definition

Our working definition of crosscutting is strictly based on the case of mining a
legacy system written in Java (although we imagine it can be adapted to certain
other programming languages). We focus on code entities that crosscut code
entities. In specifying what these entities are, we discriminate two cases:

• Case 1 Logic that crosscuts methods (the tangling and scattering happen
in the bodies of methods).

• Case 2 Methods that crosscut classes (the tangling occurs in terms of
methods that belong to different concerns being implemented in the same
class, the scattering occurs in terms of the methods of a concern being
implemented over different classes)

85

We deem methods and classes to be the primary candidates for being the cross-
cut modules in a legacy system. Hence, it is our belief that the above two
cases cover most of what constitutes crosscutting in source code. Of course, a
concern might exhibit both crosscutting cases. This is especially true for de-
sign patterns. E.g. the Observer pattern requires notification code in methods
of the Subject (Case 1), while a Subject implements methods for registering
Observers (Case 2). (See Section 6.3.1 for a discussion of this design pat-
tern.) However, we hypothesize that both crosscutting cases can be mined for
independently, without this distinction being significantly detrimental to the
detection of the crosscutting concerns in the legacy system. In keeping with
the Observer example, one technique might uncover the notification code, while
another technique might point out the register and unregister methods.

If a technique is specific to one case of crosscutting behaviour, we can have it
implement more specific measures (e.g. filters). The separate results can then
be combined in a manual processing step, or using an additional technique. This
strategy is the classic approach of “divide-and-conquer”. A Logic Clustering
technique is tailored to focus on instances of Case 1, while a Method Clustering
technique is interested in instances of Case 2.

The Definition in Case 1

Imagine a concern C. For us to consider C as participating in an instance of
crosscutting Case 1, it must meet certain conditions. We hereby specify them.

Let M denote the set of all methods in the legacy system, save the method
declarations in interfaces. However, we do not entirely ignore these declarations.
Rather, they help in shaping the binary could-call relation between methods
in M . This relation holds between one method and another, if the first could
call the second (taking into account the polymorphism mechanism of object-
orientation in general and Java specifically).

We additionally define a distance between classes, namely the hierarchy dis-
tance. This measure relates how closely two classes sit in the legacy system. It
is defined in Figure 7.2. (We take a “superclass” to mean a direct superclass,
while an “ancestor” is a direct, or indirect superclass.) For example, two classes
have hierarchy distance 1, only if one class is a superclass of the other, or they
both have the same superclass. We also talk of the hierarchy distance between
two methods, which denotes the hierarchy distance between the classes they
are implemented in.

For us to consider a concern C as participating in an instance of crosscutting
Case 1, the conditions in Table 7.1 must hold.

Imagine a concern that crosscuts only one method in the system (e.g. the exe-
cution of only one method is logged to the stream). Our working definition can
fall short of capturing the concern, due to the Scattering condition. However,
one can question the significance of this concern. Does it pose a great threat
to the overall manageability of the legacy system? We thought not, which is
why the Scattering condition is included in the first place. This case further

86

dist(class1, class2) = 0 iff class1 = class2

dist(class1, class2) = 1 iff one is the superclass of the other
dist(class1, class2) = 2 iff one is the superclass of the superclass

of the other
dist(class1, class2) = 3 iff one is the superclass of the superclass

of the superclass of the other
...

hdist(class1, class2) = x iff dist(class1, class2) = x, or class1 and
class2 have a common ancestor class3,
such that class3 6= java.lang.Object, and
the greater value of dist(class1, class3)
and dist(class2, class3) is x.

hdist(class1, class2) =∞ iff there is no x ∈ N , such that
hdist(class1, class2) = x

Where hdist denotes the
hierarchy distance.

Figure 7.2: The hierarchy distance between two classes.

For concern C:

• There is a set of crosscutting methods (CM) ⊂ M , which imple-
ment C.

• There is a set of calling sites (CS) ⊂ M , where each calling site
could-call a subset of CM . The idea is that the calling sites are
crosscut by the crosscutting methods.

• Scattering |CS| > 1

• Redelegation
∀m1 ∈ CS : ∃m2 ∈ CM : (m1 could-call m2) ∧ hdist(m1,m2) > α

• Tangling
∀m1 ∈ CS : ∃m2 ∈ CM : ∃m3 /∈ CM :
(m1 could-call m2) ∧ (m1 could-call m3) ∧ hdist(m2,m3) > β

• Polymorphism The calling sites are not polymorphic methods.

Table 7.1: The working definition of crosscutting in Case 1.

87

illustrates how our definition is a working definition. It can perfectly well ignore
types of crosscutting concerns that seem less significant, in order to produce a
more manageable mining result. This trade-off becomes particularly important
in the light of the manual post-processing phase that comes after each min-
ing technique. The aspect miner should not be overwhelmed with results, as
manually analyzing them can be tedious and error-prone.

The Polymorphism condition is included for a similar reason as the Scat-
tering clause. Too many false positives in our mining techniques traced back
to cases of polymorphism. This is most natural when methods are clustered
for similarity in their names. But the problem occurred with each technique.
Hence the added condition, even though it is perfectly possible for a concern to
precisely crosscut polymorphic methods (see the Command Execute concern,
Section 6.4.8). Thus, the trade-off lies between not detecting certain crosscut-
ting concerns, and an aspect mining result with significantly less false positives.

The Redelegation clause discriminates against calling sites that are hierarchi-
cally close to the crosscutting methods they could-call. One can regard such
a calling site as simply redelegating requests to methods in the same hierar-
chy (in calling the crosscutting methods). We do not believe this to constitute
crosscutting. Similarly, the Tangling condition discriminates against a calling
site, if the crosscutting methods that it could-call are hierarchically close to the
other methods it could-call. Such a calling site can be regarded uniform, in that
it only makes use of the hierarchy (or hierarchies) of concern C. Consequently,
we argue that such a calling site does not display the tangling that is perhaps
the primary symptom of crosscutting.

The working definition of crosscutting is parametrized. The parameters α and
β determine the hierarchical distance at which to distinguish redelegation and
tangling. In the case of mining JHotDraw, we take the values to be low (1
or 2). This is because JHotDraw is the composition of a limited amount of very
large class hierarchies (e.g. the Figure, Handle, Command hierarchies). Some
crosscutting concerns we have documented manifest themselves completely in
only one of these hierarchies.

The above-outlined definition of crosscutting in Case 1 does have a short-
coming. In the face of crosscutting instances of Case 2, i.e. methods being
wrongly encapsulated in a class, the Tangling and Delegation conditions can
fail.1 This is because they discriminate against concerns on the basis of a low
hierarchy distance between methods.

The Definition in Case 2

Imagine a concern C. Let M denote the set of all methods in the legacy system,
save the method declarations in interfaces. For us to consider C as participating
in an instance of crosscutting Case 2, it must meet the conditions in Table 7.2.

1Even though, hypothetically, one could deploy a Case 2 technique to clear instances
of that particular problem, after which a Case 1 technique could use the Tangling and
Delegation conditions in a more robust manner.

88

For concern C:

• There is a set of crosscutting methods (CM) ⊂ M ,
which implement C.

• There is a set of implementing classes (IC) ⊂ M ,
where each class implements a subset of CM . The
idea is that the implementing classes are crosscut by
the crosscutting methods.

• Scattering ∃c1 ∈ IC : ∃c2 ∈ IC : hdist(c1, c2) > α

• Tangling
∃c ∈ IC : ∃m1 ∈ CM : ∃m2 /∈ CM :
(c implements m1) ∧ (c implements m2)

• Polymorphism The calling sites are not polymorphic
methods.

Table 7.2: The working definition of crosscutting in Case 2.

The Scattering clause asks that the crosscutting methods are implemented in
sufficiently different hierarchies. Again there is the same trade-off to consider:
between a more manageable mining result, and some less pervasive crosscut-
ting concerns not being detected. The parameter α should taken to be low, if
one wants to detect concerns that completely occur in a larger hierarchy (e.g.
Drawing/Moving in the Figure hierarchy in JHotDraw, see Section 6.4.8). The
Tangling clause discriminates against an implementing class, if it only im-
plements the crosscutting methods. Such a class can be regarded as uniformly
dedicated to C, at which point there is no (Case 2) crosscutting to be observed
in that class.

7.3 An Overview of the Five Aspect Mining Tech-

niques

In order to use the above-given working definition of crosscutting, the sets of
calling sites, crosscutting methods and implementing classes must be mined. To
perform this mining, we use cluster analysis to group methods. This strategy
seems natural in the light of the Scattering conditions. Furthermore, each of
our aspect mining techniques adds some additional hypothesis to the working
definition. We hereby specify the techniques in terms of these hypotheses.

With respect to a valid instantiation of Case 1 of the working definition:

• Call Clustering [Is based on the additional hypothesis that] the cross-
cutting methods form one pattern, which then recurs in each calling site.

89

(cluster interpretation)
A Cluster corresponds
to . . .

(distance measure)
Two methods are
similar when they . . .

Tree Clustering the calling sites are structurally similar

Ngram Clustering the calling sites are lexically similar

Type Clustering the calling sites are similar in the types
they contain

Call Clustering the crosscutting methods
(Case 1)

form a recurring pattern
to a certain degree

Name Clustering the crosscutting methods
(Case 2)

have similar names

Table 7.3: The aspect mining techniques and their characteristics in implemen-
tation.

• Type Clustering The calling sites are similar in the types they contain.

• Ngram Clustering The calling sites have lexically similar bodies.

• Tree Clustering The calling sites have structurally similar bodies.

With respect to a valid instantiation of Case 2 of the working definition:

• Name Clustering The crosscutting methods have similar names.

We remind that every technique considers methods in the legacy system as
the objects to perform cluster analysis on. Furthermore, the above hypotheses
suggest two notions for each technique: a distinct distance measure, and an
interpretation of a cluster. We first discuss the interpretations of clusters. With
respect to a valid instantiation of Case 1 of the working definition, a cluster in

Type Clustering,

NGram Clustering,

or Tree Clustering

is interpreted as the set of calling sites. A cluster in Call Clustering is the set
of crosscutting methods. With respect to a valid instantiation of Case 2 of
the working definition, a cluster in Name Clustering is the set of crosscutting
methods.

The distance measures of the techniques can now be straight-forwardly de-
ducted. Table 7.3 gives the distance measures and different interpretations of
clusters.

90

7.4 Implementation Notes

We have fully implemented the five aspect mining techniques we propose, the
accompanying pre- and post-filtering steps, as well as the chosen and designed
cluster algorithms. All implementation work was carried out in the Smalltalk
programming language. We have deployed external tools in the code analysis,
and in the presentation of the aspect mining results.

7.4.1 The Presentation of the Aspect Mining Results

The StarBrowser [Wuy], allows the user to browse through the Smalltalk en-
vironment, and drag any object he or she encounters into a classification in
the StarBrowser. (Because everything in Smalltalk is an object, this effectively
means that everything can be classified.) The user can further create custom
classifications, and nest them at will.

We have integrated the StarBrowser in our implementation work. After the
use of any of our aspect mining techniques, each resulting cluster is automati-
cally presented to the user as a separate classification in the StarBrowser. This
presentation offers the user an accomodating view of the aspect mining results,
in which he or she can navigate through the clusters, the methods in a clus-
ter, the classes those methods are implemented in, further properties of those
classes, etc.

We believe such a browsable presentation of the aspect mining results to be
invaluable in manually processing those results. In a view where only meth-
ods names are displayed, or indeed only their method bodies without further
context, it can be hard to recognize crosscutting behaviour.

7.4.2 The Underlying Code Analysis Workbench

Our implementation work is founded on Irish [Fab]. This workbench allows to
parse Java code, after which the code can be queried using a logic programming
language. Irish operates on top of Smalltalk. Irish’s built-in predicates allow
to retrieve logic facts such as the superclass of a class, or the messages sent by
a method. The more complex predicates we had to implement ourselves. Our
custom predicates encompass, but are not limited to:

• the could-call relation between methods;

• the hierarchy-distance between classes;

• a check whether certain methods are polymorphic.

There are two remarks to be made. On one hand, a semantical code analy-
sis technique is potentially expensive. Consider the query to compute the set
of methods that a particular method could-call. This requires a lot of other
relations to be involved in the computation, as the could-call relation takes

91

polymorphism into account. For example, it might be necessary to trace back
all the classes that implement a given interface. In finding these classes, it
is necessary to consider all descendant interfaces that are direct, or indirect
subinterfaces of the given interface. The classes that directly implement these
descendant interfaces must be considered, as well as the descendant classes of
those classes. A simple could-call query results in an intricate computation pro-
cess. The logic program we constructed to implement the could-call predicate
was inefficient. Therefore, we implemented it imperatively in the underlying
Smalltalk base. Although, the point remains, the imperative implementation is
still expensive.

The second remark concerns the accuracy of the predicates we have imple-
mented. For example, it is possible to implement compile-time overloading
resolution for Java (not overriding). However, we believe that (1) such im-
plementation work would lead us too far from the real concerns of our work,
(2) such code analysis would be computationally expensive. Therefore, some of
the predicates we have implemented are approximation measures. For instance,
methods are considered polymorphic when:

• they have the same name (where the name excludes the signature and
return type);

• they are implemented in classes that have a common ancestor type (class
or interface);

• the common ancestor also implements, or declares a method with the
same name.

In ignoring signatures and return types, this measure is not entirely accurate,
but remains relatively simple.

7.5 Logic Clustering

Of the five aspect mining techniques we have designed and implemented, four
are tailored towards detecting instances of crosscutting Case 1. They are the
Logic Clustering techniques. Before discussing the four techniques separately,
we describe the pre- and post-filtering steps that precede and follow each tech-
nique. These steps have been implemented to perform fully automatically.

7.5.1 Pre-filtering

We do not propose a mining method that methodically looks for concerns that
satisfy our working definition of crosscutting. Instead, we rely on this definition
to derive several specific ideas. One of the ideas is a pre-filtering step that
precedes all Logic Clustering techniques.

92

Concretely, the pre-filtering step investigates whether a particular method could
be a calling site within a valid instantiation of the working definition. If a
method could be a calling site (according to the pre-filtering step), it is a qual-
ified caller. A method is a qualified callee only if a qualified caller could-call it.

Each of the Logic Clustering techniques uses the set of qualified callers as a
starting point for the aspect mining process. Type, Ngram and Tree Clustering
only consider qualified callers as the objects to perform cluster analysis on. This
is natural, as those techniques mean a cluster to be a set of calling sites. The
cluster analysis of Call Clustering only considers qualified callees as the objects.

In implementation, we consider a method m1 to be a qualified caller when:

• It calls more then two methods

• FRedelegation ∃m2 ∈M : (m1 could-call m2) ∧ hist(m1,m2) > α

• FTangling ∃m2 ∈ M : ∃m3 ∈ M : (m1 could-call m2) ∧ (m1 could-
call m3) ∧ hdist(m2,m3) > β

where M again signifies all the methods in the legacy system, save the decla-
rations in interfaces.

The FRedelegation clause asks that m calls at least one method that sits in
a sufficiently different hierarchy than m itself. The FTangling clause imposes
the condition that m ought to call two methods that have a sufficient hierarchi-
cal distance between them. These two conditions work towards meeting their
Redelegation and Tangling counter-parts in the working definition of cross-
cutting (in Case 1). The first condition in the filtering demands a qualified
caller to call at least two methods. This condition might seem superfluous, in
that the FTangling condition implicitly demands it. In implementation how-
ever, this first step proves an easy filter to leverage the work of the two more
expensive measures that follow it.

7.5.2 Post-filtering

In cluster analysis, the resulting clustering typically contains objects that are
not grouped with other objects. Such “singleton” objects were not determined
to engage in a meaningful relationship with other objects. Hence, we filter
them away. In the context of some of our aspect mining techniques, a cluster
is interpreted as the group of calling sites in a valid instantiation of the work-
ing definition of crosscutting. In those techniques, the discrimination strategy
against singleton clusters directly implements the Scattering condition. In
the same techniques, we additionally filter any cluster that encompasses only
polymorphic methods.

93

7.5.3 Call Clustering

The Call Clustering technique is based on the technique of Lili He et al. (Sec-
tion 5.3.6). In terms of cluster analysis, both techniques are in fact identical
in how they model objects with attributes. This means that the objects and
attributes are methods. An attribute value is 1, if the attribute (method) could
call the object (method); otherwise the value is 0. In our implementation, we
base this assignment of the attribute values on the same could-call relation we
have been discussing throughout this chapter. That is to say, it takes (Java)
polymorphism into account. As in the technique of Lili He et al., cluster anal-
ysis is performed using the Jaccard distance measure for object dissimilarity.
(And as such, we can refer to the example in Section 5.3.6 for an example of
the cluster analysis performed by Call Clustering).

Thus, Call Clustering groups methods based on the degree to which they are
called together in method bodies. Two methods have distance 0 (i.e. perfect
similarity), only if they are only called together. In this scheme, a cluster
typically consists of methods that form a recurring pattern. Call Clustering is
the most semantical analysis technique we present. Rather than considering
method bodies to be strings, or tree structures, the technique reasons in terms
of execution paths that could occur at run-time.

In addition to only performing cluster analysis using qualified callees as the
objects, Call Clustering takes the set of attributes to be the set of all qualified
callers in the legacy system. (Qualified callers and callees are as determined in
the pre-filtering step, Section 7.5.1.)

Additional Pre-filtering

The first step in the Call Clustering process is the construction of a dictionary.
This dictionary maps each method to the methods that could-call it. Methods
that could be called by fewer than 2 methods can not be part of a recurring
pattern. There is hence no point in those methods participating in the rest
of the analysis, since we are precisely interested in recurring patterns. Using
the available dictionary, it is easy to efficiently filter away such uninteresting
methods.

Cluster Feature

• Feature of an Object The set of attributes in cluster analysis for which
the object has value 1

• Feature Derivation The intersection of two sets

Thus, the cluster feature of an object is the set of methods that could-call
the object. Furthermore, each method in the feature of a particular cluster
could-call every method in that cluster. We call the feature of a cluster its
callers, while the methods in a cluster are its callees. Jaccard distance becomes

94

{m1}

{ m2 }

{m4}

{ m2 m5 }

{m1 m4}

{ m2 }

cluster feature

cluster

cf)

c)

cf)

c)

cf)

c)

cf)

c)

object object

composite

Figure 7.3: An illustration of Call Clustering’s cluster feature solution.

applicable as the global distance measure between any two clusters, because
composites now implicitly have attributes too. An attribute for any cluster has
value 1, if the method corresponding to the attribute falls within the feature of
that cluster. Otherwise the attribute has value 0. Figure 7.3 gives an illustration
of Call Clustering’s cluster feature solution.

Post-filtering

Call Clustering is distinct from the other mining techniques we present, in
that it includes a more intricate post-filtering phase. This filtering step is
based on the above specification of a cluster as two sets of methods: callers
and callees. (See Call Clustering’s cluster feature solution.) We hypothesize a
correspondence between the callers of a cluster on one hand, and the calling sites
in the working definition of crosscutting. From Section 7.3, we already interpret
the callees (members) of a cluster to be the crosscutting methods. Based on this
correspondence, we can apply Case 1 of our working definition to its fullest
extent. For example, we have implemented the full Redelegation condition:
it is a check whether each calling site (caller of a cluster) is at least a certain
hierarchy distance away from one of the crosscutting methods (callees of the
same cluster). The conditions of Scattering and Tangling have similarly been
implemented to their full extents. But rather than throw away any cluster that
does not meet the three conditions, we allow some flexibility. If a calling site
violates some condition, we retry to match the cluster to the working definition
without that particular calling site.

95

7.5.4 Type Clustering

Type Clustering groups methods based on the static variable types their bodies
contain. The methods in a resulting cluster typically have the same pattern
of types in their bodies. In the cluster analysis, an attribute relates to a type
in the legacy system. An attribute value is 1, if the object (method) makes
use of that attribute (type) in its method body; otherwise the value is 0. The
Jaccard distance is used to compute distance between objects; thus, two objects
(methods) are similar based on the degree to which they have the same types
in their bodies. (Section 4.2.1 for an explanation of Jaccard.)

In assigning the attribute values for a particular method, we only consider the
static types of the variables to which that method sends messages. The restric-
tion to message-receiving variables discriminates against Java native types such
as int and double, of which the instances are not objects. We do not consider
such native types as carrying much useful information regarding the modular-
ity properties of a system. Additionally, we prohibit a method of being labeled
as making use of the class that the method itself is implemented in. Without
this measure, methods tend to be grouped simply on the basis of being imple-
mented in the same class (methods often make enough this references for this
to happen). Again, we do not think such clusters to be very interesting from
an aspect mining perspective.

Cluster Feature

• Feature of an Object The set of attributes in cluster analysis for which
the object has value 1

• Feature Derivation The intersection of two sets

This solution is at heart identical to that for Call Clustering. The cluster
feature of an object is the set of (certain) static types the method contains.
Each method in a particular cluster contains the types in the feature of that
cluster. The Jaccard distance measure is again transposed to be the global
distance between any two clusters. This transposition is done in an identical
manner to the case of Call Clustering.

7.5.5 Ngram Clustering

The distance measure in Ngram Clustering analyzes the lexical properties of
method bodies. The methods in a resulting cluster have lexically similar bodies.

An Ngram is a substring in a string of characters. At the basis of an Ngram lies
a creation process that extracts many Ngrams from a given string. This process
makes use of a sliding window of length n, where the parameter n specifies the
length of each resulting Ngram. The sliding window is first positioned at the
first character of the given string. This highlights the first n characters of that
string, and so provides the first Ngram. The sliding window is then repositioned

96

one character to the right, to give the second Ngram. In this manner, the sliding
window traverses the entire string, to generate an Ngram at each character (with
exception of the last n− 1 characters). For example, when the given string is:

future events like these

Then, for n = 5, the Ngrams are:

futur, uture, turee, ureev, reeve, eeven, event, vents

Ngrams are sometimes used in the domain of document clustering. Recall from
Section 4.2.2 that this domain is concerned with grouping documents that have
similar content. Document clustering considers documents as the objects to
perform cluster analysis on. In the Ngram approach to document clustering,
each attribute in the cluster analysis relates to an Ngram. An attribute value
signifies the frequency with which that Ngram appears in the document. When
an ordering of the attributes is imposed, documents can assume the document
vector representation. This allows cosine similarity to be computed between
the documents (Section 4.2.2 for details).

Ngram Clustering follows the above-outlined approach to document clustering.
For each of the participating methods, it builds a document vector based on
the Ngrams in that method’s body. Cosine similarity between the vectors is
then used as object similarity.

To extract the Ngrams, the participating methods must be regarded as strings
of characters. We take the characters to be the tokens in the method bod-
ies. Thus, the Ngrams are strings (of length n) of tokens. The Java reader
in Irish generates the tokens, which are pieces of text such as variable names,
literals, etc. We prohibit less meaningful tokens from being part of any Ngram:
parentheses, braces, dots, semicolons, etc. are ignored. Tokens pertain more
semantical information than the atomic characters they are built from. Ad-
ditionally, a technique that works at the granularity of atomic characters is
generally expensive and requires elaborate tools to scale [KKI02].

Cluster Feature

• Feature of an Object The document vector of that method

• Feature Derivation The addition of two document vectors

We define the sum o + p of two document vectors as s, where ∀k : 1 ≤ k ≤ n:

sk = ok + pk if ok 6= 0 ∧ pk 6= 0
sk = 0 otherwise

where n is the dimensionality of the objects in the cluster analysis, and xi is
object x’s value for attribute i. The sum vector is of higher magnitude than
its parts. However, cosine similarity has a normalization factor that makes the
magnitude of a vector irrelevant.

97

Method Declaration

Access modifier
(’public’)

Smalltalk
ByteString

(’displayBox’)

Block

Message Send

Variable

Name
(’this’)

Smalltalk ByteString
(’willChange’)

Message Send

Variable

Name
(’this’)

Variable Literal

Smalltalk SmallInteger
(5)

Name
(’corner’)

Smalltalk ByteString
(’basicDisplayBox’)

Figure 7.4: The parse tree of the upper method in Figure 7.5.

public void displayBox() {
this.willChange();
this.basicDisplayBox(origin, 5);
}

public void displayBox() {
this.willChange();
this.basicDisplayBox(origin);
}

Figure 7.5: Two near-clones.

7.5.6 Tree Clustering

The distance measure in Tree Clustering analyzes the parse trees of methods.
The methods in a resulting cluster have similar parse trees.

Consider two fragments of code that are identical, save some slight modifica-
tions to one of the fragments. As discussed in the context of clone detection
techniques (Section 5.2), the two fragments are near-clones. While certain code
modifications seem trivial to a developer, they can pose a significant problem
to a mining method that wants to group near-clones. The oft-problematic cases
are reorderings of statements, variables whose names are changed, etc.

Section 3.2 explains the edit distance between trees. It is the minimum accu-
mulated cost to transform one tree into the other, using deletions, insertions
and substitutions of nodes. When this distance is used between the parse trees
of code fragments, it can leverage the problem of near-clones. Figure 7.5 illus-
trates this idea. The upper method differs from the lower method only because
it passes an extra argument to the second method call. Figure 7.4 illustrates
the parse tree that Irish generates for the upper method. In computing the

98

edit distance between the parse trees of the upper method and the lower one,
the boxed nodes in Figure 7.4 are labeled for deletion. The rest of the nodes
match. This ratio suggests a high similarity between both parse trees. (As we
will shortly see, this example does rely on some assumptions.)

Tree Clustering compares the parse trees of methods through edit distance, so as
to group methods with similar parse trees. The edit distance is computed using
our own implementation of the algorithm of Zhang and Shasha (Section 3.2
for an outline of the algorithm). Furthermore, the distance measure in Tree
Clustering strictly focusses on structural information. This restriction allows
for a more detailed investigation of what kind of benefits structural information
has to offer, in the light of mining modularity properties in aspect mining.

The above example of edit distance relies on the scoring function we propose.
Recall from Chapter 3 that the scoring function assigns a cost to each edit
operation. We base this assignment of cost on an equality metric between the
nodes. The nodes in the tree of Figure 7.4 are labeled with AST types (e.g.
“variable”, “literal”). Some nodes are denoted with a more specific AST value,
which is put between parentheses (e.g. the string “willChange”, the number 5).
The equality metric we propose considers two nodes to be equal, only if they
have the same AST type. Thus, the actual variable names and literal values
are ignored, in favour of the more general labels. This strategy is commonly
followed in clone detection techniques, precisely because near-clones often differ
in variable names and literal values. Based on this equality metric, we define
the scoring function as follows:

σ(a→ b) =

1 if a = λ (insertion)
1 if b = λ (deletion)
else
1 if a 6= b (substitution)
0 if a = b (match)

(7.1)

Note that we extend the usual list of edit operations with an additional match
operation, which is substitution in the case where the two nodes are equal.
Thus, in computing the edit distance, a match is free, while any other edit
operation comes at a price.

As illustrated in Figure 7.4, the leave nodes in an Irish parse tree are sometimes
Smalltalk values. They denote literal values and names. We have already
declared not to be particularly interested in that data. Therefore, we strip the
parse trees of leaves. Because the tree edit distance algorithm we use is rather
expensive, this trimming is also beneficial to the scalability of Tree Clustering.
After the first pass over the leaves, we even perform a second pass to delete the
new leaves. This fits into the idea that near-clones often interchange literals
for variables, and vice versa. Additionally, typing information is omitted from
the parse trees in Tree Clustering. In between this omission, the trimming of
the leaves and the equality metric, the distance measure in Tree Clustering is
indeed purely structural.

99

To use the edit distance in cluster analysis, it must be scaled with respect to
the sizes of the trees. Otherwise, big near-identical trees can be regarded less
similar than small but very different trees. Given the edit distance between
two trees, we therefore divide it by the number of nodes in both trees. This
denominator is the highest possible edit distance, which means that the scaled
distance lies between 0 and 1 (this is often a requirement in cluster analysis
techniques).

Scalability

The algorithm we use to compute the tree edit distance has high time and space
requirements. It is not feasible to apply this algorithm to every pair of methods
in a large-scale legacy system. Indeed, it took over a full week to compute all the
tree edit distances in the JHotDraw case. Therefore, we propose a scalability
technique that uses a lower bound to the edit distance. Given two methods in
the legacy system, this bound returns a number that is lower than, or equal to,
the edit distance between the methods.

Lower Bounds to Expensive Distance Measures In general, we propose
two ways in which to use an inexpensive lower bound to an expensive distance
measure. Both approaches limit the number of times the expensive measure is
used in cluster analysis.

When the distance between two objects is to be computed, this can first be done
so using the lower bound. When two objects are very far apart according to
this bound, they will be at least as distant according to the expensive measure.
Hence, rather than further computing the expensive distance measure between
these objects, their distance is taken to be maximal (e.g. 1).

The second approach relies on single pass clustering to group objects that are
near-identical according to the expensive measure. The resulting clustering
provides the main AHC process with a smaller size input. (This idea has already
been in discussed in Section 7.1.1). The lower bound is deployed to discriminate
against objects that could not possibly be similar enough to be grouped in the
single pass. After this filtering, if two objects are still candidates to be grouped
in the single pass, they must be compared using the expensive measure. This is
because the lower bound can be wildly optimistic (i.e. lower than the expensive
distance).

Both scalability approaches require a treshold to compare the result of the lower
bound against. A high treshold (distance) is required in the first approach, while
the single pass strategy demands a low treshold (distance). It is true that global
thresholds in cluster analysis often prove problematic, because different areas
in the data set can have different properties (DBSCAN is the typical example
of this issue, Section 4.6.1). However, the first approach asks for a treshold at
which to consider two objects as not possibly belonging in the same cluster. We
do not believe that setting this distance poses a threat to finding the natural
clusters, if it is done through some domain knowledge and experience. The

100

single pass approach still relies on the expensive measure to make any decision
in cluster analysis.

When a lower bound is used to limit the use of a more expensive distance
measure, the bound must be sensible. Otherwise, there is no benefit in terms
of scalability. For example, consider a bound that consistently labels objects
as being identical. This bound is a valid lower bound to any distance measure.
However, it does not provide any useful idea as to how similar two objects really
are. Therefore, some domain knowledge must be deployed in determining the
bound.

A Lower Bound to Tree Edit Distance We propose a lower bound in the
case of tree edit distance. Determining this bound is a matter of minimizing
the estimated edit distance between two methods, such that: (1) the estimate
is lower or equal than the actual edit distance, and (2) the estimate is informed
enough to still be useful. The validity of our lower bound can be understood in
the context of mappings between trees. Recall from Section 3.2 that a mapping
draws lines between the nodes of two trees. The lower bound simply draws
these lines as to minimize the estimated edit cost, whilst disregarding certain
properties that the actual edit distance is restricted by.

The bound we propose relies on the node equality metric and scoring function
that are used in the Tree Clustering technique. We first reduce the problem of
finding the lower bound, to be the issue of finding an upper bound to the number
of match operations in an edit script between the methods. In searching this
upper bound, we ignore structural information and operate strictly on the basis
of the node equality metric. Concretely, we take the upper bound to be the
number of nodes in one tree that are equal to a node in the other tree, such
that there is a one-to-one correspondence between the equal nodes.

In implementation, we deploy a hash function. This function maps AST types
to integer indices. Given the AST tree of a method, and using the hash function,
we construct a hash-like table that considers each AST type in the tree, and
maps the type to the number of times it appears in the tree. (Since the values
are counters, collisions are no issue.) Given such a hash-like table for each of
the two methods, we can efficiently compute the upper bound to the number of
match operations in an edit script between the methods. The hash function
does not have to be perfect, in that it maps different AST types to different
indices. The lower bound on the distance is allowed to be too optimistic.

Of all the nodes that do not participate in the upper bound to the amount
of match operations, we involve as many as possible in substitution opera-
tions. This is done because a substitution operation involves two nodes in a
single operation at a cost of 1. The remaining nodes engage in deletion and
insertion.

In this manner we construct an estimated edit script that is, in cost, a lower
bound to the actual edit script. Hence, we have a lower bound to the edit
distance. Additionally, we are able to compute it in O(n), where n is the
number of nodes in the largest of the two trees.

101

Cluster Feature

• Feature of an Object The parse tree of that method

• Feature Derivation The derivation of a new tree from two trees

In the rest of this section, we relate our approach towards feature derivation.
As with the other aspect mining techniques we propose, this derivation is based
on information that is a by-product of deploying the distance measure. In com-
puting the edit distance between trees t1 and t2, we can retrieve the necessary
information to efficiently construct the optimal edit script that turns t1 into t2.
Feature derivation is then performed as follows:

Given two initial trees (cluster features), we compute the edit dis-
tance between them. Thereafter, we construct the optimal edit
script that turns the first tree into the second. The derived tree
(cluster feature) is one of the initial trees, minus those nodes that
do not engage in a match operation.

We rely on the construction of the edit script because this considers the degree
of structural similarity between the two initial trees. This is not the case for
an approach that simply retains all nodes in one tree that are equal to a node
in the other. Furthermore, it does not matter which of the two initial trees
is stripped of non-matching nodes. The net results stays the same. This is
because the derived tree appears identically in both initial trees, in terms of
node labels as well as ancestor and sibling ordering. This is due to the ancestor
and sibling ordering conditions on mappings.

The authors of the tree edit distance algorithm in Section 3.2 do not consider
how to construct the optimal edit script in case of trees. Therefore, we adapt
the approach that is followed in the string edit distance algorithm of Section 3.1.
That is to say, we use backtracking pointers.

Applying the method of backtracking pointers is less straight-forward in the
case of trees than in the case of strings. We need to keep a pointer for every
separate subproblem in the computation of the edit distance. The subproblems
are the distances between subtrees, and the distances between forests. Instead
of a two-dimensional backtracking matrix as in the case of strings, we deploy
the same data structures as in the tree edit distance algorithm (Table 3.5).
To keep the backtracking pointers, there is one two-dimensional matrix Ms

for the distances between subtrees, and there are several 2D matrices for the
distances between forests (Mf,1 . . . Mf,n). Distance between subtrees traces
back to distance between forests. Therefore, Ms does not contain symbols, but
links to Mf,1 . . . Mf,n. Another issue arises in the second relation in Lemma 3,
Table 3.4. The third clause of that relation expresses the bigger problem in
terms of not one, but two smaller problems. Hence, two pointers could need
to be associated with the bigger problem. At which point the process that
constructs the edit script becomes a tree-recursive process.

102

7.6 Method Clustering

In the context of our working definition of crosscutting, Method Clustering
techniques are tailored towards finding instances of crosscutting Case 2. We
propose one such technique, namely that of Name Clustering.

7.6.1 Name Clustering

The technique of Name Clustering is based on the cluster-based aspect mining
technique by Shepherd and Pollock (Section 5.3.5). Name Clustering groups
similarly-named methods, using a distance measure that is defined as follows:

distance(m1,m2) =
1

commonSubstringLength(m1.name,m2.name)

The paper of Shepherd and Pollock does not specify any concrete algorithm
to find the common substring that is required for the distance computation.
Therefore, we resort to computing the longest common substring according to
a dynamic programming algorithm [Gus97]. This algorithm relies on a parti-
tioning of the input strings into symbols. Rather than regarding the strings as
being sequences of atomic characters such as letters, we partition the strings
according to the occurrences of capital letters. For example, we do not partition
“get” into “g”, “e” and “t”. We do partition the method name moveFigureBy

into “move”, “Figure” and “By”. These are separate words that have distinct
meanings. Additionally, the words cannot be divided into smaller, meaningful
words (although this property does not hold for every string we perform the
capital-letter partitioning on). Hence, the substring algorithm searches longest
common substrings of such meaningful words, rather than of characters such as
letters.

Post-filtering

As discussed in Section 7.3, we mean the member methods of a cluster in Name
Clustering to be the crosscutting methods in a valid instantiation of the working
definition of crosscutting (Case 2). We further take the classes those member
methods are implemented in form the set of implementing classes. This allows
us to implement Case 2 to its full extent, in defining filters that discriminate
against clusters.

Firstly, singleton clusters are filtered away because they do not meet the Scat-
tering condition. Secondly, the Tangling clause is deployed to discriminate
against clusters. Due to the near-overwhelming amount of clusters that Name
Clustering returned in early experiments, we have realized a more stringent im-
plementation of Tangling. Rather than considering a class to be tangled if the
methods it implements don’t all belong to the same cluster, a class is tangled
if its methods belong to more than one composite cluster. Only those clusters
that crosscut a tangled class are considered in the rest of the analysis. Next,

103

any cluster of which the members are polymorphic methods is filtered away.
Finally, we ignore a cluster if its member methods are implemented in classes
that sit closely together in the same hierarchy (Scattering).

Scalability

Especially because Name Clustering analyzes the full set of methods in the
legacy system, scalability measures are at order. A simple distance metric
aides in this, namely that of string identity. It checks whether two strings
are identical, by comparing their symbols in pairwise fashion. This metric,
with its linear complexity, is less expensive than the similarity algorithm Name
Clustering is based on (which is quadratic). Additionally, two strings can often
be judged non-identical, on the basis of the first two symbols. Hence, we deploy
the identity metric in a single pass clustering scheme, to group identically-
named methods in a single, inexpensive pass over the objects. This idea has
already been explored in Section 7.1.1.

Cluster Feature

• Feature of an Object The name of that method (which is a string)

• Feature Derivation Taking the common substring of two strings

(As discussed in Section 7.1.2.)

7.7 A Comparison with Existing Aspect Mining Tech-

niques

In this section, we compare our work to other aspect mining techniques. We
consider three criteria in this comparison: (1) whether an aspect mining tech-
nique is semantical, (2) whether it is dynamic or static, and (3) whether it
considers tangling in its implementation. Table 7.4 gives a comparison table
for these criteria; it includes our own aspect mining techniques, as well as those
by other researchers.2

As throughout this whole dissertation, we adopt the stance that a structural
technique, which analyzes the AST of the code, is not necessarily a seman-
tical technique. This explains the ‘-’ mark for AST-based clone detection.
Most existing aspect mining techniques are semantical, in that they analyze
method calls, control and data flows (in PDG-based clone detection), or execu-
tion traces. By this standard, one could claim our own Ngram, Tree and Name
Clustering schemes to not be semantical. However, these techniques become
semantical (to a certain degree) through the pre- and post-filtering steps that
we derived from the working definition of crosscutting. What’s more, these

2The comparison table was partly adopted from the aspect mining survey by Kellens et al.
[KM05]

104

dynamic? semantical? tangling?

Unique Methods - + -
(Section 5.3.1)
Fan-in Analysis - + -
(Section 5.3.2)
Natural Language Processing - - -
(Section 5.3.3)
Patterns of Execution Traces ± + -
(Section 5.3.4)
AHC Method Names - - -
(Section 5.3.5)
AHC Method Invocations - + -
(Section 5.3.6)
FCA Execution Traces + + +
(Section 5.3.7)
FCA Identifiers - - -
(Section 5.3.8)
Clone Detection PDG - + -
(Sections 5.3.9 & 5.2.2)
Clone Detection AST/Token - - -
(Sections 5.2.3 & 5.2.4)

Call Clustering - + +
Type Clustering - + +
Ngram Clustering - ± +
Tree Clustering - ± +
Name Clustering - ± +

Table 7.4: A comparison of aspect mining techniques.

105

pre- and post-filtering steps explicitly discriminate against cases where no tan-
gling is detected. This contrasts with the majority of existing aspect mining
techniques, which are oblivious to the phenomenon of tangling. (The notable
exception is the formal concept analysis of execution traces.)

A dynamic analysis requires run-time information, whereas a static analyis
does not. Our techniques are static. In fact, most existing aspect mining
techniques are static. This is perhaps due to the inherent limitations of a
dynamic analysis. One needs to be able to compile and run the software system
under investigation, while it may also be necessary to instrument that system
so its execution can be traced. Dynamic analysis will also consider a subset of
the software system. As a downside, some possible execution paths will not be
considered. As an upside, infeasible execution paths will likewise be ignored.
Another advantage to using a dynamic analysis, is that the analysis can benefit
from more specific information than its static counterpart: given a particular
use case, the resulting program execution is deterministic – it has only to be
observed.

7.8 Summary

We have discussed our general approach to cluster analysis. This discussion
includes an assessment of the suitability of existing cluster algorithms for their
use in our aspect mining techniques. Additionally, we have introduced custom
cluster algorithms.

We have introduced five new aspect mining techniques that use cluster analysis
to automatically mine for crosscutting concerns in the legacy system. Each
technique still requires a post-processing step in which the clusters must be
manually investigated for crosscutting behaviour. The introduced techniques
differ in the code properties they analyze. While Call Clustering traces method
calls, Tree Clustering compares parse trees for structural similarity. Type Clus-
tering looks for common types amongst method bodies, while Name and Ngram
Clustering look for lexical similarity in method names and bodies, respectively.

We concluded this chapter with a comparison of our work with aspect mining
techniques authored by other researchers. This comparison was carried out in
terms of analysis properties. In the next chapter, we discuss the experiments
we have carried out with the discussed aspect mining techniques and cluster
algorithms.

106

Chapter 8

The Experiments

In this chapter we detail the experiments we have carried out. We have run
these experiments on JHotDraw, the Java system discussed in Chapter 6. Our
experimentation work is two-fold. In the previous chapter, we introduced five
new aspect mining techniques. Furthermore, we presented the eight cluster
algorithms that we have implemented. Each of the aspect mining techniques
needs to be driven by a cluster algorithm. Therefore, we have run some tests
on subsets of JHotDraw, in an effort to match each aspect mining technique
to the best suited cluster algorithm. However, as the main experiments of
this dissertation, we have deployed each aspect mining technique on the (near)
entirety of JHotDraw. The purpose of these main experiments is to get an idea
of the weaknesses and strengths of our aspect mining techniques, relative to one
another and to work by other aspect mining researchers.

8.1 Matching Cluster Algorithms to Aspect Mining

Techniques

In this section we relate how each aspect mining technique we designed was
matched to a cluster algorithm. Concretely, for each of the aspect mining tech-
niques, we:

1. chose a suitable subset of JHotDraw;

2. repeatedly deployed the technique on this subset, each time using a dif-
ferent cluster algorithm;

3. computed the fittest clustering in each resulting hierarchy, i.e. the clus-
tering with the highest silhouette coefficient (see Section 7.1.3 for our
motivation in using this coefficient);

4. compared the silhouette coefficients of the fittest clusterings.

107

We do not deem it undesirable that the silhouette coefficient does not include
a notion of crosscutting, because this part of our experimentation work strictly
compares cluster algorithms. Table 8.1 relates the aspect mining techniques
and the silhouette coefficients in which they resulted. (A high silhouette coeffi-
cient indicates higher cohesion and separation.) Recall that MaxLink, MinLink
and GroupAverage are instantiations of the Lance-Williams framework (Section
4.5.1), while a cluster feature solution is domain-specific to one of the aspect
mining techniques (Section 7.1.2). Table 8.2 gives the subsets of JHotDraw the
techniques were deployed on, together with a measure of size of those subsets.
The subsets are sets of Java packages.

For each aspect mining technique, the highest silhouette coefficient in Table 8.1
is given in bold. Recall from Section 4.5.4 that GroupAverage is a scheme that
considers the aggregate inter-connectivity of clusters. In the cases of Tree and
Name Clustering, if it ever becomes desired to experiment with more cluster
algorithms, the comparatively high scores of GroupAverage suggest that it could
be wise to investigate those algorithms that similarly consider aggregate inter-
connectivity. (An example of such an algorithm is ROCK, Section 4.5.3.)

Table 8.3 relates how each cluster feature solution scored, relative to the other
cluster algorithms. We conclude that these solutions mostly scored compara-
tively well, with the major exception of Ngram Clustering.

Table 8.4 relates which cluster algorithm we matched to which aspect mining
technique. Note that we did not always opt for the algorithm with the highest
coefficient. This is because of a particular benefit of cluster features. The
feature of a cluster is a common property of all elements in that cluster; it is
a direct summary of the cluster. We believe this to be valuable in manually
processing, and discussing aspect mining results, because we can link cluster
features to concerns. For example, consider a cluster in Name Clustering. It
consists out of different methods that are dedicated to adding, removing and
notifying Observers (Section 6.3.1 for a discussion of this pattern). The feature
of that cluster can be the common substring “Observer”, which immediately
relates the “meaning” of the cluster. Obviously, the feature of a cluster can
also be computed in a post-processing step, after the cluster analysis. However,
when this step is carried out after another algorithm than the cluster feature
solution, there is no guarantee that the computed cluster feature is meaningful.

8.2 The Aspect Mining Experiments

This section relates the experiments we have carried out to investigate the rel-
ative (dis)advantages of our aspect mining techniques, in terms of the crosscut-
ting concerns they can, and can not detect. We have deployed each technique on
the subset of JHotDraw outlined in Table 8.5. (Note that this subset constitutes
the bulk of JHotDraw.) Additionally, we have manually classified the resulting
clusters according to whether we thought them to uncover crosscutting. We
discuss these results in the next chapter.

108

MaxLink MinLink GroupAverage cluster feature

Ngram Clustering 0.295239 0.263731 0.284559 0.254483

Tree Clustering 0.627397 0.629288 0.629905 0.629485

Call Clustering 0.664888 0.65918 0.658789 0.668328

Type Clustering 0.378424 0.377504 0.378144 0.379659

Name Clustering 0.298972 0.292045 0.303215 0.298972

Table 8.1: Comparing silhouette coefficients for each aspect technique.

packages number of methods

Ngram, Tree & Name
Clustering

applet, application,
figures, samples

551

Call & Type
Clustering

framework,
standard

871

Table 8.2: The subsets of JHotDraw that were used to evaluate the cluster
algorithms.

relative score of the cluster feature solution

Ngram Clustering worst
Tree Clustering second best
Call Clustering best
Type Clustering best
Name Clustering second best

Table 8.3: The relative score of each cluster feature solution.

cluster algorithm

Ngram Clustering MaxLink
Tree Clustering cluster feature
Call Clustering cluster feature
Type Clustering cluster feature
Name Clustering cluster feature

Table 8.4: How we matched each technique to a cluster algorithm.

benchmark packages number of methods
(excl. declarations in interfaces)

applet, application,
JHotDraw contrib, figures, ± 2700

framework, standard,
util

Table 8.5: The subset of JHotDraw mined for aspects.

109

Chapter 9

The Aspect Mining Results

In this chapter, we discuss the results of the main experiments we have carried
out. In these experiments, which we outlined in Section 8.2, we have deployed
our aspect mining techniques on the (near) entirety of JHotDraw. The objective
of this discussion is to get an idea of the relative strengths and weaknesses of our
techniques, specifically in terms of the crosscutting concerns they can, and can
not detect. We carry out this discussion in the light of 23 selected crosscutting
concerns. It would lead us too far to discuss how each of these concerns was
handled by each technique. Therefore, we seek different perspectives to the
results. We first focus on crosscutting concerns that were strictly detected by
our techniques, in that we did not know about these concerns before carrying out
the experiments. Secondly, we consider technique by technique in the light of
the mining results. We then focus on crosscutting concerns that were detected
by none of our techniques. Throughout this whole chapter, we continuously
compare our techniques with one another in terms of their results. Finally,
we compare our results with those of techniques by other researchers.

9.1 Overview of the Results

Tables 9.1 & 9.2 relate crosscutting concerns to each of the five aspect mining
techniques we have implemented. The numbers indicate how many clusters we
have manually classified as uncovering a particular concern, using a particular
technique. (The section numbers refer to the places in Chapter 6 where we
discussed the concerns.) Some clusters naturally uncover multiple concerns,
and hence contribute to multiple numbers. It is important to note that some
concerns in the tables, especially design patterns, encompass distinct instances
of the same concern. For example, the table entry for the Observer design
pattern denotes distinct instances of this pattern. Comparing the numbers in
the tables is not as valuable as first might seem. This is because one technique
might provide more clusters related to a single instance of a concern, while
another technique might detect more distinct instances of the same concern.

110

Section Tree Ngram Call Type Name

Undo 6.4.1 3 1 8 8 10

Observer 6.3.1 3 2 3 3 14

Decorator 6.4.3 3 4 0 0 0

Adapter 6.4.4 0 3 4 1 1

Visitor 6.4.5 2 1 0 0 2

Composite 6.4.6 5 3 2 2 5

State / 0 1 1 0 4

Command 6.4.7 0 0 0 0 4

Error Handling 6.4.2 0 0 0 0 2

Singleton / 0 0 0 0 0

Persistence 6.4.8 2 0 2 1 4

Serialization 6.4.8 0 0 0 0 1

Cloning 6.4.8 1 0 0 0 2

Drawing/Moving 6.4.8 1 0 0 0 3

Command Execute 6.4.8 0 0 0 0 0

CheckDamage 6.4.8 0 0 0 0 0

WillChange/Changed 6.4.8 0 1 1 0 0

Space 6.4.8 0 0 0 0 0

Table 9.1: The number of clusters detected for each already familiar concern.

Tree Ngram Call Type Name

Duplication 2 3 2 0 1

Condition Checking 3 1 1 0 0

Inheritance Gap 3 4 0 1 0

CollectionsFactory 1 0 1 3 0

Concurrency 0 0 0 0 5

Table 9.2: The number of clusters detected for the newly-discovered concerns.

clusters returned avg cluster size precision relative recall

Tree 55 7 60% 52%

Ngram 38 3 53% 47%

Call 36 5 67% 43%

Type 53 3 65% 30%

Name 236 6 26% 60%

Table 9.3: Some additional statistics regarding the mined clusters.

111

Table 9.1 relates the concerns that we discussed in Chapter 6. Table 9.2 relates
concerns that we did not know, or did not know the instances of, before we
carried out the experiments. Classifying the clusters for crosscutting nature was
a manual enterprise. In a sense, there was a natural bias towards (manually)
detecting the concerns of Table 9.1. Therefore, we more thoroughly discuss the
newly-discovered crosscutting concerns of Table 9.2.

Table 9.3 relates some statistics for each of the experiments we have carried
out. One of these statistics is the number of clusters that were returned by a
technique. This number includes those clusters that we discarded in manual
post-processing, but excludes those clusters that were labeled uninteresting
in the automatic post-filtering. Another of the statistics relates the average
number of methods in these clusters (the average cluster size). Hence, these
two measures relate the scale of the manual labour we had to perform.

Table 9.3 additionally contains two measures that are commonly used in aspect
mining: recall and precision. The measure of recall captures the percentage
of aspect candidates that were detected by a technique. Absolute recall is
relative to the set of all aspect candidates in the legacy system. Since this set
is currently not known for any software system of reasonable scale, we have
to rely on relative recall. This is the recall relative to a selected set of aspect
candidates. In our case, the selected set exists out of the concerns in Tables 9.1
& 9.2. The measure of precision is the percentage of outputs that pertain to a
crosscutting concern, relative to all outputs. In our case, it is the percentage of
clusters that we have manually classified as exposing crosscutting.

A mining technique that simply outputs the complete legacy system has best-
case recall (i.e. 100%), as it is sure not to miss any crosscutting concerns.
However, the same technique has worst-case precision; it effectively maximizes
the scale of the post-processing that the aspect miner has to perform manu-
ally. Aspect mining techniques often try to strike a balance between recall and
precision.

9.2 Newly-Discovered Crosscutting Concerns

This section gives an overview of the crosscutting concerns that we did not
know, or did not know the instances of, before we carried out the aspect mining
experiments.

9.2.1 Condition Checking

Of course, not every use of an if-statement classifies as a crosscutting concern.
Instead, we are interested in the case where the same condition is checked in
multiple methods, and the condition is a likely candidate to be put into an
aspect. It is interesting to note the tie between this property of recurrence,
and the manner in which cluster analysis also imposes a condition of multiplic-
ity. Tree Clustering found more instances of the Condition Checking concern

112

public class GraphicalCompositeFigure

public Object getAttribute(String name) {
if (this.getPresentationFigure() != null) {

return this.getPresentationFigure().getAttribute(name);
}
else {

return super.getAttribute(name);
}
}

public class GraphicalCompositeFigure

public void setAttribute(FigureAttributeConstant attributeConstant,
Object value) {

if (this.getPresentationFigure() != null) {
this.getPresentationFigure().setAttribute(attributeConstant, value);

}
else {

super.setAttribute(attributeConstant, value);
}
}

public class GraphicalCompositeFigure

public Object getAttribute(FigureAttributeConstant attributeConstant) {...}

public class GraphicalCompositeFigure

public void setAttribute(String name, Object value) {...}

public class GraphicalCompositeFigure

protected void initialize() {...}

Cluster 1

113

public HandleEnumeration handles() {
List handles = CollectionsFactory.current(). createList(fPoints . size ());
...

}

Figure 9.1: The CollectionsFactory concern crosscuts the handles method.

than the other techniques. This could be explained by the fact that condition
checking can always be traced back to if-like language constructs, which are
structures. Cluster 1 is an example of a Condition Checking cluster detected
by Tree Clustering. In this example, the condition is not implemented through
a recurring pattern of more than one method, as could be detected by Call
Clustering.

9.2.2 Duplication

This concern manifests itself through methods that display a degree of lexical
similarity, in a manner that these methods indicate copy-paste practice. In
classifying clusters as instances of this concern, we limit ourselves to cases
where the lexically similar methods sit in apparently unrelated classes, or the
software system could potentially benefit from some modularization to limit, or
eliminate the duplication. Admittedly, several different concerns fall into this
category, but from an aspect mining perspective, the important angle remains
the symptom(s) through which the specific concerns manifest themselves. Thus,
we see fit to create this more general category.

9.2.3 CollectionsFactory

The CollectionsFactory concern is (what we believe to be) one of the more
flagrant crosscutting concerns in JHotDraw. This makes it interesting to note
how this concern has apparently not, to date, been discussed by other aspect
mining researchers.

The CollectionsFactory abstract class maintains a static field factory, of type
CollectionsFactory. The run-time value of this field is:

a CollectionsFactoryJDK12 if the JHotDraw code is deployed with the 1.2 ver-
sion of the Java Development Kit.

a CollectionsFactoryJDK11 if the JHotDraw code is deployed with the 1.1 ver-
sion of the JDK.

These two subclasses of CollectionsFactory take a different approach in creating
basic data structures such as lists, maps and sets. Consequently, throughout the

114

AbstractTool

+getActiveView()

UndoableTool

+getActiveView()

<<Interface>>

Tool

+editor()

identical
implementation

public DrawingView getActiveView() {
return this.editor().view();
}

Figure 9.2: An instance of Inheritance Gap: identical implementations lacking
a common ancestor.

JHotDraw code, when some basic data structure is to be created, the following
happens:

1. the current static method of the CollectionsFactory class is called – this
is the accessor method for the factory field;

2. of the value that results in the previous step, the desired creation method
is called (e.g. createList(), createMap(), createSet()).

An example of this pattern is given in Figure 9.1. Type Clustering detects
several clusters related to CollectionsFactory. The feature of such a detected
cluster contains two types: the CollectionsFactory type, bundled together with
another type. Call Clustering detects clusters with two callees each; one of the
callees is always current, called together with a creation method of Collec-
tionsFactory (e.g. createList).

9.2.4 Inheritance Gap

By an inheritance gap, we (intuitively) mean a collection of similarly-named
methods that have no coupling between them, in the sense that there is no
shared declaration or common super-implementation; even though the similarly-
named methods are implemented in the same hierarchy, and the software system
could benefit from these methods being given such a common ancestor. One
could argue that an inheritance gap constitutes a refactoring opportunity, rather
than a real crosscutting concern.

115

Inheritance Gap poses itself in several instances in JHotDraw. An example is
given in Figure 9.2. The AbstractTool and UndoableTool classes have identical
implementations of the getActiveView method. Additionally, there is no com-
mon method (declaration or implementation) that both these methods derive
from. That is to say, there is no physical coupling between them. The editor

method called in the identical implementations is declared in the Tool interface,
which AbstractTool and UndoableTool both implement. Considering this case,
the question arises whether the duplication concerning getActiveView could be
eliminated through a common superclass for AbstractTool and UndoableTool
(which there currently isn’t). If this solution is not feasible, at least a declara-
tion of getActiveView in the Tool interface would provide a tighter coupling
between both implementations. (AbstractTool and UndoableTool are the only
classes that directly implement Tool, and the getActiveView method logically
fits into this interface)

9.2.5 Concurrency

The concern of Concurrency manifests itself both through logic that crosscuts
methods (e.g. a DrawingView being frozen upon certain mouse events), as
through Concurrency-dedicated methods that crosscut general classes (e.g. the
lock method in StandardDrawingView).

The results row for the Concurrency concern in Table 9.2 follows an interest-
ing pattern: only with Name Clustering were clusters related to this concern
detected. In classifying these clusters, Concurrency was clearly identifiable
through the names of the methods that implement it. The keywords “lock”,
“Periodicity”, and “Thread” gave this concern away instantly. In fact, we had
no notion of there being a concurrency mechanism in JHotDraw, until the re-
sults of the Name Clustering experiment made it clear. We performed the
Name Clustering experiment after all the other experiments. A natural ques-
tion arises: did the other techniques really miss Concurrency, or did we miss it
in manually classifying the clusters? The latter hypothesis appears not unlikely.
Working back from the information provided by Name Clustering, we were able
to recognize several methods as being part of Concurrency, where we formerly
believed these methods to be uninteresting. This human oversight was due to
the fact that we saw these methods being called, but they did not make their
intent clear from their names alone.

We conclude that there is room for human error in manually inspecting clusters
for crosscutting nature. This is especially true if methods do not immediately
make clear, e.g. from their names, to what concern they belong. Further-
more, using several analysis techniques on the same case might bring interesting
findings to the surface, that are otherwise missed if only a limited number of
analyses is used.

116

public class ElbowHandle

private int constrainX(int x) {...}

public class ElbowHandle

private int constrainY(int y) {...}

Cluster 2

9.3 Logic Clustering

9.3.1 Ngram Clustering

With respect to the other cluster analysis techniques, more clusters in the
Ngram experiment were classified as detections of the Duplication concern.
Ngram Clustering is the most lexical Logic Clustering technique we have im-
plemented, precisely grouping method bodies for lexical similarity. It is hence
not surprising to see it excel at detecting cases of (lexical) code duplication.

However, a downside to the approach of Ngram Clustering can be seen in the
false positives of the experiment. While these clusters uncover lexical duplica-
tion, we do not think the clustered methods to exhibit crosscutting behaviour.
Cluster 2 shows such a false positive. It is clearly just the case of a class decid-
ing to split a certain operation that is made on (x,y)-coordinates (the private

modifier adds to the argument that the two methods are utility methods). It is
interesting to note how each of the manually rejected clusters exists out of meth-
ods that are either implemented in the same class, or that sit closely together
in the same class hierarchy. This is natural, as a reasonably well-modularized
system will (try to) put similar code entities in the same module. On the other
hand, a good amount of the concerns in Table 9.1 manifest themselves precisely
in the bodies of methods that belong to the same class or hierarchy (e.g. the
Space, Command Execute and WillChange/Changed concerns). There is hence
no base for a strict in-or-out filter discriminating against methods that are hi-
erarchically close to each other. Instead a weighted approach in filtering could
be useful.

Another danger of Ngram Clustering is how a recurring pattern can be lost in
code, if that pattern only constitutes a fraction of the method bodies it appears
in. This is exemplified by the CheckDamage concern. It is a single method call
occurring near the end of several different-purpose methods. Consequently, the
similarity between these methods is generally minimal from a code duplication
perspective. It is therefore difficult to group them together in cluster analysis.
We presume the Command Execute and Space concerns to have fallen prey to
the same effect, in the case of Ngram Clustering.

117

public static class TriangleRotationHandle.UndoActivity
→֒ protected void setRotationAngle(double newRotationAngle) {...}

public class TriangleFigure
→֒ public double getRotationAngle(...) {}

Cluster 3

9.3.2 Call Clustering

Call Clustering is the most semantical analysis technique of the ones we have
implemented. Additionally, it applies our working definition of crosscutting to
its fullest extent. A natural question arises: what is the trade-off concerning
these properties? A first observation is that Call Clustering’s precision is higher
than that of any other cluster analysis technique. But this seems to come at a
cost: the relative recall is lower.

According to Irish (the analysis workbench we deployed), 506 out of 2361 non-
constructor methods in JHotDraw are never called. Hence they do not engage
in the could-call relationship that Call Clustering is founded on, which means
that they are ignored in the analysis. As a consequence, the same discussion is
at hand as with dynamic vs. static analysis (see Section 7.7). Call Clustering
has a better grasp on what constitutes feasible computation paths. However,
a software system can “hide” a crosscutting pattern if it is not, or only partly
deployed. This is especially of note for software systems that are frameworks,
as is the case. We did not personally observe such “hiding” behaviour, but
nonetheless keep in mind that it could have occurred.

With respect to Tree and Ngram Clustering, we see a higher amount of clusters
related to the Undo concern. We thus see fit to discuss Call Clustering in terms
of Undo. In Call Clustering, eight clusters were classified as pertaining to Undo.
For six of these, it is the case that one callee belongs to an UndoActivity, while
another callee belongs to another class (such as the corresponding Activity).
One of these six clusters is Cluster 3.

Cluster 3 was not found in the Tree and Ngram experiments. The reason
for this can be sought in the above-discussed shortcoming of techniques that
trace code duplication (see the discussion of Ngram Clustering, Section 9.3.1).
The methods in Cluster 3 encompass only a fraction of the method bodies
that call them. The similarity between these bodies is minimal from a code
duplication perspective. In Call Clustering on the other hand, the distance
between methods is based on the degree to which they are called together.
Hence, the link between the callees of a cluster can be strong even if the link
between the callers isn’t.

Another observation can be made regarding Call Clustering’s Undo clusters.
Five of them, of the eight total, exist out of getters and setters only. Another
Undo cluster exists out of methods that implement the FigureEnumeration
interface, which are clearly utility methods. We have noted a certain tendency
in aspect miners to filter out getters, setters and utility methods (e.g. fan-in

118

public class EllipseFigureGeometricAdapter

public Shape getShape() {
Rectangle rect = this.displayBox();
Ellipse2D.Float ellipse = new Ellipse2D.Float (...);
return ellipse ;
}

public class DrawApplication

protected DrawingView createDrawingView(Drawing newDrawing) {
Dimension d = this.getDrawingViewSize();
DrawingView newDrawingView = new StandardDrawingView(...);
newDrawingView.setDrawing(newDrawing);
return newDrawingView;
}

Cluster 4

analysis, Section 5.3.2). This filtering is done for fear of such methods otherwise
cluttering the mining results. However, in this case these methods constitute
7/8th of the clusters that cover the Undo concern.

9.3.3 Tree Clustering

The usual question of trade-off arises for this most structural analysis technique.
Naturally, a structural commonality between methods does not necessarily im-
ply any interesting relation between them. One false positive is illustrated in
Cluster 4. The upper method is concerned with getting the shape of a geometric
figure, while the lower is about a DrawApplication creating a new DrawingView.
As a related problem, there is the greater possibility of an interesting cluster
not being pure, i.e. the cluster is more likely to contain uninteresting methods
as well. In a general sense, the distance measure deployed in Tree Clustering
is “broader” than those of the other cluster analysis techniques. It more eas-
ily explores relations between code entities that are “far apart”, in that they
belong to more different concerns.

Comparatively, Tree Clustering found a good amount of clusters related to
such crosscutting concerns as Composite, Observer and Decorator. This sug-
gests there to be a link between structures and concerns. Figure 9.3 shows
the feature of Cluster 5 (a cluster which was found in Tree Clustering). This
feature is the common tree structure amongst all the methods in Cluster 5.
The different methods in this cluster all implement the notification code in a
Subject of an Observer instance. They exhibit looping, casting and message
sending behaviour in notifying the Observers. This shows that clusters in Tree
Clustering can very well be pure. What’s more, the “broadness” property of

119

Method
Declaration

Block

If Statement

Binary
Expression Block

For Statement

Local Variable Declaration

Variable Declaration

Binary
Expression

Message Send

Statement
Expression
List

Postfix
Expression

Block

Local
Variable
Declaration

Variable
Declaration

Cast Expression

Message
Send

Message
Send

Figure 9.3: The common tree structure amongst the methods in Cluster 5.

120

public class StandardDrawingView

protected void fireSelectionChanged() {
if (fSelectionListeners != null) {

for (int i = 0; i < fSelectionListeners . size (); i++) {
FigureSelectionListener l =

(FigureSelectionListener) fSelectionListeners .get(i);
l .figureSelectionChanged(this);
}

}
}

public class StandardDrawing

public void figureInvalidated(FigureChangeEvent e) {
if (fListeners != null) {

for (int i = 0; i < fListeners . size (); i++) {
DrawingChangeListener l =

(DrawingChangeListener) fListeners.get(i);
l .drawingInvalidated(new DrawingChangeEvent(this,

e.getInvalidatedRectangle ()));
}

}
}

public class StandardDrawing

public void fireDrawingTitleChanged(...) {...}

public class StandardDrawing

public void figureRequestUpdate(FigureChangeEvent e) {...}

Cluster 5

121

public class ArrowTip

public void write(StorableOutput dw) {
dw.writeDouble(this.getAngle());
dw.writeDouble(this.getOuterRadius());
dw.writeDouble(this.getInnerRadius());
super.write(dw);
}

public class ArrowTip

public void read(StorableInput dr) throws IOException {
this.setAngle(dr.readDouble());
this.setOuterRadius(dr.readDouble());
this.setInnerRadius(dr.readDouble());
super.read(dr);
}

. . .

Cluster 6

Tree Clustering makes the technique more likely to group different instances of
the same crosscutting pattern. Note how the first method in Cluster 5 is about
a StandardDrawingView notifying FigureSelectionListeners, while the second
method is about a StandardDrawing notifying DrawingChangeListeners.

Additionally, Tree Clustering groups methods that other cluster analysis tech-
niques couldn’t. Often, these methods are reverse actions of one another. This
is clearly illustrated in the cluster which literally groups the method action

with reverseAction (as a detection of Undo and Decorator). Similar couples
of reversals, that Tree Clustering was also able to detect, are:

• undo/redo (as a detection of Undo)

• add/orphan (Composite)

• removePointAt/insertPointAt (Composite)

• bringToFront/sendToBack (false positive)

• read/write (Persistence)

Admittedly, precisely half of the mentioned reversals sit in clusters that contain
additional, unrelated “noise” methods; those clusters are not pure. Let us
discuss the last couple, of read and write. Cluster 6 illustrates the cluster
within which this couple was found. The methods read and write do not
share a single method call, nor are they called together, as could be exploited

122

by Call Clustering. From the perspective of Type Clustering, there is only one
common (static) type amongst the bodies of read and write, namely the type
of the super keyword. (Remember that Type Clustering ignores the type of
ArrowTip itself as an attribute for cluster analysis, because read and write

are implemented in that class.) This single commonality in terms of types
- in the context of read and write both containing other types – makes it
more difficult for Type Clustering to group these methods together. Finally,
the question remains whether Ngram Clustering manages to exploit the degree
of lexical similarity that is undeniably present in both method bodies. The
answer is negative. There are no common tokens in read and write other
than “public”, “void”, “this” and “super”. These are not very meaningful. If
tokens were partitioned according to the occurrences of capital letters, more
commonalities would arise: “Double”, “Angle”, “OuterRadius”, etc. However,
in Ngram Clustering we look for common Ngrams in a pair of method bodies.
Two mismatching words break such a potentially common Ngram. For example,
the “get” and “set” in front of “getInnerRadius” and “setInnerRadius” prohibit
these two methods names of being the suffix of a common Ngram. Hence, for
Ngram Clustering to detect read and write methods, we would have to adjust
the “n” parameter which determines the length of the Ngrams. In fact, it would
have to be so low the technique would no longer resemble an Ngram Clustering
technique.

The relative recall of Tree Clustering can be seen as an added argument that a
“broader” distance measure can be a valid perspective. At this measure, Tree
Clustering comparatively scores second-highest.

9.3.4 Type Clustering

Type and Call Clustering can both be considered semantical analysis tech-
niques. In the cases of all but one of the concerns in Tables 9.1 and 9.2, Type
Clustering finds less related clusters than Call Clustering. Some results suggest
this to be a matter of false negatives in Type Clustering. Especially the (com-
paratively) low relative recall of Type Clustering can be seen as an argument
to this.

A pattern of static receiver types is more general than a pattern of methods.
For example, it is likely that the WillChange/Changed concern was missed due
to this property of generality; strip this pattern of the actual methods being
called, and it becomes a pattern of the AbstractFigure type being used (mostly)
in AbstractFigures – this is not a very distinguishable pattern.

Because Type Clustering is in a sense more general, it also finds clusters that
Call Clustering couldn’t. A good example of this is Cluster 7, which was
found in Type Clustering. Each of the three methods in this cluster notifies
ViewChangeListeners of a particular event. The only method that is called in
all three of these methods is getListenerList. Because this is a single-call
pattern, Call Clustering is not able to mine it. Type Clustering does recog-
nize the link between the three methods, as it notices the two-type pattern of
ViewChangeListener & EventListenerList.

123

public class DrawApplication

protected void fireViewCreatedEvent(DrawingView view) {
final Object [] listeners = listenerList . getListenerList ();
ViewChangeListener vsl = null;
for (int i = listeners . length − 2; i >= 0; i −= 2) {
if (listeners [i] == ViewChangeListener.class) {

vsl = (ViewChangeListener) listeners[i + 1];
vsl .viewCreated(view);

}
}
}

public class DrawApplication

protected void fireViewDestroyingEvent(DrawingView view) {
final Object [] listeners = listenerList . getListenerList ();
ViewChangeListener vsl = null;
for (int i = listeners . length − 2; i >= 0; i −= 2) {
if (listeners [i] == ViewChangeListener.class) {

vsl = (ViewChangeListener) listeners[i + 1];
vsl .viewDestroying(view);

}
}
}

public class DrawApplication

protected void fireViewSelectionChangedEvent(DrawingView oldView,
DrawingView newView) {

final Object [] listeners = listenerList . getListenerList ();
ViewChangeListener vsl = null;
for (int i = listeners . length − 2; i >= 0; i −= 2) {
if (listeners [i] == ViewChangeListener.class) {

vsl = (ViewChangeListener) listeners[i + 1];
vsl .viewSelectionChanged(oldView, newView);

}
}
}

Cluster 7

124

9.4 Name Clustering

Despite the post-filtering phase of the analysis, Name Clustering still returned
236 clusters total. This is a large amount of clusters to investigate manually.
Especially since this work is generally quite tedious and error-prone. So in this
respect, a higher degree of automatic filtering is desired. The (comparatively)
very low precision of Name Clustering suggests that there is room to make
such a correction. One might make an objection regarding the filtering that
is already in place in Name Clustering. More precisely, it is perfectly possible
that the WillChange/Changed concern was rejected as a cluster on the basis
of these two methods being in the same class. However, Name Clustering was
ultimately not tailored to find logic that crosscuts methods.

9.5 Selected Crosscutting Concerns

9.5.1 Error Handling

The Error Handling concern was only found through Name Clustering. This
technique detected two naming patterns related to error handling: (1) the con-
vention to prepend “JHotDraw” to the names of JHotDraw’s custom exceptions,
and (2) the “getNested” keyword that stems from how those custom exceptions
are wrapped around an inner, nested exception.

The failure of the other techniques can be traced back to the pre-filtering step
that precedes all Logic Clustering methods (Section 7.5.1). Error Handling in
JHotDraw is based on the exception handling system of Java. Consequently, it is
primarily an interplay between try-catch and throw clauses, where exceptions
are created through the act of instance creation. This does not involve method
calls. To determine whether a method body potentially displays tangling, the
pre-filtering step examines only the method calls in that body. Hence, the
filtering generally rejects methods that are only crosscut by the concern of
Error Handling, because it does not “smell” the crosscutting.

9.5.2 Decorator

In aspect mining, the Decorator pattern can be particularly difficult to un-
earth. This is due to the nature of this design pattern: the decoration of base
functionality goes under the disguise of that base functionality.

For example, the adding of a border to a Figure is taken care of in the class
BorderDecorator. However, no variable in JHotDraw has BorderDecorator as
its static type. Rather, run-time instances of BorderDecorator are held in vari-
ables of a broader static type, such as Figure. This is a great obstacle for
Type Clustering, which clusters methods based on the static variable types
their bodies contain. Likewise, Call Clustering is not likely to return clear in-
stances of Decorator, as it relies on static variable types to draw the could-call
relations. For example, consider any particular method of BorderDecorator.

125

Method Declaration

Block

Message Send

Message Send

Method Declaration

Block

Return Statement

Message Send

public void moveBy(int x, int y) {
this.getDecoratedFigure().moveBy(x, y);
}

public Object getAttribute(String name) {
return this.getDecoratedFigure().getAttribute(name);
}

Figure 9.4: Tree structures associated with redelegation, with a matching code
example for each.

public abstract class DecoratorFigure

public void draw(Graphics g) {
this.getDecoratedFigure().draw(g);
}

public class UndoableHandle

public void draw(Graphics g) {
this.getWrappedHandle().draw(g);
}

. . .

Cluster 8

126

Possibly many methods could call it, but generally these methods could call
the same method in any other subtype of Figure. Consequently, there is no
foundation for discriminating methods of concrete Decorators in the process of
Call Clustering. Since a concrete Decorator in JHotDraw implements not many
other - if any other - methods than those of the type it decorates (e.g. Fig-
ure), Name Clustering fails to distinguish Decorator due to the same problem
of indistinguishability (there are after all many concrete Figures in the system).

On the other hand, Tree Clustering and Ngram Clustering both found an angle
to approach the Decorator pattern. In Tree Clustering, we can associate two
structures with the principle of redelegation. These are given in Figure 9.4,
with a matching code example for each. Admittedly, these are very general
structures. Nonetheless, Tree Clustering detected two clusters of which these
structures are the features. In each cluster, 40% of the methods belongs to a
Decorator. Furthermore, in either cluster 5 distinct instances of the Decorator
pattern are uncovered.

In Ngram Clustering, the similar methods of different instances of Decorator
were grouped. This is exemplified in Cluster 8 (found in Ngram Clustering),
where DecoratorFigure and UndoableHandle are both instances of the Decora-
tor pattern. In addition, Ngram clustering also uncovered the glue code that
wraps the decoration of BorderDecorator around Figures. This glue code can
be difficult to find using a semantical method that strictly considers method
calls, as glue code is primarily a pattern of instance creation.

9.6 Undetected Crosscutting Concerns

Some concerns in Tables 9.1 demand our attention because they were detected
by none of the cluster analysis techniques we experimented with. These con-
cerns are the following:

• Singleton

• Command Execute

• CheckDamage

• Space

The above concerns constitute source code entities that stand in isolation. They
are recurring patterns of only a single method call. It is hence difficult for cluster
analysis techniques to detect them. Again, from a code duplication perspective,
the similarity between the callers of these concerns is generally minimal. Had
the Singleton pattern occured in many instances in the JHotDraw code, Name
Clustering could have grouped the similarly-named accessor methods for the
singleton objects (the authors of JHotDraw follow the convention of naming
these methods instance). However, only one such accessor method exists in

127

Fan-in Identifier Dynamic ACA

Observer + + + +

Consistent Behaviour + - - ±

Command Execute + + - -

BringToFront/
SendToBack

- - + ?

Adapter - + + +

Moving + + + +

Table 9.4: Aggregate Cluster Analysis compared to other aspect mining tech-
niques.

JHotDraw. The above concerns thus stress the major shortcoming of cluster
analysis: its condition of multiplicity.

On the other hand, CheckDamage is a crosscutting concerns that manifest
themselves in the execute methods of the Command hierarchy. Clusters that
strictly exist out of these execute methods – and could hence uncover Check-
Damage - are filtered away in any case. This is due to the polymorphism clause
that is part of the post-filtering to all our implemented mining techniques. Sim-
ilarly, the Space concern does not in fact meet our working definition of cross-
cutting, because it only crosscuts methods that are implemented in the same
class as the space method itself. This stresses the trade-off between different
degrees of hardness of filtering. Relaxed filters can provide too much infor-
mation for the researcher to manually inspect. Harsher filters are not always
accurate.

9.7 With Respect to Existing Aspect Mining Tech-

niques

In Section 7.7 we compared our techniques with (what we believe to be) all
existing aspect mining techniques. This comparison was strictly performed in
terms of analysis properties. In this section we discuss how the results of our
experiments compare to those of other aspect mining techniques.

We rely on the comparison paper by Ceccato et al. [CMM+05]. In that pa-
per, three aspect mining techniques are compared with one another. This
is done in the light of a selected group of representative crosscutting con-
cerns. Ceccato et al. evaluate fan-in analysis (Section 5.3.2), the formal concept
analysis of execution traces (Section 5.3.7), and the formal concept analysis
of identifiers (Section 5.3.8). The latter two analyses we further call identi-
fier analysis and dynamic analysis, respectively. Table 9.4 shows how we fit
our aspect mining results into this comparison framework. We extend the
comparison table of Ceccato et al. with a single column. To give a more
global perspective, we bundle our different cluster analysis techniques to form
Aggregate Cluster Analysis (ACA). As such, ACA is merely a quantifying

128

term, rather than a real technique. Individual comparison measures for each
cluster analysis technique can still be retrieved from the previous tables. The
Moving concern should be understood to be half of the Drawing/Moving con-
cern in Table 9.1. BringToFront/SendToBack is the concern of sending figures
to the back or bringing them to the front of a DrawingView.

Fan-in analysis failed to detect the Adapter design pattern, of which the Handles
mechanism is the primary manifestation in JHotDraw (Section 6.4.4). Ceccato
et al. explain this failure as follows: the Handles mechanism does not involve
one method being called in many different places. Instead, there is a large col-
lection of similar methods. Note how the notions of multiplicity and similarity
are central to the domain of cluster analysis. Indeed, all ACA techniques, save
Tree Clustering, managed to uncover Adapter. On the other hand, ACA failed
to detect Command Execute because this concern constitutes an isolated source
code method (Section 9.6). Fan-in analysis does not impose a condition of mul-
tiplicity, and it did detect Command Execute. This suggests fan-in analysis
and ACA to be highly complementary.

Table 9.4 contains one very general category of crosscutting behaviour: Consis-
tent Behaviour. This category denotes any crosscutting concern that imposes
specific functionality on a set of methods, where the set of methods can be
captured through a pointcut. When the same functionality is super-imposed
on various methods, this often involves the same method being called in many
different contexts. Hence, fan-in analysis generally scores well at detecting Con-
sistent Behaviour. Because the super-imposed functionality is often called in
every execution scenario, dynamic analysis is typically not able to distinguish
Consistent Behaviour by any specific use case. The methods that implement
the super-imposed functionality do not necessarily follow a naming convention.
Hence the negative mark for identifier analysis.

Many concerns in Tables 9.1 and 9.2 are instances of Consistent Behaviour,
e.g. CheckDamage, WillChange/Changed, Space. These concerns were not
necessarily handled similarly in our aspect mining experiments (i.e. different
concerns were handled differently). Each instance of Consistent Behaviour was
detected by at least one cluster analysis technique, unless that instance consti-
tutes an isolated source code entity (as discussed in Section 9.6). This explains
the ‘±’ mark for ACA. In a sense, Ceccato et al. admit to Consistent Behaviour
not being particularly suitable as an “atomic” concern type: they discuss Com-
mand Execute separately, to illustrate that Consistent Behaviour instances can
be detected by identifier analysis.

Ceccato et al. suggest that researchers first look at any aspect candidate that
is reported by a number of different aspect mining techniques. The reasoning
is that such candidates are more likely to be real, or significant crosscutting
concerns. In that sense, the results of ACA attest to the crosscutting nature
of Observer and Moving. However, Ceccato et al. also focus on Moving as a
“controversial” concern. Not all contributors to the comparison paper agree on
whether it is crosscutting. Some see Moving as part of a Figure’s core logic.
Similarly, we only consider BringToFront/SendToBack to be crosscutting in

129

that both operations are Commands in the Command hierarchy. Thus, if a
cluster uncovered BringToFront/SendToBack, we generally dismissed it as a
false positive. Hence the question mark in Table 9.4.

9.8 Conclusions

In Section 9.7, we introduced Aggregate Cluster Analysis (ACA), as the col-
lection of our different aspect mining techniques. As such, ACA is only a
quantifying term for use in discussion, rather than a real technique. From the
list of crosscutting concerns that we composed before the experiments, ACA
failed to detect four concerns. These four concerns constitute source code enti-
ties that stand in isolation (Section 9.6). They can hence difficultly be detected
using an analysis that groups objects. On the other hand, ACA detected several
concerns that we did not know about before carrying out the experiments (de-
spite an extensive literature study and manual investigation of JHotDraw). We
outlined the newly-discovered crosscutting in Section 9.2; some of them seem
significant (e.g. Concurrency in Section 9.2.5), or flagrant (e.g. Collections-
Factory in Section 9.2.3). In the comparison to results of techniques by other
researchers, ACA and fan-in analysis seem highly complementary (Section 9.7).
This is natural; the major shortcoming of ACA is that it relies on a condition
of multiplicity in grouping the methods, while fan-in analysis evaluates each
method separately for its value in aspect mining. Conversely, fan-in analysis
can be seen to lack in that it does not explore relations between methods.

Our different aspect mining techniques have different strengths. In fact, none
of the analyses seems particularly “useless”. We hereby provide some selected
examples that illustrate this. Tree Clustering found more instances of Condi-
tion Checking (Section 9.2.1) and provided particularly many reversals (Sec-
tion 9.3.3). (Reversals are reverse actions, such as undo/redo). Call Clustering
can mine a pattern that constitutes only a fraction of the method bodies it
appears in (Section 9.3.2). Type Clustering contrasts with Call Clustering, in
that it finds more general patterns (of receiver types, rather than methods).
As a consequence, Type Clustering detected crosscutting concerns that Call
Clustering couldn’t (Section 9.3.4). Ngram Clustering detected more instances
of Duplication (Section 9.2.2). Name Clustering is the only technique to have
detected Concurrency (Section 9.2.5) and Error Handling (Section 9.5.1).

Conversely, we observed that our aspect mining techniques have different weak-
nesses. We again provide some selected examples that illustrate this. There
tends to be more noise in the clusters of Tree Clustering (Section 9.3.3). Ngram
Clustering has the risk of a pattern being lost in code, when it is small compared
to the method bodies it appears in (Section 9.3.1). Name Clustering missed
Decorator because of the problem of indistinguishability (Section 9.5.2). Call
Clustering missed an Observer instance because a pattern of method calls can be
too specific (Section 9.3.4). Type Clustering missed the WillChange/Changed
concern precisely because it considers more general patterns (Section 9.3.4).

130

We observed that there is room for error in the manual classification of clusters.
While a cluster might technically uncover a crosscutting concern, the aspect
miner might not recognize the cluster as doing so. This oversight occurs when
the used aspect mining technique does not provide an adequate perspective. For
example, only with Name Clustering were we able to detect Concurrency (Sec-
tion 9.2.5), likely because the analysis highlights easily recognizable keywords,
rather than (in the case of Concurrency) muddier information such as method
calls or tree structures. This suggests that different perspectives to the legacy
system are useful, in terms of the use of several aspect mining techniques.

131

Chapter 10

Conclusions

10.1 Summary

The common object-oriented programming languages are based on one domi-
nant dimension of decomposition: the class hierarchy. This dimension does not
suffice to cleanly encapsulate every concern. As a consequence, crosscutting
concerns arise that can not be cleanly encapsulated into modules. Crosscut-
ting concerns are a problem because they violate the separation of concerns.
This principle of separation is the idea that the software system be broken
down into distinct modules, such that the modules overlap in functionality as
little as possible. A software system that adheres to this principle is more
comprehensible, adaptable and maintainable. The concept of Aspect-Oriented
Programming (AOP) is a proposed solution to the problem of crosscutting con-
cerns. The intent of AOP is to allow for a crosscutting concern to be cleanly
encapsulated in an aspect. To this end, AOP languages offer new language
constructs to model aspects.

In the light of AOP, there is a demand for aspect mining techniques that auto-
matically mine a legacy system for all crosscutting concerns potentially to be
turned into aspects. Legacy systems are characteristically poorly-documented,
complex and of large scale. In such systems, it is hard (if not practically un-
feasible) to manually mine for aspects. However, at the current time, a fully-
automatic aspect mining technique seems unlikely.

Cluster analysis is a technique that aims to group similar objects into the same
cluster. The underlying notion of similarity is based on a user-provided (binary)
distance measure between the objects. Different cluster algorithms exist that
perform cluster analysis.

In this dissertation, we investigated the extent to which cluster analysis can be
used to perform aspect mining. We proposed 5 distinct aspect mining tech-
niques that use cluster analysis. At the heart of each technique lies a separate
distance measure between the methods in the legacy system. This means that
each technique forms clusters of methods. The methods in a cluster are similar

132

in a sense that is particular to the aspect mining technique. The five techniques
and their distance measures are:

• Call Clustering [Two methods are similar when] they are called to-
gether to a certain degree.

• Type Clustering They are similar in the types they contain.

• Ngram Clustering They have lexically similar bodies.

• Tree Clustering They are structurally similar, in that they have similar
parse trees.

• Name Clustering They have lexically similar names.

It is important to note that each of the techniques still requires a post-processing
step of the user, in which he or she manually investigates the clusters.

It was necessary to make a selection among the wide array of existing cluster
algorithms. We opted to implement algorithms that do not require the objects
to have attributes (numerical or otherwise), as it does not necessarily make
sense to partition a parse tree or string into separate attribute values. We
further implemented algorithms that do not require input parameters, as they
can add extra degrees of uncertainty to the analysis of aspect mining results.

Concretely, we implemented the Lance-Williams framework, which allows to
efficiently realize 5 distinct cluster algorithms (MaxLink, MinLink, GroupAver-
age, Ward and Centroid). Furthermore, the algorithms are to a certain degree
representative of other hierarchical algorithms. Additionally, we designed and
implemented a domain-specific cluster algorithm for each of our aspect mining
techniques. We call such an algorithm a “cluster feature solution”.

We chose JHotDraw [JHo] as the benchmark to evaluate our aspect mining
techniques. JHotDraw is a relatively large-scale Java system of around 2800
methods and 18K lines of code. The motivation for our choice is based on two
observations: (1) JHotDraw has the reputation that it maximally exploits the
means of abstraction and composition that are offered by object-orientation
(Java), and (2) JHotDraw has already been used in the evaluation, and com-
parison of aspect mining techniques.

The set of experiments we carried out is two-fold. Using subsets of JHotDraw,
we did some tests as to get an idea which cluster algorithm is most suited
for which aspect mining technique. The cluster feature solutions we introduced
mostly scored comparatively well. As the main experiments of this dissertation,
we then deployed our different aspect mining techniques on the (near) entirety
of JHotDraw.

The results of our main experiments suggested a number of conclusions. We
showed our aspect mining techniques to have individual strengths and weak-
nesses, relative to one other. When the different techniques detected the same
concern, they often did so in different ways. These observations suggested that it

133

could be worthwhile to consider the different techniques from a non-competitive
angle. Thus, we also considered Aggregate Cluster Analysis (ACA), which is
the term we use to denote the collection of our aspect mining techniques.

Before carrying out the experiments, we compiled a list of crosscutting concerns
in JHotDraw. ACA was able to detect clear crosscutting concerns that are not
on the list (i.e. concerns that we were not able to detect through manual
investigation, or through the writings of other researchers). Furthermore, of
the 18 listed concerns, ACA only missed 4. The undetected concerns have a
common property: they constitute source code entities that stand in isolation.
(For example, the concern is a recurring pattern of one method call.) Therefore,
these concerns are difficult to mine using an analysis that groups objects.

We compared our own aspect mining techniques with those of other researchers,
both in terms of analysis properties and results. One distinguishable feature of
our work is the degree to which our techniques take tangling into account. Only
the formal concept analysis of execution traces [TC04] also considers tangling
in its implementation. Due to the paper of Ceccato et al. [CMM+05], we were
able to compare our results with those of fan-in analysis [MvDM04] and the two
techniques that deploy formal concept analysis [TC04, TM04]. We concluded
that ACA seems highly complementary with fan-in analysis. This is natural;
the major shortcoming of ACA is that it relies on a condition of multiplicity in
grouping the methods, while fan-in analysis evaluates each method separately
for its value in aspect mining. Conversely, fan-in analysis can be seen to lack
in that it does not explore relations between methods.

10.2 Contributions

We have proposed and implemented different aspect mining techniques. In the
implementation, Irish [Fab] serves as the underlying code analysis workbench.
Tree Clustering uses tree edit distance to compare the parse trees of methods.
To this end, we have implemented a tree edit distance algorithm, from the
pseudocode of Zhang and Shasha [SZ97]. Ngram Clustering takes advantage
of Irish’s reader to extract Ngrams (substrings) of tokens from method bodies,
and then uses the Ngrams in a document clustering scheme. Name Clustering
compares method names through a dynamic program that finds the longest
common substring in a given pair of strings. Type and Call Clustering assume
objects and attributes in the cluster analysis, and then use Jaccard distance to
group methods based on the degree to which they, respectively, have common
types in their bodies, and could be called by the same methods.

Irish allows to query Java code using logic programming queries. We have
extended this workbench with more advanced predicates than those that are
native to Irish. The most intricate predicate we have implemented determines
whether a method could call another, taking into account polymorphism in the
inheritance of classes and interfaces. However, due to the cost of such code
analysis, in terms of both implementation work and run-time complexity, some
of the custom predicates are really approximation measures.

134

In early experiments, we identified a need to filter the output of the cluster
analysis, to get an overall higher-quality aspect mining result. To this end,
we have introduced a working definition of crosscutting, from which we have
derived various automatic pre- and post-filtering steps that accompany the clus-
ter analysis. The working definition and derived filtering steps consider notions
such as tangling, scattering and redelegation. The working definition further
specifies a divide-and-conquer approach to aspect mining: when an aspect min-
ing technique is tailored towards one case of crosscutting, more specific filters
can be implemented for it.

Due to the cost of the deployed code analysis and clustering schemes, we have
implemented several scalability measures. We have devised a general strategy
in which the use of an expensive distance measure is limited through the use
of a lower bound to that measure. We have designed one such lower bound,
to the tree edit distance. Furthermore, we have designed several scalability
approaches in which single pass clustering is deployed as a pre-processing step
to the main cluster analysis.

Besides our implementation of several existing cluster algorithms, we have de-
signed our own cluster feature solutions. To realize the cluster feature solution
to Tree Clustering, we have designed an extension to the tree edit distance algo-
rithm of Zhang and Shasha. This extension constructs the optimal edit script
between trees.

We have integrated the StarBrowser [Wuy] in our implementation work, in order
to automatically present the user with a browsable presentation of the aspect
mining results. This presentation provides quick access to context information
regarding the clusters that were formed.

Another of our contributions is a list (and a discussion) of the crosscutting
concerns in JHotDraw. This list was compiled through an extensive literature
study and manual investigation.

We have made an assessment of the suitability of numerous cluster algorithms
for their use in our aspect mining techniques. We have done this through
literature study and experimentation work.

Ultimately, we have performed experimentation work to compare our aspect
mining techniques for their relative strengths and weaknesses. Through litera-
ture study, we have compared our aspect mining techniques with those authored
by other researchers, in terms of mining results and analysis properties.

10.3 Possibilities for Future Work

Aggregate Cluster Analysis is merely a term to denote a collection of aspect
mining techniques. It should be interesting to implement an actual combination
of the different techniques. However, it is difficult to imagine an approach that
would preserve the individual strengths of the techniques, without completely
preserving the techniques themselves.

135

Naturally, there is room for experimentation with other distance measures. For
instance, points-to analysis [Ryd03] could be deployed. This analysis links a
variable reference to the “potential” run-time objects it could refer to. Laying
these links involves notions of uncertainty and potentiality, because points-to
analysis is in fact a static analysis. That is to say, it does not require run-time
information. In terms of mining aspects using clusters, we imagine a scheme
where two (source code) methods are grouped on the basis of the “potential”
objects they could both send messages to.

Additionally, the aspect mining filters in our own implementation work can be
modified or extended. In the Ngram experiment, every cluster that was falsely
labeled to be crosscutting existed out of methods that are implemented closely
in the same hierarchy. This suggests a new filter, although there are arguments
against a strict filtering of “same-hierarchy” clusters.

We have already remarked how fan-analysis is complementary to ACA, precisely
because it evaluates each method separately for its value in aspect mining. The
technique of unique methods [GK05] is similarly incremental (i.e. it also follows
the method-by-method strategy to aspect mining). As such, it should be worth-
while to combine ACA with either of the incremental techniques. Additionally,
the incremental techniques could easily be extended with our pre-filtering steps,
to give these rather basic techniques more focus.

In Chapter 4, we briefly touched on fuzzy clustering, the scheme in which an
object can be assigned to multiple clusters. In the light of fuzzy clustering, a
simple idea arises: if the clusters are taken to be concerns, then the (source code)
methods that belong to more than one cluster (concern) could indicate cases
of tangling. Because tangling is perhaps the primary symptom of crosscutting,
it seems somewhat limiting that our techniques only provide non-overlapping
clusters.

We have implemented custom predicates for querying the code of the legacy
system. As noted above, some of these predicates are approximation measures.
It could be rewarding to move towards a more precise code analysis. Although,
in carrying out our experiments, we encountered very few cases where data
was wrongly formed, or classified, due to the rough edges around our own code
analysis work.

136

Bibliography

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg
Sander. Optics: Ordering points to identify the clustering structure.
In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh,
editors, SIGMOD 1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA, pages 49–60. ACM Press, 1999.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and
Prabhakar Raghavan. Automatic subspace clustering of high di-
mensional data for data mining applications. In Haas and Tiwary
[HT98], pages 94–105.

[And05] Periklis Andritsos. A survey of aspect mining tools and techniques.
Tech. Report CSRG-443, U. of Toronto, Dep. of Computer Science,
march 2005.

[Ber02] Pavel Berkhin. Survey of clustering data mining techniques. Tech-
nical report, Accrue Software, San Jose, CA, 2002.

[BFVY96] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and
Patsy S. Yu. Automatic code generation from design patterns. IBM
Systems Journal, 35(2):151–171, 1996.

[Bil05] Philip Bille. A survey on tree edit distance and related problems.
Theor. Comput. Sci., 337(1-3):217–239, 2005.

[BK04] Silvia Breu and Jens Krinke. Aspect mining using event traces. In
ASE ’04: Proceedings of the 19th IEEE international conference on
Automated software engineering, pages 310–315, Washington, DC,
USA, 2004. IEEE Computer Society.

[Bre04] Silvia Breu. Towards hybrid aspect mining: Static extensions to
dynamic aspect mining. In Tom Tourwé, Magiel Bruntink, Marius
Marin, and David Shepherd, editors, Workshop on Aspect Reverse
Engineering (WARE), November 2004.

[Bud01] A. Budanitsky. Semantic distance in wordnet: An experimental,
application-oriented evaluation of five measures, 2001.

137

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syn-
tax trees. In ICSM ’98: Proceedings of the International Conference
on Software Maintenance, page 368, Washington, DC, USA, 1998.
IEEE Computer Society.

[CMM+05] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect mining tech-
niques. In IWPC ’05: Proceedings of the 13th International Work-
shop on Program Comprehension, pages 13–22, Washington, DC,
USA, 2005. IEEE Computer Society.

[CS95] James O. Coplien and Douglas C. Schmidt, editors. Pattern lan-
guages of program design. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

[DAAC05] Simon Denier, Hervé Albin-Amiot, and Pierre Cointe. Expression
and composition of design patterns with aspects. In Lionel Sein-
turier, editor, 2nd French Workshop on Aspect-Oriented Software
Development (JFDLPA 2005), September 2005.

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition,
reuse and interaction analysis of stateful aspects. In Karl Lieber-
herr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software De-
velopment (AOSD-2004), pages 141–150. ACM Press, March 2004.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, pages 226–231, 1996.

[Fab] Johan Fabry. Irish homepage.
http://prog.vub.ac.be/˜jfabry/irish/index.html.

[FF00] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Peri Tarr, Lodewijk Bergmans,
Martin Griss, and Harold Ossher, editors, Workshop on Advanced
Separation of Concerns (OOPSLA 2000), October 2000.

[GHJ95] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1995. GAM e 95:1
1.Ex.

[GK05] Kris Gybels and Andy Kellens. Experiences with identifying aspects
in Smalltalk using unique methods. In Tourwé et al. [TKCS05].

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An effi-
cient clustering algorithm for large databases. In Haas and Tiwary
[HT98], pages 73–84.

138

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust
clustering algorithm for categorical attributes. In Proceedings of the
15th International Conference on Data Engineering, 23-26 March
1999, Sydney, Austrialia, pages 512–521. IEEE Computer Society,
1999.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge University
Press, January 1997.

[GW97] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1997. Translator-C. Franzke.

[Har75] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc.,
New York, NY, 1975.

[HK00] Jiawei Han and Micheline Kamber. Data mining: concepts and
techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2000.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementa-
tion in java and aspectj. In OOPSLA ’02: Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 161–173, New York, NY,
USA, 2002. ACM Press.

[HT98] Laura M. Haas and Ashutosh Tiwary, editors. SIGMOD 1998, Pro-
ceedings ACM SIGMOD International Conference on Management
of Data, June 2-4, 1998, Seattle, Washington, USA. ACM Press,
1998.

[IV98] Nancy Ide and Jean Veronis. Word sense disambiguation: The state
of the art. In Computational Linguistics, volume 24, 1998.

[JD03] Doug Janzen and Kris De Volder. Navigating and querying code
without getting lost. In Mehmet Akşit, editor, Proc. 2nd Int’ Conf.
on Aspect-Oriented Software Development (AOSD-2003), pages
178–187. ACM Press, March 2003.

[JHo] JHotDraw homepage. http://www.jhotdraw.org/.

[JP04] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinfor-
matics Algorithms (Computational Molecular Biology). The MIT
Press, August 2004.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify
duplication in source code. In SAS ’01: Proceedings of the 8th
International Symposium on Static Analysis, pages 40–56, London,
UK, 2001. Springer-Verlag.

139

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. L. Knudsen, editor,
Proc. ECOOP 2001, LNCS 2072, pages 327–353, Berlin, June 2001.
Springer-Verlag.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder:
a multilinguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, 11th Europeen Conf. Object-Oriented Programming, vol-
ume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[KM05] Andy Kellens and Kim Mens. A survey of aspect mining tools and
techniques. INGI Technical Report 2005-07, UCL, Belgium., 2005.

[KN99] George Karypis, , and Vipin K. News. Chameleon: Hierarchical
clustering using dynamic modeling. Computer, 32(8):68–75, 1999.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley, 1990.

[Kri01] Jens Krinke. Identifying similar code with program dependence
graphs. In WCRE ’01: Proceedings of the Eighth Working Confer-
ence on Reverse Engineering (WCRE’01), page 301, Washington,
DC, USA, 2001. IEEE Computer Society.

[Leo] W. Leong. The Aspect Browser web site.
http://www.cs.ucsd.edu/users/wgg/Software/AB.

[LHH05] J. Zhang L. He, H. Bai and C. Hu. Amuca algorithm for aspect
mining. In Proceedings of SEKE 2005, 2005.

[LW69] C. Lance and W. Williams. A general theory of classification sorting
strategies: Ii. clustering systems. Computer Journal, 1969.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

[MMvD05] Marius Marin, Leon Moonen, and Arie van Deursen. A classification
of crosscutting concerns. In ICSM, pages 673–676. IEEE Computer
Society, 2005.

[MvDM04] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying
aspects using fan-in analysis. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE’04), pages
132–141, Washington, DC, USA, 2004. IEEE Computer Society.

140

[OL01] Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive pro-
gramming in Java. In A. Yonezawa and S. Matsuoka, editors, Met-
alevel Architectures and Separation of Crosscutting Concerns 3rd
Int’l Conf. (Reflection 2001), LNCS 2192, pages 73–80. Springer-
Verlag, September 2001.

[RM02] M. P. Robillard and G. C. Murphy. Concern Graphs: Finding and
describing concerns using structural program dependencies. In Int’l
Conf. Software Engineering (ICSE), pages 406–416, 2002.

[Ryd03] Barbara G. Ryder. Dimensions of precision in reference analysis
of object-oriented programming languages. In Görel Hedin, editor,
CC, volume 2622 of Lecture Notes in Computer Science, pages 126–
137. Springer, 2003.

[SGP04] David Shepherd, Emily Gibson, and Lori L. Pollock. Design and
evaluation of an automated aspect mining tool. In Hamid R. Arab-
nia and Hassan Reza, editors, Software Engineering Research and
Practice, pages 601–607. CSREA Press, 2004.

[SOU] SOUL homepage.
http://prog.vub.ac.be/research/DMP/soul/.

[SP05a] David Shepherd and Lori Pollock. Aspects, views, and interfaces.
In Workshop on Linking Aspect Technology and Evolution at the In-
ternational Conference on Aspect Oriented Software Development,
March 2005.

[SP05b] David Shepherd and Lori Pollock. Interfaces, aspects, and views.
In Tourwé et al. [TKCS05].

[SPT05] David Shepherd, Lori Pollock, and Tom Tourwé. Using language
clues to discover crosscutting concerns. In Martin Robillard, editor,
MACS ’05: Proceedings of the 2005 workshop on Modeling and
analysis of concerns in software, pages 1–6. ACM Press, May 2005.

[SZ97] Dennis Shasha and Kaizhong Zhang. Approximate tree pattern
matching. In Pattern Matching Algorithms, pages 341–371. Oxford
University Press, 1997.

[TC04] Paolo Tonella and Mariano Ceccato. Aspect mining through the
formal concept analysis of execution traces. In WCRE ’04: Pro-
ceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), pages 112–121, Washington, DC, USA, 2004. IEEE
Computer Society.

[TKCS05] Tom Tourwé, Andy Kellens, Mariano Ceccato, and David Shep-
herd, editors. Linking Aspect Technology and Evolution, March
2005.

141

[TM04] Tom Tourwe and Kim Mens. Mining aspectual views using formal
concept analysis. In SCAM ’04: Proceedings of the Source Code
Analysis and Manipulation, Fourth IEEE International Workshop
on (SCAM’04), pages 97–106, Washington, DC, USA, 2004. IEEE
Computer Society.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton,
Jr. N degrees of separation: Multi-dimensional separation of con-
cerns. In Proc. 21st Int’l Conf. Software Engineering (ICSE’1999),
pages 107 – 119. IEEE Computer Society Press, May 1999.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining. Addison-Wesley, 2005.

[vdBCH06] Klaas van den Berg, Josè Mar̀ıa Conejero, and Juan Hernàndez.
Identification of crosscutting in software design. In 8th Interna-
tional Workshop on Aspect-Oriented Modeling, Bonn, Germany,
2006. March 21, 2006.

[vDMM05] Arie van Deursen, Marius Marin, and Leon Moonen. A systematic
aspect-oriented refactoring and testing strategy, and its application
to jhotdraw, 2005.

[vE05] Remco van Engelen. On the use of clone detection for identifying
crosscutting concern code. IEEE Trans. Softw. Eng., 31(10):804–
818, 2005. Student Member-Magiel Bruntink and Member-Arie van
Deursen and Member-Tom Tourwe.

[VSCF05] Wim Vanderperren, Davy Suvée, Maŕıa Agustina Cibrán, and
Bruno De Fraine. Stateful aspects in jasco. In Thomas Gschwind,
Uwe Aßmann, and Oscar Nierstrasz, editors, Software Composition,
volume 3628 of Lecture Notes in Computer Science, pages 167–181.
Springer, 2005.

[VSV+05] Wim Vanderperren, Davy Suvée, Bart Verheecke, Maŕıa Agustina
Cibrán, and Viviane Jonckers. Adaptive programming in JAsCo. In
Peri Tarr, editor, Proc. 4rd Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2005), pages 75–86. ACM Press, March 2005.

[Wei79] Mark David Weiser. Program slices: formal, psychological,
and practical investigations of an automatic program abstraction
method. PhD thesis, 1979.

[Wuy] R. Wuyts. The starbrowser homepage.
http://homepages.ulb.ac.be/˜rowuyts/StarBrowser/.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical
information grid approach to spatial data mining. In Matthias
Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky,
Pericles Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97,

142

Proceedings of 23rd International Conference on Very Large Data
Bases, August 25-29, 1997, Athens, Greece, pages 186–195. Morgan
Kaufmann, 1997.

[ZK02] Ying Zhao and George Karypis. Evaluation of hierarchical cluster-
ing algorithms for document datasets. In CIKM ’02: Proceedings
of the eleventh international conference on Information and knowl-
edge management, pages 515–524, New York, NY, USA, 2002. ACM
Press.

143

