
Faculty of Science
Department of Computer Science
Programming Technology Lab

Exception Handling in Ambient-
Oriented Systems

Dissertation submitted in partial fulfilment of the requirements for the degree of Licentiaat in de
Toegepaste Informatica

Andoni Lombide

Academic Year 2005-2006

Promotor: Prof. Dr. Theo D’Hondt
Supervisor: Stijn Mostinckx

May 2006

c© Vrije Universiteit Brussel, all rights reserved.

i

Abstract
Mobile devices often support connecting to wireless networks and discovering
other devices in that network, which provide or require services that involve inter-
action between the devices. Applications that are conceived as spontaneous inter-
actions between such mobile devices are said to be Ambient Intelligent. The hard-
ware characteristics of such mobile networks have strong repercussion on software
development. To cope with the added complexity imposed by these repercus-
sions, the Ambient Oriented programming paradigm has been introduced. This
paradigm structures the application components as concurrently executing objects
that communicate asynchronously. Keeping the high failure rate and the high
uncoupling stemming from the wireless connections connecting the application
components in mind, exception handling considerably improves fault tolerance
and abstraction. However, in such an Ambient Oriented programming language,
classic exception handling such as found in most contemporary object-oriented
languages is not enough to deal with failures encountered on application com-
ponents living on different machines without undermining the autonomy of the
mobile devices. This led to the identification of a number of criteria to which an
Ambient Oriented exception handling system must adhere. However, these crite-
ria do not impose any encapsulation of the exceptions raised during the interaction
of a number of application components, possibly leading to a chain reaction where
a large number of application components are being lead to an exceptional state
because of their interactions with the components that caused the exception.
Co-ordinated atomic actions are a well-known technique for strongly reducing
the complexity of providing fault tolerance in a distributed and concurrent envi-
ronment by structuring and encapsulating such interactions and integrating them
with exception handling such that exceptions are confined in the action and are
propagated in a controlled way. Using co-ordinated atomic actions, interactions of
application components exhibit transaction-like semantics such that the effects of
the interaction are only witnessed when the action can complete, or not at all. This
dissertation proposes a slight adaption to the co-ordinated atomic action mecha-
nism to allow it to function in an Ambient Oriented environment. We show how
it solves the problem of spreading erroneous information among loosely-coupled
application components by using our implementation in a case study.

ii

Samenvatting
Mobiele toestellen kunnen dikwijls via draadloze netwerken andere toestellen in
het netwerk ontdekken. Deze toestellen kunnen diensten aanbieden of verwachten
die bestaan uit interacties tussen de verschillende toestellen. Applicaties die opgevat
zijn als spontane interacties tussen zulke mobiele toestellen worden Ambient In-
telligent genoemd. De hardware-eigenschappen van zulke mobiele netwerken
hebben een grote invloed op het ontwikkelen van Ambient Intelligent software.
Om het hoofd te kunnen bieden aan de extra complexiteit veroorzaakt door die
hardware-invloed, werd het Ambient Oriented programmeerparadigma geı̈ntroduceerd.
Dit paradigma structureert de applicatiecomponenten als concurrent werkende ob-
jecten die asynchroon communiceren. Met de hoge mate van falingen en de hoge
graad van onafhankelijkheid van de applicatiecomponenten in gedachten, is ex-
ception handling een techniek die veel bijdraagt aan de foutentolerantie en ab-
stractie van een applicatie. Maar in een Ambient Oriented programmeertaal is
een klassiek exception handling-systeem niet genoeg om fouten die voorvallen op
andere machines af te handelen zonder de autonomie van de mobiele toestellen te
ondermijnen. Dit heeft geleid tot de identificatie van een aantal criteria aan welke
een Ambient Oriented exception handling-systeem moet voldoen. Deze criteria
leggen echter wel geen enkele encapsulatie op van de exceptions die tijdens de
interactie van een aantal applicatiecomponenten worden gesignalleerd. Dit kan
leiden tot een kettingreactie waarbij een groot aantal applicatiecomponenten in
een exceptionele staat wordt gebracht door hun interactie met componenten die
een exception veroorzaakten.
Co-ordinated Atomic Actions zijn een gekende techniek om de complexiteit te
verminderen van het garanderen van foutentolerantie in een gedistribueerde en
concurrente omgeving door het structureren en encapsuleren van interacties van
applicatiecomponenten en deze interacties te integreren met exception handling.
Met dit model worden exceptions ingesloten in de actie en worden ze gepropageerd
op een gecontroleerd manier. Door co-ordinated atomic actions te gebruiken, ver-
tonen interacties tussen applicatiecomponenten een transactionele semantiek zo-
dat de effecten van de interactie alleen zichtbaar worden wanneer de actie gelukt
is, en indien ze niet gelukt is, blijven de effecten onzichtbaar. Deze verhandeling
stelt een licht aangepaste versie van het co-ordinated atomic action-mechanisme
voor om het te kunnen toepassen in een Ambient Oriented omgeving. We laten
zien hoe het probleem van zich verspreidende foute informatie tussen zwak gekop-
pelde applicatiecomponenten kan opgelost worden met Co-ordinated Atomic Ac-
tions door onze implementatie te gebruiken in een case study.

Acknowledgements

I would like to thank Prof. Dr. Theo D’Hondt for promoting this dissertation.
Special thanks goes to my supervisor Stijn Mostinckx for his advice, his help
whenever I encountered problems during this research and for proof-reading this
dissertation which improved its quality considerably.
I would also like to thank all the members and students of the Programming Tech-
nology Lab for their advice and opinions on the subject, which led to many dis-
cussions that contributed to my understanding of the matter. Thanks also to the
Vrije Universiteit Brussel for providing such a high standard in the education and
teaching of computer science.
Finally, many thanks to my parents for giving me this opportunity and to my
friends for their support and distraction.

iii

Contents

iv

List of Figures

v

List of Tables

vi

Chapter 1

Introduction

In the past decade, mobile technology has become increasingly accessible and
ever more potent. The mobile devices carried around today include sheer inlim-
ited storage devices (e.g. iPod media players), cell-phones providing worldwide
access to the internet, PDAs with ever increasing processing power, etc. Some
of these devices can already communicate over short-ranged wireless protocols
such as bluetooth. In this thesis dissertation we extrapolate on the hardware that
exists today and target interactions between different mobile devices and devices
embedded in their surroundings. This vision has been researched for a few years
and is known as Ambient Intelligence [?].

Realising this vision requires more than innovations regarding hardware sup-
port. At the same time software support is required to deal with networks of
mobile devices connected through communication channels which have a limited
range. The contribution presented in this thesis dissertation is the construction
of an abstraction technique specifically geared towards supporting building soft-
ware for mobile networks. This work relies on a recent body of work regarding
the development of such software and extends it with a new abstraction technique
(geared towards exception handling) for grouping concurrently processing devices
collaborating with one another in a meaningful way.

1.1 Key Concepts in the Dissertation
The introduced abstraction technique is geared towards handling exceptions in
mobile networks and relies on a series of key concepts which are briefly intro-
duced here and further elaborated in their own dedicated chapter.

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Ambient Intelligence
Mobile devices often support connecting to wireless networks and discovering
other devices in that network, which provide or require services that involve in-
teraction between the devices. Applications that are conceived as spontaneous
interactions between such mobile devices are said to be ambient intelligent. Am-
bient intelligent applications should deal with the following characteristics of mo-
bile networks in an appropriate way: connections are volatile (because of the
limitations of wireless technology), resources have to be dynamically discovered
(because devices may move in or out of range at any time) and devices should
be autonomous and execute their tasks concurrently. These characteristics re-
quire a programming language that adheres to the ambient oriented programming
paradigm. The ambient oriented programming paradigm dictates that the object
model of the language should be classless (to allow software migration) and de-
vices should communicate using non-blocking communication primitives (to pre-
serve device autonomy). Furthermore, the communication traces should be rei-
fied in the language (to allow for explicit synchronisation between devices) and a
mechanism is needed to discover communication partners (ambient acquaintance
management).

1.1.2 Exception Handling
Because of the increased complexity inherent to distributed and concurrent appli-
cations, exception handling is a field of ambient intelligent application develop-
ment that requires careful investigation. A classic exception handling mechanism
as can be found in most contemporary object oriented languages cannot be aligned
with ambient oriented applications. The reason is that classic exception handling
mechanisms do not incorporate support for the concurrent, loosely-coupled and
spontaneous interactions of mobile devices over volatile connections into their
model. Techniques exist to allow exception handling in a concurrent and dis-
tributed environment, but they do not respect all of the ambient oriented proper-
ties. Concretely, an ambient oriented exception handling system should allow ex-
ceptions to be propagated between different asynchronously executing processes
which in turn must be able to handle them in the right context. Furthermore, it
should be possible to aggregate concurrently raised exceptions such that they can
be collectively handled or concerted to a single exception. When processes col-
laborate, they should be informed when one of their collaboration partners signals
an exception such that the exception can be collaboratively handled by all the
participants of the collaboration. Finally, an ambient oriented exception handling
mechanism should be loosely-coupled such that the autonomy of the devices is
preserved (i.e. it should not rely on a centralised node and should be able to dis-

CHAPTER 1. INTRODUCTION 3

criminate between long-lasting and temporary disconnections).

1.1.3 Co-ordinated Atomic Actions
As a result of the ambient oriented exception handling requirements mentioned
above, exceptions may be propagated from one device to another, including to
devices that were not directly involved in the collaboration where the exception
originated. This makes it hard to reason about such systems since a whole constel-
lation of devices can be put in an exceptional state by a single failure. This calls
for the need of higher level exception handling constructs that allow structuring
and encapsulating the collaboration of a number of devices such that the effects
of the collaboration are not witnessed by devices outside of the collaboration until
the collaboration is over (or signalled failure). One of these constructs is the Co-
ordinated Atomic Actions (CAAs) model. CAAs allow structuring collaborations
among concurrent processes in a recursive way such that they exhibit transaction-
like semantics. No data may breach the CAAs boundaries and if the CAA cannot
finish an attempt is made to rollback the participants into the state they were before
entering the CAA. Furthermore, exceptions raised by one participant are raised in
the other participants too to allow collaborative exception handling. Additionally,
the CAA may provide its own exception handlers (for example to rollback the
execution).

1.2 Roadmap to the Dissertation
Chapter 2 introduces the ambient intelligence concept along with a scenario exem-
plifying a series of meaningful spontaneous interactions between different mobile
interconnected devices. This chapter further details the hardware characteristics
of ambient-oriented software as well as their repercussions on software develop-
ment process. Finally some common approaches to deal with these repercussions
are presented. Chapter 3 provides an overview of classic exception handling tech-
niques found in most object-oriented programming languages and shows why they
are not applicable in an ambient oriented system. Furthermore, some existing
higher level techniques which are specifically designed to work in a concurrent
and distributed system are evaluated from an ambient oriented perspective. Chap-
ter 4 first gives the criteria required for a programming language to be labelled
an ambient oriented language. This chapter also presents the existing ambient ori-
ented language AmbientTalk and shows how it deals with the ambient oriented cri-
teria with particular attention for its exception handling model. Chapter 5 shows
the results of experimenting with the ambient oriented exception handling con-
structs provided by AmbientTalk by presenting an implementation of a high level

CHAPTER 1. INTRODUCTION 4

exception handling construct, namely Co-ordinated Atomic Actions. The applica-
bility of the construct is demonstrated by means of a case study. Finally, chapter
6 concludes this dissertation.

Chapter 2

Ambient Intelligence

The recent technological evolutions in combining mobile devices (cell phones,
PDA’s, ultra-portables...) with wireless technology (WiFi, Bluetooth...) allow mo-
bile devices to break out of their isolation and engage in co-operation with other
devices in dynamically changing wireless networks. As devices move about, new
networks, services and devices are dynamically discovered. The scale and avail-
ability of those mobile networks brings a new breed of co-operative applications,
similar to the idea of ubiquitous computing [?], where both mobile and embedded
devices are available everywhere and are seamlessly integrated in the background
of our every day life where they may not even be noticed. A single (personal) de-
vice is no longer the focal point of users attention and computation is effectively
distributed to the environment surrounding the user. To achieve this, devices need
to be aware of their location and their surroundings, including other devices, in
short: they need to exhibit context awareness [?]. This vision has been named
Ambient Intelligence by the European Council’s IST Advisory Group [?].
The context of pervasive computing implies that the wireless network environment
is ad-hoc. This means that there is no assurance on what services are accessible/p-
resent in the physical environment. Hence, in an ad-hoc network environment we
cannot rely on central server infrastructure [?]. This gives rise to new desirable
programming constructs not available in most contemporary programming lan-
guages. Limited communication range of wireless technology and dynamically
appearing and disappearing devices in the network are taken into account in the
Ambient Oriented programming paradigm. Languages following this paradigm
are called Ambient Oriented languages [?].

In the remainder of this chapter, the hardware characteristics of Ambient Intel-
ligent applications and some typical scenarios are given. Some strategies to deal
with the repercussions of these hardware characteristics on software development
are described and evaluated.

5

CHAPTER 2. AMBIENT INTELLIGENCE 6

2.1 Hardware characteristics
The following hardware characteristics of mobile networks increase significantly
the difficulty of writing distributed co-operative applications when these issues
are not addressed by the underlying programming model.

Connection Volatility Because of the limitations of wireless technology and the
fact that devices may move out of range of each other, disconnection and re-
connection may happen at any time in the mobile network. Because of this
connection volatility, collaborating devices cannot rely on stable network
connections and should allow to resume meaningful tasks when a connec-
tion is re-established or when a replacement service is discovered.

Ambient Resources Because of the dynamic nature of mobile networks, devices
have no explicit knowledge about available resources and the availability of
resources may depend on the location of the device. Hence, a mechanism
is needed to discover ambient resources as new devices offering services
dynamically join and leave the network.

Autonomous Devices Every device should be able to act as an autonomous com-
puting unit and should be able to recover when one of its communication
partners disconnects, such that the device does not remain blocked until that
communication partner returns. Devices should be able to collaborate with-
out requiring to be connected to infrastructure (servers) to either discover
other participants or to co-ordinate the interaction. The underlying network
layer should rely only on peer-to-peer connections.

Natural Concurrency To support autonomy, every device should have its own
thread and collaborate with other devices in a concurrent fashion. Sin-
gle threaded applications would freeze an entire network of devices if the
device that holds the running thread would disconnect. Communication
should happen asynchronously, as explicitly waiting for the result of a re-
quest undermines the autonomy of the device. Furthermore, asynchronous
communication allows more advanced execution schemes such as redun-
dantly request the same service to different devices in order to ensure better
performance, reliability or quality of service. It is necessary to orchestrate
the collaborations between naturally concurrent mobile devices.

2.2 Scenario: The Ambient Intelligent travel agency
At the online AmI travel agency, travellers can book a trip to a city of their choice.
Subsequently they give some of their favourite pastimes, for example art expo-

CHAPTER 2. AMBIENT INTELLIGENCE 7

sitions, theatre, sports or gastronomical events. However, no specific pastime is
planned, they choose concrete pastimes at the beginning of every day itself. When
they feel like doing something other than the preferences they had given out ear-
lier, that is possible too.
We follow Luc who just decided to book a city trip to Brussels. As soon as he
filled out all the forms on the website and the money transfer has been validated,
all the necessary certification and authentication authorities that he can use during
his visit are uploaded to his PDA.

When Luc arrives in Brussels, he immediately receives the necessary informa-
tion - including maps, lists of ongoing events, etc. - on his PDA from the tourist
office of Brussels. Given this information, Luc has to decide what events he is go-
ing to participate in and negotiate their price. For instance the price of guided tour
depends how many people are going to participate. As Luc is a beer enthusiast,
he selects a guided visit to some local breweries on his PDA. Since some slots are
still available, Luc is allowed to journal a reservation. He receives a price quote,
but since there may be more participants joining the guided visit, the price may
drop. He thinks the current price is too high and decides not to make a reservation
just yet, but he tells the tourist service that he wants to be instantly notified if the
price drops.

In the meantime, Luc decides to go to the hotel to drop off his luggage and
have lunch. Upon paying for the trip, his PDA automatically received a code that
he can currently use to open his hotel room. The code will expire at the end of the
trip. Having a quick lunch in the hotel, Luc is all but pleased with the quality of
the food at the hotel restaurant, and enters a negative comment on his PDA. His
comment will be uploaded to the customer review section of the travel agency, as
soon as his PDA is able to connect to the internet. Luc subsequently specifies that
he only wants to have his breakfast in the hotel, and that he will go out to lunch
for the rest of the trip. This automatically reduces the price he has to pay for his
stay at the hotel. Furthermore, restaurants in the neighbourhood that match the
traveller’s food preferences will send information to his PDA with a form to make
a reservation. Our traveller immediately makes a reservation for tonight’s dinner
in a restaurant that has received a lot of positive reviews from its visitors.

Luc is notified by a message on his PDA that the brewery visit he was inter-
ested in has dropped in price. However, if he does not hurry, he will not make it in
time. Knowing his location and the starting point of the activity, the PDA consults
the city guide and suggests that Luc should take a taxi, or he will be too late. Luc
agrees, and after a few minutes he receives a message from a taxi driver in the
neighbourhood that he is willing to take him to the meeting point for the guided

CHAPTER 2. AMBIENT INTELLIGENCE 8

tour for a certain price. Luc accepts the offer, and walks outside the hotel looking
for the taxi.

As the participants join the guide, the guide’s PDA detects their presence.
When all participants are there, the group takes off to the first brewery.

2.2.1 Evaluation
Here we will use the scenario given above to illustrate the hardware characteristics
of an ambient intelligent setting and their repercussions on the software describing
the ambient oriented applications.

Connection Volatility As Luc moves around with his PDA, no stable connec-
tion can be assumed. Still, Luc should be allowed to do meaningful work
even if a required network connection is not available. Upon Luc’s arrival,
Luc’s PDA should download all the necessary city information (maps, event
lists...) whenever a suitable connection is available. Later, Luc enters a neg-
ative review on his PDA concerning the food of the hotel, which will be
uploaded to the customer review section of the travel agency. The applica-
tion should be able to postpone this process until a connection to the internet
is available.

Ambient Resources When Luc is looking for a taxi to reach his destination in
time, his PDA automatically discovers a taxi driver in communication range.
Both devices have no explicit knowledge about their network addresses, but
are spontaneously discovered. Discovery should happen using high-level
information, because low-level information - such as network addresses -
may not be available or may change frequently in a mobile setting. In a
similar fashion, Luc’s PDA is aware of the other participants when he arrives
at the meeting point for the event.

Autonomous Devices Luc’s PDA is able to discover services offered by other
devices without assuming any infrastructure.

Natural Concurrency Multiple travellers can concurrently reserve a slot for an
event. The application should manage this concurrency to avoid that multi-
ple travellers are assigned in the same slot.

The situations presented in this scenario also illustrate the inherent collaboration
among different mobile devices in ambient intelligent applications. Luc’s PDA
collaborates with the tourist office service to negotiate a price for an event in which
Luc is willing to participate. The hotel applications are involved in a collaboration

CHAPTER 2. AMBIENT INTELLIGENCE 9

with the customer PDA’s. Given the situation, alternative actions may be required,
for example because Luc is not pleased with the hotel’s restaurant, his PDA looks
in collaboration with the devices present at the hotel for replacement services, in
this case restaurants in the neighbourhood.

2.3 Dealing with mobile network characteristics
To deal with mobile network hardware phenomena, time and space uncoupling is
needed. Space uncoupling means that the different agents in the mobile network
know each other through high-level information (such as names) instead of low-
level information (such as explicit hardware addresses). Time uncoupling means
that communication between devices is not necessarily the same as transmitting
data over the network. Space uncoupling allows programs to move from one de-
vice to another and time uncoupling allows devices to do meaningful work even
when connections are broken and to resume operations that required a connec-
tion that has been re-established. This section explains the two most often used
techniques to accomplish these goals, namely tuple spaces and actors.

2.3.1 Tuple spaces
Tuple spaces provide a means of communication among concurrent processes us-
ing shared data. A tuple space is a virtual shared memory of elementary data
structures - the tuples. Different sets of such tuples may reside on different pro-
cessors, but to the user the tuple space looks like one single global memory shared
between all processes. Tuples are the fundamental data structure of a tuple space
and are represented by lists of fields. Tuples are accessed by specifying its con-
tents, as will be exemplified in the next section. Tuple spaces provide interprocess
communication and synchronization which are logically independent of the un-
derlying computer or network.
Since tuples are anonymous chunks of data, their retrieval is based on pattern
matching on the tuple contents. A template is a possibly incomplete tuple whose
fields may contain ordinary values and logic variables. Such logic variables are
preceded by a question mark and act like placeholders for data to be retrieved.
They are matched against ordinary values when selecting a tuple from the tuple
space. The matching algorithm goes as follows: the matched tuple and the tem-
plate are checked to have the same arity. Ordinary values in the tuple must have
the same type, length and value as the corresponding values in the template. A
value in the tuple matches with a logic variable in the template if it has the same
type and length.

CHAPTER 2. AMBIENT INTELLIGENCE 10

Linda

Linda is a parallel programming library for conventional programming languages
that uses tuple spaces as a means of communication among concurrent processes
to allow a uncoupled style of computing. Linda’s shared tuple space is persistent,
globally accessible and statically created. Linda supports parallelism with a small
number of simple operations on a tuple space to create and coordinate parallel
processes
In Linda, each tuple is a list of typed parameters, that contain the actual informa-
tion being communicated, and can be accessed concurrently by several processes.
Tuples are represented by a list of up to 16 fields, separated by commas and en-
closed in parentheses, e.g.: ("arraydata", 13, 2).

out(t) generates a data (passive) tuple. Each field is evaluated and the resulting
tuple is put into the tuple space. Control is then returned to the invoking program.
From that point on, the tuple t is available for any subsequent operation on the
tuple space. The update of the tuple space is performed atomically, which means
that no operation can access the tuple space while it is being updated.
For example: out ("arraydata", dim1, dim2).

eval(t) generates a process (active) tuple. Control is immediately returned to
the invoking program. Logically, each field of t is evaluated concurrently by a
separate process and then t is placed into the tuple space.
For example: eval ("test", i, f(i)).

in(p) uses a template p to retrieve a tuple from the tuple space. If multiple
tuples match the template, the one returned by in is selected non-deterministically
and without being subject to any fairness constraint. If no matching tuple is found,
the process that executes the operation will block until a matching tuple is avail-
able. This provides synchronisation between processes. Once a matching tuple
is retrieved, it is taken out of the tuple space and is no longer available for other
retrievals.
For example both in ("arraydata", ?dim1, ?dim2, ?dim3)
and in ("arraydata", 4, ?dim2, ?dim3) match with
("arraydata", 4, 6, 6+2).

rd(p) proceeds identically to in(p), except for the fact that a copy of the tuple
that matched the template p is delivered to the process that executes the operation
instead of withdrawing the matching tuple from the tuple space. Similarly to the
in operation, rd is blocking.

CHAPTER 2. AMBIENT INTELLIGENCE 11

Communication in Linda is uncoupled in time and space. Uncoupling in time
refers to the fact that senders and receivers do not need to be able to communicate
directly with one another in order to exchange information. Tuples are stored in
the tuple space and can be retrieved later, even if the process that produced the
tuple has terminated its execution already. Uncoupling in space refers to the fact
that a tuple in the tuple space is available to the processes dispersed on the nodes
of a distributed system - the actual location of the tuple producer and consumer
are irrelevant.

Maintaining a tuple space persistent, globally accessible and statically created
as Linda assumes, is unfeasible in a mobile environment because connectivity
can no longer be taken for granted. Fault tolerance techniques addressing this
issue have been proposed [?] [?], but these replication-based techniques were de-
veloped under the assumption that disconnection is an exception, whereas in an
Ambient Intelligence context, disconnection is rather the rule. Furthermore, these
techniques rely on the locality of processes, which is not applicable in an Am-
bient Intelligent setting as processes may move from one device to another and
suspended tasks may be resumed by different processes on different devices.
The following middleware solutions are extensions to the Linda model which at-
tempt to deal with these issues and support the use of tuple spaces as a means of
communication in a mobile environment.

LIME: Linda in a Mobile Environment

LIME is middleware which attempts to relieve the programmer of being con-
cerned with the low-level mechanics of communication between mobile hosts
and agents. LIME extends the Linda model to function in a mobile environ-
ment by transparently altering the set of accessible tuples for a particular host
and all agents that reside on it in response to changes in the network topology (of
mobile hosts) [?]. The LIME model supports mobile agents (programs) which
can travel among mobile hosts (devices) through transiently shared tuple spaces,
which enable dynamic reconfiguration of their contents according to agent migra-
tion or connectivity variations. LIME relies on the concept of Transparent Context
Maintenance, which supports the shift from a fixed and reliable network to a dy-
namically changing one by breaking up the monolithical Linda tuple space into
various tuple spaces, each permanently associated to a mobile host or agent, and
by introducing rules for transient sharing of the individual tuple spaces based on
connectivity [?].

The tuple space that is permanently and exclusively attached to a mobile unit
(either it is a mobile agent moving in logical space, or a mobile host roaming the

CHAPTER 2. AMBIENT INTELLIGENCE 12

physical space) is called its interface tuple space. The ITS contains the tuples
that its unit has made available to other units. ITS’s are at all times co-located
with their mobile units and are transiently shared with the mobile units that are
currently in range. When a new mobile unit comes into range, tuples in the ITS of
the new unit are merged with the ones shared between the the other mobile units.
Such an engagement is performed as a single atomic operation. Disengagement
of interface tuple spaces belonging to mobile units moving out of range, results in
the atomic removal of data perceived by the remaining units through their ITS’s.
By default an agent may query tuples regardless of whether it resides in its lo-
cal tuple space, or in the so-called federated tuple space, the merged tuple space
of all connected agents. However, Linda operations can be supplied with tuple
location parameters to be able to explicitly address the tuple spaces representing
different agents. This leads to the problem of misplaced tuples. When a mobile
agent wanting to a insert a tuple in another agent’s tuple space explicitly by us-
ing a location parameter, there may be no connection between the two agents. In
this case, LIME places the tuple in the ITS of the agent exporting the tuple, and
ensures that whenever the connection becomes available, the misplaced tuple is
transferred from the ITS to the correct agent. Because of this, the location param-
eters consist of the current location of the tuple and the destination location, as a
tuple may be moved around until the right destination is found.

LIME also extends the basic Linda tuple space with the notion of a reaction.
Strong reactions of the form reactsTo(s,p), where s is a code fragment in the host
language and p a tuple template, execute a code fragment whenever a tuple match-
ing the given template is inserted in the tuple space. The tuple that matched the
template and triggered the reaction is not removed from the tuple space, because
multiple reactions may be registered on the arrival of that tuple. In a highly dy-
namic environment, the ability to respond to changes in the environment is often
crucial. However, since reactions are not executed by one particular agent, but
rather by the LIME middleware, some additional restrictions apply. Blocking op-
erations are not allowed in the reaction code, as they would block the processing
of all the reactions. The only statement that can trigger a reaction is the inser-
tion of a tuple in the tuple space. The same location parameters that were added
to the basic Linda operations can be used with reactions, but the current loca-
tion parameter is confined single host or agent. The reason for this restriction
is that the content of the federated tuple space depends on the content of the tu-
ple spaces belonging to physically distributed, remote agents. Thus, to maintain
atomicity and serialisation of reactions, a distributed transaction encompassing
several hosts for each tuple space operation on any ITS must be started, which
is unfeasible in a mobile environment where disconnection happens frequently.
LIME also provides weak reactions, of the form upon(s,p), which accept no lo-

CHAPTER 2. AMBIENT INTELLIGENCE 13

cation parameters and work on the whole federated tuple space. The execution of
the reaction code of a weak reaction does not happen atomically when a tuple is
detected that matches the template of the reaction. The reason is that this would
require starting a distributed transaction and suspending the execution of all the
connected agents, since the changes made by the weak reaction are applied to the
federated tuple space. These changes must be invisible to all connected agents
until the reaction code is finished executing if atomicity is required. Instead of
taking place immediately in an atomic fashion, weak reactions are guaranteed to
take place eventually after such condition, if connectivity is preserved.

These restrictions leave it up to the programmer to evaluate whether his appli-
cation will cause problems concerning atomicity and serialisation. For example,
if an out(t) operation is executed in the code of a reaction, t may match a template
specified by some other reaction and thus generate a potentially infinite reaction
loop. Furthermore, in a fully mobile setting, disconnection can take place at any
time; moving tuples from one ITS to another (e.g. because a tuple is misplaced)
may lead to distributed consistency problems and proper application level proto-
cols are needed to prevent tuple duplication or loss.

TOTA: Tuples On The Air

TOTA is a middleware infrastructure combining uncoupled communication with
adaptation to contextual information. TOTA uses tuples as a unified mechanism
to deal with both context representation and uncoupled interactions among dis-
tributed agents. Unlike in LIME, tuples are not attached to a specific node (or to a
specific data space) of the network. Instead, tuples are injected in the network and
can autonomously diffuse in the network accordingly to a specified rule. These
tuples can represent both information to be exchanged between agents as well as
more general contextual information on the distributed environment.

TOTA is composed of a peer-to-peer network of possibly mobile nodes, each
running a local version of the TOTA middleware. Each TOTA node holds ref-
erences to a limited set of neighbouring nodes. The structure of the network, as
determined by the neighbourhood relations, is automatically maintained and up-
dated by the nodes to reflect dynamic changes, due to mobility or failures. Each
node is capable of locally storing tuples and letting them diffuse through the net-
work. TOTA tuples are defined in terms of their contents and their propagation
rule. They are injected in the system from a particular node, and spread by hop-
ping to neighbouring nodes according to their propagation rule [?]. The contents
of a tuple are identical to Linda tuples. The propagation rule determines how the
tuple should be distributed and propagated in the network; the distance it should

CHAPTER 2. AMBIENT INTELLIGENCE 14

travel before suspending propagation, how it is affected by other tuples it encoun-
ters on the nodes it visits, etc. TOTA tuples are not merely distributed replicas:
the propagation rule can determine how the tuple’s contents change while it is
propagated. TOTA constantly monitors the network topology and the arrival of
new tuples. The middleware automatically propagates tuples as soon as appro-
priate conditions occur. For example when new nodes enter the network, TOTA
automatically checks the propagation rules of the already stored tuples and it may
propagate the tuples to the new nodes.

From the application components’ point of view, executing requests and inter-
acting with other agents basically reduces to injecting tuples, perceiving local tu-
ples, and acting accordingly to some application-specific policy [?]. TOTA nodes
have full access to the local tuple space, and can execute any Linda-like operation
on the local tuple space. In addition, TOTA uses a similar mechanism to LIME
reactions, such that components can be notified of locally occurring changes to
the tuple space (e.g. arrival of certain tuples). In TOTA all queries are to be repre-
sented as tuples, such that other components can react to the arrival of such tuple
and inject a reply tuple propagating towards the enquiring node.

Evaluation

Tuple space-based approaches provide a very high degree of time and space un-
coupling, but this high degree of uncoupling comes at a price. Structuring co-
operative activities between different agents in the network becomes much more
complex using tuple-based communication. For example, in much cases the or-
der in which tuples are processed is undefined unless the application programmer
explicitly introduces a numbering scheme and waits until all necessary tuples are
available, causing a possibly infinite wait unless timeouts are used. Moreover, a
tuple that may be interesting to an agent may be deleted by another agent (or tuple
in TOTA). In addition, if the application requires that some tuples are only to be
read or used by a defined set of agents, the programmer is responsible of coming
up with a mechanism that ensures that these tuples cannot be touched by other
agents, which requires impractical solutions such as sending authentication tuples
back and forth over the network. In short, tuple spaces provide no mechanism
for abstraction and information hiding and as a result no data protection against
arbitrary and improper operations.

CHAPTER 2. AMBIENT INTELLIGENCE 15

2.3.2 Concurrent and Distributed Object Oriented Program-
ming

By separating the specification from the implementation, object-oriented pro-
gramming provides the modularity necessary for programming in the large. Ob-
jects can be defined as entities which encapsulate data and operations into a single
computational unit. Object-orientation can be unified with concurrency, and such
object-oriented models of concurrent computation must specify how the processes
are conceived and how they interact with objects. Object oriented programming
builds on the concepts of objects by supporting patterns of reuse and modularity,
and concurrency abstracts away some of the details in an execution (namely the
ordering of instructions). Concurrency allows in a higher degree of uncoupling
of application components [?], because concurrent components do not wait for
replies unlike their sequential counterparts. Thus it seems natural to bring objects
and concurrency together in this distributed context.

There are different ways in which the object paradigm can be used in con-
current and distributed contexts, as described in [?]. The library approach ap-
plies object-oriented concepts, such as encapsulation and abstraction, and pos-
sibly also class and inheritance mechanisms, to structure concurrent and dis-
tributed systems through class libraries in a given object oriented methodology
and a given object-oriented programming language. Various components, such
as processes, synchronisation means, and name servers, are represented by vari-
ous object classes (services) with clear interfaces, increasing modularity. In this
approach, programming remains mostly sequential object oriented programming,
because the library is extended rather than the language. The library approach
helps in structuring concurrency and distribution concepts and mechanisms, but
keeps them disjoint from the objects structuring the application programs. The
programmer still faces at least two different major issues: programming with ob-
jects and managing concurrency and distribution of the program, also with objects
but not the same objects. For example, Java provides concurrency through the
Java.util.concurrent package, which provides a number of classes from
which objects can be created that represent concurrent components. There is no
clear distinction between ”regular” objects and objects dealing with concurrency
(such as monitors).
The integrative approach consists in unifying concurrent and distributed system
concepts with object oriented ones. For example, merging the notions of pro-
cess and object gives rise to the notion of an active object or actor, which will
be explained further (the actor model can also be realised using other approaches,
see [?] for a reflective one). Merging the notions of transaction and object invoca-
tion gives rise to the notion of atomic invocation. Integrating distribution can be

CHAPTER 2. AMBIENT INTELLIGENCE 16

done by considering objects as units of distribution. Objects are seen as entities
that may be distributed and replicated on several processors. The message passing
metaphor is seen as a transparent way of invoking either local or remote objects.
Implementing inheritance in this case becomes problematic, as remote code for
superclasses may become inaccessible, unless all class code is replicated to all
processors, which is unfeasible in an Ambient Intelligent context. A solution is to
replace the inheritance mechanism between classes by the concept of delegation
between objects, as described in [?] (see chapter ?? for an example). Intuitively,
an object that may not understand a message will then delegate it to another object
called its parent object. The parent will process the message in place of the initial
receiver, or it can also delegate it itself further to its own designated parent.
The reflective approach integrates protocol libraries within an object based pro-
gramming language. The idea is to separate the application program from the var-
ious aspects of its implementation and computation contexts (models of computa-
tion, communication, distribution, etc.), which are described in terms of metapro-
grams.
It should be noted that the library, integrative and reflective approaches are not in
conflict but are complementary. For example, the library and reflective approach
can both be used in an integrative implementation that supports metaprogramming
to implement higher level constructs.

2.3.3 The Actor Model
The actor model [?] can be used as a framework for concurrent object oriented
systems. A common approach to modelling objects is to view the behaviour of
objects as functions of incoming messages. This is the approach taken in the actor
model. Actors are self-contained, interactive, independent components of a com-
puting system that communicate by asynchronous message passing. This means
that the sender of the message does not wait for a response but resumes compu-
tation. In the base actor model, primitives are available to create actors from a
given behaviour, to send a message to an actor, and to replace the behaviour of an
actor with a new behaviour. Sending a message causes the message to be put in an
actor’s mailbox (message queue). The execution of a message may cause changes
to the behaviour of the actor.
When an actor sends a message (passing any number of values) to another ac-
tor, it is transparent to the sender whether the receiver is on the same device or a
different device [?]. The message must eventually be delivered after a finite but
arbitrary long delay, and when it is delivered, it is put in a mailbox. Guarantee
of delivery in a mobile setting means concretely that messages which are meant
to be delivered to a disconnected device, should be delivered whenever the device
is rediscovered in the network. The order in which subsequently sent messages

CHAPTER 2. AMBIENT INTELLIGENCE 17

are delivered is not specified [?]. The receiver executes sequentially the messages
in its mailbox in the order they arrive (such that no race conditions can occur).
Results of executed messages must be explicitly supplied to the customer actors
using asynchronous messages.

The basic actor model provides only a set of low level primitives to build
concurrent systems. Higher-level constructs are necessary both for raising the
granularity of description and for encapsulating faults. Examples are synchroni-
sation constructs, transactions, error recovery, etc. Futures are an example of such
a high level construct which diminish the complexity of returning results using
asynchronous message passing. A message send immediately returns a promise
for a future reply, without waiting for the actual completion of the invocation.
Only when the caller really needs the result (i.e. it is used in a primitive operation
such as an arithmetic operation or a print operation) is synchronisation with the
service provider required. Integration of futures into the invocation mechanism
has the effect that the strict synchronisation inherent to synchronous invocation is
replaced with synchronisation by need, also sometimes called wait by need.

Most concurrent object oriented languages that use the actor model represent
an actor or active object as a sequential process which responds to messages sent
to that object. Every active object may execute its actions concurrently. Actors
provide a more concise model of concurrency because their operations are encap-
sulated. There is no interleaving of operations inside a single actor, which means
that actors yield sequential semantics internally. This is in contrast with regular
concurrent programming where all the operations of processes are interleaved and
race conditions must be considered. The actor approach reduces significantly the
complexity of concurrent programming and clearly promotes modularity, which
can be enhanced by not permitting any shared variable between actors; instead,
communication is the primitive by which actors may affect each other [?].
Because actor messages are not anonymous, actors need explicit knowledge about
their communication partners. Whereas this avoids the issues mentioned in ??, it
implies that in an Ambient Intelligence context a separate mechanism is needed
to discover other actors (possibly residing on different devices) in the network.
A solution exists, and will be showed in chapter ?? when explaining an Ambient
Oriented programming language using actors.

2.4 Conclusion
In this chapter we described the Ambient Intelligence concept and its repercus-
sions on software development. To cope with these repercussions, two major

CHAPTER 2. AMBIENT INTELLIGENCE 18

approaches exist, namely the shared data approach using tuple space-based mid-
dleware and the message passing approach staying close to the well-known object-
oriented paradigm. Tuple spaces provide a very high degree of time and space un-
coupling, but provide no mechanism for abstraction and information hiding and
as a result no data protection against arbitrary and improper operations (such as
deleting tuples useful to other agents), leaving this burden on the programmer’s
shoulders. Asynchronous message passing among objects, as used in the actor
model, also provides adequate uncoupling, and in addition provides the data en-
capsulation associated with object orientation. In addition, the actor model also
provides a very concise model of concurrency where race conditions do not have
to be considered.

Chapter 3

Exception handling

Exception handling mechanisms are the de facto standard to deal with the occur-
rence of exceptional events in a program. Without exception handling facilities,
the programmer is required to explicitly test input as well as return values for ex-
ceptional values and change the control flow of the program accordingly; leading
to less readable and maintainable programs where the checking for exceptions and
recovery is mixed with the regular application logic. In Ambient Intelligent sys-
tems, where both distribution and concurrency are implicit, exception handling
is a welcome language feature, given the many things that can go wrong in a
collaboration of mobile devices (disconnections, failures, data inconsistency...).
This chapter further investigates exception handling techniques for passive object
systems (section ??) since most active exception handling systems (section ??)
generalise an underlying primitive passive exception handling system. Finally,
these techniques are evaluated from an Ambient Intelligence perspective.

3.1 Exception handling language capabilities
In this section the required capabilities of an exception handling system - as iden-
tified in [?] - are discussed.

3.1.1 Exception handling for signalling failures
Exceptions are mostly used to model erroneous circumstances. They always indi-
cate one of the following situations that should not be witnessed during a typical
execution of a program.

19

CHAPTER 3. EXCEPTION HANDLING 20

Range failures

Range failure occurs when an operation either finds it is unable to satisfy its output
assertions (i.e. its criterion for determining when it has produced a valid result),
or decides it may not ever be able to satisfy its output output assertion. To deal
with range failures the following capabilities are needed:

• The invoker needs the ability to abort the operation - termination is required.
Sometimes as a side-effect of terminating the operation it is necessary to
undo all effects of attempting the operation. In a message passing system
for example, all messages scheduled for sending but not yet transmitted may
need to be retracted.

• The ability to restart the operation, since this may be a reasonable response
in some circumstances. For example, a distributed service may fail. It may
be possible to try again the same operation using an alternative service.

• The ability to terminate the operation, returning partial results to the invoker,
perhaps together with additional information needed to make sense of the
results. In our example of the distributed service, the not properly working
service may propagate an exception to its customer with the location of an
alternative service encoded in the exception.

Domain failures

Domain failure occurs when the input data of an operation fails to pass certain tests
of acceptability. To deal with domain failures, the handler must be given enough
information about the failure so he can modify the data or supply replacement
data to satisfy the unsatisfied criterion. If the handler is unable to fix the problem
he must be permitted to terminate the operation, with or without undoing actions
taken before the exception was raised. The capability a handler may require to
deal with this type of failure is the ability to access the information provided from
within the operation.

3.1.2 Exception handling for abstraction
Exception handling mechanisms are not needed just to report errors. They are
needed, in general, as a means of conveniently interleaving actions belonging to
different levels of abstraction. For example, an addition overflow may be sig-
nalled, but as long as the bits of the result are interpreted appropriately by the
handler, the operation may resume. This is a cleaner way than using status vari-
ables or return codes. Another example where resuming is required, is when using

CHAPTER 3. EXCEPTION HANDLING 21

exceptions for monitoring purposes. An operation may raise exceptions to notify
the invoker of certain conditions that are not necessarily failure related.

3.2 Passive exception handling
We name an exception handling mechanism passive when it is only concerned
with local exceptional conditions in a sequential program, such as the try-catch
mechanism provided by many contemporary programming languages as a basic
language feature. We make the distinction with active exception handling, because
we will show in section ?? that in an Ambient Intelligent system passive exception
handling is not enough to signal and recover from exceptional situations. Passive
exception handling systems allow capturing and redirecting the control flow of
a program to a handler that will aid in diagnosing and resolving the exceptional
situation. The handler is determined either by static scope rules or by a dynamic
invocation chain. Most languages adopt the latter approach, because it increases
reusability since the invoker of an operation can possibly handle it in a context-
dependent manner. This usually involves traversing the runtime stack from the
point where the exception was thrown until a stack frame designating a handler or
guarded program unit is found. This process is called exception propagation.

3.2.1 Handler semantics
When a matching handler is found for the raised exception, different semantics
can be opted for.

Termination semantics

Control flow transfers from the point where the exception was thrown to a han-
dler, terminating intervening executions. Hence, the handler acts as an alternative
operation for the operation it protects (cfr. Java, C++, Ada...). In languages that
exclusively use this model, the stack frames between the raise and the handler/-
guarded unit can be discarded. This is called stack unwinding. The termination
model where handlers return a value to the invoker is sometimes referred to as the
replacement model.

Resumption semantics

Control flow transfers from the location where the exception was thrown to a
handler to correct the exceptional condition and then back to the throw point, so
there is no stack unwinding. This is similar to a routine call, with the difference

CHAPTER 3. EXCEPTION HANDLING 22

that the handler catching the exception is located dynamically.
A problem when employing resumption is recursive resuming, meaning that an
exception raised in the handler body may be caught again by handlers that are
conceptually ’higher’ up the execution stack when resuming, creating an infinite
loop. However, in [?] it is shown that this problem is easily solved by marking
all visited handlers when propagating, so they cannot be used again, preventing
recursive resuming.
Resumption semantics are very useful in any application in which recoverable
exceptions are raised, like interactive applications where users interact to recover
from an exceptional situation.
Note that a resuming handler may determine that control cannot return to the
throw point and unwind the stack (i.e. terminate the guarded invocation). One
mechanism to allow this capability is a language primitive that can be called in
the handler to trigger stack unwinding.

Retry semantics

In the retry model, after a handler is executed, the programming unit it guards is
restarted. Retry semantics can be simulated by using a loop in combination with
termination semantics.

3.2.2 Handling level
Program units of different granularity can be guarded by exception handlers. In
an object oriented language, a single expression, a block, an object or a class
may be guarded. Expression and block level handling offer more fine grained
control and are therefore widely used. With object or class level handling, an
object or class is associated with a set of handlers. On the object level, each
class instance has a different set, while handling on the class level implies that
each instance has the same set as specified in the class. Whenever an exception is
thrown inside the object, it is caught if there is a matching handler associated with
the object. The advantage is that on the object level, an object handles uniformly
all exceptions, and on the class, each instance handles all exceptions uniformly.
However, because of the fine grained nature of block level handling, it is more
flexible (for instance, different methods of the same object may handle the same
exception in a different way) and can mimic object level handling while increasing
the expressiveness substantially.

CHAPTER 3. EXCEPTION HANDLING 23

3.2.3 Exception hierarchy
An exception hierarchy is useful to organise exceptions similar to a class hierar-
chy in class-based object oriented languages. An exception can be derived from
another exception, just like deriving subclass from a class. Handlers for a par-
ent type then catch both a derived and parent exception. A programmer can then
choose to handle an exception at different degrees of specificity along the hierar-
chy. Typically, the more specific handlers are given first, which will catch some
subtypes of an exception. They are then complemented by more general ones
catching less specific exceptions. This allows future extensions of the exception
hierarchy. Hence, an exception hierarchy supports a more flexible programming
style.

3.2.4 Bound exceptions
Objects are the main components in an object oriented software design, and their
actions determine program behaviour. Hence, an exception situation is (usually)
the result of an object’s action, suggesting the object responsible for throwing an
exception may need to be taken into account while catching it [?]. For example,
a FileException may be thrown by different objects, each requiring different
corrective behaviour from a different handler. In one case it may be appropriate
to create a new empty file, while in another the user may be presented with a
dialogue asking him to select the right file. When matching based solely on the
exception’s type, there is no way to distinguish which object threw the exception.
With bound exceptions, it is possible to specify a handler that only catches excep-
tions thrown by a certain object (the exception is said to be bound to that object)
and apply corrective behaviour specific to that object.

When propagating the exception, it may be propagated outside the bound ob-
ject’s scope. This makes it intuitive to not only dynamically bind the exception
to the handler, but also to the object it propagates into, which actually becomes
responsible for the exception, as the propagating object could not handle it. This
will shift the binding from an object that does not catch an exception to the object
that invoked the operation on the object not catching the exception. This semantics
is not easy to encode manually if the language does not support it directly, since
it requires constantly updating the responsible object while searching the runtime
stack for an appropriate handler for the thrown exception. For an implementation
example see section ??.

CHAPTER 3. EXCEPTION HANDLING 24

3.2.5 Exceptions as First Class Objects
Representing exceptional events as classes and each of its concrete occurrences
as an exception instance in an object oriented language holds numerous advan-
tages [?]:

• Exception hierarchies are automatically mapped onto class hierarchies. Dif-
ferent classes denote different categories of exceptions.

• Class variables allow sharing information between different exception in-
stances.

• Signallers can communicate with handlers by passing to handlers the in-
stance of the signalled exception which holds in its instance variables all
the information about the exceptional situation.

• New user defined exceptions can be created as subclasses of existing ones
and are uniformly signalled and handled.

3.2.6 Disciplined exception handling
The fundamental principle behind disciplined exception handling is that a rou-
tine must either succeed or fail; either it fulfils its contract or it does not. In the
latter case an exception is always raised. This approach is used in the Eiffel lan-
guage [?] [?]. Contracts can be violated in several ways, all of which are consid-
ered faults and represented by exceptions. Operating environment problems, such
as running out of memory, are one situation in which exceptions are signalled. In
these cases a contract can fail, but not necessarily because the caller or the callee
did something wrong.
In Eiffel, contract violations fall into two categories. In the first category, precon-
ditions of a method are not met, for which the caller is held responsible. In this
case, an exception is signalled in the caller. The second category is where method
post-conditions or loop invariants are not met. In this case, the callee is held re-
sponsible and an exception is signalled locally.
A handler is attached to a method as a rescue clause, which can re-execute the
method using a retry statement after it has restored the object to a consistent state
and possibly patched things up. Alternatively, the rescue clause can also act as
an alternative body for the method. If handling the exception is not possible or
results in a failure, the rescue clause in its turn signals a failure and propagates an
exception.

CHAPTER 3. EXCEPTION HANDLING 25

3.3 Ambient Oriented Exception Handling
Exception handling in ambient oriented systems yields new challenges, such as
dealing with asynchronous communication, connection volatility, software migra-
tion, etc. Classic exception handling systems are not designed to deal with these
phenomena and fall short in providing adequate support. New language abstrac-
tions for exception handling are needed to ease the development of applications
which are based on spontaneous interactions between different mobile devices.

3.3.1 Ambient Oriented Exception Handling Criteria
Asynchronous Exception Propagation

When an exception is thrown, a handler is searched for in a dynamically defined
context. Typically, such a context is defined by means of a try-catch construct,
where the try block describes the context for which the handlers may handle ex-
ceptions.
In an ambient oriented setting, the try-catch construct is not applicable due to
the use of non-blocking communication primitives for the reasons discussed in
??. As a result, the calling process may have left the context of its try block be-
fore the exception was propagated by the invoked process. Therefore, an ambient
oriented exception handling system should provide an adequate mechanism for
ensuring that exceptions raised by concurrent processes are caught in the correct
context [?].

Concerted Exceptions

The combination of non-blocking communication primitives with block level han-
dling implies that all processes invoked by the block may concurrently raise ex-
ceptions, as the executions of the asynchronous messages happen concurrently.
These exceptions may or may not be related, but in many cases should be han-
dled jointly. An ambient oriented exception handling mechanism should there-
fore allow the programmer to examine all concurrently raised exceptions and to
subsequently propagate a concerted exception which best captures the particular
exceptional situation.

Collaborative Exception Handling

Ambient oriented programs are conceived as a collaboration of processes which
should be able to continue working in the face of volatile connections. Therefore,
the individual processes typically make optimistic assumptions while performing
their tasks. Once an exception raised by one process violates these assumptions,

CHAPTER 3. EXCEPTION HANDLING 26

not only the user of the computation, but also the other processes involved need
to be informed of the exception so as to enable a co-ordinated recovery.

Loosely Coupled Exception Handling

An ambient oriented exception handling system should guarantee the autonomy
of the processes for which it handles exceptions. This implies that it may not rely
on a centralised node to co-ordinate exception handling. Furthermore, it needs to
provide a mechanism to discover long-lasting disconnections, in order to prevent
processes from waiting indefinitely for an unreachable communication partner.

3.3.2 Message level handling
As discussed earlier, two approaches exist to support non-blocking process com-
munication: the asynchronous message passing approach and the shared data ap-
proach, represented using tuples in a shared distributed tuple space. This is the
finest level of granularity at which a distributed exception handling mechanism
can operate.

Asynchronous Messages

The occurrence of an exception can be propagated among processes that commu-
nicate by message passing as a special call-back message. In ABCL/1 - a con-
current object oriented language based on the active object concept - a message
has both a reply destination and a complaint destination [?]. The reply destination
indicates the object to which the receiver should send his reply message. If the re-
ceiving object encounters an exception it cannot handle itself during the execution
of the message, it sends an exception message to the complaint address included
in the message. The object designated by the complaint address may in its turn
handle the exception or propagate it to another object.
As discussed earlier, futures or promises provide a way of handling results and
exceptions produced by asynchronous invocations. The E language uses futures
to provide synchronisation-by-need when using asynchronous messages sends.
Asynchronous invocations in E return a placeholder object (the future) which will
be dynamically resolved to the real return value of the invocation whenever that
becomes available. When the execution of a message results in an uncaught ex-
ception, the future will resolve to the raised exception that will be reraised in the
caller. The promise is said to be broken, and messages sent to that promise are
said to be contaminated. This is called broken promise contagion [?].
To enable the use of results and the handling of exceptions resulting from asyn-
chronous invocations, E provides the when-catch expression. A when-catch ex-

CHAPTER 3. EXCEPTION HANDLING 27

pression takes a future, a when block to execute if the future resolves to a value,
and a catch block to execute if the promise is broken. By using a when-catch con-
struct, a process can postpone the execution of a block of code until it has gathered
enough information from another process. This synchronisation-by-need between
caller and callee implies that exceptions are automatically propagated into the cor-
rect scope. Consider the example of a stack that executes requests asynchronously
and returns a future for each request. When one of its clients requests popping the
stack, it immediately returns a future that may be resolved to an exception - instead
of the top of the stack - if the stack is empty. With the when-catch construct, it is
possible to observe that future until it is resolved to either the top of the stack or
an EmptyStackException, and then execute the appropriate code. The client
may have been doing other work while waiting for the future to be resolved, but
when it resolves to an exception, the exception will still be handled in the context
were the client needed the top of stack. Client and stack are synchronised-by-need
when the future is resolved.

Tuple Spaces

When independent agents communicate by exchanging tuples in a tuple space,
exception handling mechanisms protect tuples emitted by agents. When repre-
senting exceptions as ordinary tuples, one cannot rely on the eventual handling
of the exception should the tuple never be read. Therefore, the CAMA system
proposed in [?] is based on LIME and introduces an additional mechanism for
redirecting exceptions to a remote host and handling it by a different agent or
by a special handler code left by the agent before migrating. Redirection means
implicitly sending and re-raising the exception in a different location. The excep-
tion may pass through several locations before it reaches the agent, which makes
it necessary to employ some mechanism to preclude loops and excessively long
travel paths. Handling delegation can be used if there is a friendly agent that can
perform exception handling when the original agent is not present in the location.
Such a friendly agent may be just a spawned version of the original agent that
handles exceptions or a dedicated stationary agent that handles exceptions for a
whole class of mobile agents. CAMA knows the originator of each tuple to pre-
vent tuples representing exceptions to be read accidentally.
To be able to find a handler by routing exceptions to the handling agent, agent-
specific information is needed to compute that route. CAMA therefore requires
every tuple to be equipped with a reference to a special tuple called a tuple space
trap to which exceptions are signalled. Such a tuple space trap has enough infor-
mation to be able to transform the exception and find a route to propagate it to the
”caller”, a dedicated handler agent or an ensemble of (affected) agents. Agents in-
terested in handling tuple space exceptions can produce these tuples. Tuple space

CHAPTER 3. EXCEPTION HANDLING 28

traps can be updated or removed at any time thus enabling dynamic exception
handling patterns.

To be able to build such a system and remaining reliable and predictable, the
federated tuple spaces used in LIME are replaced by an approach that is based
on a stationary and persistent tuple space. This is a major drawback, because it
implicitly assumes infrastructure. An assumption which is not supported by the
ambient oriented model.

Evaluation

Message level approaches can be used as a basis to develop an ambient ori-
ented exception handling system, but they lack support for funnelling concur-
rently raised exceptions to a single concerted exception, since they consider only
one message send and thus one exception at a time.

3.3.3 Block level handling
Various distributed exception handling mechanisms offer a variation to the well-
known try-catch construct, to bind a single exception handler to a sequence of
instructions possibly containing asynchronous message sends. Because of the
asynchronous message passing, different exceptions may be raised concurrently
in one block. Different mechanisms exist to reduce these concurrent exceptions
to a single concerted exception.

ProActive

ProActive [?] is a Java library for parallel, distributed, and concurrent computing,
also featuring mobility and security in a uniform framework. ProActive makes
use of active objects communicating through asynchronous message sends, which
return futures. ProActive attempts to make asynchrony and concurrency trans-
parent by extending the Java exception handling system with support for futures.
Therefore, concurrently raised exceptions need to be resolved automatically to a
single exception which will be handled by the specified catch block. As a con-
sequence, ProActive only handles the first exception to be raised inside the try
block, assuming that all asynchronous invocations are closely related such that
the first exception is a good representative of the exceptional situation. ProActive
reimplements an exception stack, side by side with Java’s original. Unfortunately,
because of lack of reification of the call stack in Java, the programmer is sup-
posed to manually ensure consistency between the two stacks by calling dedicated
ProActive methods.

CHAPTER 3. EXCEPTION HANDLING 29

SaGE

SaGE [?] is an exception handling mechanism for multi-agent systems that maps
a list of concurrently raised exceptions to a single concerted exception using a
resolution function. Resolution of concurrent exceptions is based on the use of a
concert method, which is to be implemented by a service which is co-ordinating
a collaboration of independent agents. The concert method is invoked whenever
an exception is raised. Based on a log containing previously thrown exceptions,
the method may opt to ignore the exception, add it to the log, or propagate an
exception (possibly a newly created one) to its caller.

Arche

Arche [?] is a distributed and concurrent object oriented programming language
where each object has its own process. Arche allows grouping such active ob-
jects into aggregates which permit the parallel invocation of a so-called multi-
operation. Although objects normally communicate synchronously, the introduc-
tion of multi-operations may lead to concurrently raised exceptions by different
aggregated objects. In Arche, each object remains blocked until its call returns
or the exception which is raised during the call is handled. When using a multi-
operation, a concerted exception is computed from the concurrently raised excep-
tions by means of a resolution function specified by the programmer. The compu-
tation of a concerted exception may not be defined implicitly because it requires
semantic knowledge about exceptions [?]. However, when no resolution function
is supplied, a default concerted exception is raised. A default concerted exception
is computed as follows:

• When at least two different exceptions are raised concurrently, a default
failure exception is raised.

• When all concurrently raised exceptions are the same, this exception is
raised.

The difference with the SaGE approach is that by blocking until all calls have
returned, the concerted exceptions cannot be raised prematurely, thus giving the
resolution function information which is guaranteed to be complete.

DOOCE

DOOCE (Distributed Object Oriented Computing Environment) [?] is an exten-
sion to C++ that aims to integrate distribution transparently in an object oriented

CHAPTER 3. EXCEPTION HANDLING 30

environment. To achieve this, DOOCE relies on the active object and asyn-
chronous message passing paradigm and uses futures to provide synchronisation-
by-need.
DOOCE introduces two language constructs to manage concurrency. First of all,
the par construct delimits a block of statements wherein messages are sent con-
currently. After replies of all these messages are received, the code next to the par
block is executed. Additionally, messages can be annotated with an async quali-
fier. If the message passing statement qualified by an async qualifier is executed,
it returns a future and the code next to it is executed immediately without waiting
for its actual reply. If the caller accesses the future while the requested result has
not been received yet, caller and callee are synchronised by blocking the caller
until the result is available.
DOOCE provides programmers with the flexibility of either handling each concur-
rently raised exception in a block individually or grouping all exceptions together
and handling them as a single exception. To this end, when exceptions are raised
concurrently, each exception may be handled independently by a catch block,
such that multiple of these blocks may be executed as each one catches one of the
raised exceptions.
DOOCE extends the C++ try-catch construct with catch statements that take
multiple exceptions as argument. The catch block will only be executed if all
exceptions have been raised concurrently during the execution of the try block
it guards. Therefore, catch statements that catch multiple exceptions should be
defined earlier than the catch statements that take a single exception, else those
may consume certain combinations of exceptions, which as a result would never
be caught by the catch blocks tailored for the exceptional situation that the raised
exceptions collectively describe.

Evaluation

The DOOCE approach is clearly more flexible as it does not force the programmer
to map a number of concurrent exceptions onto a single concerted one. For exam-
ple, different catch blocks may be used for case analysis, rethrowing the caught
exception. However, resolution functions do provide a intuitive way of mapping
concurrently raised exceptions onto a single concerted exception, but this can be
implemented as a higher level construct based on a handler that catches multiple
exceptions.
Despite their provisions for producing concerted exceptions, these mechanisms
do not qualify as an ambient oriented exception handling mechanism, since they
require the concerted exception to be handled solely by the sender of the message,
offering no collaborative exception handling. This implies that the techniques de-
scribed above are only applicable when the different processes make no optimistic

CHAPTER 3. EXCEPTION HANDLING 31

assumptions, which are often required in an ambient oriented setting to deal with
volatile connections.

3.3.4 Collaboration level handling
Some libraries or middleware allow structuring an application as a complex in-
terplay of different processes. In addition to the mechanisms they provide for
structuring such interactions, they also provide mechanisms for handling excep-
tions that may be raised concurrently by those processes.

Open Multi-threaded Transactions

OMT transactions [?] structure a group of collaborating threads within the bound-
aries of a transaction. The OMT model allows threads to join an ongoing transac-
tion at any time and to be forked and to terminate inside a transaction. There are
only two rules that restrict thread behaviour: a thread created outside a transaction
cannot terminate inside the transaction, and a thread created inside a transaction
must also terminate inside the transaction. The threads participating in the same
transaction communicate using shared objects (called transactional objects) that
maintain their own consistency, using conventional techniques such as mutual ex-
clusion.
OMT transactions can be nested. A participant of an OMT transaction can start a
new (nested) transaction. Sibling transactions populated by different participants
execute concurrently. That is to say, a thread can only participate in one sibling
transaction at a time. To join a nested transaction, a thread must be a participant
of the parent transaction. Any participant of a transaction can decide to close it at
any time. Once the transaction is closed, no new participants can join the transac-
tion. Accesses to transactional objects by participants are isolated from accesses
by other transactions, even when the transactions are in a parent-child relation.
All transaction participants finish their work inside the transaction by voting on
the transaction outcome. Possible votes are commit and abort. The transaction
commits if and only if all participants commit. In this case, the changes made to
transactional objects on behalf of the transaction are made visible to the outside
world. If any of the participants wishes to abort, the transaction aborts. In that
case, all changes made to transactional objects on behalf of the transaction are
undone. Joined participants are not allowed to leave the transaction, i.e. they are
blocked until the outcome of the transaction has been determined. This means that
all joined participants of a committing transaction exit synchronously. If a partic-
ipating thread ”disappears” from a transaction without voting on its outcome, the
transaction is aborted.
When a participating thread raises an exception and does not handle it, it is propa-

CHAPTER 3. EXCEPTION HANDLING 32

gated to the OMT transaction. This exceptions is immediately transformed into a
Transaction Abort exception that is raised in all the participants that voted
commit, and is also propagated to the parent transaction, if any. The OMT trans-
action itself is aborted. This implies that OMT transactions do not support collab-
orative exception handling among the different participants.

Co-ordinated Atomic Actions

An atomic action or conversation encloses an interactive activity of a group of
processes such that there are no interactions between that group and the rest of the
system for the duration of the activity, as such preventing erroneous information
from spreading throughout the whole system. By excluding the rest of the sys-
tem from the interaction and possibly raised exceptions, atomic actions provide a
means of encapsulating interactions such that their effects are not witnessed until
they succeed or fail. When an exception is raised that cannot be handled locally,
it will be propagated to all processes participating in the conversation.
An extension to this model are co-ordinated atomic actions. A co-ordinated atomic
action (CAA) is designed as a stylised multi-entry unit with action roles for the
different participants co-operating within the CAA. Logically, the action starts
synchronously when all action roles have been activated and finishes when all of
them reach the action end. The action can be completed either when no error
has been detected, or after successful recovery, or when a failure exception has
been propagated to the containing action. If an error is detected all participants
are involved in recovery [?]. When several exceptions are concurrently raised
in an action, they are resolved using either resolution trees/graphs or resolution
functions (see section ?? for possible approaches), and a resolved exception is
propagated to all action participants, which will be jointly responsible for recov-
ering the system co-operatively. This means that interacting processes co-operate
not only when they execute the normal program behaviour but also when they re-
cover the program [?].
External (transactional) objects can be used concurrently by several CAA’s pro-
vided that they offer a way to ensure that information cannot be smuggled among
them and that any sequence of operations on these objects bracketed by the CAA
start and completion has the ACID1 properties with respect to other sequences. A
CAA execution behaves like an atomic transaction to the outside world. A par-
ticipating process can only leave the interaction when all of the participants have
finished their roles and the external objects are in a consistent state. This is needed
to guarantee that if something goes wrong in the activity executed by one of the
participants, then all participants can try to recover from possible faults [?].

1Atomicity, Consistency, Isolation and Durability

CHAPTER 3. EXCEPTION HANDLING 33

The CAA concept allows designers to associate exception handling with modu-
larised interactions between different processes.
When a CAA is not able to tolerate an error, a failure exception is propagated
to the containing action passing the responsibility for recovery to the higher sys-
tem level and leaving the objects involved in the action execution in well-defined
states, thus facilitating the recovery at the higher level [?]. However, the CAA
model requires every participant to exit the CAA with the same result. This im-
plies that once a participant disconnects, the entire collaboration must be aborted,
which is too rigid for structuring collaborations in an ambient oriented system.
Still, a relaxed adaptation of the CAA abstraction may prove to be useful.

The Guardian Model

The Guardian exception handling model [?] [?] uses a distributed global handler
(the guardian) to orchestrate the exception handling action by directing each in-
volved process to the correct local handler. The directing is done by raising in each
process the appropriate exception, which may differ from the exception raised in
another process. The global handler uses application defined recovery rules to
determine which exception it raises in each participant, which in turn causes the
correct exception handler to be invoked.
The Guardian model allows associating a symbolic name to an exception context.
The context of a distributed application is the union of all individual participant
contexts. The purpose of contexts is to provide a mechanism to invoke correct
exception handlers. When an exception is raised in a process, a target context is
specified in the exception object, since the raising context and the target context
may not be the same. Contexts provide a means to give a dynamic meaning to an
exception based on the current program flow, and are used to ensure that there is
a handler for an exception or that all processes have a common execution region
they can be rolled back to. For each process, a context stack is maintained and
each context has an associated list with exceptions it can handle. Participating
processes are responsible for pushing and popping the right context on the stack,
to allow the correct handlers (defined in the participants’ program code) to be in-
voked should the participant encounter an exception.
At each suspend point (state where the processes may be suspended) of the ex-
ecution, the guardian checks whether one or more participants encountered an
unhandled exception (processes raising an exception are immediately blocked).
If this is the case, the guardian blocks all participants at this point to ensure that
all concurrently signalled exceptions are known to the guardian. The guardian
evaluates the recovery rules given the exceptions signalled, and all context lists.
A matching rule defines, for each participant, the target context and exception to
raise in that participant. The exceptions defined by the recovery rules are collec-

CHAPTER 3. EXCEPTION HANDLING 34

tively raised in their respective participants. The recovery rules may map a single
signalled exception into another kind of derived exception for each participant or
alter the context to adequately handle the exception. After the exception is raised
locally, exception handlers are searched in the participant using the participant’s
runtime environment. The guardian compares the exception’s target context with
the encountered handler’s context. If both match, the exception is handled, else
another handler is looked for.
To the Guardian, participants are identified using their context lists. An identifier
represents a subset of participants whose current context list matches the specified
identifier. A fully qualified identifier includes the entire context list as the iden-
tifier, while a partially qualified identifier is expressed as a regular expression of
context names. Using a partially qualified identifier allows greater flexibility in
identifying a subset of participants.
Since each participating process may change its context independently, the Guardian
model needs to contact all processes whenever exceptions are raised. To be able
to do this, the Guardian model assumes total-order reliable group communication
primitives and a timed asynchronous model. This requirement implies that the
exception handling mechanism depends on the presence of all processes, which
may not be possible in systems relying on loosely coupled exception handling.

Evaluation

OMT transactions try to minimise the effect of a single exception, so that it may
always be handled locally. This provides no collaborative exception handling.
Co-ordinated atomic actions implement transaction-like guarantees to ensure that
the effect of errors can be adequately handled collaboratively by its participants.
CAA semantics are too rigid for ambient oriented applications, but a relaxed ver-
sion of the CAA model may be useful. The Guardian model does not impose
the use of a transaction-like system. The Guardian model makes the notion of an
exception context explicit, and recovery rules bring participating processes back
into a certain explicitly specified context to handle the exception in collabora-
tion with the other participants, who may be in a different context and handle a
different exception. This is in contrast with co-ordinated atomic actions, where
exception contexts are implicitly created by entering a new CAA, with its associ-
ated exception handlers and exception resolution mechanisms. This implies that
all exceptions raised within a CAA are automatically handled in the right context.
The lack of such an imposed structure makes the Guardian model impractical in
an ambient oriented setting. The added flexibility of the Guardian model provided
by the ability to raise different concerted exceptions in different participants is
not really needed when using a transaction-like construct. For instance, in the
CAA model the same concerted exception is raised in each process. This is no

CHAPTER 3. EXCEPTION HANDLING 35

problem as the concerted exception reflects well the current exceptional situation
described by the concurrently raised exceptions, since they all belong to the same
CAA context.

3.4 Conclusion
We have given an overview of current practice in passive and active exception
handling and have evaluated the different approaches from an ambient oriented
point of view. Ambient oriented exception handling requires:

• Exceptions to be propagated between different asynchronously executing
processes which must be able to handle them in the right context.

• Concurrently raised exceptions to be aggregated so they can be collectively
handled or concerted to a single exception.

• Different collaborating processes to be informed of exceptions raised in
their collaboration partners to enable collaborative exception handling.

• A loosely coupled exception handling mechanism that guarantees the au-
tonomy of the process for which it handles exceptions by not relying on a
centralised node and by discovering long-lasting disconnections.

In an asynchronous message passing system, futures seem to be a satisfying syn-
chronisation mechanism which also allows exceptions to be propagated among
asynchronous processes. An E-like when-catch construct allows futures to be
entirely non-blocking and allows capturing the right context for handling both re-
sults of asynchronous messages and exceptions.
The DOOCE approach of catching multiple concurrently raised exceptions in a
block provides a flexible way of creating a context where exceptions may be raised
concurrently and handled collectively or mapped to a single concerted exception
that reflects the exceptional situation.
A relaxed version of the co-ordinated atomic action model may prove to be useful
as exceptions are isolated in an implicitly created context in which they can be
collaboratively handled by the participating processes in the action.

Chapter 4

AmbientTalk

AmbientTalk [?] was conceived as a reflectively extensible ambient oriented lan-
guage kernel. AmbientTalk’s design is directly based on the analysis of the hard-
ware phenomena mentioned in ?? and features a number of fundamental semantic
building blocks designed to deal with these hardware phenomena. AmbientTalk
is used as a language laboratory that allows investigating which language features
are essential to the ambient oriented programming paradigm. In this chapter, the
AmbientTalk language is discussed and additional focus is laid upon its passive
and active exception handling systems.

4.1 Ambient Oriented Programming
The ambient oriented programming paradigm presents a way of dealing with the
hardware characteristics of ambient oriented applications mentioned in section ??
by mapping them onto language features of a concurrent object-oriented language.
In this section, the language design characteristics that discriminate the ambi-
ent oriented programming paradigm from classic concurrent distributed object-
oriented programming languages are presented.

4.1.1 Classless Object Models
When sending a remote message, the objects passed as arguments are copied to
the receiving host. Since an object in a class-based programming language cannot
exist without its class, the classes of the copied objects have to be copied and sent
over the network as well. However, a class is - by definition - an entity that is con-
ceptually shared by all its instances. From a conceptual point of view there is only
one single version of the class on the network, containing the shared class vari-
ables and method implementations. The copying of classes as a consequence of

36

CHAPTER 4. AMBIENTTALK 37

argument passing, combined with the ability to update class variables and methods
yields a classic distributed state consistency problem among replicated classes.
To avoid such problems caused by implicit sharing relations at the language level,
ambient oriented programming languages make all sharing relationships explicit
such that they can be controlled by the programmer. This design decision yields
a prototype-based language, where objects are conceptually entirely idiosyncratic
such that the above problems do not arise. For these reasons, it has been decided
to select prototype-based object models for ambient oriented programming. No-
tice that this confirms the design of existing distributed programming languages
such as Emerald, Obliq, dSelf and E which are all classless.

4.1.2 Non-Blocking Communication Primitives
Recall from section ?? that the autonomy of mobile devices is of paramount
importance in the context of Ambient Intelligence. Upholding this autonomy
may prove to be very difficult when the devices communicate using synchronous,
blocking communication. Not only does blocking communication give rise to
potential distributed deadlocks (which are extremely hard to resolve in mobile
networks since not all parties are necessarily available for communication), but it
also induces a strong dependency from the caller to the callee. The former may
remain blocked indefinitely when the volatile connection with its communication
partner is broken. Therefore, an ambient oriented programming language should
not allow its objects to explicitly wait for (the result of) a call from another object.

4.1.3 Reified Communication Traces
When asynchronously communicating devices are collaborating autonomously,
they may end up in an inconsistent state. Devices need to be able to restore their
state to a previous consistent state they were in, such that they can synchronise
anew based on that final consistent state. To allow this, an ambient oriented pro-
gramming language has to reify the communication traces that led to the incon-
sistent state. Having such an explicit reified representation of whatever commu-
nication happened while both parties could not synchronize, allows a device to
properly recover from an inconsistency by reversing (part of) its computation.
Reified communication traces are also useful to be able to implement different
message delivery policies. For example, in the actor model, eventual delivery of
messages is guaranteed. In this case, this concretely means that a copy of the sent
message should be kept at the sender until it is acknowledged that the message
reached its destination. In fact, it may be required to resend the message in case it
is lost or to postpone the sending until the receiver is available.

CHAPTER 4. AMBIENTTALK 38

4.1.4 Ambient Acquaintance Management
Mobile devices should not need an explicit reference or network address to each
other or other ambient resources beforehand (whether directly or indirectly through
a server) to be able to communicate. Instead, they have to dynamically discover
each other in the network while roaming the environment. For this discovery, and
to interact with each other, mobile devices should not rely on a third party (as
opposed to client-server architectures), because this undermines their autonomy.
It may be possible to set up a server for the purposes of a particular application.
However, an ambient oriented programming language should allow an object to
spontaneously get acquainted with a previously unknown object based on an in-
tentional description of that object rather than via a fixed URL. Incorporating such
an acquaintance discovery mechanism, along with a mechanism to detect and deal
with the loss of acquaintances, should therefore be part of an ambient oriented
programming language.

4.2 The AmbientTalk Language
AmbientTalk is conceived as a proof by construction that languages can be con-
ceived which abide the four characteristics described above. This section de-
scribes the language, shows its usage and identifies how it fulfills the require-
ments outlined in the previous section. Finally, the reflective capabilities used in
the remainder of this dissertation are detailed.

4.2.1 Object Model
AmbientTalk has a concurrent object model that is based on the ABCL actor
model [?]. AmbientTalk actors consist of a perpetually running thread, updateable
state, methods and a message queue. These concurrently running actors communi-
cate by asynchronous message passing. Upon reception, messages are scheduled
in the actor’s message queue and are processed one by one by the actor’s thread.
By excluding simultaneous message processing, race conditions on the updateable
state are avoided. This way, AmbientTalk unifies imperative object-oriented pro-
gramming and concurrent programming using the integrative approach (see ??)
without suffering from omnipresent race conditions.
AmbientTalk’s object model is double-layered: it distinguishes between active
and passive (i.e. ordinary) objects. This allows programmers to deal with concur-
rency only when strictly necessary (i.e. when considering semantically concur-
rent and/or distributed tasks) and avoids having every single object to be equipped
with heavyweight concurrency machinery and having every single message to be

CHAPTER 4. AMBIENTTALK 39

thought of as a concurrent one. Since passive objects are not equipped with an
execution thread, the current thread runs from the sender into the receiver, thereby
implementing synchronous message passing. However, it is important to ensure
that a passive object is never shared by two different active ones because this eas-
ily leads to race conditions. To avoid this, every passive object is contained within
exactly one active object. Therefore, a passive object is never shared by two active
ones. The only thread that can enter the passive object is the thread of its active
container. In order not to violate this containment principle, passive objects that
are passed as arguments to an asynchronous message sent to an active object are
always passed by copy. This means that the passive object is deep-copied up to
the level of references to active objects. Active objects process messages one by
one and can therefore be safely shared by two different active objects. Hence, they
are passed by reference.
Active objects are defined to be AmbientTalk’s unit of distribution and are the only
ones allowed to be referred to across device boundaries. Therefore, AmbientTalk
applications are conceived as suites of active objects deployed on autonomous
devices. Several active objects can run on a device and every active object con-
tains a graph of passive objects. Objects in this graph can refer to active objects
that may reside on any device. In other words, AmbientTalks remote object refer-
ences are always references to active objects. The rationale of this design is that
synchronous messages (as sent to passive objects) cannot be reconciled with the
non-blocking communication characteristic presented in ??.

4.2.2 Passive Object Layer
AmbientTalk passive objects are conceived as collections of slots mapping names
to objects and/or methods. The code below shows an implementation for stacks
in AmbientTalk:

makeStack()::object({
els: makeVector(10);
top: 0;
isEmpty()::{ size=0 };
isFull()::{ size=top };
push(item)::{
if(this().isFull(),
{ error("Stack Overflow") },
{ top:=top+1;
els.set(top,item) })

};
pop()::{
if(this().isEmpty(),
{ error("Stack Underflow") },
{ val: els.get(top);

CHAPTER 4. AMBIENTTALK 40

top:=top-1;
val })

}
})

AmbientTalk is a prototype-based language, this implies that objects have no as-
sociated class [?], but are cloned or extended from an existing prototype. Objects
are created using the object(...) primitive. It creates an object by execut-
ing its argument expression, typically a block of code (delimited by curly braces)
containing a number of slot declarations. Objects have a private mutable part (de-
fined with the :-operator), a public constant part (defined with the ::-operator)
and a single parent pointer allowing for single inheritance. The constants are
shared between cloned objects. When cloning an object, its private variables
will be deep-copied and the constants will be shallow-copied. This means that
candidates for sharing (typically methods) should be declared constant, whereas
object-specific data (i.e. instance variables) should be defined as variables. Both
method invocation and public slot selection use the classic dot notation. The func-
tion makeStack() is referred to as a constructor function and is AmbientTalk’s
idiom to replace the object instantiation role of classes.
Objects can also be created by extending existing ones. The code below extends
the stack object with a push method that automatically increases the stack size to
prevent overflow:

makeSafeStack()::extend(makeStack(), {
push(item)::{
if(this().isFull(),
{ els.makebigger() });

super().push(item)
}

})

extend(p,...) creates an object whose parent is p and whose additional slots
are listed in a block of code, analogous to the object(...) form. Slot lookup
follows the delegation semantics as prescribed by Lieberman [?]. If a slot match-
ing the requested selector is not found in the receiver, lookup is delegated to the
parent. The receiver (e.g. the result of this) still points to the initial receiver of
the message.

Apart from objects, AmbientTalk features built-in numbers, strings, a null
value void and functions. However, these ’functions’ are actually nothing but
methods in AmbientTalk. For example, the makeStack constructor function is
actually a method of the root object which is the global environment of the Am-
bientTalk interpreter. Methods can be selected from an object (e.g. myPush:
aStack.push). Upon selection, a first-class closure object is created which

CHAPTER 4. AMBIENTTALK 41

encapsulates the receiver (aStack) and which can be called using canonical syn-
tax, e.g., myPush(element). Closure objects are actually passive objects with
a single apply method. Finally, a syntactic sugar coating allows anonymous clo-
sures to be created given a list of formal parameters and a body, e.g.,

lambda(x,y) -> { x+y }

When bound to a name (e.g., as the value of a slot f or when bound to a formal
parameter f), a closure is called using canonical syntax, e.g., f(1,2).

4.2.3 Active Object Layer
As explained in section ??, AmbientTalk actors have their own message queues
and computational thread which processes incoming messages one by one by exe-
cuting their corresponding method. Therefore, an actor is entirely single-threaded
such that state changes using the classic assignment operator := cannot cause race
conditions. Messages sent to the passive objects it contains (using the dot nota-
tion) are handled synchronously. Actors are created using the actor(o) form
where o must be a passive object that specifies the behaviour of the actor. In order
to respect the containment principle (see ??), a copy of o is made before it is used
by the actor form because o would otherwise be shared by the creating and the
created actor. A newly created actor is immediately sent the init() message
and thisActor denotes the current actor. These concepts are exemplified by
the following code excerpt which shows the implementation of a friend finder ac-
tor running on a cellular phone. When two friend finders discover one another
(which is explained later on) they send each other the match message passing
along an info passive object that contains objects representing the age (with an
isInRangeOf method) and hobbies (containing a method that checks whether
two hobby lists have anything in common).

makeFriendFinder(age, hobbies)::actor(object({
init()::{ display("Friend Finder initialized!") };

beep()::{ display("Match Found - BEEP!") };

match(info)::{
if(and(age.isInRangeOf(info.age),

hobbies.intersectsWith(info.hobbies)),
{ thisActor()#beep() })

}
}))

Actors can be sent asynchronous messages using the # primitive which plays the
same role for actors as the dot notation for passive ob jects. E.g., if ff is a friend
finder (possibly residing on another cellular phone), then ff#match(myInfo)

CHAPTER 4. AMBIENTTALK 42

asynchronously sends the match message to ff. The return value of an asyn-
chronous message is void and the sender never waits for an answer. Using the #
operator without actual argument (e.g., ff#match) yields a first-class message
object that encapsulates the sending actor (thisActor), the destination actor
(ff) and the name of the message. First-class messages are further explained in
section ?? that describes AmbientTalks meta-level facilities. Finally, using the dot
notation for actors (resp. # for passive objects) is considered to be an error.
When passing along arguments with (both synchronous and asynchronous) mes-
sage sends, caution is required in order not to breach the containment principle.
In the case of synchronous messages of the form po.m(arg1,...,argn)
between two objects that are contained in the same actor, the arguments do not
”leave” the actor and can therefore be safely passed by reference. In the case of
asynchronous messages of the form ao#m(arg1,...,argn), the arguments
”leave” the actor from which the message is sent. In order to respect the contain-
ment principle, this requires the arguments to be passed by copy as explained in
section ??. In the friend finder example, the info object is thus passed by copy.

4.2.4 First Class Mailboxes
AmbientTalks concurrent object model presented above is classless and supports
non-blocking communication. This already covers two of the four characteris-
tics of ambient oriented programming as presented in section ??. However, with
respect to the other two, the model presented thus far still has some limitations
which it directly inherits from the original actor model:

• The model does not support the ambient acquaintance management charac-
teristic of the ambient oriented programming paradigm because tradition-
ally, actors can only gain acquaintances through other actors.

• Actor formalisms do not support the reified communication traces we ar-
gued for in section ??, because although actors have a queue of messages to
be delivered, they provide no reified access to this queue.

To enable these two properties, AmbientTalk replaces the single message queue
of the original actor model by a system of eight first-class mailboxes which is
described below.

Reifying communication traces

When scrutinising the communication of a typical actor, four types of messages
are distinguished: messages that have been sent by the actor (but not yet received

CHAPTER 4. AMBIENTTALK 43

by the other party), outgoing messages that have been acknowledged to be re-
ceived, incoming messages that have been received (but not yet processed) and
messages that have been processed. The AmbientTalk interpreter stores each
type in a dedicated mailbox associated with the actor. An actor has access to
its mailboxes through the names outbox, sentbox, inbox and rcvbox. The
combined behaviour of the inbox and outbox mailboxes was already implic-
itly present in the original actor model in the form of a single message queue.
AmbientTalks mailboxes are the fundamental semantic buidling blocks for imple-
menting advanced language constructs on top of the non-blocking communication
primitives. Indeed, conceptually, the mailboxes rcvbox and sentbox allow
one to peek in the communication history of an actor. Likewise, the mailboxes
inbox and outbox represent an actors continuation, because they contain the
messages the actor will process and deliver in the future. Together, the four ex-
plicit mailboxes cover the need for reified communication traces that have been
prescribed by the ambient oriented programming paradigm.

Enabling Ambient Acquaintance Management

In order to cover the ambient acquaintance management requirement of ambient
oriented programming, AmbientTalk actors have four additional predefined mail-
boxes called joinedbox, disjoinedbox, requiredbox and providedbox.
An actor that wants to make itself available for collaboration on the network can
broadcast this fact by adding one or more descriptive tags (e.g. strings) in its
providedbox mailbox (using the add operation described below). Conversely,
an actor that needs other actors for collaboration can listen for actors broadcasting
particular descriptive tags by adding these tags to its requiredbox mailbox.
If two or more actors join by entering one anothers communication range while
having an identical descriptive tag in their mailboxes, the mailbox joinedbox
of the actor that required the collaboration is updated with a resolution object con-
taining the corresponding descriptive tag and a (remote) reference to the actor that
provided that tag. Conversely, when two previously joined actors move out of
communication range, the resolution is moved from the joinedbox mailbox to
the disjoinedbox mailbox. This mechanism allows an actor not only to detect
new acquaintances in its ambient, but also to detect when they have disappeared
from the ambient.

Mailbox operations

Mailboxes are first-class passive objects contained in the actor. Apart from the
eight built-in mailboxes, actors can create their own custom mailboxes which
might be used by reflective extensions to temporarily store messages. Mailboxes

CHAPTER 4. AMBIENTTALK 44

provide operators to add and delete elements (such as messages, descriptive tags
and resolutions): if b is a mailbox, then b.add(elt) adds an element to b.
Similarly, b.delete(elt) deletes an element from a mailbox. Moreover, the
changes in a mailbox can be monitored by registering observers with a mailbox:
b.uponAdditionDo(f) (resp. b.uponDeletionDo(f)) installs a clo-
sure f as a listener that will be triggered whenever an element is added to (resp.
deleted from) the mailbox b. The element is passed as an argument to f.
The following code excerpt exemplifies these concepts by extending the friend
finder example of the previous section with ambient acquaintance management in
order for two friend finders to discover each other. The initialisation code shows
that the actor advertises itself as a friend finder and that it requires communication
with another friend finder. When two friend finders meet, a resolution is added
to their joinedbox, which will trigger the method onFriendFinderFound
that was installed as an observer on that mailbox. This resolution contains a tag
slot (in this case "<FriendFinder>") and a provider slot corresponding
to the providing actor. The latter is sent the match message (as described in the
previous section).

makeFriendFinder(age, hobbies)::actor(object({
beep()::{ display("Match Found - BEEP!") };

match(info)::{
if(and(age.isInRangeOf(info.age),

hobbies.intersectsWith(info.hobbies)),
{ thisActor()#beep() })

};

onFriendFinderFound(aResolution)::{
aResolution.provider#match(makeInfo(age, hobbies))

};

init()::{
provided.add("<FriendFinder>");
required.add("<FriendFinder>");
joinedbox.uponAdditionDo(this().onFriendFinderFound)

}
}))

4.2.5 AmbientTalk as a Reflective Kernel
The built-in mailboxes and their observers (installed with uponAdditionDo
and uponDeletionDo as described above) can already be regarded as part of
AmbientTalks meta-object protocol (MOP) since they partially reify the state of
the interpreter. Indeed, they constantly reflect the past and future of the commu-

CHAPTER 4. AMBIENTTALK 45

nication state between actors as well as the evolving state of the ambient. Addi-
tionally, the MOP (which is only for the concurrent active object model, there is
no MOP for passive objects) allows a programmer to override the default message
sending and reception mechanisms. This section presents the various operations
of the MOP which have a default implementation residing in any actor and can be
redefined by overriding them in any idiosyncratic actor.
In order to explain the MOP, it is crucial to understand how asynchronous mes-
sages are sent between two actors (that might reside on different machines). When
an actor a1 sends a message of the form a2#m(...), the interpreter of a1 cre-
ates a first-class message object and places it in the outbox of a1. After hav-
ing successfully transmitted that message between the interpreter of a1 and the
interpreter of a2, the interpreter of a2 stores it in the inbox of a2. Upon receiv-
ing a notification of reception, the interpreter of a1 moves the message from the
outbox of a1 to the sentbox of a1. a2 processes the messages in its inbox
one by one and stores the processed messages in the rcvbox of a2. Each stage
in this interplay (namely message creation, sending, reception and processing) be-
tween the two interpreters is reified in the MOP.

Figure 4.1: AmbientTalk actor communication

Message creation is reified in the MOP with the constructor function

CHAPTER 4. AMBIENTTALK 46

createMessage(sender, dest, name, args) which generates first-
class messages. A message is a passive object which has four slots: the sending
actor sender, the destination actor dest, the name of the message name and a
vector object args containing the actual arguments. Remember from section ??
that a first-class message is also created upon field selection with an expression of
the form anActor#msgName which results in a first-class message with sender
thisActor, destination anActor, name msgName and an empty argument
vector.
Message sending is reified in the MOP by adding messages to the outbox
which is accomplished by the MOP’s message sending operation send. In other
words, an expression of the form anActor#msg(arg1 , ..., argN) is
base-level terminology for an equivalent call to the meta-level method send,
passing along a newly created first-class message object. The default behaviour
of send is:
send(msg)::{ outbox.add(msg) }

It is possible to override this behaviour by redefining the method send. The
example below illustrates how send can be overridden for logging purposes.
send(msg)::{
display("sending..."+msg.getName());
super().send(msg)

}

Every actor has a perpetually running thread that receives incoming messages in
the inbox and transfers them to the rcvbox after processing them. Message
reception is reified in the MOP by adding messages to an actors inbox which
can be intercepted by adding an observer to that mailbox. Message processing
is reified in the MOP by invoking the parameterless process method on that
message (which will execute the recipients method corresponding to the message
name) and by subsequently placing that message in the rcvbox. The latter event
can be trapped by installing an observer on that mailbox.

4.2.6 Conclusion
The AmbientTalk kernel supports the ambient oriented programming paradigm
by:

• Employing a prototype-based object model consisting of both passive and
active objects. Passive objects are never shared between active objects
which are single threaded units of distribution.

• Active objects communicate using non-blocking communication primitives.
Asynchronous messages are processed sequentially.

CHAPTER 4. AMBIENTTALK 47

• Communication traces are reified through the use of first-class mailboxes.
The MOP consists of these mailboxes, their associated operations and first-
class messages and their associated operations.

• AmbientTalk supports ambient acquaintance management to allow actors to
discover communication partners in the network.

Using the MOP, the kernel is extended with new language features to ease the
development of ambient oriented applications.

4.3 Extending the Kernel : Ambient-Oriented Lan-
guage Features

In the previous section we have presented an overview of the basic building blocks
provided by the AmbientTalk language kernel. Whereas these suffice to make
AmbientTalk an ambient-oriented language, they do lack support for common
software development concerns. These concerns are catered for by the introduc-
tion of new language constructs using the reflective API described in section ??.
In this section we outline techniques to handle return values of actors and an ap-
propriate exception handling mechanism.

4.3.1 Non-blocking Futures
AmbientTalk’s implementation of futures (which have been already discussed in
section ?? and for their use in exception handling in section ??) is based on E.
In AmbientTalk, futures are non-blocking, meaning that while the operations that
require the value of the future are waiting, the actor as a whole is not blocked and
may be executing other operations (this corresponds to the need for non-blocking
communication primitives as explained in section ??). Futures are represented
as actors and messages sent to them are transparently forwarded. To achieve
this, AmbientTalk’s default message sending behaviour is reflectively extended
for asynchronous message sends to return such non-blocking futures as proposed
in the language E [?]. The idea is to return a new future whenever a message is
asynchronously sent, also if the target is a future actor. When the latter future is
eventually resolved to a value, the message is sent to that value and its result will
resolve the new future. This is called future pipelining or promise pipelining. Fu-
ture pipelining allows one to ”chain” asynchronous message sends, even though
the intermediate results are not yet computed.
Often, synchronisation is needed between the sender and the receiver of an asyn-
chronous message because the application logic dictates that a certain action is to

CHAPTER 4. AMBIENTTALK 48

be undertaken upon resolving a future. Therefore, AmbientTalk and E feature a
when construct that takes two parameters: a future and a closure, consisting of
a formal parameter name for the resolved value and a code block (in which the
value the future resolved to can be referred to using the name passed as formal
parameter). The idea is that the code block is registered with the future. Using the
when construct itself will not block but return a future in its turn. That future is re-
solved with the value resulting from executing the code block that was registered
with it. The point is to asynchronously schedule this code block for execution
when the future that corresponds to its first argument has been resolved. As such,
when allows one to send an asynchronous message resulting in a future (i.e. the
first argument) and to specify what should be done upon getting a result (i.e. the
second argument), without resorting to blocking and without having to manually
establish a connection (e.g. by passing context information) between the time of
sending the message and the time of receiving a result. Notice that several uses
of when can register a code block with the same future. All these blocks will be
executed upon resolution of the future.
The when construct is exemplified with the following code excerpt which shows
how a future resulting from an asynchronous message send can be used to regis-
ter two different when constructs. Executing this code excerpt will immediately
display "first" on the screen. When the future itself is eventually resolved,
"second" and "third" will be displayed along with the computed result.

{ fut: anActor#compute();
when(fut, becomes(result)
-> { display("second", result) });
when(fut, becomes(result)
-> { display("third", result) });
display("first")

}

4.3.2 Exception Handling
Since the idea behind AmbientTalk’s passive exception handling system was to
use it as a basis for experimenting with ambient oriented exception handling
mechanisms, I have designed a mechanism of which flexibility was the primary
goal.

Block Level Handling

To associate a programming unit with one or more handlers is known as protect-
ing or guarding the unit. Depending on the exception handling system, handlers
can protect programming units of different granularity, like expressions, routines,

CHAPTER 4. AMBIENTTALK 49

objects...
Similar to most contemporary languages such as Java, C# and Smalltalk, Am-
bientTalk allows protecting a particular block with a series of handlers (cf. the
try-catch construct). This mechanism provides a much finer granularity than e.g.
object-level handling where an object needs to provide a handle message which
addresses all exceptions thrown by that object. Furthermore, since AmbientTalk
does not feature statements, each individual expression can be protected in the
following way :

try(expression, handler1, handler2, ..., handlerN)

First Class Handlers

Handlers are first-class language values, consisting of the exception they will
catch and a body of code that will be executed to remedy the exceptional con-
dition. Handlers may be specified separately from try statements, allowing for
their reuse. Moreover, handlers are dynamically scoped, meaning that they can
access the scope in which they are used, rather than the one in which they were
defined. Note that the difference is only relevant when handlers are defined apart
from the try block in which they are used. This implies that the traditional try-
catch still performs its expected behaviour, with the handler being able to access
local variables defined outside the try block. The ability to define dynamically
scoped handlers independent of such try blocks contributes to the reusability of
handlers.

catch(exceptionToHandle, handlerCode)

When the throw native is invoked, the runtime stack is searched for handlers. To
make sure that a handler is executed in the dynamic context it catches the excep-
tion, the environment is restored (this is not to be confused with stack unwinding
as will be explained later in this section) when return frames1 are encountered
while searching the stack. Handlers will always be executed in the context where
they caught the exception with an extension to the dictionary that contains the
currentException variable, which makes it possible to access the thrown
exception inside the handler body.

Exception Objects

Exceptions are represented as regular AmbientTalk objects. The basic exception
object’s interface is:

1Return frames contain dictionaries that are to be restored when returning from function calls,
method invocations...).

CHAPTER 4. AMBIENTTALK 50

exception.new(message) Creates a clone of the exception object.

exception.throw() Throws the exception.

exception.canBeHandled(handlerExc) Checks if the exception can be handled
by a handler created from handlerExc. This function, which is always
invoked by the interpreter when an exception is thrown and a handler is
found on the stack, provides a hook to define one’s own behaviour to de-
termine whether an exception can be caught. This is achieved by simply
overriding the default behaviour in an extended exception.

exception.getType() Returns the type of the object it was originally copied from
(using new()). Since clones of an object are unconnected in prototype-
based languages, the link to the original prototype is maintained by means
of a type to allow clones of the same exception to be considered equal in the
implementation of the canBeHandled method.

exception.getParent() Returns the exception’s parent in the hierarchy, this is the
exception object it was extended from. This function is used in the default
implementation of canBeHandled, when the handler’s exception type
does not match the thrown exception, to test whether the handler catches
a parent type of this exception.

For the exact reason why we employ explicit pointers to parent and prototype
exceptions, we refer to appendix ??.

Exception Hierarchy

As mentioned in ??, an exception hierarchy adds to the flexibility of the system. It
is supported by deriving new exceptions from already existing exception objects
using the extend method. This method takes a code-block (whose evaluation
is delayed) prescribing the methods and state of the extension. Child exceptions
”inherit” all the data and methods from the exception they are extended from. By
default, handlers that are created from a more general exception (an exception
higher up in the hierarchy), will handle all its derived exceptions. However, this
default behaviour can be changed by overriding the canBeHandled method for
an extended exception.

notFoundException::exception.extend({
selector: void;
getSelector()::selector;

withSelector(sel)::{
selector:=sel;

CHAPTER 4. AMBIENTTALK 51

copy()
};

canBeHandled(handlerException)::{
if(and(prototype = handlerException.getPrototype(),

or(handlerException.getSelector() = void,
handlerException.getSelector() = selector)),

{ true },
{ parentType.canBeHandled(handlerException) })

}
})

In this example the canBeHandled method is overridden to make sure that
notFoundException handlers catch only exceptions with a matching selec-
tor. Note that the call to parentType.canBeHandled implies that more ge-
neral exception handlers (in this case for the exception type) can still be used to
handle exceptions of this type.

Bound Exceptions

In AmbientTalk, exceptions are always bound. This means that handlers can ac-
cess the object responsible for throwing an exception by invoking the boundTo
method on it. Notice that there is a subtle yet important difference between this
responsible object and the object that actually throws the exception. Consider the
implementation of slot lookup in a prototype-based language, given below. The
algorithm traverses the parent chain whenever the slot is not locally available,
and when no parents are available, the notFoundException specified in the
example above is thrown.
lookup(aSlotName)::{
if(slotMap.contains(aSlotName),
{ slotMap.get(aSlotname) },
{ if(slotMap.contains("parent*"),

{ slotMap.get("parent*").lookup(aSlotName) },
{ notFoundException.withSelector(aSlotName).throw() }

}))
}

When protecting a call o.lookup("non-existing-slot")with a handler,
the object o will be considered responsible for the notFoundException (and
will thus be returned by boundTo()), rather than the top-most parent object,
who has actually thrown the exception. This semantics is achieved by constantly
updating the responsible object while searching the stack for an appropriate han-
dler. Concretely, whenever return frames are encountered on the stack (signalling
that a method was called), the responsible object will be updated as shown in
figure ??.

CHAPTER 4. AMBIENTTALK 52

Figure 4.2: Updating bound exceptions while returning from method calls

Manually fixed bindings An exception may also be manually bound to a par-
ticular object using the bindTo(obj) method. This function may be used in
two different ways. An exception in a handler may be manually bound to only
trap exceptions that originate from a particular object. This technique allows a
more fine-grained handling of exceptions, and improves the flexibility of the ex-
ception handling mechanism. Furthermore, an exception may also be manually
bound before it is thrown. This allows the throwing object to specify the exact
location where corrective behaviour needs to be applied.

Handling Semantics

After locating an appropriate handler on the runtime stack and executing it, stan-
dard handler semantics resumes the computation after the exception is handled
by returning control to the point on the stack where the exception was thrown
(similar to returning from a function call). However, an unwind native function
is available that will unwind the runtime stack to the point were the exception
was thrown. Using this native, termination semantics can be obtained, or more
complex semantics depending how unwind is used.

catch(myException, {
handlerOperation1;

CHAPTER 4. AMBIENTTALK 53

handlerOperation2;
...
handlerOperationN

})

Standard resumption semantics.

catch(myException, {
unwind({
handlerOperation1;
handlerOperation2;
...
handlerOperationN

})
})

Termination semantics using unwind.

catch(myException, {
handlerOperation1;
if(nonResumableCondition,
{ unwind({

terminationOperation1;
...

})
},
{ resumeOperation1;
...

})
})

More complex semantics.

The parameter that is passed to unwind, is the return value of the unwind
statement. Recall that using termination semantics, the handler acts as a replace-
ment for the faulty code and thus has to return an appropriate result. Important to
note is that unwind reduces the stack to the position of the try block. Therefore
any computation that was on the stack (including the remainder of the handler) is
lost. This is why the handler code is specified as the return value of the unwind.

4.4 Active Exception Handling
For the reasons discussed in section ??, classic exception handling mechanisms
relying on the try-catch construct can not be applied in ambient oriented applica-
tions. For this reason, AmbientTalk provides an ensemble of four language con-
structs implemented on top of the passive exception handling mechanism which

CHAPTER 4. AMBIENTTALK 54

directly correspond to the four criteria described in section ?? [?].
First of all, the when-catch construct allows asynchronous exception propaga-
tion at the granularity of a single asynchronous invocation. Secondly, exceptions
raised in a sequence of several asynchronous invocations may be dealt with using
a single exception handler by wrapping this sequence in a group-resolve con-
struct. This construct allows treating such a sequence as a single asynchronous
invocation, funnelling all concurrently raised exceptions into a single concerted
exception. Thirdly, collaborative exception handling is achieved using the con-
versation language construct. This construct specifies a set of participants and
will ensure that exceptions raised by a single participant will be handled by all
available participants. Finally, loosely-coupled exception handling is introduced
through the due construct.

4.4.1 Asynchronous Exception Propagation
Asynchronous exception propagation is supported through the use of futures.
When an exception is raised inside a method body, the method is said to prop-
agate an exception instead of returning a value. The future that is ’waiting’ for
the result of that method is then said to be ruined by the exception. The fact
that futures can be ruined by exceptions changes the future pipelining semantics
described above in ??. As explained, when a message m is sent to a future f1,
a new future f2 is returned that will be resolved by the result of sending m to
the resolution of f1. However, when f1 is eventually ruined, f2 will be ruined
by the same exception. A similar phenomenon exists in the E language where
it is called broken promise contagion [?]. In addition to this, exceptions may be
propagated when they are the return value of a method, i.e. when a method was
asynchronously invoked and responded by sending a message to another actor.
In addition to the future propagation rules outlined above, asynchronously prop-
agated exceptions may also be explicitly handled using an extension of the when
construct defined in section ??, namely a when-catch construct that allows a pro-
grammer to react to ruined futures in an appropriate way. The when-catch con-
struct requires three constituents: a future, a block of code to be executed when the
future gets resolved to a value, and a set of handler blocks that might be executed
when the future gets ruined by an exception. The construct looks as follows:
when(fut, becomes(val)
-> { ‘when block to execute when fut is resolved‘ },
catch(Exception1,
{ ‘catch block to execute when Exception1 is raised‘ }),

catch(Exception2,
{ ‘catch block to execute when Exception2 is raised‘ }),

‘...‘
)

CHAPTER 4. AMBIENTTALK 55

Recall that the -> notation is syntactic sugar for creating a closure (the same ap-
proach is used to bind the value of the resolved future to a variable in the becomes
closure).
The idea is that several when-catch constructs can register themselves with a fu-
ture fut and that every when-catch construct can list several catch clauses. Ev-
ery k’th when-catch registered with a future fut denotes a future f′

k in its turn.
If fut gets resolved with a value, all registered when blocks will be executed. If
fut is ruined by an exception, all registered catch clauses - acting as exception
handlers - are notified of the exception, such that they can determine whether one
of their branches catches the raised exception (see section ?? where it is explained
how it is determined whether a handler will catch an exception or not). When this
is the case, the corresponding branch is executed. Both cases (i.e. executing the
when block or executing the catch block) can result in a value being returned or
an exception being raised. In the former case, the value is used to resolve f′

k. In
the latter case, the exception is used to ruin f′

k.

The when-catch construct allows one to postpone certain actions until the
result of an asynchronous invocation is known, or resulted in the propagation of an
exception. This allows an event-driven style of programming in which the order
of execution of some independent code blocks depends on the order in which
asynchronous invocations return their results or signal an exception.

4.4.2 Grouping Concurrent Exceptions
By default, the result of a block of code is the value returned by the last expression
in that block. Consequently, exceptions propagated from different asynchronous
invocations in a block are ignored unless they ruin the future of the last expression
(using the propagation rules explained above), which is almost never desirable
since exceptions are raised for a reason. For this reason, a mechanism is required
to funnel all possible concurrent exceptions and produce a single concerted ex-
ception.
AmbientTalk provides the group-resolve construct as an alternative mechanism
to group the exception handling of multiple asynchronous invocations. Unlike an
ordinary code block, the group clause does not immediately return the value of
its last expression. Instead a future is returned, the value of which will be only
determined after all futures created within the group clause either have been re-
solved with a return value or ruined by an exception. When none of the futures
was ruined, the result of the group-resolve construct is equivalent to that of an or-
dinary code block, namely the value of the last expression. However, if exceptions

CHAPTER 4. AMBIENTTALK 56

were propagated, the resolve clause will be triggered with an array of concurrently
raised exceptions. The resolve clause may either return a value (if the reported ex-
ceptions can be tolerated or if the exceptional situation can be corrected) - acting
as a handler for multiple concurrent exceptions - or raise a concerted exception.
The construct looks as follows:

group({
‘Block containing multiple asynchronous invocations‘

}, resolve(concurrentExceptions)
-> { ‘Catch all concurrent exceptions‘

‘Possibly raise a concerted exception‘
})

All concurrently raised exceptions in the group clause will be grouped in an array
that is made accessible to the resolve closure through the concurrentExceptions
variable passed as a formal parameter.
When using a when-catch construct inside a group clause, exceptions that have
ruined a future but were subsequently handled by that nested when-catch should
not be considered any more by the group-resolve construct.

4.4.3 Collaborative Exception Handling
The criteria for an ambient oriented exception handling mechanism mentioned in
section ?? stipulate that a mechanism is needed to inform a set of collaborating
actors when one of them has propagated an exception. Such an exception might
invalidate the optimistic assumptions the actors have to make to achieve a loosely-
coupled exception handling mechanism.
AmbientTalk provides collaborative exception handling through the introduction
of a conversation abstraction. The conversation’s task is to provide a mecha-
nism to propagate exceptions to all participants of the collaboration it embodies.
Conversations are represented as actors and are automatically created by the con-
versation construct shown below.

conversation(participants, {
‘Body of the conversation‘

})

When creating a conversation, the actors that will participate in the conversation
are passed along in an array. The conversation actor itself offers a propagate
method which, when passed an exception object, broadcasts this exception to all
participants such that it can be handled collaboratively. Concretely, the conversa-
tion actor checks for each incoming message whether it contains a future (and thus
is a reply from a participant which resulted from an asynchronous invocation from
within the conversation), and registers a when-catch observer on it. When the fu-

CHAPTER 4. AMBIENTTALK 57

ture eventually resolves to a value, the value is just returned. When the future is
ruined by an exception (propagated by the participant that executed the message),
the propagate method of the conversation is called, which results in raising the
exception in each participant. This will trigger the catch blocks catching the prop-
agated exception in all the participants, causing collaborative exception handling.
To achieve this, each participant has to implement a startConversation
method, which will be called when the participant enters the conversation. The
purpose is to specify the handlers to invoke should the conversation propagate an
exception in that method, as shown in the example below.

aParticipant: actor(object({
startConversation(conv)::{
when(conv, becomes(value)
-> { ‘code to execute when conversation ends succesfully‘ },
catch(convException1,
{ ‘collaborative handler code for convException1‘ }),

catch(convException2,
{ ‘collaborative handler code for convException2‘ }),

...)
};

‘Rest of the actor behaviour...‘
}

A conversation can thus be thought of as a special kind of future which can be
’ruined multiple times’ (conv in our example). In addition to providing the
propagate method, the conversation also has access to the participants, and
it can be provided with additional behaviour that is to be specified in the body of
the conversation construct.
Although a conversation is conceptually thought of a single actor, the loosely-
coupled exception handling criterion clearly prohibits an ambient oriented excep-
tion handling mechanism to introduce dependencies on a single ”leader” device
(i.e. the device hosting the conversation). Such dependencies are avoided by pro-
viding each participant of the conversation with its own local replica of that con-
versation actor (and thus including all the behaviour specified in its body). Each
participant is given a reference to its local replica using the startConversation
method presented above. A participant can broadcast an exception to all other
participants in the conversation by invoking the propagate method on its local
replica.

4.4.4 Loosely-coupled Exception Handling
An ambient oriented exception handling model must provide for exceptions to be
handled in a loosely-coupled fashion. This implies that tight bonds between de-

CHAPTER 4. AMBIENTTALK 58

vices (which harm that device’s autonomy) should be avoided whenever possible.
It is for this reason that replication was introduced in the design of the conversa-
tion language construct, to minimize the dependencies between the participants
other than those inherent to the task at hand.
Additionally, dependencies between devices are also created when sending mes-
sages to actors on another device. Although such dependencies cannot leave a
device blocked and unable to respond to requests, the inability to communicate
with its communication partner may prohibit the application from making any
progress. An extreme example hereof is the group-resolve construct which ob-
serves a collection of futures and will only end when all futures have been either
resolved or ruined. In order to make this construct more suitable for an ambient-
oriented setting, support is needed to differentiate between temporary (tolerable)
and long-lasting (presumably permanent) disconnections. This technique allows
loosening the bonds between collaborating actors and allows actors to find re-
placement services for unavailable collaboration partners.

To address the problem described above, the when-catch construct is extended
with a due clause. The clause allows discriminating temporary from long-lasting
disconnections by putting an expiration deadline (in milliseconds) on the reso-
lution (or ruining) of the future observed by the when clause, and handling the
situation by providing its own handler code. The resulting when-catch-due con-
struct can be used as follows:

when(aFuture, becomes(result)
-> { ‘code to execute when future is resolved‘ },
catch(Exception1,
{ ‘handler code for Exception1‘ }),

catch(Exception2,
{ ‘handler code for Exception2‘ }),

‘... more handlers...‘,
due(maxTimeOut,
{ ‘handler code for expired future‘ })

Notice that aFuture can be any statement that returns a future, including for
example a group-resolve that contains multiple message sends, leading to the
expiration deadline to be in effect for each of these message sends.

4.5 Conclusion
In this chapter we have discussed AmbientTalk, an ambient oriented program-
ming language using an integrative implementation of the actor model to allow
concurrency and distribution in an object-oriented language. We have shown that

CHAPTER 4. AMBIENTTALK 59

AmbientTalk adheres to the following requirements to be labelled an ambient ori-
ented programming language:

• AmbientTalk employs a classless object model.

• Active objects communicate using non-blocking communication primitives.

• Communication traces are reified through the use of first-class mailboxes.

• AmbientTalk supports ambient acquaintance management to allow actors to
discover communication partners in the network.

Since AmbientTalk’s basic model attributes no return values to asynchronous mes-
sages, it also does not cater for exceptions being propagated from such invoca-
tions. Therefore, on top of AmbientTalk’s passive exception handling system, an
active exception handling system is built that features the following requirements
to be labelled an ambient oriented exception handling system:

• By relying on futures, the when-catch construct allows to not only postpone
the execution of code that needs the return value of an asynchronous mes-
sage, but also to execute handler code as soon as an exception is propagated
by the receiver of the message.

• The group-resolve construct allows the result of a block of code containing
possibly multiple asynchronous invocations to be regarded as a single fu-
ture. All concurrently raised exceptions in the block are grouped and made
available to the programmer such that he can correct the exceptional situa-
tion or propagate a single concerted exception.

• To support collaborative exception handling, AmbientTalk provides the con-
versation construct, which allows each participant to be notified of excep-
tions experienced by their collaboration partners. By specifying collabora-
tive handlers for a given exception, participants of a conversation are able
to collaboratively handle an exception.

• Loosely-coupled exception handling is supported through the due construct,
which allows associating a timeout value with a block of code (possibly con-
taining multiple asynchronous invocations) and raise a predefined exception
if messages sent in that code block cannot be delivered in time.

These constructs provide only the strict minimum functionality required to enable
ambient oriented exception handling. For example, the conversation construct
provides no way to encapsulate the collaboration encoded in its body, so excep-
tions may enter and exit the conversation while it is executing, possibly causing

CHAPTER 4. AMBIENTTALK 60

actors not participating in the conversation to be affected. However, higher level
constructs, which address this and other issues, can be created using the conver-
sation model. In the next chapter we present some experiments with such higher
level constructs.

Chapter 5

Co-ordinated Atomic Actions

5.1 Motivation
Ambient oriented (or by extension any concurrent and distributed) system devel-
opment is marred by two conflicting phenomena. First of all, ambient oriented
software is inherently complex as it deals with a multitude of concurrent, asyn-
chronously communicating devices. Second, the developed software should be
dependable, i.e. it reacts in a consistent and acceptable way to errors and fail-
ures. Ambient oriented applications do not assume any infrastructure and control
about that infrastructure, therefore errors in ambient oriented programs should be
anticipated as much as possible. The most beneficial way of achieving such fault
tolerance in ambient oriented software is to use system structuring abstractions
which have fault tolerance measures associated with them. To ease the reason-
ing about such complex systems of application logic intertwined with exception
handling code, structuring units need to serve as natural areas of error contain-
ment and error recovery by restricting somehow interaction and communication
of system components. Atomicity of such units is vital for decreasing system
complexity when the system exhibits both normal and exceptional behaviour [?].

The Co-ordinated Atomic Action (CAA) concept (also discussed in section
??) was introduced as a unified general approach for structuring complex con-
current activities and supporting error recovery between multiple interacting ob-
jects in a distributed object-oriented system. This paradigm provides a concep-
tual framework for dealing with co-operative and competitive concurrency and
for achieving fault tolerance by extending and integrating two complementary
concepts - atomic actions (or conversations) and ACID1 transactions. CAAs pro-
vide a mechanism for the strict enclosure of interaction and recovery activities to

1Atomicity, Consistency, Isolation and Durability

61

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 62

prevent erroneous information from spreading throughout the whole system.

5.2 Co-ordinated Atomic Actions in AmbientTalk
In this section, we show how CAAs are implemented and used in AmbientTalk. A
first observation, is that in AmbientTalk regarding this implementation only actors
can be referenced distributedly. This means that we can safely drop the need for
transactional semantics to access shared objects, since AmbientTalk simply does
not allow sharing passive objects between different actors (there is no competitive
concurrency). A second observation we make, related to the first one, is that at
the time of writing this dissertation there is no way to guarantee transactional be-
haviour for actors in AmbientTalk. The reason is that actors may answer messages
while their state has not yet been committed, or even send messages in response
to a message sent from within the CAA such that these messages may contain ten-
tative data. To prevent this from happening, we restrict the communication of the
participants of a CAA such that they cannot send messages to external actors until
the CAA is over2. Furthermore, all communication between actors happens by
means of asynchronous messages. Enabling atomicity of a CAA simply consists
of buffering the messages that cross the CAA boundaries and flush them when
the CAA is over. This implies that messages that propagate an exception are also
confined to the CAA. There are two cases where this happens. The first case is
when an actor propagates an exception back to one of the participants of the CAA
because some call prior to the participant entering the CAA failed. In this case,
the message containing the exception will just be queued until the CAA is over.
The other case is when one of the participants itself raises an exception during
the execution of the CAA. The CAA may provide its own handler for the excep-
tion or make an attempt to rollback the execution and possibly restart the CAA.
Rolling back the execution consists of restoring each participant to the state it was
in before the CAA started. If the CAA does not handle the exception, the future
returned by the invocation of the CAA will be ruined by the exception (the same
happens when the CAA throws a different exception while handling an exception)
and the caller will have to deal with it. This is different from the classic atomic
action model where a general FailureException is thrown when an atomic
action cannot finish or succesfully rollback the execution. However, in this case
where we do not consider the consistency of external shared objects (by limiting
communication), buffering the messages that breach the CAA boundary is enough
to provide atomicity, and ruining the future returned by a CAA by any exception
does not change this. Using futures, CAAs can easily be nested. The enclosing

2Currently, a transaction mechanism for actors is being implemented but this was not yet con-
sidered during the writing of this dissertation.

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 63

CAA will only finish when the futures of its internally started CAAs have been
resolved.

The CAA construct which we propose here is strongly inspired by the COALA
language [?] and looks as follows:
CAA(
participants({
actor1 => role1;
actor2 => role2;
‘...More actor-role mappings... ‘

}),
roles({
role.role1() :: {
‘...Role behaviour...‘
handler(‘a role handler‘);
handler(‘another role handler‘);
‘...‘

};
role.role2() :: {
‘...Role behaviour...‘

};
‘...More roles...‘

}),
{ ‘CAA body‘
‘...‘

},
exceptions({
CaaException1: ‘...‘;
CaaException2: ‘...‘;
‘...More CAA exceptions...‘

}),
resolution(
concert([caaException1, caaException2],
ConcertedException,
catch(ConcertedException, ‘handler code‘)

),
‘...More exception resolutions...‘

)
)

The participants construct passed as first argument, maps each participating ac-
tor to a role name. This way, participants can be referred to from within the CAA
by their corresponding role name.
The second argument is the roles construct. It lists the definitions of the roles.
By writing a definition of the form role.roleName(), a role object is created,
whose behaviour is temporarily added to the corresponding participant (as spec-
ified in the participants construct) for the duration of the CAA. This way, it is

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 64

possible to specify additional behaviour for a participant in a CAA, including ex-
ception handlers.
The third argument is the block of code that will form the body of the CAA.
The fourth argument is the exceptions construct, which expects a block of code
where exception objects may be defined. These exceptions will be visible to all
participants for the duration of the CAA such that they can specify handlers for
them in their role definitions.
Finally, the last argument is an exception resolution mechanism. The mecha-
nism we propose here, expects the programmer to list combinations of (possibly
concurrently raised) exceptions with for each combination a concerted exception
which will be automatically raised when all the exceptions in the combination are
encountered during the execution of the CAA. Optionally, a (global) handler can
be specified for a concerted exception such that it may be handled by the CAA.
If this is not the case, the concerted exception is propagated to each participant,
which should have their own role-specific handlers to collaboratively handle the
exception.

In the remainder of this section we show how co-ordinated atomic actions can
be implemented in AmbientTalk by using the ambient oriented exception handling
constructs discussed in section ??. For the complete source code we refer to
appendix ??.

5.2.1 Starting the conversation
The CAA implementation obviously relies on the conversation construct to allow
collaborative exception handling. Recall from section ?? that each actor willing
to participate in a conversation must implement a startConversation method. To
produce a language variant which allow actors to participate in a CAA, the original
actor primitive is shadowed as follows:

actor(obj): super().actor(extend(obj, {
startConversation(conv) :: {
fut: conv#getRoleBehaviour(thisActor());
when(fut, becomes(participantsAndBehaviour) -> {
mixin(this(), participantsAndBehaviour[2]);
participants := participantsAndBehaviour[1];
"roleReady"

})
}

}));

In this case, this method is used to do the necessary initialisation before start-
ing the CAA. First of all, the participant must be extended with the additional

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 65

behaviour defined in its role. Secondly, each participant must know the other par-
ticipants. By sending the getRoleBehaviour message to the CAA actor (the
conversation), the participant receives a table that contains all the participants of
the CAA and the role behaviour. Using the mixin primitive, the role behaviour
is ”mixed in” the current actor behaviour. Each role contains a participants
instance variable which denotes the CAA participants. This variable is assigned
here with the list of participants received from the CAA. As soon as all the ini-
tialisation work is done, the participant signals to the CAA actor that it is ready
by resolving the future of the startConversation message with the string
"roleReady".

5.2.2 Mapping participants to roles
The CAA contains a map participant2RoleMap that maps each participant
to a role name and a role object containing additional behaviour for the participant
during the CAA. The participants construct is defined as follows:

participants(bindings(participant=>role())) :: {
bindings(participant2RoleMap.put(
participant, [‘ RECORD ‘
‘ ROLE NAME : ‘ role[1,3,1],
‘ BEHAVIOUR : ‘ void

]))
};

This code excerpt makes extensive use of an AmbientTalk feature called func-
tional parameters. A full discussion of this feature can be found in appendix ??.
For each participant-role binding, a new entry is put in the participant2RoleMap
whose key is the participant, and whose value is a record containing the name
of the role and the behaviour of the role (which will be later filled in with a
role object), which is initially an empty vector. The participants construct con-
sists of two layers. It takes a code block (denoted by the functional parameter
bindings) as argument wherein each participant is mapped to a role by the =>
functional parameter, which in its turn takes a participant actor as argument (left
hand operator) and a second functional parameter containing the role reference
(right hand operator). The actual name of the reference is extracted from the role
reference entity using AmbientTalk’s table based reflective interface (see appendix
?? for the reification of language entities).

5.2.3 Defining roles
The roles construct makes sure that all role behaviours and their associated han-
dlers are filled in the participant2RoleMap. The construct looks as follows:

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 66

roles(roledefinitions(role(method))) :: {
‘...default role behaviour...‘

}

The roledefinitions functional parameter denotes a closure in whose envi-
ronment roles may be defined (see appendix ?? for a thorough explanation). Each
definition of the form role.method()::{...}will result in a role object which
contains both the behaviour specified in the definition of the role and the default
role behaviour prescribed in role’s environment. This behaviour is filled in the
participant2RoleMap by calling the following auxiliary function defined in
the local scope of the construct:

fillBehaviours(name, behaviour) :: {
theRoles : participant2RoleMap.getValuesVector();
theRoles.iterate(lambda(record) -> {
if(record[1] ˜ name,
if(record[2] ˜ void,
record[2] := behaviour,
error("Role Behaviour has multiple definitions")))

})
};

Each time a role is created (using role.roleName()::{...}), this function is
called. The correct entry is looked up in the map using the name of the role and
when found, its behaviour is filled in. A role behaviour may only be defined once.

Given these two functions, roledefinitions is applied on the following
behaviour:

roledefinitions({
‘ method is supposed to evaluate to an object ‘
roleBehaviour : method();
roleBehaviour := extend(roleBehaviour, {
oldDct : void;
oldOutbox : void;
oldInbox : void;

participants : void;
blockedMessages : vector.new();
blockedMailboxes : vector.new();

roleHandlers : vector.new();

getCAA() : participants.get(participants.size());

save() :: {
oldDct := copy(undoMixin());

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 67

oldOutbox := copy(outbox);
oldInbox := copy(inbox)

};

restore() :: {
become(oldDct);
outbox := oldOutbox;
inbox := oldInbox

};

add(mbx, msg) :: {
if ((participants.contains(msgSource(msg)) &

participants.contains(msgTarget(msg))), {
super().add(mbx, msg)

}, {
blockedMessages.add(msg);
blockedMailboxes.add(mbx)

})
};

handler(h): roleHandlers.add(h);

CAAStarted(caaFuture) :: {
whenArgs: append([caaFuture,
lambda(result) -> void

], roleHandlers.asTable());
fut: when@whenArgs;
when(fut, becomes(result) -> {
‘Release blocked messages‘
for(i: 1, i<blockedMessages.size(), i:=i+1, {
super().add(blockedMailboxes.get(i),

blockedMessages.get(i))
});
undoMixin(this())

})
}

});

fillBehaviours(method[1,1], rolebehaviour);

‘ return a mechanism to make a new instance ‘
roleBehaviour.new()

})

First of all, the role behaviour is created. This happens by first evaluating the
method argument which denotes the definition of the role object. The resulting
object is extended with a number of definitions required for a participant to par-
ticipate in the CAA.

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 68

One requirement for participating in a CAA, is the ability to rollback the state
of the participant, as mentioned in section ??. Rolling back the state of a par-
ticipant consists of restoring the behaviour of the participant actor to the state it
was in prior to joining the CAA and restoring its inbox and outbox, since it
may have scheduled some messages for execution or sending during the CAA. To
provide this functionality, two methods are available. The save method will save
the current behaviour of the participant in oldDct and save the current outbox
and inbox in oldOutbox and oldInbox respectively. The state of the par-
ticipant can then be rolled back by invoking the restore method, which will
restore the behaviour saved in oldDct and restore the outbox and the inbox
of the participant saved in oldOutbox and oldInbox respectively.

Messages that cross the CAA boundaries should be buffered until the CAA is
over, i.e. these messages should be prevented from being added to the mailbox
they normally would be added to. A way of doing this, is by shadowing the add
primitive function that adds messages to a mailbox, as shown in the code excerpt
above. In the role behaviour, we keep a vector participants of all the par-
ticipants including the CAA actor itself to be able to tell the difference between
messages that have to be buffered or messages that should be added immediately.
Section ?? shows how the participants variable is initialised during the ini-
tialisation of the CAA. Furthermore, we shadow the original add function such
that messages are first checked to be internal to the CAA (by checking if source
and target are participants of the CAA). If this is the case, the message may safely
be added. If this is not the case, the message is buffered such that it can be added
to the correct mailbox when the CAA is over.

Inside the role code, the handler construct can be called, which is actually
just a function that will add a handler to the list of role-specific handlers. All the
handlers in this list are registered with the CAA future to allow the participant to
handle the corresponding exception (possibly collaboratively with the other par-
ticipants) when it is propagated by the CAA.

When all participants have been initialised with their corresponding roles (see
section ??) and the CAA is started, each participant needs to be notified, such that
it can register its exception handlers on the future returned by the execution of
the CAA. For this reason, each role contains a CAAStarted method that will do
just that. When the CAA is over and all eventually raised exceptions are handled,
all the buffered messages are released (i.e. the effects of the atomic action are
made visible to the outside world) and the extra role behaviour is removed from
the participant actor using the undoMixin primitive.

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 69

Finally, when the role behaviour is extended with the definitions discussed
above, the corresponding table entry in the participant-role mapping is filled in
with the resulting role behaviour.

5.2.4 Defining exceptions
CAA exceptions are defined using the exceptions construct, which is defined as
follows:

exceptions(defs()) :: {
theRoles : participant2RoleMap.getValuesVector();
theRoles.iterate(lambda(record) -> {
record[2] := extend(record[2], defs())

});
defs()

};

All CAA exceptions should be known to each participant such that the partic-
ipants are able to specify handlers for these exceptions. We chose to extend the
role behaviour of each participant with the exception definitions. exceptions takes
a block of code which will be delayed and wrapped into a closure, since the corre-
sponding parameter defs() is a functional one (see appendix ?? for more infor-
mation regarding functional parameters). This closure is executed when extending
the behaviour of each role. Notice that any definition in the block of code passed
to exceptions will be available to each participant, not only exceptions. However,
this is no way to introduce shared objects since these definitions are replicated
when sent to each participant (as shown in section ??). To preserve autonomy of
each participant, no behaviour is ever shared.

5.2.5 Defining exception resolutions
Exception resolutions are defined using the resolution construct, which is defined
as follows:

resolution@args :: args;

This does nothing more than take an arbitrary number of arguments and return
them in a table.
To define a single resolution the concert construct is used, which is defined as
follows:

concert@args :: {
if (size(args) < 2, {
error("Concert expects at least two arguments")

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 70

},
args)

};

concert just returns its arguments in a table. When less than two arguments are
given, an error is returned since at least a table of exceptions raised in the CAA and
the concerted exception should be given. Optionally, a handler can be specified
for the concerted exception such that it is immediately handled by the CAA after
raising it. In the next section we show how the resulting table from the exceptions
construct is processed to concert (possibly concurrent) exceptions in the CAA and
possibly handle them.

5.2.6 Executing the CAA
As mentioned in section ??, the CAA construct takes five arguments:

CAA(participant2Roles,
roles,
code(),
exceptions,
exceptionRules) :: {

‘CAA implementation‘
}

In this section we will discuss the implementation of the CAA conversation actor
and how the CAA is actually executed.
First of all, the participating actors need to be extracted from the participant-role
mapping such that they can be passed to the conversation. This happens as fol-
lows:

participants: vector.new();
for(i: 1, i<=size(roles), i:=i+1, {
participants.add(participant2RoleMap.keys().get(i))

});

Now we can pass the participants variable containing the participating ac-
tors to the conversation construct as shown below:

conv: conversation(participants, groupMixin(futuresMixin({
participants.add(thisActor());

‘...Rest of the conversation behaviour...‘
}

Notice that in the conversation construct, the conversation actor is added to the
participants. This is necessary because the conversation actor (representing the
CAA) needs to be able to communicate during the execution of the CAA with the

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 71

participants playing a role in the CAA. If not added to the participants list,
the CAA actor itself will be excluded from the interaction by the roles (see section
??).

To support rollbacks, the conversation has the following method:
rollback() :: {
outbox.clear();
inbox.clear();
participants.iterate(lambda(p) -> {
p#restore()

})
};

All messages scheduled for sending or executing in the CAA actor are cancelled
and each participant is sent the restore message, which will restore its state to
a previously established checkpoint (as discussed in section ??). This method can
be called from within the CAA body or handler or a rollback can be requested by a
participant (for example when it catches an exception) by sending the rollback
message to the CAA.

The CAA contains two pieces of information that a participant needs for par-
ticipating in the CAA, namely it needs to know the rest of the participants and
should receive its role behaviour. As already mentioned in section ??, participants
query the CAA for this information using the getRoleBehaviour message,
which corresponds to the following CAA method:
getRoleBehaviour(participant) :: {
[participants, participant2RoleMap.get(participant)[2]]

};

As shown in the code above, the correct role behaviour is looked up in the participant-
role map using the participant as key (entry 2 in the table denotes the role object,
as explained in ??) and is returned along with the list of participants in a table.

As already mentioned in section ??, when each participant is initialised (i.e.
it has received the list of participants and its role behaviour from the CAA), the
CAA should execute its body:
start();
for (i: 1, i<participants.size(), i:=i+1, {
part: participants.get(i);
part#CAAStarted(returnedFuture, getHandlers(part))

});

As soon as all participants have notified the CAA that they are ready, the CAA
is started by calling the function start (which is explained below). After that,

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 72

the CAAStarted message is sent to each participant along with the future of
the CAA execution (saved in the returnedFuture variable). As mentioned in
section ??, this message will cause the participant to register a when-catch on the
future of the CAA execution with the handlers specified in its role.

The start method mentioned above will start the actual execution of the
body of the CAA. The method is defined as follows:
start() :: {
for(i:1, i<=size(exceptionRules), i:=i+1, {
rule: vector.newWithTable(exceptionRules[i][1]);
resolveRules.add(rule)

});
when(,
group({
for(i: 1, i<participants.size(), i:=i+1, {
participants.get(i)#save()

})
}, resolve(exc) -> void

),
becomes(saveOk) -> {
returnedFuture := group(code(), resolve(exceptions) -> {
‘concert/catch/propagate according to CAA exceptionRules‘
for(i:1, i<=resolveRules.size(), i:=i+1, {
combination: resolveRule.get(i);
rule: exceptionRules[i];
if(matches(exceptions, combination),
if(size(rule) < 3,
rule[2].throw(),
try(rule[2].throw(), rule[3])))

})
})},

due(TimeOut, {
CAAFailedException.new(

"Participant state save failed").throw())
}))

};

First of all, the exception resolutions are processed. Secondly, a rollback check-
point is established by sending the save message to all participants. When the
participants cannot save their state in the prescribed time, the CAA cannot con-
tinue and a CAAFailedException is thrown. This is encoded by means a
group which returns a future (representing the combined future of the message
sends in its body) that has to be resolved in the time prescribed by the due clause
of the surrounding when construct. As soon as all participants saved their state,
the body (wrapped in the code closure, see appendix ??) of the CAA is executed
in the group clause of a group-resolve and all raised exceptions are resolved ac-

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 73

cording to the specified exception resolutions in the resolve clause. The resulting
future of the group-resolve is stored in returnedFuture, which will be the
return value of the invocation of the CAA construct.

5.3 Case Study
In this section we evaluate the usefulness of the CAA construct by using it in an
implementation of the Ambient Intelligent travel agency introduced in the sce-
nario in section ??.
As described in the scenario, travellers make a daily selection of events they want
to participate in. To this end, up to date event lists are sent out by the travel agency
at regular time intervals. Travellers make their choice from that list and both the
event provider and the travel agency are notified of the traveller booking an event.
When the traveller is successfully enrolled in the event, the entry fee of the event
is subtracted from the traveller’s bank account. The aforementioned steps need
to be structured in an atomic interaction since we do not want for example the
traveller to pay a fee if the booking of the event failed, nor we want the traveller to
interact with other services as his bank account is currently being accessed. The
same holds for the event provider, as long as the process of enrolling a client in the
event it provides has not finished (or failed), it remains unclear if another client
will be able to join the event because it may be full. Therefore we implement
the interaction between the travel agency, the traveller and the event provider as a
co-ordinated atomic action. Possible failures include long-lasting disconnections
between the three parties and the event that is already at its maximal capacity such
that the traveller is not allowed to book that event. Furthermore, a traveller may
attempt to book an event that is not available any more or an event which is too
expensive.

We will show how the enrolment of a traveller in an event happens using a
CAA. The traveller actor is defined as follows:
travellerActor(id, agency, initCredits) :: actor(object({
id_: id;
agency_: agency;
eventProviders_: vector.new();
bookedEventProviders_: vector.new();
credits_: initCredits;

updateEventProviders(ep) :: eventProviders_ := ep;

bookEvent(eventProvider) :: {
‘...CAA...‘

}

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 74

}))

A traveller actor books an event by calling the bookEvent method with the
corresponding eventProvider, which he finds in his event list. bookEvent
first defines the following exception and handler to easily reuse them in the CAA
specification:

BookingFailedException: extend(Exception, {
type: "BookingFailedException"

});

BookingFailedHandler: catch(BookingFailedException, {
rollback();
currentException.throw()

});

The BookingFailedException will be used to denote a fault where the
CAA cannot recover from, in this case it is used to denote that one or more parties
have become unreachable. The corresponding handler will just rollback the CAA
and rethrow the exception such that the parties still connected may undertake the
appropriate measures.

Now we will discuss one-by-one the different components of the CAA. For the
complete source code of this toy example (including the definitions of the other
actors) we refer to appendix ??.

participants({
agency_ => agency,
thisActor() => client,
eventProvider => provider

})

The travel agency actor is mapped to the agency role, the traveller actor itself to
the client role and the event provider actor to the provider role. These roles
are defined as follows:
The agency role:

role.agency() :: {
isEventProvider(ep) :: {
if(eventProviders_.contains(ep),
true,
UnknownEventException.new("Event not available").throw()

)
};

handler(catch(UnknownEventException, {
client#updateEventProviders(eventProviders_)

}))

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 75

};

The agency role provides the isEventProvider to check if an event is valid
or available. If not, an UnknownEventException is thrown.
The raising of an UnknownEventException implies that the traveller had an
outdated event list and attempted to book an event that is not available any more.
The travel agency handles this exception by explicitly sending a message to the
client to update its event list.

The client role:

role.client() :: {
withdraw(amount) :: {
if (amount > credits_, {
NotEnoughFundsException.new("Not enough funds").throw()

}, {
credits_ := credits_ - amount

})
};

handler(catch(EventFullException, {
display("The event "+currentException.boundTo().getId+
" is full. Please pick another event.")

}));

handler(catch(BookingFailedException, {
display("Booking event failed. Please try again later.")

}));

handler(catch(UnknownEventException, {
display("Event is not available. Please pick another event.")

}));

handler(catch(NotEnoughFundsException, {
display("You do not have enough funds
to participate in this event.")

}))
};

The client role provides a method to withdraw the entry fee for the event from
the traveller’s bank account. If the traveller does not have the necessary funds, a
NotEnoughFundsException is thrown.
The rest of the client role behaviour specifies handlers for the different exceptions
which just notify the user that the booking failed with the reason why.

The provider role:

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 76

role.provider() :: {
addParticipant() :: {
try({
when(client#withdraw(fee_), becomes(ok) -> {
deposit(fee_);
event_.addParticipant(client)

}, due(timeOut, {
BookingFailedException.new("Client not responding").throw()

}))
}, catch(EventFullException, {
getCAA()#rollback();
EventFullException.bindTo(event_).throw()

}))
};

deposit(amount) :: credits_ := credits_ + amount
}

The provider role provides a method to add a participant to the event it provides.
First it has to withdraw the entry fee from the client’s account. If the client does
not respond in the prescribed time, a BookingFailedException is thrown
because the interaction cannot continue with a disconnected client. If the with-
drawal is successful, the same amount is deposited on the provider’s account and
an attempt is made to enroll the participant in the event. If this fails because
the event is already at its maximal capacity, the CAA is rolled back (to undo the
money transfer) and an EventFullException is thrown.

The body of the CAA is defined as follows:

{
when(agency#isEventProvider(eventProvider), becomes(ok) -> {
when(provider#addParticipant(client), becomes(val) -> void,
due(timeOut, {
BookingFailedException.new(
"Event provider not responding.").throw()

}))
}, due (timeOut, {
BookingFailedException.new("Agency not responding").throw()

}))
}

First of all, the agency is sent a message to make sure the event is available (us-
ing the isEventProvider message discussed above). If this is the case, the
provider is sent the addParticipant message discussed above to enrol the
client in the event. When one of the two parties receiving requests in this code
does not respond in the prescribed time, a BookingFailedException is
raised to signal that the CAA failed.

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 77

Here we list the exceptions that should be known to all the participants of the
CAA:
exceptions({
EventFullException: extend(Exception, {
type: "EventFullException"

});
UnknownEventException: extend(Exception, {
type: "UnknownEventException"

});
NotEnoughFundsException: extend(Exception, {
type: "NotEnoughFundsException"

});
BookingFailedException: BookingFailedException

})

Finally, we provide the exception resolution rules:
resolution(
concert([BookingFailedException],
BookingFailedException,
BookingFailedHandler)

)

This single rule will just make sure that if any participant of the interaction is
unreachable, the CAA is rolled back and the exception is rethrown (we defined the
exception and handler used here beforehand such that they can easily be reused
here).

5.3.1 Evaluation
Using the CAA construct yields a number of advantages. First of all, by executing
atomically, it provides a way of restricting interaction between application compo-
nents such that tentative data is not spread throughout the whole system, leading a
whole constellation of components to an exceptional state. This eases the reason-
ing about such complex concurrent systems in the face of exceptions and faults.
Furthermore, because of the way exception handling is integrated with the con-
struct, exception handling code is separated from regular application logic code.
The exception definitions provided in the exceptions construct are a good example
of this. Without such support, each participant needs to have his own set of ex-
ception definitions (EventFullException, UnknownEventException,
NotEnoughFundsException and BookingFailedException in this case)
that must correspond to the exceptions thrown by the other participants or the
CAA to be able to handle them, leading to unnecessary code duplication. Further-
more, all behaviour defined in the role objects is specific to the interaction encoded

CHAPTER 5. CO-ORDINATED ATOMIC ACTIONS 78

by the CAA (withdraw for the traveller, addParticipant and deposit
for the event provider), including all the role-specific handlers to collaboratively
handle exceptions. In short, CAAs provide encapsulation of interactions such that
the reasoning about their effects is eased and provide a higher degree of separation
of concerns with respect to exception handling.

5.4 Conclusion
One of the problems that have to be dealt with when developing ambient oriented
applications is mastering the sheer complexity of encoding multiple spontaneous
and concurrent interactions between autonomous and distributed application com-
ponents while remaining fault tolerant. One way of reducing this complexity is by
structuring collaborations as co-ordinated atomic actions. In this chapter we have
shown by means of a case study that co-ordinated atomic actions can be useful
in ambient oriented applications. In fact, CAAs provide encapsulation of inter-
actions such that the reasoning about their effects is eased and provide a higher
degree of separation of concerns with respect to exception handling.

The implementation of co-ordinated atomic actions presented in this chapter
relies on lower level exception handling constructs. In fact, the CAA construct
blurs the distinction between a language feature, a reusable high-level structur-
ing mechanism and a design pattern. It solves the common problem of providing
atomicity integrated with exception handling in ambient oriented applications, but
the way the solution is implemented and used depends on the level of abstraction.
We opted for a high level approach to show that using AmbientTalk’s minimal
ambient oriented exception handling constructs, higher level mechanisms solving
different problems (in this case atomicity) can be implemented. Different appli-
cations may require more specific mechanisms, but given an ambient oriented
exception handling mechanism in combination with a language supporting the
ambient oriented programming paradigm, it should be feasible to implement any
exception handling behaviour required.

Chapter 6

Conclusion

In the past decade, mobile technology has become increasingly accessible and
ever more potent. The mobile devices carried around today include sheer inlim-
ited storage devices (e.g. iPod media players), cell-phones allowing worldwide
access to the internet, PDAs with ever increasing processing power, etc. Some
of these devices can already communicate over short-ranged wireless protocols
such as bluetooth. Ambient Intelligent applications, which consist of such sponta-
neously interacting autonomous devices in mobile networks, have to deal with the
hardware characteristics of these mobile networks, including connection volatility.
These hardware characteristics have significant repercussions on the development
of Ambient Intelligent applications. Given the added complexity and failure rate
of concurrent and distributed applications, exception handling is one of the fields
of Ambient Intelligent software development that requires careful investigation.

In Chapter ?? we have described existing exception handling mechanisms and
illustrated how these fall short when applied in an ambient oriented context. They
either lack support for allowing exceptions to be propagated between different
asynchronously executing processes which must be able to handle them in the
right context, or for aggregating concurrently raised exceptions such that they can
be collectively handled or concerted to a single exception. Furthermore, when dif-
ferent processes on different devices collaborate, they should be informed when
one of their collaboration partners experiences an exception, such that the excep-
tion can be collaboratively handled by all participants of the collaboration. Addi-
tionally, ambient oriented exception handling should be loosely-coupled such that
the autonomy of the devices is preserved (i.e. it should not rely on a centralised
node and should be able to discriminate long-lasting from temporary disconnec-
tions).

Subsequently we have introduced AmbientTalk, an existing ambient oriented

79

CHAPTER 6. CONCLUSION 80

language with limited primitives for supporting ambient oriented exception han-
dling. Whereas the four primitives offered in the language allow dealing with ex-
ceptions in ambient oriented software, they offer only low-level support and how
to use them to provide high-level exception handling is unclear. Furthermore, be-
cause of the ambient oriented exception handling requirements mentioned above,
exceptions may be propagated from one device to another, including to devices
that were not directly involved in the collaboration where the exception originated.
This makes it hard to reason about such systems since a whole constellation of de-
vices can be put in an exceptional state by a single failure. This calls for higher
level exception handling constructs that allow structuring and encapsulating the
collaboration of a number of devices such that the effects of the collaboration are
not witnessed by devices outside of the collaboration until the collaboration is
over (or signalled failure).
The construct introduced in this dissertation is a Co-ordinated Atomic Action
(CAA). CAAs are a mechanism to recursively structure collaborations among
concurrent processes such that the interaction between these processes exhibits
transaction-like semantics. This is achieved by making sure that the effects of the
interaction are only made visible to the outside world once the interaction is over.
Furthermore, exception handling is integrated in the CAA model: CAAs may pro-
vide their own exception resolution graphs and exception handlers handlers for the
interaction they represent and make sure that exceptions raised by one participant
of the interaction are raised in the other participants too to enable collaborative
exception handling.

6.1 Contributions
The main technical contribution of this thesis is the design and implementation of
the Co-ordinated Atomic Action model based on AmbientTalk’s ambient oriented
exception handling constructs. The introduced CAA construct has the following
properties:

• Process interactions are encapsulated such that the effects of the interaction
encoded by the CAA are not visible to the outside world until the interaction
is over. If the CAA cannot finish, all effects are made undone.

• CAAs provide exception resolution graphs which map a set of exceptions
raised (possibly concurrently) during the interaction to a single concerted
exception.

• CAAs allow additional behaviour required for the interaction to be defined
where the interaction is used, namely in the roles associated with each par-
ticipant of the interaction. This leads to more extensible programs and less

CHAPTER 6. CONCLUSION 81

code duplication and offers a concise way of defining collaborative excep-
tion handling behaviour by specifying additional exceptions and handlers
for the participants in their roles.

• By integrating the CAA construct with the future resolution mechanism of
AmbientTalk, applications consisting of complex interactions among con-
current processes can be conceived as nested CAAs. This allows thinking
about such complex applications as step-by-step executions of the CAAs
of the same nesting level and offers controlled propagation of exceptions
from CAAs denoting exception contexts to their enclosing CAA, denoting
the enclosing context.

We have evaluated these properties by using the CAA construct in a case study
which showed that co-ordinated atomic actions provide a concise way of struc-
turing concurrent activities where fault tolerance is crucial by encapsulating the
collaboration and integrating it with the handling of exceptions.

6.2 Limitations and Future Work
The implementation of co-ordinated atomic actions presented in this dissertation
is more restrictive than the original model in the sense that it allows no commu-
nication at all between participants of the CAA and external objects. This is in
contrast with the original model where participants are allowed to send requests
to external objects. The reason why we impose this restriction is that in the im-
plementation of AmbientTalk used at the time of conducting these experiments,
there is no way to undo the effects of cascading message sends which may pass
tentative data to external actors, since AmbientTalk actors do not guarantee trans-
actional behaviour and have no commit protocol. However, techniques to solve
this do exist. One such technique is the TimeWarp algorithm.

6.2.1 TimeWarp
TimeWarp [?] is an algorithm for distributing and parallelising discrete event sim-
ulations. Parallelising discrete event simulations is a difficult problem because
of the need to synchronise the simulation times of different simulation objects
without violating the principle of causality. The TimeWarp algorithm solves this
by executing events optimistically and later, if necessary, rolling back events that
should not in fact have been executed. A simulation executed using TimeWarp is
usually decomposed as a series of objects which communicate by passing mes-
sages. In simulation terms, these messages can be thought of as scheduling events

CHAPTER 6. CONCLUSION 82

which are specified to occur at a particular receiving object at a particular time [?].

To rollback the execution of an event two things must be accomplished: re-
store the state of the system; and undo the effect of any messages sent by the
event. This latter is accomplished by sending anti-messages following the ear-
lier messages. When an anti-message is received, it can cause two effects. If the
original message had not as yet been executed (it is queued) then it is annihilated
and no further action is taken. If the original message had been executed then
it will be rolled back (with possible transmission of further anti-messages), the
anti-message and message will ”annihilate” and execution will resume as if the
original message (and anti-message) had never been received.

A common technique for restoring the state of objects on a rollback is to take
a copy of the object’s state each time it receives a message. Then when a rollback
occurs, the appropriate previous state can be copied back into the object. One side
effect of this is that each object builds op a queue of old state copies. It is hence
necessary to eventually garbage collect these old state copies (this is referred to
as ”fossil” collection). This can only be done when it is known that a state copy
will never be required for a rollback. This is done by periodically computing a
value called the GVT (Global Virtual Time) which is equal to the minimum time
of any currently active objects or messages between objects. It is guaranteed by
the TimeWarp mechanism that no object will rollback to a virtual time prior to
GVT, and hence it is possible to fossil collect all state copies with time stamps
less than GVT. GVT is also used to ”commit” other interactions with the outside
world.

Good performance by TimeWarp relies on a number of factors. First, the cas-
cades of anti-messages induced by rollbacks must damp out quickly and not con-
tinue building. The overheads required to restore state on a rollback also cannot
be too expensive. In practice, this means that the cost of recording state changes
during forward execution must be low. Given all of this, TimeWarp is capable of
parallelising and speeding up problems that are otherwise intractable. It has been
recognised ever since the algorithm was originally proposed that TimeWarp is not
just an algorithm for parallelising discrete event simulations but is also a general
purpose technique for synchronising parallel computation. In this context it can
be seen as a generalisation of optimistic commit protocols.

Using TimeWarp, it is possible to enable transactional behaviour for objects.
In our case, actors that received a faulty message can restore their state if the
effects of the message have to be made undone and can trigger the same effect
in all the other actors that were affected by the execution of that faulty message

CHAPTER 6. CONCLUSION 83

using anti-messages. This way, actors outside the CAA may receive messages
from within the CAA, since the effects of these messages can be made undone
should the CAA not be able to commit.
There are two ways to integrate the TimeWarp technique in our CAA mechanism.
One way is to install TimeWarp in each participant by defining extra behaviour or
overriding existing behaviour. The other way is by introducing a special kind of
actors that already support the TimeWarp technique. These actors are allowed to
participate in a CAA.

6.2.2 Applications
The CAA model already has shown its merit in classic concurrent and distributed
systems. To evaluate it in an ambient oriented context, we used the CAA mech-
anism in a brief case study. However, it seems natural that the full potential and
possible problems requiring adaptation of the mechanism will only be uncovered
when it is used in a larger scale setting, since one of the primary goals of the
CAA model is to reduce the complexity of interacting concurrent processes in
such large scale applications. Therefore, future work remains the development of
larger ambient oriented applications using the CAA model to fully understand its
applicability in this context.

Appendix A

Exceptions in AmbientTalk: explicit
parent and prototype pointers

The highest object in the AmbientTalk exception hierarchy is the throwable
object. This object always responds with false to canBeHandled. To ex-

Figure A.1: Exception hierarchy with explicit parent and prototype pointers

plain the exact reason why each exception object needs to be instrumented with a
prototype and a parent pointer, consider the following simple hierarchy of excep-
tion objects depicted in figure ??. myException extends the standard exception

84

APPENDIX A. EXCEPTIONS IN AMBIENTTALK: EXPLICIT PARENT AND PROTOTYPE POINTERS85

object, which in its turn extends throwable. We illustrate two different scenar-
ios:

• A handler that catches myException is encountered on the stack after
throwing an exception myException.new(). To determine whether this
handler can be invoked, the canBeHandled mechanism needs some way
to recognise the relation between both objects. It is not sufficient to com-
pare the parents of both objects, because then this exception may be caught
by any handler that catches direct extensions of the exception object.
Therefore, every exception object has a link to the first prototype (i.e. an
extension of parent exception object) from which it was cloned.

• A more general handler catching exception is encountered on the stack
after throwing an exception myException.new(). The canBeHandled
function first compares the prototypes of the handler’s exception and the
thrown exception. Since they are not equal, the implementation needs to
check whether the handler may catch a supertype of the thrown exception.
This cannot be achieved using a super-call (since canBeHandled is
implemented in exception, super denotes throwable). Rather the
canBeHandled method must be invoked on the parent of the receiving
myException clone. Therefore this parent must be made accessible in
the object.

However, client code that seeks to define new exception types, should not be aware
of the pointer plumbing that happens behind the scenes, which is why the extend
method will take its argument (a code block wrapped in a closure) and use meta-
programming operations (table access and constructor functions) to perform these
operations entirely behind the scenes. The default extend method below shows
how two instructions (the definition of the parent of the child exception as the
prototype of the current exception and the prototype of the child exception as
the environment to be ”captured” using capture) are added to the body of the
closure (accessed by the tabulation extension[1,3]) and how this parsetree
is used to create a new closure. Also notice that the scope of the closure is set
to this, which ensures that the closure will be applied in (and thus extends) the
receiver object, rather than the call-site.

extend(extension())::{
parsetree: application(reference("begin"), [extension[1,3],
application(reference("def"), ["parentType", "prototype"]),
application(reference("def"), ["prototype", "capture()"])

]);

‘Fill in the real code‘
extension := closure(function("extension" , [], parsetree),

APPENDIX A. EXCEPTIONS IN AMBIENTTALK: EXPLICIT PARENT AND PROTOTYPE POINTERS86

this,
this);

extension()
};

Given these abstractions (combined with suitable initial values for the exception
object) the default behaviour of canBeHandled can be described as follows :

canBeHandled(handlerException)::{
if((prototype = handlerException.getPrototype()) &

(boundTo() = handlerException.boundTo()),
{ true },
{ parentType.canBeHandled(handlerException) })

};

Appendix B

Language Support for Syntactic
Extensions

In this thesis we have introduced the co-ordinated atomic action as an abstraction
construct to interactions between autonomous actors. The realisation of this ab-
straction relies on the introduction of additional syntax which heavily relies on
AmbientTalk’s language extension support.

B.1 Reification of Language Entities
AmbientTalk language entities are reified in the language as tables containing in
the slots the components of the language entity. A function for example, consists
of a name, a table of parameters and a body. Consequently, a function is reified
in the language as a table containing three slots: the name of the function, its
argument table, and its body.

87

APPENDIX B. LANGUAGE SUPPORT FOR SYNTACTIC EXTENSIONS 88

1 2 3
application name arguments /
assignment invocation expression /

closure function dictionary /
declaration invocation expression /
definition invocation expression /
function name parameters body
message receiver invocation /
reference name / /
tabulation name index /

Table B.1: Language Entities Table Representations

Each of the names in the first column of the table given here represents also
a constructor which can be used to create the corresponding language entity. For
example, a faculty function can be created as follows:

function(fac, [n], if(n < 2, 1, (n * fac(n-1))))

B.2 Functional Parameters
In AmbientTalk, functions can have two kinds of parameters: normal parameters
and functional parameters. The actual kind of a parameter is syntactically visible
in the definition of the function. Binding actual arguments to formal parame-
ters corresponds to an implicit definition of the formal parameter to the actual
argument. In the case of normal parameters, the argument is evaluated and the as-
sociated value is bound to the formal parameter before the body of the function is
evaluated. In order to describe the behaviour associated to functional parameters,
it is best to look at an example:

zero(a, b, f(x), epsilon): {
c: (a+b)/2;
if(abs(f(c)) < epsilon,
c,
if(f(a)*f(c) < 0,

zero(a, c, f(x), epsilon),
zero(c, b, f(x), epsilon)))

}

The function zero defined above is executed in an environment with four def-
initions: three variables (a, b, and epsilon) and a function f taking a single

APPENDIX B. LANGUAGE SUPPORT FOR SYNTACTIC EXTENSIONS 89

parameter x. This AmbientTalk function looks for a zero of a function f(x) be-
tween a and b given a precision epsilon. The fact that f(x) is a functional
argument results in the third expression (upon calling zero) never being evalu-
ated. The third argument is thus interpreted as an expression (depending on x)
to be used as the body for a newly defined function called f and one parameter
x. Hence, when calling zero(-1, 1, x*2-5, 0.001), the result is that
inside zero, four names are accessible: a, b, f and epsilon.

Functional parameters allow us to extend AmbientTalk in itself since they
cause their actual arguments to be delayed. The following code excerpt shows
how the AmbientTalk while function is programmed in AmbientTalk itself. In
the same way, true, false, and, or and if can be implemented as functions
that happen to delay some of their arguments:

while(cond(),body()): {
loop(value,pred): pred(loop(body(),cond()),value);
loop(void,cond())

}

The while function assumes the Church encoding of booleans:

true(t(), f()): t()
false(t(), f()): f()

These examples show how functional parameters (of zero arguments in these
cases) allow for automatic thunk creation upon calling a function. This is in
contrast to languages like SmallTalk or Self where one has to manually delay
arguments by wrapping them in a function.

B.3 Method Attributes
Another mechanism to change the behaviour of a method is to annotate it with a
special method attribute. These attributes, which can be defined in the language
itself allow modifying the behaviour of a method in a reusable manner. The evalu-
ation semantics of a method attribute is as follows: when evaluating a definition of
the form exp.m(args): body, the default behaviour for creating a method
(namely a function is created with name m, the arguments args and body) is
used. However, the created function is not yet bound in the current dictionary.
At this point, the expression exp is expected to evaluate to a function f which
takes a single parameter: the newly created function m. Rather, m will eventu-
ally get bound to the result of applying f to the unbound function. Applying f to
the method m can yield a function transformation if f is a higher order function

APPENDIX B. LANGUAGE SUPPORT FOR SYNTACTIC EXTENSIONS 90

that returns another function. This way, methods can be ”wrapped” to allow for
reusable syntax elements to be introduced in the language.

B.4 Multi-layered Syntax Extensions
There are situations in which one may want to locally introduce syntax exten-
sions. In this section, we show how this can be done using functional parameters
and method attributes by explaining the way how roles are defined in the CAA
construct (see ??).
Roles are defined by calling the roles construct with a block of code that contains
role definitions of the form role.name():: { ... }. role is an example of
a method attribute as explained in the previous section and as explained in section
?? it ensures that the specified role method returns an object that consists of the
behaviour defined in the method body plus the default behaviour exhibited by any
role. The method parameter (see below for the code) thus denotes the method
body which will be the behaviour of the role. However, the role behaviour should
also contain the necessary behaviour to allow its corresponding participant to par-
ticipate in the CAA. Therefore, we apply the role method attribute which will
perform a function transformation (as explained in the previous section) on the
method body such that the resulting behaviour from executing method() is ex-
tended with the necessary default role behaviour (this is further explained below).
The definition of the roles construct which provides a localised definition of the
role method attribute looks as follows:

roles(roledefinitions(role(method))) :: {
‘...default role behaviour...‘

}

What happens is that the role syntax is introduced locally to the code block de-
noted by roledefinitions by making roledefinitions a functional
parameter that takes in its turn a functional parameter. This functional parame-
ter denotes the method attribute definition role that will be applied on an argu-
ment method, which denotes the actual behaviour of the role. Thus executing
method() will just return the behaviour defined for the role. However, roles
need additional behaviour to allow their corresponding actors to participate in the
CAA. Therefore, the role definitions (each one denoted by a method parameter)
are wrapped using the role function as a method attribute, which is bound to a
function that returns a role by extending the behaviour returned by the function it
wraps (denoted by the method argument) with the default role behaviour.
This means concretely that each occurrence of method in the body of
roleDefinitions should evaluate to an object such that it can be extended

APPENDIX B. LANGUAGE SUPPORT FOR SYNTACTIC EXTENSIONS 91

by the role function resulting from using it as an attribute to the definition of
the method object. This way, roles will transform each definition of the form
role.name():: { ... } in the passed code block to a role object (with
all the necessary behaviour) and insert the role name and behaviour in the correct
entry of the participant-role mapping.

Appendix C

CAA Source Code

C.1 Starting the conversation

actor(obj): super().actor(extend(obj, {
startConversation(conv) :: {
fut: conv#getRoleBehaviour(thisActor());
when(fut, becomes(participantsAndBehaviour) -> {
mixin(this(), participantsAndBehaviour[2]);
participants := participantsAndBehaviour[1];
"roleReady"

})
}

}));

C.2 Mapping participants to roles

participant2RoleMap: smallmap.new();

participants(bindings(participant=>role())) :: {
bindings(participant2RoleMap.put(
participant, [‘ RECORD ‘
‘ ROLE NAME : ‘ role[1,3,1],
‘ BEHAVIOUR : ‘ void

]))
};

C.3 Defining roles

92

APPENDIX C. CAA SOURCE CODE 93

roles(roledefinitions(role(method))) :: {
fillBehaviours(name, behaviour) :: {
theRoles : participant2RoleMap.getValuesVector();
theRoles.iterate(lambda(record) -> {
if(record[1] ˜ name,
if(record[2] ˜ void,
record[2] := behaviour,
error("Role Behaviour has multiple definitions")))

})
};

roledefinitions({
‘ method is supposed to evaluate to an object ‘
roleBehaviour : method();
roleBehaviour := extend(roleBehaviour, {
oldDct : void;
oldOutbox : void;
oldInbox : void;

participants : void;
blockedMessages : vector.new();
blockedMailboxes : vector.new();

roleHandlers : vector.new();

getCAA() : participants.get(participants.size());

save() :: {
oldDct := copy(this());
oldOutbox := copy(outbox);
oldInbox := copy(inbox)

};

restore() :: {
become(oldDct);
outbox := oldOutbox;
inbox := oldInbox

};

setParticipants(parts) :: participants:=parts;

add(mbx, msg) :: {
if (((participants.contains(msgSource(msg)) &

participants.contains(msgTarget(msg))) |
(!participants.contains(msgSource(msg)) &
!participants.contains(msgTarget(msg)))), {

super().add(mbx, msg)
}, {

APPENDIX C. CAA SOURCE CODE 94

blockedMessages.add(msg);
blockedMailboxes.add(mbx) })

};

handler(h): roleHandlers.add(h);

CAAStarted(caaFuture, handlers) :: {
whenArgs: append([caaFuture,
lambda(result) -> void

], handlers.asTable());
fut: when@whenArgs;
when(fut, becomes(result) -> {
‘Release blocked messages‘
for(i: 1, i<blockedMessages.size(), i:=i+1, {
super().add(blockedMailboxes.get(i), blockedMessages.get(i))

});
undoMixin(this())

})
}

});

fillBehaviours(method[1,1], rolebehaviour);

‘ return a mechanism to make a new instance ‘
roleBehaviour.new()

})
};

C.4 Defining exceptions

exceptions(defs()) :: {
theRoles : participant2RoleMap.getValuesVector();
theRoles.iterate(lambda(record) -> {
record[2] := extend(record[2], defs())

});
defs()

};

C.5 Defining exception resolutions

resolution@args :: args;

concert@args :: {
if (size(args) < 2, {

APPENDIX C. CAA SOURCE CODE 95

error("Concert expects at least two arguments")
},
args)

};

C.6 Executing the CAA

CAA(participant2Roles, roles, code(), exceptions, exceptionRules) :: {
participants: vector.new();
for(i: 1, i<=size(roles), i:=i+1, {
participants.add(participant2RoleMap.keys().get(i))

});

conv: conversation(participants, groupMixin(futuresMixin({
participants.add(thisActor());

participantsReady: 1;

CAAFailedException: extend(Exception, {
type: "CAAFailedException"

});

resolveRules: vector.new();

returnedFuture: void;

rollback() :: {
outbox.clear();
inbox.clear();
participants.iterate(lambda(p) -> {

p#restore()
})

};

getRoleBehaviour(participant) :: {
[participants, participant2RoleMap.get(participant)[2]]

};

getHandlers(participant) :: {
participant2RoleMap.get(participant)[3]

};

‘Checks whether each exception in exc has a supertype
in comb. If this is the case, exc matches the exception
rule comb‘
matches(exc, comb): {

APPENDIX C. CAA SOURCE CODE 96

match: true;
for(i: 1, i<=exc.size(), i:=i+1, {
ok: comb.detect(lambda(el) -> {
exc.get(i).canBeHandled(el)

});
if(!ok, match := false)

});
match

};

start()::{
for(i:1, i<=size(exceptionRules), i:=i+1, {
rule: vector.newWithTable(exceptionRules[i][1]);
resolveRules.add(rule)

});
when(,
group({
for(i: 1, i<participants.size(), i:=i+1, {
participants.get(i)#save()

})
}, resolve(exc) -> void

),
becomes(saveOk) -> {
returnedFuture := group(code(), resolve(exceptions) -> {
‘concert/catch/propagate according to CAA exceptionRules‘
for(i:1, i<=resolveRules.size(), i:=i+1, {
combination: resolveRule.get(i);
rule: exceptionRules[i];
if(matches(exceptions, combination),
if(size(rule) < 3,
rule[2].throw(),
try(rule[2].throw(), rule[3])))

})
})

},
due(TimeOut, {
CAAFailedException.new(
"Participant state save failed").throw())

}))
};

start();

capture()
})));

returnedFuture
};

Appendix D

Case Study Source Code

D.1 Event Object

makeEvent(id, capacity, fee) :: object({
id_: id;
capacity_: capacity;
fee_: fee;
participants_: vector.new();

EventFullException: extend(Exception, {
type: "EventFullException"

});

getProvider() :: provider_;

addParticipant(participant) :: {
if (participants.size() = capacity_, {
EventFullException.new("Event "+id+" full").throw()

}), {
participants_.add(participant)

}
}

})

D.2 Event Provider Actor

eventProviderActor(id, agency, event) :: actor(object({
id_: id;
agency_: agency;
event_: event;
credits_: 0;

97

APPENDIX D. CASE STUDY SOURCE CODE 98

getEvent() :: event_;
getFee() :: fee_

}))

D.3 Agency Actor

agencyActor(id) :: actor(object({
id_: id;
eventProviders_: vector.new();
travellers_: vector.new();

addEventProvider(ep) :: eventProviders_.add(ep);
removeEventProvider(ep) :: eventProviders_.remove(ep)

}))

D.4 Traveller Actor

travellerActor(id, agency, initCredits) :: actor(object({
id_: id;
agency_: agency;
eventProviders_: vector.new();
bookedEventProviders_: vector.new();
credits_: initCredits;

updateEventProviders(ep) :: eventProviders_ := ep;

bookEvent(eventProvider) :: {
BookingFailedException: extend(Exception, {
type: "BookingFailedException"

});
BookingFailedHandler: catch(BookingFailedException, {
rollback();
currentException.throw()

});
CAA(
participants({
agency_ => agency,
thisActor() => client,
eventProvider => provider

}),
roles({
role.agency() :: {
isEventProvider(ep) :: {

APPENDIX D. CASE STUDY SOURCE CODE 99

if(eventProviders_.contains(ep),
true,
UnknownEventException.new("Event not available").throw()

)
};

handler(catch(UnknownEventException, {
client#updateEventProviders(eventProviders_)

}))
};

role.client() :: {
withdraw(amount) :: {
if (amount > credits_, {
NotEnoughFundsException.new(
"Not enough funds").throw()

}, {
credits_ := credits_ - amount

})
};

handler(catch(EventFullException, {
display("The event "+currentException.boundTo().getId+
" is full. Please pick another event.")

}));

handler(catch(BookingFailedException, {
display("Booking event failed.
Please try again later.")

}));

handler(catch(UnknownEventException, {
display("Event is not available.
Please pick another event.")

}));

handler(catch(NotEnoughFundsException, {
display("You have not enough funds
to participate in this event.")

}))
};

role.provider() :: {
addParticipant() :: {
try({
when(client#withdraw(fee_),
becomes(ok) -> {
deposit(fee_);
event_.addParticipant(client)

APPENDIX D. CASE STUDY SOURCE CODE 100

}, due(timeOut, {
BookingFailedException.new(
"Client not responding").throw()

}))
}, catch(EventFullException, {
getCAA()#rollback();
EventFullException.bindTo(event_).throw()

}))
};

deposit(amount) :: credits_ := credits_ + amount
}

}),

{
when(agency#isEventProvider(eventProvider), becomes(ok) -> {
when(provider#addParticipant(client), becomes(val) -> void,
due(timeOut, {
BookingFailedException.new(
"Event provider not responding.").throw()

}))
}, due (timeOut, {
BookingFailedException.new("Agency not responding").throw()

}))
},

exceptions({
EventFullException: extend(Exception, {
type: "EventFullException"

});
UnknownEventException: extend(Exception, {
type: "UnknownEventException"

});
NotEnoughFundsException: extend(Exception, {
type: "NotEnoughFundsException"

});
BookingFailedException: BookingFailedException

}),

resolution(
concert([BookingFailedException],
BookingFailedException,
BookingFailedHandler),

concert([BookingFailedException,
BookingFailedException],

BookingFailedException,
BookingFailedHandler),

concert([BookingFailedException,
BookingFailedException,

APPENDIX D. CASE STUDY SOURCE CODE 101

BookingFailedException],
BookingFailedException,
BookingFailedHandler)

)
)

}
}))

Bibliography

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[Agh90] Gul Agha. Concurrent object-oriented programming. Commun.
ACM, 33(9):125–141, 1990.

[AH86] Gul Agha and Carl Hewitt. Concurrent programming using actors:
Exploiting large-scale parallelism. Massachusetts Institute Of Tech-
nology Artificial Intelligence Laboratory, 1986.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concur-
rency and distribution in object-oriented programming. ACM Com-
put. Surv., 30(3):291–329, 1998.

[BK03] Peter A. Buhr and Roy Krischer. Bound exceptions in object pro-
gramming. European Conference on Object-Oriented Programming,
2003.

[BM00] Peter A. Buhr and W. Y. Russell Mok. Advanced exception handling
mechanisms. IEEE Trans. Softw. Eng., 26(9):820–836, 2000.

[Bri88] Jean-Pierre Briot. From objects to actors: Study of a limited symbio-
sis in smalltalk-80. Proceedings of the 1988 ACM SIGPLAN work-
shop on Object-based concurrent programming, September 1988.

[BRR+00] D. M. Beder, A. Romanovsky, B. Randell, C. R. Snow, and R. J.
Stroud. An application of fault tolerance patterns and coordinated
atomic actions to a problem in railway scheduling. SIGOPS Operat-
ing Systems Review, 34(4):21–31, 2000.

[BRRR01] Delano M. Beder, Brian Randell, Alexander Romanovsky, and Ce-
cilia. M.F. Rubira. On applying coordinated atomic actions and
dependable software architectures for developing complex systems.
International Symposium on Object-Oriented Real-Time Distributed
Computing, IEEE, 4, 2001.

102

BIBLIOGRAPHY 103

[BS95] David E. Bakken and Richard D. Schlichting. Supporting fault-
tolerant parallel programming in Linda. IEEE Transactions on Par-
allel and Distributed Systems, 6(3):287–302, 1995.

[BSd82] Roy J. Byrd, Stephen E. Smith, and S. Peter deJong. An actor-based
programming system. In Proceedings of the SIGOA conference on
Office information systems, pages 67–78, New York, NY, USA, 1982.
ACM Press.

[CC05] Denis Caromel and Guillaume Chazarain. Robust exception handling
in an asynchronous environment. In ECOOP Workshop on Exception
Handling in Object-Oriented Systems: Developing Systems that Han-
dle Exceptions, 2005.

[CPK95] J. G. Cleary, M. Pearson, and H. Kinawi. The architecture of an op-
timistic cpu: the warpengine. In HICSS ’95: Proceedings of the 28th
Hawaii International Conference on System Sciences (HICSS’95),
page 163, Washington, DC, USA, 1995. IEEE Computer Society.

[DB04] Jessie Dedecker and Werner Van Belle. Actors for mobile ad-hoc net-
works. Lecture Notes in Computer Science, 3207:482–494, August
2004.

[DCM+05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient oriented programming. OOPSLA
’05: Companion of the 20th annual ACM SIGPLAN conference on
Object-Oriented programming systems, languages and applications,
ACM Press, 2005.

[Don01] Christophe Dony. A fully object-oriented exception handling sys-
tem: rationale and smalltalk implementation. Advances in exception
handling techniques, pages 18–38, 2001.

[DVM+] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-oriented programming in ambi-
enttalk. European Conference on Object-Oriented Programming.

[EM97] W. Keith Edwards and Elizabeth D. Mynatt. Timewarp: techniques
for autonomous collaboration. In CHI ’97: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
218–225, New York, NY, USA, 1997. ACM Press.

[Goo75] John B. Goodenough. Exception handling: issues and a proposed
notation. Commun. ACM, 18(12):683–696, 1975.

BIBLIOGRAPHY 104

[IR05] Alexei Iliasov and Alexander Romanovsky. Exception handling in
coordination-based mobile environments. In COMPSAC ’05: Pro-
ceedings of the 29th Annual International Computer Software and
Applications Conference (COMPSAC’05) Volume 1, pages 341–350,
Washington, DC, USA, 2005. IEEE Computer Society.

[Iss93] Valérie Issarny. An exception handling mechanism for parallel
object-oriented programming: towards the design of reusable, and ro-
bust distributed software. Journal of Object-Oriented Programming,
1993.

[Iss01] Valérie Issarny. Concurrent exception handling. pages 111–127,
2001.

[iTY00] Shin ichi Tazuneki and Takaichi Yoshida. Concurrent exception han-
dling in a distributed object-oriented computing environment. In IC-
PADS ’00: Proceedings of the Seventh International Conference on
Parallel and Distributed Systems: Workshops, page 75, Washington,
DC, USA, 2000. IEEE Computer Society.

[IY91] Yuuji Ichisugi and Akinori Yonezawa. Exception handling and real
time features in an object-oriented concurrent language. In Pro-
ceedings of the UK/Japan workshop on Concurrency : theory, lan-
guage, and architecture, pages 92–109, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[KBS+01] K.Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J-C. Burgel-
man. Istag scenarios for ambient intelligence in 2010. Information
Society Technologies Advisory Group, European Commission, 2001.

[Kin] Joseph R. Kiniry. Exceptions in java and eiffel: Two extremes in
exception design and application.

[KRS01] Jörg Kienzle, Alexander Romanovsky, and Alfred Strohmeier. Open
multithreaded transactions: Keeping threads and exceptions under
control. In 6th International Workshop on Object-Oriented Real-Time
Dependable Systems, Roma, Italy, 8 - 10 January, 2001, pages 197–
205, Los Alamitos, California, USA, 2001. IEEE Computer Society
Press.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In OOPLSA ’86: Conference
proceedings on Object-oriented programming systems, languages

BIBLIOGRAPHY 105

and applications, pages 214–223, New York, NY, USA, 1986. ACM
Press.

[MDB+] Stijn Mostinckx, Jessie Dedecker, Elisa Gonzalez Boix, Tom Van
Cutsem, and Wolfgang De Meuter. Ambient-oriented exception han-
dling.

[Mey88] Bertrand Meyer. Disciplined exceptions. Technical report, Goleta,
CA, 1988.

[Mil04] Robert Miller. The guardian model and primitives for exception han-
dling in distributed systems. IEEE Trans. Softw. Eng., 30(12):1008–
1022, 2004. Member-Anand Tripathi.

[MPR01] A. Murphy, G. Picco, , and G.-C. Roman. Lime: A middleware for
physical and logical mobility. In ICDCS ’01: Proceedings of the
The 21st International Conference on Distributed Computing Sys-
tems, page 524, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[MT02] Robert Miller and Anand Tripathi. The guardian model for exception
handling in distributed systems. In SRDS ’02: Proceedings of the
21st IEEE Symposium on Reliable Distributed Systems (SRDS’02),
page 304, Washington, DC, USA, 2002. IEEE Computer Society.

[MTS05] Mark S. Miller, Eric Dean Tribble, and Jonathan Shapiro. Concur-
rency among strangers: Programming in e as plan coordination. In
TGC, pages 195–229, 2005.

[MZL02] M. Mamei, F. Zambonelli, and L. Leonardi. Programming context-
aware pervasive computing applications with tota, 2002.

[MZL03] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on
the air: A middleware for context-aware computing in dynamic net-
works. In ICDCSW ’03: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, page 342, Washington,
DC, USA, 2003. IEEE Computer Society.

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Lime:
Linda meets mobility. In ICSE ’99: Proceedings of the 21st inter-
national conference on Software engineering, pages 368–377, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

BIBLIOGRAPHY 106

[SDUV] Frederic Souchon, Christophe Dony, Christelle Urtado, and Sylvain
Vauttier. Improving exception handling in multi-agent systems.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Or-
ganizing programs without classes. Lisp Symb. Comput., 4(3):223–
242, 1991.

[VG00] Julie Vachon and Nicolas Guelfi. COALA: a design language for
reliable distributed system engineering. In Workshop on Software
Engineering and Petri Nets, pages 135–154. DAIMI, June 2000.

[Wei93] Mark Weiser. Ubiquitous computing. IEEE Computer Hot Topics,
1993.

[Wei95] Mark Weiser. The computer for the 21st century. pages 933–940,
1995.

[XRR98] Jie Xu, Alexander B. Romanovsky, and Brian Randell. Coordinated
exception handling in distributed object systems: From model to
system implementation. In International Conference on Distributed
Computing Systems, pages 12–21, 1998.

[Xu88] A. S. Xu. A FAULT-TOLERANT NETWORK KERNEL FOR
LINDA. Technical Report MIT/LCS/TR-424, 1988.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama.
Object-oriented concurrent programming abcl/1. In OOPLSA ’86:
Conference proceedings on Object-oriented programming systems,
languages and applications, pages 258–268, New York, NY, USA,
1986. ACM Press.

[ZS99] A. F. Zorzo and R. J. Stroud. A distributed object-oriented frame-
work for dependable multiparty interactions. In OOPSLA ’99: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 435–446,
New York, NY, USA, 1999. ACM Press.

