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Abstract

Evolving a software implementation requires that the developer has a good under-
standing of what the system does. In practice however a lot of domain knowledge
about the software that was available when the system was first conceived is only
available to the current developer in an implicit form. Furthermore, even when
the domain knowledge is available in an explicit form, the developer also needs
to know to which part of the implementation the knowledge applies to. Unfor-
tunately this knowledge is often detached from the implementation which forces
the developer to re-establish the link retroactively. Moreover, as a result of short
term development economics, developers will often neglect to document and cou-
ple the domain knowledge about a system in favor of writing code. This results
in a passive source of documentation that will quickly become out-of-date. This
dissertation presents a concept-centric environment which is based upon a sym-
biotic integration of the programming environment (code level) and the domain
knowledge environment (concept level). It allows a developer to capture domain
knowledge in an explicit form, which is coupled to the corresponding implemen-
tation. Moreover it enables the active participation of the domain knowledge in
providing the functionality of the software. This installs a bi-directional interac-
tion between the concept level and the code level which can be used to create a
documented and malleable implementation of a software system.
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Chapter 1

Introduction

1.1 Thesis Motivation

In order to survive in today’s highly dynamic marketplace, companies must show
a continuous and ever-increasing ability to adapt. This pertinent need for change
has a clear impact on the software systems that support business activities. For
example when the business side of a new product or service is conceived, the
software side immediately needs to accommodate it. The delivery of new products
or services simply cannot be postponed just because the software system is not
ready to handle them. Thus a need for change in the business domain requires
that the supporting software system be adapted as swiftly as possible. The level
of agility that is necessary to keep up with the business side of this ‘adaptability
challenge’ consequently is translated to the software side. This puts contemporary
software development practice under a continuous strain to achieve results within
an extremely limited time-span.

Incorporating new functionality in an existing system is done during the evo-
lution stage of a software’s life cycle. This stage is mainly about continued devel-
opment, but traditional maintenance activities such as bug fixing also take place.
In this dissertation we focus on the continued development of object-oriented
applications written in a class-based programming language.

For the remainder of this section we will briefly zoom in on the problems that
are tackled in this dissertation. In essence our problem statement is centered
around the following keywords:

• Implicit domain knowledge
The domain knowledge about a software implementation and its associated
business domain is only available in an implicit form to a developer. This
is problematic for code comprehension during the evolution of the system.

• Detached domain knowledge
Even when domain knowledge is available in an explicit form, it is detached

1



2 CHAPTER 1. INTRODUCTION

from the implementation. This is problematic since reconnecting the do-
main knowledge retroactively to the implementation is a difficult process.

• Passive domain knowledge
Domain knowledge is neglected by developers since it plays a passive role
with respect to providing the behavior of the application. This is problem-
atic since this results both in more implicit domain knowledge and out-of-
date domain knowledge.

• Overhead for the developer
Documenting what is known about a software implementation and its as-
sociated business domain provides an overhead for the developer. This is
problematic since it only adds to the reasons why domain knowledge be-
comes implicit.

Implicit domain knowledge

A request for evolution is expressed by the customer in terms of business con-
cepts and not in terms of implementation concepts. Suppose for example an
insurance company that wants to introduce multiple ways in which an insurance
product can be cancelled. When expressing this need for change, the business
expert will use existing concepts such as Cancellation Procedure, Insurance
Object, Insurance Type Code, and Renewal Main Date. In the existing imple-
mentation this could result in the extraction of the entangled cancellation code
into a Strategy Pattern, the refactoring of a number of classes, and the extension
of existing user interfaces. Because of the above and in order to be able to per-
form the required adaptations, the developer hence needs to map the evolution
request onto the existing design and implementation. Therefore he needs to have
a profound understanding of what the system does. This involves a lot of domain
knowledge about both the problem domain and the solution domain. Moreover
he needs to know which part of the implementation is responsible for the func-
tionality associated with a certain business concept. This implies a link between
his domain knowledge and the corresponding implementation. So, for example,
in addition to understanding what a cancellation procedure means, he also needs
to find out which code entities take care of the existing cancellation functionality.

Acquiring knowledge about a computer program is the mission of the code
comprehension process. The knowledge that is acquired can range from struc-
tural information (e.g. what are the senders of a message) to business domain
knowledge (e.g. what is an insurance renewal main date). A programming envi-
ronment can provide automated support to discover the former, but not for the
latter type of knowledge. It is estimated that up to 60 percent of software evo-
lution is spent on comprehension [ABDT04]. This is because a lot of knowledge
about the software system and its associated business domain is not captured in
an explicit form. The majority of this knowledge remains implicit in the brains of
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the original developers or is simply lost because the experts have switched com-
pany or project team. Even in a model-centric approach to software development,
not every kind of knowledge is made explicit. For example the motivation of a
particular design decision is usually not documented in the models. This is why a
lot of time is spent on rediscovering what was known by the original developers.

In order to reduce the possible loss of domain knowledge, we need a mechanism
that makes it possible to capture this knowledge in an explicit form.

Detached domain knowledge

Not only domain knowledge is important, but also the link to the corresponding
implementation entities. Empirical evidence shows that developers that evolve
an existing implementation find this information extremely important [KSP04].
Mapping domain knowledge onto code is difficult in nature. This is in part be-
cause domain knowledge cannot always be identified with one specific location in
the code. Most of the time the corresponding functionality is scattered through-
out the implementation. Since this mapping process is extremely time-consuming,
it is important that a developer can attach his findings to the code once this map-
ping is complete. Also, even when a case tool is used to model the software, the
problem of the missing link still exists. This is the result of the dichotomy be-
tween the traditional analysis-design-implementation phases. In general this boils
down to the fact that the artifacts are decoupled each time control is passed from
one phase to another. Consequently even though the knowledge remains available
in an explicit form, in the end it becomes detached from the implementation.

In addition, to make a software implementation more flexible towards possible
future change, developers strive towards a malleable implementation. One basis
for achieving such malleability is to strive towards genericity in the code (a.k.a.
keeping the software soft). Genericity can be achieved by pushing as much of
the code as possible towards the data level. An example is loading the different
insurance cancellation procedures at runtime in a dictionary instead of making
them explicit in method bodies. Unfortunately such malleability comes at a price.
In general it does not improve readability of the code since a lot of details, as
well as the intention of the code, become hidden in the data. This results in
less explicit code, a detachment of the domain knowledge from the code, and
consequently more implicit domain knowledge.
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In order to reduce the effort spent by developers on retroactively matching
domain knowledge to its corresponding implementation, we need a mechanism
that makes it possible to couple the domain knowledge to the implementation.

Passive domain knowledge

Spending time on documenting the domain knowledge for a software system is
time that cannot be spent on development. This is why documenting is often
neglected by developers in favor of writing code that contributes to the next
release of the system. As a consequence the domain knowledge is not maintained
properly and will quickly become out-of-date. This phenomenon is even more
pronounced in agile development environments where short delivery cycles are
the norm.

The reason why domain knowledge does not directly contribute to the func-
tionality of the system is because it plays a passive role with respect to the
execution of the software. Moreover there is no straightforward mapping that
can be automatically applied to transform domain knowledge into an implemen-
tation and vice versa. This is in part due to the often very informal nature of
domain knowledge and because it cannot always be brought back to one specific
location in the code. As a consequence the domain knowledge will quickly become
out-of-sync with the implementation and vice versa. Therefore the usefulness of
the explicit domain knowledge will rapidly degrade over time.

In order to motivate developers not to neglect the domain knowledge,
we need a mechanism that makes it possible to involve the domain

knowledge actively to provide the functionality of the software system.

Overhead for the developer

As we already alluded, developers perceive documenting what is known about
the implementation as an overhead. This is not only due to the fact that do-
main knowledge is a passive source of information. It has also to do with the
fact that writing down the domain knowledge associated with a system is often
done outside the development environment. As a consequence developers need
to switch frequently between environments. This results in an overhead during
development which discourages developers to keep the domain knowledge up to
date.
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In order to motivate developers not to neglect the domain knowledge,
we need to implement the interaction with the domain knowledge environment

as transparently as possible.

Summary

Software developers responsible for evolving an existing implementation must
grasp the intentions and assumptions made by the original developers of the
system. This is a problem because most of the domain knowledge about the
system is only available in some implicit or tacit form. Even in a context where
such domain documentation exists in an explicit form, this documentation is
detached from the current implementation. This means that the programmer will
have to find out manually which part of the documentation matches with which
part of the implementation. The main reason why domain knowledge becomes
implicit and detached is because it does not yield a short-term economic benefit
for the developers. As a consequence it acts as as passive form of documentation.
Consequently it is not maintained properly and will quickly become out-of-date.
This is mainly due to the fact that developers perceive documenting what is
known about the implementation as an overhead. The problems discussed above
are even more pronounced in the context of agile software development, where
the next release of the system is only hours away.

1.2 Thesis Statement

In this thesis we present a concept-centric environment in which domain knowl-
edge is represented in an explicit concept level. This significantly reduces the
potential loss of domain knowledge and acts as a source of documentation for de-
velopers during evolution. The concept-centric environment empowers developers
to make the coupling between entities that reside in the concept level and entities
that reside in the code level explicit. This reduces the effort spent by developers
on rediscovering the link between domain knowledge and the implementation.
Furthermore domain knowledge that is captured in the explicit concept level also
plays an active role during the execution of the software. This means that the
concept level contributes to the functionality of the next release of the system.
Since maintaining the concept level now yields a short term benefit (as opposed
to the long term promise for future evolution efforts), developers will no longer
neglect it in favor of writing code. Moreover the activation of the concept level
can be used to enhance the malleability of the software. This is achieved by refac-
toring the code level to make use of the concept level. As a consequence certain
adaptations become possible by changing the concept level instead of the code
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level. In addition to this, the environment is conceived in a way that it is not
perceived by developers as an overhead. This means that the interaction with the
concept-centric environment is as transparent as possible with respect to the tools
and formalisms used. This is realised by a symbiotic integration of the concept
level and the programming environment. In summary the thesis statement for
this dissertation is formulated as follows:

A symbiotic integration of a programming environment with
an explicit concept level that is coupled to the code level

supports domain knowledge documentation
in the context of agile evolution

and amplifies the malleability of software through
active concept level participation.

We will refer to a system as a concept-centric environment if it corrobo-
rates the thesis statement.

1.3 Thesis Approach

The conceptual framework for a concept-centric environment is based upon the
following antonyms for the keywords of section 1.1:

• From implicit towards explicit

• From detached towards coupled

• From passive towards active

• From overhead towards transparency

From implicit towards explicit

We have seen that most domain knowledge in software systems is only available in
an implicit form, which impedes the programmer’s understanding of the system.
So when a programmer tries to comprehend the intended meaning of a piece of
code, he will need to fall back on the own domain expertise or the domain ex-
pertise of others. Since such domain knowledge forms an essential ingredient for
performing software evolution, it is of the utmost importance to make it available
in a more reliable form. Therefore we set up an infrastructure that is used as an
ontology to represent this valuable source of information in an explicit way. The
repository that holds the domain knowledge is referred to as the ConceptBase
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of the concept-centric environment. The concepts are described using a frame-
based representation that relates concepts to each other in a concept network. A
definition frame for a concept is created that contains slots that hold a relation
(which is also a concept) and a number of destinations. The destinations can be
concepts or terminal values, depending on the chosen ontological granularity. The
resulting set of slots is referred to as the extension of the concept. In order to
minimise the cognitive overhead perceived by developers we use the same syntax
and interaction mechanisms of the underlying programming language to manipu-
late the concept level. As a consequence, interacting with the concept level or the
code level is transparent for a developer with respect to both aspects. We follow
a prototype-based approach to avoid a developer having to commit to a premature
structure for modeling the concept level. This implies that concepts are defined
ex-nihilo (from scratch) or by cloning of an existing concept definition. This
maximises the flexibility for domain concept reification since it is not necessary
to switch between a class and an object view to alter a concept definition.

From detached towards coupled

Unfortunately, having access to an explicit source of domain knowledge presents
only a partial solution to the problem. As we have seen, a programmer still needs
to map this knowledge to the implementation (a.k.a. the code level), mostly
in a retroactive way. This is unfortunate since there probably existed a clear
link between the knowledge and its implementation when it was first conceived.
Therefore we establish a coupling between the concept level and the corresponding
code level in a proactive way. This means that we provide support for a developer
to connect the entities of both levels continuously during development.

In order to be able to couple code level entities to concept level entities we
automatically deify code level entities towards the ConceptBase. The process
that generates a concept representation for a code level entity is referred to as
conceptification. It is based on two decisions with respect to the granularity of
the concept level representation: what to represent about the code entity (e.g.
superclass, instance variables, methods) and how to represent it at the concept
level (e.g. represent its methods as concepts or terminals). A prescription that
defines what to represent and how to represent it is used to compute the inten-
sion of a concept. Computing this intension is done by using the introspective
capabilities of the programming language.

A coupling between code level entities and domain knowledge is obtained by
providing an extension for a conceptified code entity. This boils down to relating
the conceptified code entity to other entities at the concept level by extending its
definition frame with the necessary slots.
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From passive towards active

Since no universal function exists that can transform the concept level into the
code level and vice versa, special care must be taken to make sure that both
levels do not become out-of-sync. Since the economics of performing changes at
the code level will yield the best short-term benefits, programmers will tend to
neglect the concept level. In general they will focus on getting the code right
since this results in an immediate improvement of the overall behavior of the
application. Hence allocating a lot of effort to update this passive promise of
documentation usually has a very low priority. As a consequence the concept
level will quickly become out of sync with the code level. As a result it will be of
little or no use for future evolution efforts. Therefore it is important to activate
the domain knowledge. By this activation we mean that it contributes to the
functionality of the software as much as possible. Thus we provide a means to
write concept level statements within normal code that consult, create, update, or
delete concept level entities. Moreover, the conceptification of a code level entity
can be triggered from within the code by using an up/down mechanism. This
enables a developer to write code that consults its own concept representation
in order to perform a given task. It also lets a developer take advantage of the
concept level relationships between code level entities.

By factoring out explicit decisions in the code to the concept level, the active
participation of the concept level results in improved malleability of the imple-
mentation. Even though this results in less explicit code, the ConceptBase holds
the explicit representation of the associated concept network. Consequently the
concept level will act as documentation for future developers by revealing what
is no longer visible at the code level. Moreover this results in a co-evolutionary
situation that is beneficial for both the concept and the code level. An application
that is built with an active concept level is characterised as ontology-driven.

From overhead towards transparency

In order to promote making explicit what one knows, as well as coupling it to
the implementation and using it actively from within the code, it is necessary to
ensure that programmers don’t perceive the concept level as an extra overhead.
Part of the problem is a result of the antibiosis between the concept and the code
level: spending time at the concept level results in less time available for coding
and vice versa. Therefore we set up an environment in which both levels exist in
symbiosis with each other. This way the use of both sides becomes as transparent
as possible for the programmer. This is realised by making sure that the interac-
tion with objects and concepts is done in a similar fashion. Hence concepts are
manipulated by sending messages, and the syntax used to express this is the same
as for the programming language. Transparency is further obtained with a close
integration between the concept environment and the programming environment.
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This means that all the tools available for interacting with the concept level are
closely integrated with the existing programming tools.

From vision towards practical implementation

A proof-of-concept environment (CoBro) was implemented that exhibits the
necessary elements to be justified as a concept-centric environment. CoBro is
implemented in Smalltalk and uses a relational database to hold the ConceptBase.
It is implemented in close symbiotic integration with Smalltalk. This implies that
our concept language (CoBro-CML) uses the syntax and interaction mecha-
nisms of Smalltalk. Moreover all the CoBro-tools are closely integrated with
the existing Smalltalk development environment. CoBro is used as a vehicle to
validate the practical attainability of setting up a concept-centric environment
as proposed in this dissertation. When the initial version of CoBro was com-
pleted, we refactored elements of it to enhance the malleability through active
concept level participation. As a consequence CoBro was applied to itself to test
the validity of our claims. CoBro was also applied during our work performed
for research projects in collaboration with industry. As a consequence, the con-
cept level, as well as the CoBro environment were refactored on a regular basis
when new insights were gained. These practice-driven adaptations to the CoBro
environment make it into what it currently is: a highly flexible concept-centric
environment which is based on a lightweight conceptual model.

1.4 Thesis Contributions

The main contributions of the research presented in this dissertation are:

• Identification of the Need for an Explicit Concept Level
An analysis is performed that identifies the key role and associated
problems of domain knowledge for software evolution in an agile context.

• Concept-centric Environment
A conceptual framework for a concept-centric environment is set up
in which domain knowledge can be made explicit, coupled to the code,
and used in an active way. Obliviousness for the developer is
accomplished with a symbiotic integration between the programming
environment and the concept environment.
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• Concept-driven Malleability
A mechanism is conceived that enables a developer to invoke, at runtime,
the concept level relationships that exist between code level entities.
Moreover a means to achieve software malleability is provided that
eliminates the drawback of less explicit code. In addition, support
is offered to developers to set up the infrastructure for creating
a malleable software implementation.

• CoBro
A highly extensible proof-of-concept environment named CoBro
is introduced and used as a vehicle to validate the feasibility of a
concept-centric environment. Furthermore the prerequisites to
implement a concept-centric environment are established.

1.5 Organisation of the dissertation

Chapter 2: Software Evolution in an Agile Context
Introduces agile software evolution to position the research presented in this

dissertation. Moreover it identifies implicit and detached domain knowledge as
problematic in the context of agile software evolution.

Chapter 3: Domain Knowledge and Ontologies
Dedicated to an in-depth discussion of the topic of domain knowledge. Since

the approach presented in this dissertation is inspired by ontology research, we
introduce the elements of importance to this research.

Chapter 4: A Concept-centric Environment
Provides a detailed discussion of the problems mentioned in the introductory

chapters. Moreover it introduces the foundations required for the concept-centric
environment we propose in this dissertation.

Chapter 5: The CoBro Environment
Zooms in on the practical environment we implemented as a proof-of-concept

in order to validate the claims made in this dissertation. It provides a technical
discussion of the different elements that constitute the CoBro environment.

Chapter 6: CoBro by Example
Illustrates the basic interaction with the CoBro environment. This is done
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in an example-based fashion, where each example will address a particular aspect
of CoBro.

Chapter 7: CoBro Applied
Illustrates the use of CoBro with a number of advanced applications so as

to validate the claims of this dissertation.

Chapter 8: Conclusions
Presents the conclusions of this dissertation. We start by summarising the

problem statement and contributions, after which we discuss our conclusions.
The dissertation is ended with an elaboration of future research directions.





Chapter 2

Software Evolution in an Agile Context

The evolution of a software system can be interpreted in many ways, ranging from
manual bug-fixing to self-adapting software that can alter its behavior depending
on changes in the environment. In order to position the contributions of this
dissertation, we dedicate this chapter to describing a characterisation of software
evolution. Also we discuss why having access to the domain knowledge of the
original developers is a key to successful evolution.

In section 2.1 we briefly stipulate a number of definitions for software main-
tenance in concert with the concept of software evolution. After this we will
zoom in on the different categories of maintenance activities and on the notion of
continued development. We will also position software evolution with respect to
software aging and how it fits inside the staged model of the software lifecycle.
We end the section by introducing the concept of malleable software, and the
difference between run-time and development-time malleability.

Section 2.2 positions the evolutionary stage of software within contemporary
and traditional development approaches. We broadly characterise current devel-
opment approaches as being either code-centric or model-centric. We conclude
with a discussion of the difference between synchronisation and co-evolution of
code and models.

In section 2.3 we discuss the importance of domain knowledge for successful
software evolution. Since a lot of knowledge becomes implicit after initial devel-
opment, we will elaborate on the main causes for this. We end the section with
an investigation of the different kinds of knowledge that are needed the most
by maintainers. The topic of domain knowledge will be covered extensively in
chapter 3.

2.1 Software maintenance and evolution

The term software evolution is not just a replacement for the nowadays less fash-
ionable term software maintenance. Even though the former was coined more

13
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recently and is often used as a hypernym for the latter, one cannot plainly state
that it constitutes a conceptual superset. This section is dedicated to pinpoint
the actual difference between both software evolution and maintenance in order
to narrow down the scope of our problem domain.

2.1.1 Defining Software Maintenance

The IEEE1219-1998 standard [IEE98] defines software maintenance as the pro-
cess of modifying a software system or component after delivery to correct faults,
improve performances or other attributes, or adapt to a changed environment.

One of the key statements in this definition is that it mainly concerns mod-
ifications that take place after the delivery of the system. A similar definition,
in which this post-delivery nature is stressed, is provided by the ISO/IEC 14764
standard [ISO99]. It does not exclude however pre-delivery activities that are
undertaken to facilitate post-delivery maintenance. An example of such an activ-
ity is the operational planning of maintenance in which the necessary elements
(e.g., help desk, software change request tool) are established to accommodate
the future maintenance activities.

The post-delivery nature as well as the reference in these definitions to faults
or problems suggests that software maintenance could be characterised as the set
of activities in response to some kind of software warranty period. The warranty
period to which we refer would constitute a guarantee for the customer that the
developer is going to repair or replace defective software within a certain period of
time if necessary. Similar to a warranty period for hardware, the defects that are
covered during this period are restricted to defects in materials (e.g., bugs in the
source code) or workmanship (e.g., software does not function as specified). With
respect to software, this warranty period translates into a fairly short timespan
during the delivery stage [ABDT04]. In contrast, the maintenance phase consists
of a prolonged period of time (until the end of the software’s lifetime) during
which the software system is actively supported. Generally speaking the main
purpose of maintenance is to keep the system up and running after delivery. The
defects that are repaired by modifications to the system during this prolonged
period of time include a lot more than bugs. Hence maintenance goes beyond
what is normally understood under a warranty period. This becomes clear when
looking at the large body of work on maintenance taxonomies.

2.1.2 Categories of Software Maintenance

There are a lot of taxonomies for software maintenance. Most of these approach
the topic from a ‘why ’-perspective, which means that the maintenance-space is
partitioned based on the cause or purpose of the maintenance. This is clearly
indicated by the extremely popular bases of maintenance introduced by Swanson
in 1976 [Swa76]. This work classifies maintenance activities into a corrective,
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perfective, and adaptive category. Later on these categories were extended with
a fourth one named preventive maintenance [ISO99]. These categories are still
used as the major categories in most works of standardisation.

Corrective maintenance is mainly concerned with fixing failures in a system.
In essence the main causes that lead to corrective maintenance are processing, per-
formance, and implementation bugs. Under normal circumstances these should
have been discovered and fixed before or during the warranty period of the sys-
tem. Yet certain bugs will only show up in exceptional cases or when the system
has been running for a longer period of time.

All activities that are undertaken to enhance the overall performance of the
system fall under the category of perfective maintenance. Perfecting a system
can be achieved in many ways. For example by implementing better algorithms,
improving the readability of the reports generated, or by restructuring the code
in order to enhance its maintainability. In the original definition by Swanson
these perfective actions were intended to occur within the limits of the original
specifications.

The third category of adaptive maintenance encompasses all changes that are
needed when the operating environment changes. In the original article by Swan-
son, the operating environment referred to is either the data environment (e.g.,
a database system) or the processing environment (e.g., the operating system).
Changes to one of these are considered as triggers for adaptive maintenance.
In essence this has to do with the portability-aspect of the software. Since the
activities in both the adaptive and the perfective category are not about correc-
tions but about improvements, they are sometimes grouped under the heading
enhancements [Pig96].

The last category of preventive maintenance is the proactive counterpart of
the reactive category of corrective maintenance. It includes all activities taken
before the actual need for correction arises in the post-delivery stage. Hence this
includes all activities that are performed in order to avoid erroneous behavior of
the system in the near future. These actions occur most often in the context of
safety-critical systems.

As we have already indicated these categories reflect the ‘why’-perspective of
software maintenance. Alternative approaches exist such as [MBRZ02] in which
a taxonomy is organised based on temporal properties (when), system properties
(what), objects of change (where), and change support (how). Another interesting
work is [CHK+01] where the four basic categories are re(de)fined into twelve dif-
ferent types of software evolution and maintenance, namely training, consultive,
evaluative, reformative, updative, groomative, preventive, performance, adaptive,
reductive, corrective, and enhancive.
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2.1.3 Continued Development

Even though many researchers have adopted the terminology of Swanson, few
of them use it in line with the original definitions [CHK+01]. This has led to
a lot of confusion and debate in the field. One often notices that the activity
of adding or altering features (beyond the original specifications) is sometimes
erroneously classified under adaptive maintenance. Yet as we have described
above, it is not a change to the business environment but to the data or processing
environment that triggers adaptive maintenance. In some cases this cause for
change is also classified under perfective maintenance. This is because the authors
see the addition of new features as ‘perfecting’ the system to better fit a user’s
needs. Swanson already coined the term continued development for these kinds
of software change. The fact that a lot of maintenance activities are actually
about continued development is illustrated by research that focuses on the cost of
maintenance. A well-known study by Lientz and Swanson analysed the life-cycle
costs of maintenance [LS80]. In their survey they reported that only 21 % of
the maintenance effort was dedicated to corrective maintenance. This stands in
shrill contrast with the common perception that the activities that are labeled
as maintenance are only about fixing errors. Other, more recent studies show
similar results and report that over 80 % of the expenditure is for non-corrective
actions [ABDT04, BR00, Pig96, CC05]. In essence a large amount of work that
is classified under maintenance is actually about continued development, which
brings us to the topic of software evolution.

2.1.4 Software Evolution

A standardised definition for the term software evolution is lacking [BR00], yet
continued development (as well as changes to the system to facilitate this) is
generally understood as its main focus. The most well-known work in the field is
by Lehman, who postulated eight laws for software evolution [Leh96]. Moreover
he characterised software systems as S-, P-, and E-type systems. The different
definitions of these types are based on the way in which the systems interact with
their environment as well as the degree that the environment and underlying
problem can change. We will briefly introduce this categorisation since it allows
us to indicate the kind of software we are targeting at a later stage.

The S-type system is the most static one. It tries to solve problems that
are completely defined and for which one or more practical solutions exist (e.g.,
matrix calculations). The difficulty for this kind of system does not lie in finding a
correct solution, but lies in obtaining a correct implementation for such a solution.
Even though the problems solved by an S-type system stem from the real world,
a change in the real world doesn’t cause the existing implementation to evolve.
It will result in a completely different problem and consequently a completely
different implementation.
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Figure 2.1: Lehman’s characterisation of software as S-type, P-type, and E-type
systems.

A P-type system is similar to an S-type system in the sense that it provides an
implementation for a problem that can be completely specified (e.g., the rules of
a game of chess). The difference lies in the fact that there does not always exist
a practical solution to the problem that it addresses. In essence this means that
only an approximate solution to the problem is feasible in an acceptable amount
of time (e.g., to cover the large amount of possible moves in a game of chess).
This implies that the implementation is susceptible to evolution if a solution is
found that is a better approximation of the solution to the problem.

E-type systems are the most dynamic kind of systems recognised by Lehman.
These systems are connected to the real world in a sense that if the real world
changes, these systems also need to change. For example an insurance system is
based on an abstraction of the real world laws that govern this business. If these
laws change then the abstraction of it must change, as well as the corresponding
implementation. This type of system is usually in a state of constant change,
where its performance is under continuous evaluation by its users. Moreover the
problem that is being solved simply cannot be ‘completely’ specified. In figure
2.1 we present a schematic representation of the three kinds of systems [Pfl98].

With respect to E-type systems, Lehman postulated eight laws of software
evolution [Leh96]. We will only state the first law which is of importance here
to illustrate the difference between maintenance and evolution once more. This
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law is about continuing change, which means that an E-type program that is used
must be continually adapted else it becomes progressively less satisfactory.

This need for continuous adaptation is a two-way interaction between changes
in the real word and changes to the application1. First of all this means that a
change in the real world should be reflected by a corresponding change to the
software. For example changes to existing software to support the introduction of
new insurance products. On the other hand, adapting the software could also have
an impact on the real world. For example the existence of the software makes it
possible for the insurance company to offer a wider range of products. As is shown
by these examples, the kind of adaptation referred to is not about maintenance.
It is about continued development . This implies changes to the software that
extend its functionality as well as changes that improve the software’s capability
to accommodate possible future adaptations.

2.1.5 Software Aging

Software can age, yet unlike hardware it will not wear out through continuous use
or of old age2. The main causes for software aging are characterised by Parnas as a
lack of movement of the software and ignorant surgery to the software [Par94]. In
short, the first cause of software aging refers to the fact that the software no longer
meets today’s requirements. Consequently its users will become dissatisfied and
may want to replace it by a completely new software product as soon as possible.
This is in line with Lehman’s first law of evolution.

The second cause, named ignorant surgery, refers to software aging as a result
of the way that the software was changed. This manifests itself specifically in the
case where the changes were made by people who didn’t understand the original
design concept. Consequently the internal quality of the software decays up to
the point where even the original developers would no longer understand it. In
both cases, the aged software will eventually die.

2.1.6 Staged Model for the Software Lifecycle

This observation indicates that a software application can be in one of several
stages during its lifetime. In figure 2.2 we illustrate a staged model for the software
lifecycle by Rajlich and Bennet [RB00].

During initial development, a first working version of the software is developed.
Moreover during this stage the development team builds up a large amount of
knowledge about the problem domain. In the evolution stage, the developers will

1See our discussion of synchronisation and co-evolution in section 2.2
2Parnas identifies a problem similar to the wear of hardware as ‘kidney failure’ [Par94].

Yet this kind of problem is distinct from software aging since it actually refers to erroneous
implementations. An example of this is a problem of degrading performance which could be
avoided by deallocating memory or by archiving parts of a database in a timely fashion.
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Figure 2.2: The staged model for a software lifecycle.

extend the functionality of the software. This stage is mainly about continued
development, but traditional maintenance activities will also take place. This also
includes refactoring the system to anticipate future evolution efforts. The domain
expertise of the developers is critical during this stage. The servicing stage occurs
when the system is still supported but no longer viable to large changes (i.e., it
shows clear signs of software aging). Developers will limit themselves to minor
bug fixes and small functional changes. Phaseout occurs when it is decided that
no further investment is put in extending the software (i.e., keep it running until
it is no longer useable). This is the stage in which the software will quickly
become outdated and according to the law of continuing change, will soon be
unsatisfactory from a user’s perspective. The last stage that a software product
passes is closedown, which means that it is discontinued and will be replaced by
a new application if needed.

2.1.7 Malleable Software

As we have already indicated, continued development is also about making the
software more susceptible to possible future changes. This implies refactoring
certain parts of the software to anticipate unanticipated evolutions in the future.
Even though this is a contradiction in terms, one is nevertheless able to create the
software in such a way that it becomes easier to incorporate certain anticipated
evolutions. Enhancing the evolvability of a system has a direct impact on its life-
span. Some authors believe that the envisioned life-span should be specified as
part of the requirements [Voa98]. Hence giving the developers a way to evaluate
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the costs and benefits of providing a malleable implementation. Malleability can
be achieved in many ways, for instance by using framework technology or by
using a technique called dynamic object models [RTJ05]. Note that malleability
encompasses configurability. It refers to the ease by which the software can be
manipulated to behave differently than originally intended, which refers to data
(e.g., new configuration data) as well as code (e.g., specialisation and extension of
a framework). Configurability on the other hand is about different usage scenarios
that were anticipated beforehand. For this purpose all the different configuration
options are already included in the software.

A basis for a malleable system lies in striving towards genericity in the code.
Or as put by Martin Fowler it is about trying to ‘keep software soft’ [Fow98].
Genericity can be achieved by pushing as much of the code as possible towards
data3. Consider for example a person who wants to buy an insurance product.
All the details for this person could be explicitly represented as attributes in a
class Person. Adding a field results in an extension of the code to accomodate
an extra attribute. A more generic solution would be to have a dictionary to
store all the person’s details. Adding an attribute in such an implementation
doesn’t require any code to be changed. However, even though genericity in code
implies that certain extensions are easier to do, in general it does not improve
the readability of the code. This is because a lot of details as well as its intention
are ‘hidden’ in the data [Fow01]. Hence there is an unfortunate tradeoff between
genericity and simplicity.

Development-time versus Run-time Malleability

Since a generic implementation implies that no code needs to be changed for
certain adaptations, one could speak of run-time malleability . This means that
there is no need to go into a development-state, but that changes can be applied
without having to stop the execution of the software. This is not only a result of
the way in which the code was written. Dynamic development environments such
as Smalltalk provide a lot of support for run-time adaptations. Development-time
malleability on the other hand refers to a situation in which the software must
be stopped, and opened up for the changes to take place. Consequently the code
moves from its running state to a development state.

2.2 Evolution in Contemporary Development

In the previous section we briefly introduced a staged model for a software’s
lifecycle. As was shown, an evolutionary stage is entered after the introduction
of the first version of the software. In this section we will zoom in on the way
software is developed, and how it reaches this stage of evolution.

3Note that code can also be treated as data.



2.2. EVOLUTION IN CONTEMPORARY DEVELOPMENT 21

Software maintenance The modification of a software product after de-
livery to correct faults, to improve performance or
other attributes, or to adapt the product to a mod-
ified environment.

Software evolution The stage in a software product’s life that follows
to initial development. All modifications (e.g., ex-
tend, change, and delete functionality) to the soft-
ware during this stage are considered to be evolu-
tion (a.k.a. continued development).

Corrective maintenance The modification of a software product to correct
errors after they occur (reactive).

Perfective maintenance The modification of a software product to improve
the performance or maintainability.

Adaptive maintenance The modification of a software product to make it
usable in a different software environment.

Preventive maintenance The modification of a software product to correct
errors before they occur (proactive).

S-type system A software system that solves problems that are
completely specified and for which one or more
practical solutions exist.

P-type system A software system that solves problems that are
completely specified but for which there does not
always exist a practical solution.

E-type system A software system that solves problems that can-
not be completely specified and for which the solu-
tion is continually adapted in accordance with the
real world.

Malleable software Software that is implemented in a way to make it
more susceptible to future changes, either at run-
time or at development-time.

Table 2.1: Definitions for section 2.1
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2.2.1 Traditional versus Contemporary Development

The role of continued development within software development practices has
changed throughout the years. Traditional development approaches followed a
fairly sequential, non-iterative execution of the analysis-design-implementation
triplet. Customer involvement was rather low after the initial analysis phase.
And at the end of the triplet, the customer would be confronted with the com-
plete software product. The requirements for the product were fully known and
specified before any actual coding was done. If this specification was not in sync
with what the customer originally intended, due to the rigid approach taken,
this would be catastrophic to the results produced. In such a context, continued
development refers to the actions taken to adapt the existing functionality to acco-
modate a new business situation after-delivery. Traditional software development
is often characterised as bureaucratic. This is because everything must be played
by the book, and a high volume of paperwork accompanies the proceedings.

Contemporary development practices deviate from this in a sense that they
follow an iterative approach with high customer interaction during the entire
development cycle. Consequently they are more open to changes if errors occurred
in the specification of the original requirements. Certain approaches such as agile
software development even thrive on this by eliciting and refining requirements ‘on
the go’. The software hence grows incrementally and is constantly being refined.
Moreover it is used actively to communicate the developer’s understanding to
the customer. Another discriminating factor is the point in time where coding
occurs. In traditional development approaches coding was postponed as long as
possible. Nowadays coding is pushed to the front of the lifecycle queue (e.g., for
rapid prototyping) as much as possible since it is a good tool to validate all sorts
of assumptions made by the developers. In such a context, the system is in a
continuous state of evolution. So in the staged model in figure 2.2, the state of
evolution also applies during initial development.

Current
State

Planned
Result

Guided
Result

Deviations on Planned Trajectory

Guided Trajectory

Planned Trajectory

A B

C

Figure 2.3: Planning versus Guiding a project trajectory (adapted from [HI00]).

Another distinction between traditional and contemporary development is
made by Highsmith as planning versus guiding [HI00]. This relates to the way



2.2. EVOLUTION IN CONTEMPORARY DEVELOPMENT 23

that the development team works towards the final software product (see figure
2.3).

In a planning approach (traditional), a fixed trajectory is planned beforehand
to reach a certain predefined result. In an ideal world, one should just follow the
planned path to go from the current state (figure 2.3, A) to the planned result
(figure 2.3, B). Hence, deviations from this trajectory are considered as mistakes
that should be corrected as soon as possible.

The guided approach (contemporary) has an exploratory nature. The tra-
jectory is not fixed beforehand, but is guided towards the desired result (figure
2.3, B). Deviations are not considered as harmful but as a necessary good for
exploratory purposes. Following such an approach does not necessarily result in
the planned result (figure 2.3, B), but in an alternative result that is much closer
to what the customer actually needs (figure 2.3, C). The guided approach charac-
terises the overall development approach in agile software development practices.
It is not a coincidence that Highsmith named his work adaptive software develop-
ment . Even though the guided approach appears to be an anti-planning approach,
this is not the case. It is considered as a more realistic way to obtain software that
accurately fits the needs of the customer. This is a result of acknowledging that
developers and customers often don’t know enough at the starting point (figure
2.3, A).

2.2.2 Model-Centric versus Code-Centric

Contemporary development approaches can be characterised as following either
a code-centric or a model-centric vision. Broadly speaking this characterisation
refers to the relative importance that is attributed to either the code or the
models.

For model-centric approaches, the models are the primary artefact during de-
velopment. Code is seen as secondary, and depending on the actual approach it
is often automatically generated from the models [Weg02]. This of course implies
that the model fully captures all the necessary implementation details. At the
extreme end, the waterfall method is one of the prime model-centric examples.
Every aspect of the system needs to be fully specified before any implementa-
tion takes place. Model-Driven Development (MDD) is a recent example of a
model-centric approach. In MDD, models are built for the problem domain and
the solution domain, which are consequently interpreted or from which code is
generated.

In code-centric approaches, the code is the primary artefact during develop-
ment. Models in this case are considered as secondary and are only built if they
really contribute to the problem at hand [Weg02]. This is in shrill contrast with
the model up-front approach of the model-centric vision. A good example at the
extreme end of the spectrum is ad hoc coding. This approach to software de-
velopment boils down to simply writing code without any planning or modeling.
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Adaptive Software Development is a recent example of the code-centric vision. In
Adaptive Software Development, requirements are elicited in an iterative fashion
by using a guided approach. Note that being code-centric does not imply that
the developers do not design the software. What it does imply is that the design
is primarily communicated through the code instead of by other artifacts.

With respect to documentation, both visions counter each other. On the
one hand opponents of the code-centric vision attack the clear lack of models. In
their view, no models means no documentation. This is clearly troublesome if the
code needs to be maintained at a later stage. Yet proponents of the code-centric
approach will often state that the best (most trustworthy) documentation is the
code itself. This is known by the notion of code as documentation. This does not
mean however that the code should be the only documentation. Certain aspects
of a software’s design are not always apparent in the code. Also information
that helped the developers to better understand the problem space, but that is
no longer of importance for the computation, should be captured. Moreover as
Martin Fowler [Fow05] states: ‘Like any documentation, code can be clear or it
can be gibberish’. We will come back to this in section 2.3.

On the other hand, opponents of the model-centric vision could attack the
lack of a coding activity. Since everything must be modeled first, all the coding-
specific aspects should be represented in a model as well. This could easily lead
to a situation of excessive modeling in which even the tiniest implementation
detail must be covered before any actual coding can be done. Moreover as stated
by Jack W. Reeves [Ree05]: ‘all programmers know that writing the software
design documents after the code instead of before, produces much more accurate
documents’. The reason for this is that the final design that corresponds to the
code is the only one that was refined during the build and test cycle. Proponents
will counter this by saying that modeling the implementation details leads to an
improved documentation of programming basics. In their view this will ultimately
lead to a set of reusable metamodels that cover basic development practices.
Also with good program generators installed, models themselves can be refined
iteratively since no manual coding step is necessary.

Note that both the model-centric and the code-centric vision are at the ex-
treme end of the spectrum (i.e., only code or only models). Most development
approaches however fall somewhere in between. For instance in agile software
development a notion of ‘just barely good enough models’ exists (Agile Model
Driven Development [AJ02]). As a consequence, even in a code-centric approach,
evolving the code could result in a change to the model. Analogously, for code-
centric approaches that resort to manual coding from time to time, evolving the
models could result in a change to the hand-crafted code.
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2.2.3 Synchronisation versus Co-Evolution

If the code or the models are evolved then a problem of synchronisation occurs.
The synchronisation referred to boils down to transforming the deltas on one side
to deltas on the other side. This is illustrated in figure 2.4.

EvolveModel Model'

Code Code'

Transform Transform

Evolve

A

B

{Model-δ}

{Code-δ}

Figure 2.4: Evolution of models and code.

In a truly model-centric vision the evolution impact stays inside the upper
half of the figure (A). For a truly code-centric vision it stays inside the bottom
half (B). As already indicated, whenever a complementary situation occurs then
a manual transformation step is needed between both sides. In such a situation,
synchronisation is no longer a sufficient concept to describe the interplay between
both sides.

Co-evolution is related to synchronisation but goes beyond keeping the model
and code in conformance with each other. In biology, co-evolution refers to the
influence the evolution of one organism has on the evolution of another organism.
This influence can be either positive or negative for the other organism. It is clear
that this doesn’t simply translate into finding out how the evolutionary deltas of
one organism can be mapped onto evolutionary deltas for the other. In software
development this is similar since changes to the model do not necessarily result
in a straightforward change in the code. The experience obtained by changing
the model could result in a better understanding of how the code should be
reorganised, which could result yet again in changes to the model. This (not
always deterministic) interplay between both sides is what co-evolution is all
about4.

4This definition of co-evolution is broader than the one introduced in previous PROG re-
search efforts (e.g., [DDVMW00, Men00, Wuy01]). In general the meaning in that work was
targeted at the synchronisation aspect between models and code.
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Code-centric development A software development approach where the
code is seen as the primary artefact.

Model-centric development A software development approach where the
models are seen as the primary artefact.

Synchronisation Synchronisation of code and models refer to the
activity of keeping both sides in conformance
with each other.

Co-evolution Co-evolution of code and models goes beyond
synchronisation by referring to the positive or
negative influence that the evolution of one side
has on the evolution of the other.

Table 2.2: Definitions for section 2.2.

2.3 The Key Role of Domain Knowledge

A large amount of time in software evolution and maintenance is spent on program
comprehension. Program comprehension can be broadly defined as the process
of acquiring knowledge about a computer program. In the Software Engineering
Body of Knowledge (SWEBOK, [ABDT04]) it is estimated that about 40 to
60 percent of maintenance is actually spent on comprehension. Canfora et al.
even mention estimates as high as 90 percent [CC05]. So before any adaptation
actually takes place, a lot of effort is put in trying to understand the software.
This mostly boils down to building up a set of knowledge about the system by
discovering or rediscovering what was known by the original developers.

2.3.1 Implicit Domain Knowledge

A lot of knowledge assembled during the software engineering lifecycle is docu-
mented in the various artefacts (code and models) that are created. Yet as stated
by Rus et al. this is just a fraction of all the knowledge related to software that is
being captured, since the majority of knowledge remains implicit in the brains of
the employees [RLS01]. The fact that this intellectual capital is not available in
an explicit form is not just unfortunate, but problematical for software evolution
purposes, which we discuss later.

Many factors cause knowledge about the software to become or remain im-
plicit. One factor is the high personnel turnover that characterises the business
of software development. Software developers and domain experts are generally
considered a volatile asset. In practice they switch companies or project teams on
a regular basis. Moreover, as a result of the complexity of contemporary software
systems, their memory about the peculiarities of these will inevitably deteriorate
over time. Also, depending on what lifecycle-stage the software is in (figure 2.2),
it will become more or less likely to find people that are well acquainted with the
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system.

Another factor has to do with the short-term economics of software develop-
ment. Making knowledge explicit in the form of documentation costs time which
developers would rather spend on getting the code right for the next release.
Unfortunately, people do not yet recognise the impact that this will have on a
long-term basis [Par94]. In order to improve the situation one could only suggest
the use of an ‘intelligent’ documentation mechanism that is not experienced as
an overhead by the developers. [DH98]

The reason why certain knowledge remains implicit is also related in part to
the kind of knowledge that remains implicit. Even in a code-centric vision, where
code is seen as the prime medium to capture the design, there is a need to capture
important information outside the code. This has to do with the suitability of
code as a representation for this knowledge. An analogous observation applies to
a development environment that follows a model-centric vision.

Consider for example the information from the problem space that did not
make it into the design, such as the motivation why the developers opted for a
particular architecture [Ree05, PD90]. It is most likely that this knowledge is
captured in neither the code nor the models.

Also the move towards more malleable software systems does not improve the
situation. As we already explained in the previous section, the required genericity
in such systems results in less explicit code. Less explicit code means that a lot
of knowledge becomes implicit in the data, which does not enhance the code’s
readability5.

Note however that this need to capture information outside the code does not
only apply to implementation knowledge. Also common sense knowledge, about
the business domain in which the software operates, is often left implicit in the
code or the models. For instance, it could well be that certain choices were made
in the code since everybody ‘knows’ that the alternative is not considered an
option from a business perspective.

2.3.2 Communicating Domain Knowledge

The problem of not having access to domain knowledge in an explicit form can
be illustrated by the simple communication chain shown in figure 2.5 (adapted
from [Kri98]). The percentages in the figure indicate the quality of the communi-
cation. Suppose that the requirements put forward by the customer correspond
to 90 percent of what is actually needed. Then even when information is trans-
mitted with a high quality of 90 percent (from customer to analyst, from analyst
to designer, from designer to programmer, from programmer to the implementa-
tion), at the end of the chain we end up with a quality total less than 60 percent.

5This is mainly due to the fact that, in contrast to the structure of the data, the actual data
is not documented.
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Figure 2.5: Reduced quality as a result of communication problems.

What happens is a progressive deterioration of the quality each time the infor-
mation is being transmitted between people or process into an artefact. This is
similar to the way domain knowledge is passed on between successive evolution
steps (in that case the circles in the figure would represent developers).

This loss in quality when information is passed on is one of the main reasons
why developers need to invest so much time in program comprehension before
any other active like maintenance can take place. To make matters worse, there
is also a loss in quality when the actual request for evolution is communicated.
This is illustrated in figure 2.6. This shows a business expert who communicates
a need for evolution in the business domain (first loss of quality). The need is
communicated in terms of the business knowledge of the expert. Consequently
the software expert needs to translate the request by using his implementation
knowledge (second loss of quality). After this, the software expert can map the
request onto the parts of the implementation that need to be adapted (third loss
of quality).

Problem Domain

Business
Knowledge

Implementation
Knowledge

Communicate
Evolution
Request

Business Expert Software Expert

Evolutionary
Need

Map & Translate
Need

Solution Domain!

Figure 2.6: Mapping an evolutionary need onto an implementation.
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1 Domain concept descriptions
2 Location and uses of identifiers
3 Connected domain-program-situation model knowledge
4 List of browsed locations
5 List of routines that call a specific routine
6 A general classification of routines and functions such that if one is

understood, the rest in the group are understood
7 Format of data structure plus description of what a field is used for in

program and application domain, expected field values and definitions
8 History of past modifications
9 Bug behavior isolated

10 List of executed statements and procedure calls, variable values

Table 2.3: Top information needs of software maintainers [KSP04].

2.3.3 Top Information Needs for Evolution

Koskinen et al. [KSP04] observed that domain concept descriptions and connected
domain-program-situation knowledge are among the top three most frequent in-
formation types needed by software maintainers. Moreover the need for domain
concept descriptions occurred the most in corrective and adaptive maintenance.

In table 2.3 we summarise the ten most frequent information needs from this
survey. Note that this table also includes information that is not in general
considered as domain knowledge (e.g., 4 and 5). The observation was made
after analysing the empirical data of several field studies by von Mayrhauser
et al. [vMV95a, vMV97, vMVH97, vMV98]. This consisted of observational
studies of professional software maintainers that worked on C-code bodies of up
to 40000 lines of code. The changes involved covered all the different categories
of maintenance we described in the previous section.

The field study also observed that software maintainers followed a multilevel
approach in which they switched continuously between program, situation, and
domain models. This indicates that the connections between the different models
are also important.

The observations above are confirmed by Rajlich et al. [RB00] who state that
‘staff must understand the domain, solutions to domain problems, program prop-
erties, including software architecture, concept location within the code, and basic
computer science principles and coding conventions ’. Also here the importance of
domain knowledge is stressed together with more code specific information (i.e.,
obtained through static or dynamic code analysis). Moreover similar to Koskinen
et al. [KSP04] they refer to the concept location within the code. This means that
developers do not only need to have access to the domain knowledge but that
they also want to know where it is implemented in the code.
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Figure 2.7: The Brooks code comprehension model.

In figure 2.7 we illustrate the Brooks comprehension model [vMV95b]. This
model shows the way in which a developer reconstructs the domain knowledge
that was used by the original developer. As shown, the comprehension process
consists of a continuous mapping of elements from the problem domain into the
programming domain.

The triangles in the figure refer to the different kinds of knowledge involved
in the comprehension process. Problem domain knowledge contains real world
knowledge such as the rules that govern the insurance domain. Programming
domain knowledge refers to knowledge of general programming concepts or pro-
gramming tools and environments (e.g., coding conventions, design patterns).
The intermediate domain knowledge refers to knowledge that describes the rela-
tionships between related domains.

The verification of problem, programming, and intermediate domain knowl-
edge with what the code actually does is core to the model. This verification
consists of coupling the knowledge back to the implementation. In order to do
so a developer will have to couple the often very broad domain concepts (e.g.,
inventory management) to very narrow distributed code entities. We will explain
this in more detail in chapter 3, section 3.1.1.

2.4 Summary

In this chapter we pinpointed the differences in meaning between software main-
tenance and software evolution. In essence software maintenance is restricted to
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changes to the software that are in line with the original requirements. Software
evolution on the other hand is mostly about continued development, which is the
focus of this dissertation.

We introduced Lehman’s characterisation of software systems into S-type, P-
type, and E-type systems. Broadly speaking the first category was the most static
one, and the last category the most dynamic. This characterisation is important
since in this work we mainly target E-type systems where there is continuous need
for adaptation.

We further argued that this continuous need for adaptation was related to the
age of the software. Therefore we discussed software aging and the staged model
for the software lifecycle of Rajlich and Bennett. This allowed us to position the
evolutionary stage in which a software system finds itself.

We subsequently discussed the notion of malleable software. This refers to
systems where software evolution is anticipated by the way in which the code
is implemented. The broad vision of malleability was to introduce a notion of
genericity in the implementation in order to keep the software ‘soft’. As we
have seen, malleability results in code that can accommodate changes either at
development-time or at run-time.

We have also positioned software evolution within contemporary and tradi-
tional software development approaches. Two opposite visions of development
were characterised, namely the code-centric and model-centric approaches. Most
approaches however use a hybrid approach. As a result a synchronisation prob-
lem arises between code and models during evolution. We discussed this and
contrasted synchronisation with co-evolution.

One of the top information needs in software evolution is domain knowledge.
Yet as we have discussed, in practice a lot of this knowledge becomes implicit after
initial development. Besides personnel turnover, one of the main reasons was that
documentation is usually perceived as an overhead by the developers. We have
also shown that the connection to the code level is one of the top information
needs for developers.

We dedicate the next chapter to a discussion of domain knowledge since it has
a central role in this dissertation. We will also introduce ontologies as a medium
to make domain knowledge explict.





Chapter 3

Domain knowledge and ontologies

In this chapter we define the basic concepts surrounding domain knowledge and
ontologies, and how both can be teamed up to form the backbone of this research.

As described in chapter 2, domain knowledge is an essential ingredient for
program understanding in the context of software evolution. This is why we start
this chapter by defining the term ‘domain’ in section 3.1.1 and its associated
knowledge in section 3.1.2. We also position domain analysis, which is performed
to obtain a set of domain knowledge in section 3.1.3.

Having access to an explicit set of domain knowledge is one of the main points
of this dissertation. This our entry point into the topic of ontologies, which is
described in section 3.2. In order to better appreciate our view on ontologies
it is necessary to present a number of existing definitions (section 3.2.1) and
the different flavours of ontology (section 3.2.2). Also we present a number of
practical choices that need to be made when dealing with ontologies in section
3.2.3.

3.1 Domain knowledge

In chapter 2 we stated that programmers need to have access to a rich set of
domain knowledge to be able to understand what the system is actually doing.
This implies that programmers need to become literate in the domain under
consideration. Therefore we elaborate on what we mean when we refer to a
domain in section 3.1.1. We distinguish between business domains and application
domains, as well as between vertical and horizontal domains, and encapsulated
versus distributed domains. These distinctions are necessary to be able to position
our research in later chapters. Furthermore we touch the subjects of domain
composition and domain coverage. This is needed to fully grasp the different
levels of granularity one needs to take into account when providing a way to
make domain knowledge explicit.

33
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We also elaborate on what we consider to be domain knowledge in section 3.1.2.
Next we illustrate the difference between explicit and tacit knowledge and how
you can transform one into the other. This is a good starting point into the
topic of domain analysis and domain engineering. Since the domain knowledge is
actually discovered and transcribed during these activities, we dedicate the main
body of section 3.1.3 to this topic.

3.1.1 Defining the Term Domain

Domain, Business Domain, Application Domain

A first important step in every software development project is dedicated to
getting acquainted with the domain. The term domain can be interpreted in a
multitude of ways. In its most basic meaning, a domain refers to “a sphere of
knowledge, influence, or activity” [MW05]. In software engineering it is typically
associated with two broad interpretations: a business domain and an application
domain.

The first refers to a domain as a subset of knowledge about some area in
the real world confined to a particular business area. So in that case a domain
could delineate for instance a sphere of knowledge about banking, software devel-
opment or insurance. Example knowledge items in the insurance domain could
be insurance policy, claim, and policy holder. You would have to know
the meaning of these items to be able to work or to develop software within the
insurance domain. Often it includes knowledge about organisational and eco-
nomic issues as well. For example, you would have to know the different ways in
which a damage claim should be processed according to specific regulations. This
interpretation of a domain is labelled as a business domain [WPD92].

A second interpretation for domain mainly stems from research in software
reuse. In that context the term domain is used to refer to a sphere of knowledge
that is defined by a set or “family” of software applications. Suppose a domain
defined by interactive media (iMedia) quiz applications. Typically there are sev-
eral applications that implement this domain. In this interpretation of a domain,
the domain does not only encapsulate real world knowledge about the business
domain of quizzes. Among others, it also contains knowledge about software de-
velopment practices in that field. For example in iMedia software development it
is common to make the necessary provisions for multi-platform (e.g. PDA, TV)
and multi-channel (e.g. podcast, kids channel) deployment. This type of domain
is referred to as an application domain [WPD92].

Domain Boundary

As already indicated, the word ‘sphere’ in the basic definition expresses that a
domain has a boundary. This boundary is used to restrict or scope the elements
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which one wants to talk about. So when we speak of “domain” knowledge, we refer
to a subset of knowledge restricted to a particular area of expertise. To determine
what lies inside, outside or on the boundary of the domain is one of the most
important and difficult decisions to make. Sometimes it is not clear whether or
not an element should be either inside or outside the domain boundary. In certain
cases it is even impossible or not desirable to define a strict boundary. In general,
the existence of ‘grey’ spots on the boundary region are almost unavoidable for
real world domains. This is clear if we consider the less general definition of a
domain by Prieto-Diaz and Arango [PDA91] They state that a domain can be
characterised by its vocabulary, common assumptions, architectural approach,
and literature, once it is recognised. Especially the “common assumptions” and
“literature” in this definition clearly opens the door for a less rigid interpretation
of the word boundary.

In the context of this work, we assume the domain sphere to be bound by the
area for which we are building a software system. Note that this is not the same as
saying that the domain elements are defined by the existing software applications.
If we start from a green-field situation (a.k.a. clean slate) we can state that the
business domain is constrained by the ‘future’ application domain. A green-field
situation means that we build a system from scratch. If we do not start from a
green-field situation (a.k.a. ploughed-field), we combine certain aspects from the
existing application domain with the business domain into a new version of the
application domain. Such a ploughed-field situation implies that we need to take
care of existing applications when building the new software.

Domain-composition, Domain-coverage

Now that we have identified a meaning for the word domain, we should elaborate
on the aspects of domain-coverage and domain-composition. Depending on the
size of the domain, it is well possible to have a network of several more fine-grained
(sub-) domains working together. This network is called the domain-composition.
Note that a software application is not necessarily confined to a single business
domain. It is quite common to have an application domain that is covered by the
interaction of several other domains. Consider again the software responsible for
generating interactive quizzes. Its application domain consists of the interaction
of at e.g. the following domains: quizzes, interactive media, domain-specific
languages, transformation systems and graphical user interfaces. Note that some
of these domains can stand on their own, which is why we speak of a network of
domains instead of a hierarchical decomposition of one parent-domain.

Obtaining a complete domain-coverage is often only possible (and cost-effective)
for very narrow and well-defined domains. A typical area in which such domains
occur are mathematics. In more business-oriented domains and for practical
purposes however, a partial domain-coverage is perfectly acceptable. This is sup-
ported by the insight provided in the work of Wagner where it is stated that (do-
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Figure 3.1: Encapsulated and distributed domains.

main) expertise should be conceived as a substantial collection of semi-complete,
semi-structured and subjective know-how [Wag90]. Nevertheless, a partial cover-
age is not to be confused with an incomplete or faulty coverage. It is all about
the granularity needed, which boils down to deciding which domain elements are
to be captured and which are not.

Encapsulated Domain, Distributed Domain

Sometimes there is a one-to-one mapping between a subsystem in a software
application and the domain. This means that all the functionality that can be
associated with the domain can be lifted out of the application in a clean and rela-
tively easy way. In that case the domain is said to be encapsulated (figure 3.1 (1)).
Such encapsulated domains are prime candidates for creating reusable software
components. It is more common, however, to have a situation in which the do-
main functionality ‘crosscuts’ several subsystems of the application [CE00]. In
that case it is difficult, if not impossible to lift out the corresponding functionality.
This situation is named a diffused or distributed domain(figure 3.1 (2)).

Vertical Domain, Horizontal Domain

From an application perspective it is common to divide domains into vertical and
horizontal domains [Sim96, CE00]. This is illustrated in figure 3.2. A software
application that is mainly created for use within one particular (business) domain
is said to reside within a vertical domain. From a software vendor perspective
this is similar to targeting a vertical market. Consider for example the set of ap-
plications that handle credit and loan applications for financial institutions. The
software vendor could in that case opt for creating a domain specific architecture
for this application domain. This architecture should capture all the common-
alities of applications in the vertical domain. He consequently instantiates the



3.1. DOMAIN KNOWLEDGE 37

Business Domain A (e.g. Banking)
1

Software 
Application

A1

Software 
Application

An

...

Vertical Domain

Business Domain B (e.g. Insurance) 2

Software 
Application
B1

Software 
Application
Bn

...

Vertical Domain Software 
Application

C1

Software 
Application

Cn
...

Horizontal
Domain

Horizontal
Domain

Business Domain C (e.g. Workflow)
Business Domain D (e.g. GUI)
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baseline software infrastructure for handling the specifics (a.k.a. variabilities) of
each customer.

If a software part is usable across several (vertical) domains, it is said to re-
side inside a horizontal domain. Examples of these are workflow management
and advanced graphical user interface systems. Such applications or subsystems
are usually specifically targeted for use within other applications. A workflow
management toolkit makes sense when it is used within the context of process-
ing insurance claims, for instance. Using this toolkit in isolation or outside a
particular context does not make sense.

Summary

In this dissertation we define a domain to be the sphere of knowledge about
a field for which we are developing a software system. Most often when we
refer to a domain we actually refer to a business domain. In the case where
certain abstractions (or conceptualisations) are used that are not part of the ‘real
world’ we refer to an application domain. Since the main focus is on a business
domain, we will be quite often confronted with partial domain coverage. With
respect to the implementation, these domains themselves are best characterised
as distributed domains. In table 3.1 we summarise the main definitions that were
introduced in this section.

3.1.2 About the Knowledge Associated with a Domain

Domain Knowledge

Whereas a domain refers to the area about which we want to talk, the term
domain knowledge refers to the knowledge items associated with that particular
area. We consider ‘knowledge’ according to the common distinction made in
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Domain A sphere of knowledge about a field for which soft-
ware systems are developed.

Business domain A domain that is constrained by a particular business
area in the real world.

Application domain A domain that is constrained by the functionality
provided by a particular set of software applications.

Domain composition Refers to the way a domain consists of several more
fine grained sub-domains.

Domain coverage Refers to how well a domain is embraced by the con-
stituting elements of a domain description.

Vertical domain A domain that refers to a set of applications that
reside within one business domain.

Horizontal domain A domain that refers to an application domain that
is usable across several vertical domains.

Encapsulated domain A domain for which the corresponding functionality
is completely captured by a subsystem of an applica-
tion.

Distributed domain A domain for which the corresponding functionality is
scattered across several subsystems of an application.

Table 3.1: Definitions for section 3.1.1
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Profession Entity Type (PFN)The principal activity in your life for which you are paid.  the employment a 
person has with one employer. Aka occupation, employment, job, activity.

ProfessionCategoryCode Attribute of 
Profession

Code
(ATT+CQ15)

Coded representation of the category the profession belongs to, e.g. 
professional sportsman, teacher, sailor, etc.

ProfessionExecutionLocationText Attribute of 
Profession

Text
(FTX+037)

Free format description of the place where a profession usually is 
executed

PostalCode Attribute of 
Address

CodeA group of letters and/or numbers added to an address to assist the 
sorting of the mail

PartyRole Entity Type The role a party plays in insurance, e.g. policyholder, driver, insurance 
provider, etc.

Name Type TechnicalDefinition

Figure 3.3: Extract of the vocabulary defined in the Telebib2 reference dictionary.

literature between data, information, and knowledge. In general terms data is
considered to be a set of raw facts from which certain conclusions may be drawn.
Information on the other hand adds a meaningful interpretation to this data. For
our purpose we make use of the working definition of knowledge from Davenport
and Prusak [DP00]:

“Knowledge is a fluid mix of framed experience, values, contextual in-
formation and expert insight that provides a framework for evaluating
and incorporating new experiences and information.”

As described by Nonaka et al. knowledge, unlike information, is about beliefs
and commitment [NT95]. Hence it is always in function of someones particular
view or perspective. Moreover, knowledge should always serve some purpose or
action. For instance the reason why a person possesses the knowledge of writing
is to be able to write. The knowledge itself without the associated purpose of
writing is useless. It is important to keep the purpose of knowledge in mind since
it allows us to distinguish between what should be considered as application
knowledge or as business knowledge in a particular context.

The knowledge items of which we speak can range from very broad and ab-
stract concepts (e.g. insurance policy management) to very narrow and con-
crete concepts (e.g. postal code). Obtaining a sufficient body of domain knowl-
edge for developing a piece of software is mainly done by consulting domain
experts and analysing whatever material is available. In part, this means getting
used to the common jargon (a.k.a. domain vocabulary) in which experts describe
the concepts and rules that govern that particular domain. The resulting set of
knowledge is consequently synthesised into a set of artefacts referred to as a do-
main model . The overall phase concerned with obtaining a good domain model
is domain analysis, which will be discussed in section 3.1.3.

An example of a large body of (standardised) domain knowledge is represented
in the Telebib2 platform [Pla05]. The goal of this platform is to provide the
Belgian insurance sector with a set of standards and rules for electronic data
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exchange and procedures. It contains an extensive data dictionary, data and
process models, structures for data exchange as well as a set of maintenance
procedures. An extract of domain concepts that exist in the vocabulary is given
in figure 3.3.

Explicit Knowledge, Tacit Knowledge

A widely acknowledged problem is that a lot of knowledge is not available in
an explicit form. Explicit knowledge (a.k.a. tangible knowledge) is knowledge
available in a codified way, such as documents, databases and requirements di-
agrams. This codification can be either formal or informal, according to the
particular needs. An important property of explicit knowledge is that it can be
easily communicated between individuals.

Tacit knowledge (a.k.a. intangible knowledge) in contrast is uncodified knowl-
edge that is often based on personal experience, know-how, values and emotions.
It is often referred to as the knowledge that resides in the heads of people (as
opposed to residing in a tangible form such as documents) [OG98]. Note that
“tacit” in this sense is not synonymous with “implicit”.

Domain knowledge encompasses both explicit and tacit knowledge. For soft-
ware development it is often the tacit kind that is crucial to ensure project success
or failure. Even though certain types of tacit knowledge cannot be made explicit,
a lot of it can be codified and put to good use by sharing it [DP00, NT95]. Con-
sider for example coding conventions and best-practices in a software development
company. Often this knowledge is ‘implicitly known’ by every programmer in that
particular company. Yet for enforcing or encouraging the consistent use of these
practices (or for sharing them with new employees), this tacit knowledge should
be converted into explicit knowledge. This transformation process where tacit
knowledge is converted into explicit knowledge encompasses more than merely
writing it down, as we detail next.

Knowledge Conversion

In figure 3.4 we show the knowledge spiral from Nonaka and Takeuchi [NT95]. As
is shown there are four modes of knowledge conversion: socialisation, externalisa-
tion, combination, and internalisation. Each mode corresponds to the conversion
of tacit or explicit knowledge to either tacit or explicit knowledge:

• From tacit to tacit: Socialisation

• From tacit to explicit: Externalisation

• From explicit to explicit: Combination

• From explicit to tacit: Internalisation
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These conversion modes are important since they allows us to pinpoint the
kinds of knowledge as well as the kind of ‘explicitation’ we refer to in our approach.

Socialisation (from tacit to tacit) mainly results in sympathised knowledge1

that is the result of sharing experiences between individuals. Practice with ex-
perts, and observation or imitation of experts are good ways to share such expe-
rience. Field building is usually the trigger for socialisation since it provides a
context for interaction. An example from extreme programming that can be cate-
gorised in this mode is pair programming. Externalisation (from tacit to explicit)
mainly creates conceptual knowledge. The main way to externalise knowledge is
by using metaphors, analogies and models. In general, dialogue and collective
reflection are triggers for externalisation. Performing a green-field domain analy-
sis (see section 3.1.3), where you need to establish a model of the domain “from
scratch”, could be categorised as externalisation. Combination (from explicit to
explicit) mainly results in systemic knowledge2 by combining existing explicit
knowledge into new explicit knowledge. This can be done by reconfiguring the
existing knowledge through categorisation, classification, and composition among
others. The trigger for the combination mode is the networking (linking) of newly
created and existing explicit knowledge items. For instance refactoring and re-
structuring existing software models (e.g. class diagrams) could fall under this
category. Internalisation (from explicit to tacit) mainly results in operational
knowledge by putting explicit knowledge to practice and hence gaining know-
how. Studying and analysing documents, manuals, customer interaction tran-
scripts help to transfer such experiences between individuals. Learning by doing
is the best way to describe the trigger that activates this mode. A good example in
which explicitly documented experiences are transferred and converted into tacit
knowledge, are design patterns [GHJV95] and best-practice patterns [Bec97]. In
this work we are mainly interested in the externalisation and the combination
mode.

Knowledge Acquisition

Obtaining a comprehensive body of domain knowledge is done in part by ap-
plying several knowledge acquisition techniques. Such techniques are mainly tar-
geted at the elicitation, the analysis, and the organisation of knowledge coming
from different sources. Some of the most common approaches to identify the
core concepts are interviews, observations, and document analyses. The use of
knowledge acquisition techniques should be governed by an overall knowledge
management initiative. This especially applies in the context of software engi-
neering, a knowledge-intensive activity where the organisation’s intellectual cap-
ital is one of its main assets, the existence of a knowledge management policy is
crucial [RLS01, RL02]. It lies outside the scope of this work to give a detailed

1Sympathised in the sense of an informal understanding or common feeling between people.
2Systemic in the sense of relating to a whole system.
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Figure 3.4: The four modes of knowledge conversion in the knowledge spi-
ral: socialisation, internalisation, externalisation, and combination (adapted
from [NT95]).

description of the different knowledge acquisition techniques. A good place to
start, in the context of software development, is the CommonKADS methodol-
ogy [SAA+00]. This methodology specifically focuses on engineering knowledge-
intensive software systems. It also provides a rich library of templates that can
be used to describe different knowledge elements.

The initial elements that constitute a model of the domain depend on the ap-
proach that is taken. When a problem-oriented approach is taken it initially con-
sists of problem-level concepts. These are subsequently refined into concepts that
can be used to describe the solution. Conversely a solution-oriented approach
starts by examining a number of known solutions (i.e. software applications)
to a problem. Starting with a large body of solution-level concepts that stem
from the software implementation, you identify the core concepts in the prob-
lem domain. Depending on the objectives and the number of existing software
applications in the domain, you either opt for one of the former approaches or
a combination [WPD92]. Note however that starting from the solution domain
will probably identify certain abstractions that do not necessarily exist in the
problem domain. Consequently this might pollute the model with elements from
the application domain whereas the intended target was the business domain.
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Kinds of Domain Knowledge

In CommonKADS [SAA+00], knowledge is classified as either domain knowledge,
inference knowledge, or task knowledge. In CommonKADS, domain knowledge
is defined as the main static information and knowledge objects in an domain
(e.g. quiz master, round, question). In the inference knowledge they describe
how these static structures can be used to carry out a reasoning process (e.g.
validate, schedule). Task knowledge describes the reason or context for which
the system is developed (e.g. organise quiz).

It is not always necessary to treat these three kinds of knowledge as separate
categories. All types could be labelled as domain knowledge if a broad view is
taken of what the contents of a domain could be. In such a view, the domain
knowledge could be focused on the domain concept taxonomy, the domain concept
composition, the domain tasks, the domain activities, or a combination of these.
Nevertheless we find these categories of knowledge as sub-domains in the model of
the domain. For organisational issues of setting up a knowledge policy, strategies
for improving knowledge transfer, and the establishment of a knowledge culture,
we refer to the work of Nonaka and Takeuchi [NT95] as well as the work of
Davenport and Prusak [DP00].

In the context of software engineering we can distinguish two broad categories
of knowledge. The first is knowledge about the business domain for which you are
building software. The second kind of knowledge can be seen as meta-knowledge.
In essence it is knowledge about the processes and products for developing the
software. Depending on the business domain in which you are working, certain
knowledge items can shift category. For a tool vendor for instance, the knowledge
about the development processes are part of the business domain and hence fall
under the first category of knowledge. For a programmer this kind of knowledge
fits the second category. This shift is why it is difficult to categorise knowledge
items without considering the context in which they are used.

Summary

If we refer to domain knowledge, we always specify whether it is rooted in the
problem domain (e.g. banking) or in the solution domain (e.g. software develop-
ment practices), unless both are applicable. In table 3.2 we summarise the main
definitions that were introduced in this section.

3.1.3 Positioning Domain Analysis

The process responsible for creating a domain model is referred to as domain
analysis . In the context of software reuse, Neighbors [Nei80] is generally accred-
ited for being the first to define domain analysis as the activity in which objects
and operations of a class of similar systems in a particular problem domain are
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Knowledge Knowledge is a fluid mix of framed experience, values,
contextual information and expert insight that pro-
vides a framework for evaluating and incorporating
new experiences and information.

Domain knowledge A set of knowledge that captures the concepts and
rules that govern a particular domain.

Tacit knowledge Uncodified knowledge that is often based on personal
experience, know-how, values and emotions.

Explicit knowledge Knowledge available in a codified way such as docu-
ments, databases and requirement diagrams.

Externalisation The mode of knowledge conversion that mainly cre-
ates conceptual knowledge, going from tacit to ex-
plicit knowledge.

Internalisation The mode of knowledge conversion that mainly re-
sults in operation knowledge going from explicit to
tacit knowledge.

Socialisation The mode of knowledge conversion that mainly re-
sults in sympathised knowledge going from tacit to
tacit knowledge.

Combination The mode of knowledge conversion that mainly re-
sults in systemic knowledge going from explicit to
explicit knowledge.

Table 3.2: Definitions for section 3.1.2
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being defined. In this definition Neighbors uses the term domain in the sense of
an application domain. As we have already indicated, a major part of domain
analysis consists of the use of knowledge acquisition techniques to find the do-
main’s objects and operations. Depending on the development method that is
used, the domain analysis is included in a separate domain engineering lifecycle
or is integrated in the application engineering lifecycle.

Domain Engineering, Application Engineering

We follow the distinction between both cycles as defined by Reifer [Rei97]. He
defines the application engineering cycle as the traditional processes used by soft-
ware engineers to develop and maintain software products. In his view the domain
engineering cycle is targeted at defining a common understanding of the domain
in which a set of reusable assets is created for a class of software systems. In
this context, application engineering can be called “engineering with reuse” since
software systems are created by making use of already available reusable com-
ponents. On the other hand, domain engineering can be called “engineering for
reuse” [Har02], because the prime goal is to create a set of highly reusable compo-
nents. An example of a dual lifecycle where application and domain engineering
are combined is presented in figure 3.5. As is shown, both cycles are similarly
phased. Such a dual lifecycle is common in software engineering methods that
are strongly focused on creating reusable assets. A particular example of such
a methodology is software product-line engineering [WL99]. Remember that in
such a method the definition of a domain refers to a family of software systems.
The main purpose of domain analysis for this kind of engineering is to identify the
commonalities and variabilities for a given application domain. For our purpose
it is of interest that a considerable amount of time and effort is spent in analysing
and synthesising the domain knowledge.

In part, the activities of the domain analysis phase are similar to the ones
of the requirements analysis phase. However here a different viewpoint is taken.
Domain analysis in a domain engineering context is generally oriented towards
obtaining a reusable specification of the (entire) application domain. Hence, while
performing it, you try to look beyond the boundaries of a single application. This
means that you try to capture the commonalities and variabilities of an entire
domain, and not just those necessary for one specific problem / solution space, as
is the case in requirements engineering. This means that domain analysis is best
suited for mature domains, where the basic concepts underpinning the domain
are stable and clearly understood.

Even though domain analysis has a strong bias to promote software reuse, it
is also used for capturing domain knowledge without this bias [SM89]. One of the
primary goals of domain analysis, as stated by Shlaer and Mellor, is to transfer the
domain knowledge accurately to the software designers and programmers. This
is in part done by providing a description of the objects (as abstractions of a set
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Figure 3.5: A dual lifecycle in which domain engineering and application engi-
neering closely interact (adapted from [SEI05]).

of real-world things) and the relationships that hold between them. So domain
analysis contributes to the process of converting tacit into explicit knowledge (i.e.
externalisation). The result of the domain analysis phase is a reusable domain
model that can be taken as input for the application analysis phase.

During the other phases shown in figure 3.5 (i.e. the domain design and
implementation phase), a reusable infrastructure and a set of reusable components
are specified and built [SEI05]. These are instantiated and used during the design
and implementation phase of the application engineering cycle.

Vertical Domain Analysis, Horizontal Domain Analysis

Analogous to vertical and horizontal domains a distinction is also made between
vertical and horizontal domain analysis [Boo87]. When performing a vertical
domain analysis , you study a number of software systems that are intended for the
same class of applications (i.e. within a vertical domain). Conversely, performing
a horizontal domain analysis focuses on the study of a number of different systems
across a variety of applications (i.e. within a horizontal domain).

Domain Model, Domain Lexicon

As already mentioned, one of the main assets produced by a domain engineering
cycle is a domain model. The purpose of a domain model is to provide an explicit
reflection of the knowledge acquired about a business domain. In section 3.1.2
we have already mentioned that this knowledge could either be situated in the
problem domain (e.g. as a result of requirements analysis) or in the solution
domain (e.g. as a result of the design of the software solution).

Depending on the domain or the application, certain representations for this
knowledge are more suitable than others. In the case of fairly data-centric soft-
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Figure 3.6: The domain engineering cycle results in domain models, whereas the
application engineering cycle results in application models. Next to these models
a running instantiation of these models exists with which the experts interact.

ware applications it probably captures certain aspects in the form of an Object
Role Modelling (ORM [Hal01]) or an Entity Relationship (ER [Che76]) diagram.
The Unified Modelling Language (UML) provides several representations, each
of which captures different kinds of knowledge about the system to be built. In
essence you need a way to represent domain concepts and domain rules. Often
a UML class diagram is used to model the domain concepts and relate them
to each other. A UML statechart diagram can be used to model the specific
characteristics of a process-oriented domain concept.

Additionally a domain model should include a domain lexicon in which the
terminology used is unambiguously defined. The main purpose of this lexicon is
to improve the communication between the developers and the stake-holders. It
should also be used as a point of reference for all the terminology used in the
different diagrams describing particular aspects.

Figure 3.6 presents an abstraction of the way the domain engineering and
application engineering interact with each other and their corresponding models.
We already discussed domain models in this section. As application models we
take a very broad view, namely that these range from (pseudo-)models that are
close to the domain (and often of an informal nature) to models that are close to
the actual implementation. Examples of the former are use cases and scenarios.
In our view, examples of the latter can range from class diagrams specifying
the design of the system to the actual source code. Note that in traditional
development these application models are decoupled from the running software
application.

In the following section we will discuss ontologies as a medium to capture
domain knowledge in an explicit form.
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Application engineering The processes/practices firms use to guide the
disciplined development, test, and life-cycle
support of their applications software.

Domain engineering The reuse-based processes/practices firms use
to define the scope, specify the structure, and
build reusable assets for a class of systems or
applications.

Domain analysis The analysis of the objects and rules that govern
a particular domain.

Vertical domain analysis The domain analysis of a number of systems
within the same vertical domain.

Horizontal domain analysis The domain analysis of a number of systems
across different domains.

Domain model An explicit specification of domain knowledge.
Domain lexicon Defines the terms concerning the domain to im-

prove communication between developers and
stake-holders.

Table 3.3: Definitions for section 3.1.3.

3.2 Ontologies

3.2.1 About Ontology and ontologies

Recent years have shown an increased interest to put ontologies to work in the area
of computer science. In the beginning there was a continuing debate about how
you should interpret ontology within this context. Fortunately, the community
has settled on using the definition proposed by Thomas Gruber [Gru93], namely
an explicit shared representation of a conceptualisation that holds in a particular
context. The reason why his definition is currently the most widely cited in the
area is probably due to its rather abstract and generic nature. This means that
according to your particular application context, you can easily instantiate it
for your own purposes. Before we come back to the definition, we first present
an overview on the different ways one can interpret the term ontology. This is
necessary in order to better appreciate and understand it.

Ontology as a philosophical discipline

First of all we should observe a very basic distinction between Ontology and on-
tology [GG95, Gua98]. The former in which an uppercase ‘O’ is used, refers to
the original meaning of the word. Ontology in this form denotes a philosophi-
cal discipline, more specific a branch of metaphysics that is concerned with the
nature and the relations of beings. A ‘being’ in this case should be interpreted
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as something that exists. Speaking in general terms, Ontology tries to formulate
an answer to the question “What are the features common to all beings?”. It
is clear that defining these common features is extremely difficult and gives rise
to a lot of lively discussions. The reason for discussion is of course that there
does not exist one single way to look at the world. A classical example of On-
tology are the ten categories by Aristotle: substance, quality, quantity, relation,
spatial, temporal, situated, having, activity, and passivity. Aristotle used these
categories for classifying anything that can be said about something [Sow99]. In
essence he defined categories in terms of other categories by specifying their genus
and differentia. The genus of a category refers to its set of defining or common
properties, whereas the differentia refers to its distinguishing properties.

A conceptual analogy can be drawn to the class-based programming paradigm.
In that case the genus corresponds to defining a new class by indicating its su-
perclass (what it has in common with other classes). The differentia corresponds
to extending the definition inherited from the superclass with its own set of state
and behavior. An extensive resource guide for philosophical ontology is provided
by Corazzon [Cor05].

ontology in computer science

In computer science the term ontology is written with a lowercase ‘o’ and as a
countable noun. In this case it refers to an engineering artefact in the form of a
repository. An ontology in this sense contains the definition of the relations and
the nature of beings. According to Uschold, an ontology of this form should at
least include a vocabulary of terms and a specification of their intended mean-
ing [Usc98]. The specification of this meaning actually is the conceptualisation of
the vocabulary. This includes definitions and how a particular concept relates to
others as well. Specifying the relations between concepts results in a structured
network of concepts that constrain the possible interpretations. This means that
if you would translate the terms in an ontology from one language into another
that this would not change the ontology conceptually [CJB99].

As described by Mayhew and Siebert, another primary distinction between
Ontology and ontology has to do with the scope of the ontological investiga-
tion [MS04]. In philosophical Ontology they traditionally seek to provide a gen-
eral ontology of the reality as a whole. Computer science ‘ontologists’ are mainly
focused on developing domain-specific ontologies to meet particular application
needs. Generally speaking the philosopher seeks knowledge of what exists more
or less for the sake of the knowledge itself, whereas a computer scientist is more
driven by practical purposes.
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Controlled vocabularies, thesauri, taxonomies, . . .

You could wonder whether controlled vocabularies, thesauri, or taxonomies could
also be considered as ontologies. In essence they could since they are all tar-
geted at obtaining a common understanding about the terminology/concepts used
within a particular context. Yet they differ from each other with respect to the
amount of meaning that is specified, the notations used, and the context in which
they are used.

A controlled vocabulary refers to a set of terminology that a group of people
agree to use consistently. It could range from a simple glossary listing the terms,
to a terminology base with strict definitions that is governed by a central author-
ity. Sometimes it also contains a very basic referential mechanism between the
terms (e.g. the ‘see also’ reference). At the very least it should always resolve
terminological ambiguity.

A taxonomy could be seen as a controlled vocabulary in which the termi-
nology is organised into a hierarchy. There exist different types of parent/child
relationships (e.g. class/instance, part/whole) that can be used to establish the
taxonomy. Yet most taxonomies are restricted to one particular type.

A thesaurus extends the idea of relating terminology to specify its mean-
ing with two kinds of reference mechanisms. The first kind is of a taxonomic
nature and is about generalisation/specialisation (e.g. broader term, narrower
term). The second kind is about relating terminology horizontally (e.g. syn-
onym, related term, scope note). The set of available relationships in a thesaurus
is usually fixed, which is in contrast to ontology practices. As a consequence
you are sometimes forced to introduce ambiguities due to this lacking flexibil-
ity [DS03]. For instance consider the inconsequent use of the broader/narrower
term relationship in certain situations. A concrete example is ‘author’ as a
broader term for ‘Dostojefski Fjodor’ versus ‘Brussels’ as a broader term for
‘Vrije Universiteit Brussel’. It is clear that in the former case the broader
term is used to denote a class/instance relationship, whereas the latter case refers
to a containment relationship. Note that the inconsequent use is not due to a
lacking enforcement on the part of the thesaurus administrators. The main rea-
son is that they have to represent the terminology with this (insufficient) set of
relations. In an ontology you can define your own set of relationships which makes
it possible to capture the subtleties between both uses in the example.

In table 3.4 we present a number of definitions adapted from Merriam-Webster [MW05],
ordered according to the amount of meaning represented in them. Note that the
definition of ontology, if considered in a particular context and scope, could easily
encompass the definitions of the others.



3.2. ONTOLOGIES 51

Glossary A collection of textual glosses (brief explanations) of
specialised terms with their meanings.

Vocabulary A list or collection of words and/or phrases, usually
alphabetically arranged and explained or defined.

Lexicon A book containing an alphabetical arrangement of
words in a language and their definitions.

Dictionary A reference book containing words, usually alphabet-
ically arranged along with information about their
forms, pronunciations, functions, etymologies, mean-
ings, and syntactical and idiomatic uses.

Thesaurus A book of words or information about a particular
field of concepts, usually with a cross-reference sys-
tem for use in the organisation of a collection of doc-
uments for reference and retrieval.

Ontology A particular theory about the nature of being or the
kinds of existents.

Table 3.4: A subjective ordering of ‘repositories’ according to the amount of
meaning represented.

Intended purpose of an ontology

An important aspect of an ontology is the intended purpose. Uschold and Gruninger
identify three basic uses for ontologies [UG96]. The first is to improve communi-
cation between humans and/or computers. This is mainly done by providing an
unambiguous representation of the concepts used. A second area of applicability
is to achieve inter-operability among computer systems. In such a case the ontol-
ogy acts as an inter-lingua. The last category is the least specific and concerns
all uses of ontologies for improving the process and/or the quality of engineering
software systems. Among others they foresee possible improvement for reuse and
maintenance in this context.

Ontological commitment

An important aspect of an ontology is the referential role that this explicit spec-
ification (the concepts) plays. This means that it is used as a work of reference
and that there exists a strict commitment from the users towards the meaning of
these concepts i.e. an ontological commitment is enforced. These commitments
define the terms that allow you to reason about the world (or a specific part
of the world). Consider for example defining ‘tape’ as ‘something sticky to

hold broken things together’ within the domain of ‘restorer of antiques’.
Whenever you use ’tape’ in this domain, people will know that you are not going
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Ontology The branch of philosophy which is concerned with
the nature and the relations of being.

ontology An explicit, shared representation of a conceptu-
alisation that holds in a particular context.

Conceptualisation An abstract, simplified view of the world that we
wish to represent.

Ontological commitment An agreement to use the elements of a particular
ontology in a consistent and coherent way.

Table 3.5: Definitions for section 3.2.1.

to use it to record TV programs. However this does not exclude the existence of
different viewpoints on the same concept. What this does tell us is that within
one ontology there must be a consensus on which viewpoint is taken. Neverthe-
less if both viewpoints are necessary (or no consensus to discard one of them is
reached), they could both be represented as separate concepts within the same
ontology. The way to do it is to create two disjoint concepts and clarify the
difference in perspective between the two.

Summary

At this point we come back to the definition for ontology by Gruber [Gru93]. He
states that an ontology is an explicit, shared representation of a conceptualisation
that holds in a particular context. The ‘conceptualisation’ in this definition refers
to an abstract, simplified view of the world that you wish to represent for some
purpose. That there must exist a kind of agreement between the users of the
ontology is indicated by the word ‘shared’. The purpose of making it explicit is
for being able to share and use the conceptualisation as a point of reference. If
we instantiate this definition in the context of this dissertation we get that an
ontology represents a certain view on a business domain, in which you define the
concepts that live in this domain in an unambiguous and explicit way for the
purpose of building a software system. Interesting survey articles that introduce
the basics of ontologies are [Kal02] and [UG96].

3.2.2 Different Varieties of ontologies

Ontologies come in different flavours. In part this has to do with the ontology
representation that was used, since the associated expressiveness and formality
leads to different capabilities. More important for us however are the granularity,
and the intended purpose of the ontology. Both these aspects of an ontology are
closely intertwined.

The granularity of the ontology boils down to the level of detail at which
concepts are defined. This is of course in function of the intended purpose of the
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ontology. A broad distinction can be made between ontologies that are general
enough to be (re)used across different domains and ontologies that are dedicated
to a specific domain [CJB99, Gua98, GGM+02]. The former type are referred
to as upper ontologies (a.k.a. top-level ontologies), whereas the latter type are
denoted by domain-specific ontologies (a.k.a. application ontologies). A possible
layering of ontologies is shown in figure 3.7 (1).

An example upper ontology is the Suggested Upper Merged Ontology [NP01]
which is used within the IEEE Standard Upper Ontology Working Group [SUM05].
It is intended to be used as a foundation for domain-specific ontologies by pro-
viding a set of definitions for general-purpose terminology. This means that it
provides the core concepts or core ontology used by the underlying domain-specific
ontologies. Similar to horizontal domains and vertical domains (section 3.1.1),
an upper ontology is sometimes referred to as a horizontal ontology whereas a
domain-specific ontology is sometimes referred to as a vertical ontology [Lin03].

Foundational ontologies are intended to be used as the core of other ontologies.
Even though a foundational ontology can be considered as an upper ontology, it
is intended to be used by existing upper ontologies as well. An example of such
an ontology is Dolce [GGM+02]. Dolce is specifically targeted to be reused by
a broader audience. Consequently the concepts in it are often extremely general
and abstract.

The use of upper ontologies, to provide the core concepts for your own ontol-
ogy, implies that you submit to their view on the world. Certain authors argue
that trying to establish a set of upper ontologies is not feasible. Their main ar-
gument is that there is no self-evident way of dividing the world into concepts
(see also section 3.2.3.2). Hence they believe that standardisation efforts are in
vain. On the other hand, upper ontologies are thought to be extremely useful as
a medium for standardising communication and as a way to facilitate knowledge
sharing. Be what it may, such top-level ontologies can provide a good source of
knowledge about abstractions for e.g. space-, time-, matter-, and event-related
concepts.

Using an upper ontology in your own application context boils down to spe-
cialising the available concepts until you reach a level that is useful for your
application domain. As we have already indicated, the set of concepts that you
obtain in this way is a domain-specific ontology. Note however that stand-alone
domain-specific ontologies that are not an extension of an upper ontology also
exist.

Domain-specific ontologies are often subdivided in domain ontologies and task
ontologies [Kav03]. The former defines the concepts associated with a specific
domain, whereas the latter defines the concepts related to the execution of a
particular task or activity. Whether this is a useful distinction depends on the
definition of ‘domain’ that is used, since the definition of a domain ontology could
entail the definition of a task ontology. The importance of this distinction lies in
the fact that both flavours of knowledge are to be represented.
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Figure 3.7: (1) A possible layering of different types of ontologies and (2) different
layers within one ontology depending on the viewpoint of the user.

Until now we have considered ‘types’ of ontologies. Yet there is a similar
division within an ontology itself. This is illustrated in figure 3.7 (2). As is shown
you can distinguish between 3 layers: core, domain, and application. Concepts in
the core layer are considered to be representing stable knowledge whereas concepts
in the application layer exhibit a more transitional behaviour. As depicted in the
figure, the concepts in the application layer are described by using the concepts
provided in the domain layer. We could say that the domain layer concepts are
used as an ontology for the application layer concepts. The domain layer itself
makes use of the core layer. The core layer provides the most primitive concepts
that are needed. This is similar to the distinction made between the layers in
model driven development as presented by Bezivin and Ploquin [BP01]. The core
layer can be thought of as a meta-language (e.g. EBNF) to specify the concepts in
the domain layer. The domain layer itself will be used as a language (e.g. an ANSI
C grammar) for specifying the concepts in the application layer (e.g. an ANSI
C program). All layers within the figure are virtual. Consequently depending
on the viewpoint of the current user (i.e. the current application context), the
concepts can shift to different roles.

3.2.3 Ontologies in Practice

“The philosopher wants to make sure that the ontology behind the
system accurately reflects the world as it is and that any logical theory
behind the design is sound and complete. The informatician may
very well want the same thing, but realises that perfection must be
sacrificed in the interest of finishing the job on time.” [MS04]

We have seen that the word ontology has a different meaning in computer science
and in philosophy. In the former case it refers to an artefact, and consequently the
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Upper ontology An ontology that describes very general concepts
like space, time, matter, object, event, and action,
independent of a particular problem or domain.

Foundational ontology An ontology that describes concepts that can be
used as a foundation for building upper level on-
tologies.

Domain-specific ontology An ontology that describes the vocabulary, tasks,
and activities related to a generic domain.

Vertical ontology A domain-specific ontology defining concepts na-
tive to a vertical domain (e.g. domain-specific on-
tologies).

Horizontal ontology A general ontology that spans multiple domains,
where it defines concepts for a horizontal domain
(e.g. upper level ontologies).

ontology granularity The level of detail at which concepts inside an on-
tology are defined.

Table 3.6: Definitions for section 3.2.2.

question ‘what is an ontology’ requires a practical answer with some guidelines
on how to build it. We have also seen that an ontology in this sense should not
be considered without the application context (or the intended purpose). Hence
it is important to keep this application context in mind while making a number
of practical choices for developing the ontology. In no particular order, you need
to:

• Define the domain and scope of the ontology

• Decide to follow a class-based or prototype-based approach

• Consider existing ontologies for (re)use

• Decide on a suitable knowledge representation and degree of formality

• Identify a set of concepts to populate the ontology

• Establish a connection between the ontology and the application

We will elaborate shortly on each of these in the following subsections. This
is not intended to be a complete guide that covers all aspects of ontology de-
velopment. Certain aspects such as ontology merging, ontology alignment, and
ontology evolution are not covered in this dissertation. A good starting point to
get a hands-on feeling of building an ontology is the article by Noy and McGuin-
ness [NM01].
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3.2.3.1 Define the domain and scope of the ontology

An ontology cannot be separated from its purpose within an application in the
sense that if we want to encode concepts we always have to decide what aspects
of reality we choose to represent [CJB99]. Consider for example an ontology in
the domain of computer hardware. If the ontology is to be used by a teaching
system for computer novices we focus on different aspects of reality than if it
were used in the context of a hardware manufacturer. In part this boils down
to defining the level of detail of what we want to represent inside the ontology.
For the teaching system, the concept granularity could well be at the level of
abstract components inside a computer such as the central processing unit, hard
disk drive and random-access memory. It is clear that this granularity is not
always adequate when deploying an ontology for a hardware manufacturer. He
might want to represent the types of resistors used on a particular model of
motherboard for instance. Related to the granularity of the ontology content, is
the knowledge representation that is used. This has to do with the expressivity
of the representation as well as with the associated inferential mechanisms. We
will discuss this in section 3.2.3.4. Note that defining the ontology domain and
the scope of the ontology is similar to defining the boundaries of a business or
application domain and the coverage of such a domain. As we will see in section
3.2.3.3 a number of ontologies are available for reuse within an application. If
the ontology you are going to develop is specifically intended to be reused across
a large set of applications or within a broader community, this influences the
choices made during the other steps.

3.2.3.2 Decide to follow a class-based or prototype-based approach

In computer science, ontologies are mostly used similarly to the class-based object
oriented paradigm. This means that concepts in an ontology correspond to classes
that can be used as a blueprint to describe the things that exist in the real world.
Hence in order for some concept to exist, there should first exist a class that
describes the characteristics of that type of concept. Philosophically this is in
line with the Aristotelean view on the world. As we have seen in section 3.2.1,
Aristotle defined a number of categories in which all concepts in the real world
should fit. Most ontology applications adhere to this classification approach.
Consequently you instantiate the concepts inside the ontology to represent the
entities that exist inside your application. For example a ‘64-bit PowerPC G5’
processor is an instance of the concept ‘central processing unit’. This implies a
strict division of ontology development and ontology usage.

The class-based view of the world is not the only one. A number of philoso-
phers have argued against this rigid classification-based way of looking at the
world. In this case we move towards ontologies used analogously to the prototype-
based object oriented paradigm, where the actual objects are represented instead
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of searching for classes that capture the commonalities of a group of objects. The
main critique on the class-based view is that there are no single objectively right
ways to classify things. The argument, among others, is that a person’s percep-
tion of reality is highly biased by personal experience and cultural background.
The most notable opponent of the class-based view is Wittgenstein, who states
that it is extremely difficult to define beforehand which characteristics of con-
cepts are essential and which are particular. To strengthen his case he uses the
concept of a game (e.g. a ball game, chess, tennis) as an example [Wit04] . With
this example he illustrates that even though there are a lot of similarities and
relationships between games, it is impossible to find a unique set of properties
that is common to all. The most common argument in favor of prototypes is
that people apparantly find it easier to deal with specific examples first before
generalising them into abstract concepts (whereas a class-based view works the
other way around) [Tai97].

A class based approach seems to work extremely well for taxonomising ‘con-
crete’ things in the world such as plants, and animals. Nevertheless describing
or capturing precisely ‘what’ these things are remains difficult. In part this is
due to the fact that classical definitions (i.e. a single set of jointly sufficient and
individually necessary conditions) are only possible for a relatively small set of
concepts. An example that is similar to the game-example of Wittgenstein is the
lemon example of Swartz [Swa97]. Even though everybody knows the extension
of a game or a lemon (i.e. an actual set of games or lemons), it is extremely
difficult if not impossible to describe their intensional definition (i.e. a definition
that holds for all kinds of lemons or games)3. Moreover, opinions to whether a
certain property is essential or not may differ. In part these differences in opinion
are stimulated among others due to the fact that classes are non-overlapping and
mutually exclusive. This means that something must belong to the extension of
one class or the other, but that it cannot belong to both. Consequently a choice
needs to be made due to this rigourous membership restriction. In computer
science and more specific in domain analysis, this restriction is cumbersome since
we need to capture a lot of things that are not concrete objects. An example of
this is the approval procedure of a loan in which a knowledgeable financial ad-
visor makes a personal assessment. This assessment is often based on know-how
instead of a predefined set of fixed rules. The reification of such knowledge calls
for a more flexible way of organisation. This can be done with categorisation,
where the membership of something in a group is non-binding. An in-depth dis-
cussion of the difference between classification and categorisation is provided in

3The difference between an intensional or extensional definition of a concept is important.
Consider for example the term person. The intensional definition refers to the specification
of attributes and properties that are common to all persons. This is similar to representing a
person as a class, which makes it possible to use it as some kind of formula. On the other hand,
the extension of the term refers to the actual set of all persons that conform to this intensional
definition.



58 CHAPTER 3. DOMAIN KNOWLEDGE AND ONTOLOGIES

an article by Jacob [Jac04]. Note that the choice of following a class-based or
prototype-based approach has a strong impact on the steps described in the other
subsections.

3.2.3.3 Consider existing ontologies for reuse

One of the main purposes of an ontology is to get an explicit account of the
meaning of the main concepts in a certain universe of discourse. Consequently an
ontology is intended to be (re)used by different people at least within one domain.
Ideally an ontology can be used within a variety of domains (section 3.2.2). Even
though a lot of ontologies are proprietary and can only be used for a specific
application or domain, several initiatives exist that are targeted at such a broader
audience. Hence to make a headstart when developing your own ontology, it is
important to look at what is already available on the market. Besides a number
of closed commercial ontologies (e.g. Cyc [Cyc05]), a lot of open ontologies exist
as well (e.g. OpenCyc [Ope05], SUMO [NP01], WordNet [Wor05]).

When selecting or assembling a set of already existing ontologies, special care
should be taken for aligning the concept sets (a.k.a. ontology alignment). Con-
sider for example the division of the world at the first level of concepts under
the root. In SUMO we see a distinction between an Abstract Entity and
a Physical Entity. The latter is further subdivided into Content Bearing

Physical Entity, Object Entity, and Process Entity. In Cyc we see a dis-
tinction between an Individual Thing, a Partially Intangible Thing, and
a Mathematical Or Computational Thing. This means that if you would like
to use a part of each of these ontologies, that you need to merge both sets of
concepts. Note that this is not a simple union, but that this requires a careful
alignment of the semantics of the concepts that are classified under this upper-
level. Besides this, adopting a deep taxonomy with rich semantics also imposes
a risk of obfuscating the intended meaning. Since it is often difficult to grasp the
semantic subtleties that occur in a domain other than your own, it is dangerous to
go shopping for concepts in a careless way. Especially when merging ontologies,
ambiguous concept definitions might occur when concepts are taken out of their
defining context.

3.2.3.4 Decide on a suitable knowledge representation and degree of
formality

A large set of languages is available to represent the concepts in an ontology. The
best known are Ontolingua, RDF, SHOE, OWL, and FLogic. A number of them
stem from research in expert systems and knowledge bases (e.g. LOOM [Bri93],
CycL [Cyc05]). The main categories of such knowledge representation schemes
as identified by Mylopoulos [Myl80] are: logical, procedural, network, and struc-
tured representation schemes. This does not mean however that a representation
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implementation must fit exactly into one of these classes. It is common to have
a language whose main features fit mostly in one category but which exhibits
features of other categories as well.

Well-known examples of the logical representation class are Prolog and De-
scription Logics. These languages use expressions in logic to represent the knowl-
edge elements and are especially suited for inferencing. Procedural representation
schemes make use of a set of instructions to represent the knowledge. An example
of this is a production system in which the knowledge is expressed by if-then rules.
Network and structured representation schemes capture knowledge in a graph by
representing concepts as nodes, and relationships as arcs. Semantic networks and
Conceptual graphs are examples of the former. Structured representations can
be seen as an extension of network representations since they represent nodes
in the graph as a data structure with slot-value pairs. Examples of these are
frames and objects. It should be noted that currently a lot of new ontology lan-
guages are created for use in internet applications (more specifically the semantic
web). Such languages are often based on XML, since ontology interaction in these
applications is often one of the prime requirements.

Whether to prefer a formal logic representation language over e.g. a less formal
structured representation language depends again on the application context of
the ontology. In this light we would like to present a quote of Nonaka and Takeuchi
( [NT95], page 67):

“Once explicit concepts are created, they can then be modeled. In
a logical model, no contradictions should exist and all concepts and
propositions must be expressed in systematic language and coherent
logic. But in business terms, models are often only rough descriptions
or drawings, far from being fully specific. Models are usually gener-
ated from metaphors when new concepts are created in the business
context.”

Hence one needs to consider the level of formality that is required and that
is possible in the application context. The benefit of a formal representation
has a clear impact on the inference capabilities, as well as the possibility to
specify an exact semantics of the concepts. As indicated by Corcho et al., a
trade-off should be made between the readability, the expressiveness, and the
inference properties of the ontology representation language [CGP00]. This also
relates to the granularity of the knowledge representation. For example concepts
in semantic networks can only be denoted by using simple symbols, whereas in
frame-based systems one can define complex structures to define a concept [LS98].

In a minimal form one should be able to specify concepts and relationships.
Most ontology representation languages combine the features of the four cate-
gories by Mylopoulos (logical, procedural, network, and structured representa-
tion schemes). Defining a concept is mainly done by listing its slots or attributes
(a.k.a. properties, roles). Example slots of an insurance policy holder could be
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name, age, and profession. Corresponding values for these slots could be ‘Homer
Simpson’, 45, and nuclear safety inspector. In the case of profession one
sees that this slot-value does not necessarily point to a terminal fact, but that it
could point to another concept. This means that we have defined a profession-
relationship between both concepts. Facets (a.k.a. role restrictions) on these slots
are used to specify among others allowed value-types, cardinality constraints, and
default values. So they provide a way to put restrictions on slots. The relationship
we mentioned earlier is an open association with no predefined semantics. How-
ever over the years a number of relationships have become common, namely to
facilitate classification (instance-of, member-of), aggregation (part-of, a.k.a.
meronymy), generalisation (is-a, subclass-of, a.k.a. subsumption), and parti-
tioning (group, context) of the concepts.

Note that we have restricted ourselves to an extremely brief overview in this
section since we do not focus on the creation of a new ontology specification
language. An evaluation of ontology specification languages according to a set
of desired features is given in [CGP00] and [BGH02]. An overview of ontology
languages was also produced by the OntoWeb project in [Bec02].

3.2.3.5 Identify a set of concepts to populate the ontology

Populating an ontology is an iterative activity. In fact it is similar to performing a
domain analysis in which you undertake a number of steps to capture a good set of
domain concepts. As we have already seen in section 3.2.3.3, a sub-activity of this
step could be to identify already existing ontologies for reuse. Nevertheless besides
this you need to create a set of custom concepts as well. Depending on whether
you use a class-based or prototype-based approach, you need to determine the
initial classes or the initial concepts (‘instances’) in your ontology.

In a bottom-up development approach you start by defining the most specific
concepts. Consequently you iteratively group these into more general concepts.
An example extract of concepts in the Wine ontology of Noy and McGuinnes [NM01]
are Margaux, and Pauillac. These are consecutively grouped into Medoc, Bordeaux,
Red Wine, and Wine. A top-down development approach starts by defining very
general (and often extremely abstract) top-level concepts. Examples of these from
the code-level ontology of Welty [Wel95] are Software-thing, Software-object,
Software-value, and Software-action. At the bottom-level one would reach
concepts such as self-variable, and assignment. Of course a combination of
both approaches is also possible. Once you have this set of concepts, you need
to define them more clearly. In part this is done by establishing a hierarchical
taxonomy (with vertical relationships) in which you relate the concepts to each
other with the ‘kind of’ relationship (a.k.a. ‘is a’, ’instance of’). Next you need
to define the properties or attributes (a.k.a. slots) of each concept. This is done
by relating the concept to other concepts with horizontal relationships, or by
describing terminal facts about the concept. An example of this is Pauillac
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has-color Red.
An important decision that must be made when modeling the ontology is to

choose whether to represent a concept as a class or an instance. Note that this
decision still needs to be made, even when a prototypebased approach is followed.
This is because the need to be able to model abstract and concrete concepts
is often dictated by the application context. Noy and McGuinness introduce
two rules of thumb to guide a decision on this issue [NM01]. The first rule
states that the most specific concepts in the ontology are individual instances.
Whereas the second rule states that concepts should be represented as classes if
they form a natural hierarchy. The main benefit obtained by using a prototype-
based approach is the fact that you are not forced to model all concepts as classes
before you can define their corresponding instances. You can introduce (or for
that matter simulate) a class-structure in a prototypebased environment if the
need arises.

Christopher Welty and David Ferrucci have examined the class versus instance
problem in detail [WF94]. To illustrate their point they use an example in which
they represent an eagle as an instance of the class Species. In such a case prob-
lems arise if you need to include particular eagles in your ontology as well. For
instance the eagle harry should be represented as an instance of eagle but this
would lead to a situation where you have instances of instances. Remodelling the
ontology where Eagle is a subclass of Species leads to other problems. Since
for example the statement ‘the eagle is an endangered species’ is not understood
to apply to one particular eagle harry, but to the class of eagles (i.e. harry

is not necessarily endangered). They solve the problem by introducing the no-
tion of spanning objects, where the same concept plays the role of instance or
class according to the universe of discourse in which it is used. It is clear that
switching the role of such a concept is not an issue in a prototype-based ontology
environment.

3.2.3.6 Establish a connection between the ontology and the applica-
tion

It is important to obtain a loose coupling between the ontology and the applica-
tion. With such a loose coupling you achieve a certain amount of independence
between both parts. Consequently it would become possible to use the appli-
cation with a different ontology and vice versa. This way one could achieve
ontology reuse as well as application reuse for different contexts. Mind though
that changing the semantics of concepts in the ontology could change the way
the application functions. This means that certain parts of the software is mal-
leable through concept evolution. This leads to a certain degree of flexibility for
adapting the way the application behaves or the results that are being produced.
Achieving such malleability is not just a matter of maintaining a flexible connec-
tion between both components on a technical (code) level. More importantly it
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has to do with how the application uses the semantics of the concepts inside the
ontology. As we already indicated in section 3.2.3.1, it is important to take the
application context of the ontology into consideration. Speaking in broad terms
one could distinguish between a passive and an active use of the concepts in the
ontology. This is an important distinction since the concept-centric environment
we present in the next chapter will be categorised as ontology-driven.

A certain group of applications use the concepts of an ontology in a ‘passive’
way, for example to facilitate searching through a large amount of multimedia
items. This type of application broadly corresponds to an ontology-aware ap-
plication [Gua98]. The ontology concepts in such an application are used as
metadata tags that direct the search activities. As indicated by this example,
the word ‘passive’ refers to the fact that the application itself does not depend
on the actual concepts inside the ontology. In essence one could state that the
application behaviour does not change when the semantics of the concepts is
changed. What could happen is that different search results occur, but what will
not happen is a change in the overall application behaviour. Consequently since
the concepts in this kind of application are mainly consulted and used passively,
the runtime software malleability could be considered as low.

Applications that make use of the ontology concepts in an ‘active’ way de-
pend on certain concepts in order to function properly. This type of application
broadly corresponds to an ontology-driven application [Gua98]. An example of
this kind of use is an insurance application in which the rules for processing a
claim as well as the meta-model used, are stored as concepts. As a result, such an
application cannot function properly without the existence of these core concepts
in the ontology. This is mainly a result of factoring out part of the behaviour
to the ontology. The ontology becomes an active component in the whole of the
application. This is analogous to the development approach used in dynamic
object models [RTJ05] where object types (classes) are represented as data (ob-
jects) in order to improve the adaptability of a software system. In practice you
initially need to bootstrap such an application by hardcoding certain concepts
inside the application. At a later stage, when the ontology and application in-
frastructure are more developed, you can eliminate these hardcoded elements by
pushing them to the ontology. In this kind of application the consultation of the
concepts is done in part to ensure the applications routine functioning. The con-
cepts that are consulted are used actively, since their semantics are interpreted
by the application during its execution. In such an application the runtime soft-
ware malleability could be considered as high, depending on how far this kind of
genericity is realised.



3.3. SUMMARY 63

3.3 Summary

In this chapter we elaborated on domain knowledge and ontologies. We distin-
guished between several types of domains such as application domains, business
domains, vertical domains, and horizontal domains. We also characterised the
knowledge associated with a domain and discussed the difference between ex-
plicit and tacit knowledge. In addition we positioned domain analysis in the
context of domain engineering. The topic of ontologies was discussed in detail
since we will base our medium to capture domain knowledge on it. This is why we
distinguished between different varieties of ontologies and a number of practical
considerations for building an ontology.

In the next chapter we weave the knowledge presented here into our approach.





Chapter 4

The Concept-Centric Environment

In the previous chapters we introduced the background information that is nec-
essary to position and understand the work of this dissertation. This chapter
introduces our approach as a concept-centric environment that is based upon a
symbiotic integration1 between the code level and the concept level.

Section 4.1 presents the need for such a concept-centric environment. It starts
by defining the problem context for this dissertation. Next we present an anal-
ysis of the different problems encountered in the background chapters. These
problems are all related to the absence of domain knowledge in the context of
continued development. We start by analysing the reasons why domain knowledge
becomes implicit. This is a problem since domain knowledge forms an essential
ingredient for code comprehension. On top of that, domain knowledge is often
detached from the implementation. This is unfortunate because there probably
existed a clear link at some point in time. Moreover this coupling is one of the
top information needs by developers if they are evolving an implementation. One
of the main reasons why domain knowledge becomes implicit and detached is
because it plays a passive role during the development of the software. This
why developers are hesitant to spend time on making explicit what they know,
since it does not help them to deliver the functionality of the software system.
In addition, documenting an implementation is perceived as an overhead by de-
velopers. Consequently even when domain knowledge was made explicit, it will
quickly become out-of-date and is no longer useful as documentation. We end the
section with the problem statement which is based upon these problem keywords,
namely: implicit, detached, passive, and overhead.

Section 4.2 discusses the concept-centric environment we propose in this dis-
sertation. It is structured according to the following antonyms of the problems
mentioned above: implicit versus explicit, detached versus coupled, passive versus

1With symbiotic we refer to a mutually beneficial relationship between the concept level and
the code level. With integration we refer to the fact that both are closely combined so they
form a whole.
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active, and overhead versus transparency2. Broadly speaking we explore the basic
underpinnings of the explicit concept level in this section. These foundations are
validated with a practical implementation in the next chapter. As we will discuss,
domain knowledge is made explicit by using a frame-based representation which
is stored inside a ConceptBase. In order to be able to couple domain knowledge
and implementation entities, we discuss the underlying mechanism that takes
care of deifying3 code level entities into the concept level. This makes it possible
to connect both elements at the concept level. Subsequently we clarify how the
concept level can actively contribute to the overall functionality of the software
system. Among others this activation results in an improved malleability of the
implementation by refactoring it, so that it makes use of the concept level. To
alleviate the overhead for developers we stress the importance of transparency.
This is mainly achieved through a symbiotic integration between the code level
and the concept level. We end the section by synthesising all these elements into
our thesis statement.

A proof-of-concept implementation of the environment is presented in chap-
ter 5. Examples that illustrate the interaction with the environment can be found
in chapter 6.

4.1 Need for a Concept-centric Environment

In order to survive in today’s highly dynamic marketplace, companies must show
a continuous and ever-increasing ability to adapt. This pertinent need for change
has a clear impact on the software systems that support the business activities.
The level of agility that is necessary to keep up with the business side of the
‘adaptability challenge’, consequently imposes itself on the software side. This
puts contemporary software development practices under a continuous strain so
as to achieve acceptable results within an extremely limited time span. In chap-
ter 7 we present a characterisation of an example business context (iMedia) that
illustrates the strain that can be put on software development practice. The busi-
ness dependence on software and the need for agile software evolution is clearly
expressed in the following quote [FK00]:

“The overall setting is characterised by on the one hand an increasing
business dependence on reliability of software infrastructure and on
the other hand rapid change and reconfiguration of business services
necessitating rapid software development and frequent change to that
software infrastructure.”

2With transparency we refer to the obliviousness of the concept level for a developer.
3In contrast to reification, where one makes something abstract more concrete, deification

refers to making something concrete into something abstract.
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In this dissertation we focus on continued development (chapter 2, section 2.1.3),
which boils down to the adaptation of an existing implementation to incorporate
new features (either anticipated or not). This also encompasses organisational
and methodological issues, but our focus is on the programming side.

We focus our investigation on object-oriented applications that are written in
a class-based programming language. The reason for this is that it is currently
considered as the ruling paradigm for developing business software. Moreover we
use a number of intrinsic properties of object-orientation4 that are essential for a
practical implementation of a concept-centric environment (see chapter 5). The
applications that are of particular interest to this dissertation are E-Type systems
(chapter 2, section 2.1.4). In summary this type is characterised as being in a
constant state of change. Additionally these systems are closely connected to a
real world domain, which means that there exists a two-way interaction between
changes in the real world and changes to the application. Such an interaction
is also referred to as co-evolution (chapter 2, section 2.2.3). As a result of this
close connection to the real world, a lot of domain expertise is involved in the
development of E-type systems. However we do not consider knowledge-intensive
systems that are best developed by structured knowledge engineering approaches
such as CommonKADS [SAA+00]. This is because our focus is on the program-
ming side (and not the knowledge management side) of evolving object-oriented
software.

We focus on development practices that are geared towards achieving mal-
leable software. As we have described in chapter 2, section 2.1.7, continued
development is also about making the software more open to incorporate future
changes (a.k.a. anticipated evolution). An important activity in software evo-
lution to achieve this flexibility is refactoring [Opd92, FBB+99]. Refactoring is
targeted at enhancing the internal structure and the readability of the implemen-
tation so that changes can be more easily incorporated. Even though we will
propose to refactor part of the code to enhance the software malleability, we do
not target the activity of refactoring itself. Software malleability is important
for E-Type systems, since it facilitates adaptations in an extremely limited time
span.

We distinguished between two opposed visions of software development in
chapter 2, section 2.2.2. We position ourselves in between the pure code-centric
and model-centric approaches. In essence this means that we want to balance the
importance that is attributed to both the code and the models. As will become
clear in section 4.2, the kind of domain knowledge that we target and the way
that this knowledge is made explicit is beneficial to both visions.

In the following sections we describe a number of problems that are encoun-
tered during the evolution of object-oriented E-Type software applications. These

4The properties we require are not intrinsic to class-based programming languages, but to
object-orientation in general.



68 CHAPTER 4. THE CONCEPT-CENTRIC ENVIRONMENT

problems are described from a worst case perspective. Broadly speaking we iden-
tify three main sources of problems that are relevant for this dissertation, namely
implicit, detached and passive domain knowledge.

4.1.1 Implicit Domain Knowledge

Up to 60 percent of the time spent in software evolution is dedicated to program
comprehension (chapter 2, section 2.3). This is because a developer needs to
understand what a system does before any adaptation can take place. In essence
program comprehension is about rediscovering and reconstructing the domain
knowledge that was available to the original developer. The fact that a lot of
domain knowledge is implicit for the developer is problematic for evolution. Even
though this is a rather plain observation, there is empirical evidence that domain
concept descriptions are the most essential information needed by software main-
tainers [KSP04]. In chapter 2, section 2.3 we identified the main factors why
knowledge about a software system becomes implicit. In essence they can be
summarised as follows:

• High personnel turnover
Software developers and domain experts are a volatile asset. They switch
companies or project teams frequently. Moreover depending on the stage
the software is in, it will become less likely to find people that are well-
acquainted with the system.

• Complexity of software systems
As a result of the complexity and the size of contemporary software systems,
the peculiarities of a particular component are often lost over time. This
is not only a result of the difficulty people have to grasp the entire system.
It is also a consequence of the large number of dependencies between the
different elements.

• Short-term software development economics
Spending time on documenting a system is time that cannot be spent on
development. As a consequence documentation is often neglected by devel-
opers in favor of producing code that contributes to the next release of the
system. This happens especially in the context of agile development where
continuous integration is mandatory. A development team will build and
test the software many times a day. Consequently the next release of the
system is not weeks but hours away. It is clear that in such an environment
developers cannot be burdened with specifying their domain knowledge if
it does not have a clear short-term return.

• Kind of knowledge
Even in a model-centric approach to software development, not all knowl-
edge is made explicit. For instance the motivation for particular design
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choices is often left undocumented. Also common sense knowledge about
the business domain in which the system operates is often unavailable in the
code nor the models (e.g. as a result of a generic implementation). Even
though certain design decisions may be clear for experts in the field, novice
developers will often have difficulty to understand the (hidden) reasons for
a particular choice. This poses a problem especially in agile software de-
velopment where a guided approach is followed (chapter 2, section 2.2). A
guided approach has an exploratory nature, thus deviations from a planned
project trajectory are not considered as harmful but as beneficial. The mo-
tivation behind certain deviations could provide future developers with the
necessary insight in particular implementation choices. Moreover it could
also prevent them from reinventing the wrong wheel over and over again5.

• Genericity of the implementation
Continued development is also about refactoring the software to make it
more susceptible to future changes (chapter 2, 2, section 2.1.7). A basis
for enhancing the malleability of an implementation lies in writing generic
code. Unfortunately generic code results in less explicit code. A lot of
details become hidden in the data that is loaded at runtime, which has a
negative impact on the readability of the code. Moreover this results in
more knowledge to become implicit since generic code contains less explicit
information. Less explicit code is not helpful for code comprehension since
it has a negative impact on readability. As a result a trade-off exists between
flexibility and complexity [Fow01, Fow98].

• Reduced information quality
Each time information is passed on in a communication chain, there is a
deterioration of the quality; not only when an evolution request is passed on
from a domain expert to a developer, but also between successive evolution
steps in the software. Each evolution step results in certain parts of the im-
plementation to be rewritten. These transformation steps can cause a loss
of information. In chapter 2, section 2.3.2 we illustrated the deterioration
of the quality of information when it is passed in a small communication
chain. In figure 4.1, we revisit the chain presented in that section but now
with a shared repository in which part of this knowledge is made explicit.
Without making any quantitative claims, one could at least expect that
the total quality at the end of the chain is going to be larger than the
original 60 percent. Moreover, a developer needs to map the need for evo-
lution onto the implementation. This results in another deterioration of

5Documenting the reasons why a particular solution is chosen is important information for
developers. This for instance tells them which alternatives have been tried and why they were
not considered as valid solutions. As a consequence, the developer can use this knowledge in
order to decide how to refactor the system to accomodate the new situation.
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Figure 4.1: Improved quality of communication with an explicit representation.

the quality because the need is formulated in terms of the business domain.
It is the developer’s responsibility to translate and map this need into the
implementation domain.

We have seen in this section that domain knowledge becomes implicit for
different reasons. This is problematic in the context of software evolution, since
it is the main asset for program comprehension. Hence this indicates the need for
an explicit medium that captures the relevant domain knowledge.

4.1.2 Detached Domain Knowledge

Making the domain knowledge available in some explicit form is only a partial
solution to the problem. Developers need to know to which part of the implemen-
tation the knowledge applies to. Unfortunately the knowledge is often detached
from the implementation. This means that there is no explicit link available
between the knowledge and the code. Empirical evidence shows that program-
domain-situation knowledge is one of the top three most needed information of
developers (see chapter 2, section 2.3.3). Consequently they are not only in-
terested in domain concept descriptions, but also in how they can couple this
knowledge back to the implementation. This matching process was illustrated by
the Brooks comprehension model which was described in chapter 2, section 2.3.

Mapping domain knowledge back to code is difficult in nature. This is mainly
because domain knowledge cannot always be brought back to one specific location
in the code. In contrast to encapsulated domains this is especially problematic
for distributed domains (chapter 3, section 3.1.1). In an encapsulated domain
the functionality that is associated with the domain can be lifted out of the soft-
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ware in a relatively easy way. In a distributed domain however the functionality
is scattered throughout the implementation. As a consequence there is no di-
rect one to one mapping between the domain and the implementation since the
domain functionality crosscuts the application. Since the mapping process be-
tween knowledge and code is difficult and time-consuming, it is important that a
developer can attach his findings to the code once the mapping is complete.

The problem of detached domain knowledge is still valid when a case tool is
used to model the application. First of all this has to do with the kind of domain
knowledge we refer to that remains implicit. In the previous section we already
indicated that certain domain knowledge is not recorded explicitly in the models
or the code. An example of this is the common sense knowledge about the business
domain in which the system operates. Secondly there exists a clear dichotomy
of the traditional analysis-design-implementation phases. Broadly speaking this
refers to the fact that the artifacts are decoupled each time control is passed from
one phase to another. As a consequence, knowledge that is available in an explicit
form will become detached from the implementation in the end. This dichotomy
is less apparent when an agile iterative development approach is followed. This is
because the distinction between analysis, design and implementation is less clear-
cut in such an approach. However since only those things that are considered to
be important are documented by models in agile development, it is even more
important to have a clear coupling between the models and the implementation.

Also depending on the software system, this coupling between the knowledge
and the documentation is important. For example in a framework developers
need to know which parts to instantiate and which methods to override. This
kind of knowledge is closely related to particular elements in the implementation.
Thus it is important to keep this knowledge coupled to these particular elements.

In this section we have seen that developers do not only require explicit do-
main knowledge. They also need to know to which part of the implementation
the knowledge applies to. This indicates the need for a mechanism that helps
developers to make this link explicit.

4.1.3 Passive Domain Knowledge

When domain knowledge is made explicit and when it is linked to the implementa-
tion, developers need to keep this information up-to-date. Yet this is not evident
as a result of short-term software development economics (see section 4.1.1). First
of all this is due to the fact that developers do not perceive documenting as an
activity that contributes to meeting their next deadline. As a consequence it
is often neglected in favor of writing code. This is because the contribution of
writing code to the next release of the system is clearly visible. One could say
that the domain knowledge plays a passive role with respect to the execution of
the system. We mean this in the sense that it does not participate actively to
provide the functionality of the system.
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Secondly, writing down the domain knowledge associated with a system is
often done outside the development environment. This is perceived as an overhead
by developers since they frequently need to switch between environments. A
seamless integration of tools in such case is beneficial for reducing the overhead
introduced by the documentation system.

From this you could conclude that the domain level and the implementation
level live in antibiosis. This means that an adverse relationship exists between
both sides in which one is adversely affected by the other. In essence this boils
down to the fact that spending time on the concept level means less time for the
code level.

In the context of agile software development, the fact that domain knowledge
plays a passive role poses an even bigger problem. Here, requirements are elicited
and refined on the go during the implementation of the system. Hence the soft-
ware grows incrementally and is under constant revision. As a consequence it is
unfeasible to have a conventional documentation system. If domain knowledge is
made explicit in such a context, it will always be out-of-date unless the developers
spend a lot of time on updating it each time the code is changed. It is clear that
unless the domain knowledge contributes to the implementation, that developers
will not or cannot dedicate any time to it.

In this section we have seen that one of the main reasons why domain knowl-
edge becomes implicit and detached is because it plays a passive role. As a result
it is not kept up-to-date and its usefulness as documentation will quickly degrade.
This indicates the need for a mechanism that enables the activation and a way
that alleviates the overhead perceived by a developer.

4.1.4 Problem Statement

Software developers responsible for evolving an existing implementation must
grasp the intentions and assumptions made by the original developers of the
system. This is problematic because most of the domain knowledge about the
system is only available in some implicit or tacit form. Even in a context where
such domain documentation exists in an explicit form, this documentation is
detached from the current implementation. This means that the programmer
will have to discover manually which part of the documentation matches which
part of the implementation. The main reason why domain knowledge becomes
implicit and detached is because it does not yield a short-term economic benefit
for the developers. This means that it acts as as passive form of documentation.
Consequently it is not maintained properly and will quickly become out-of-date.
This is mainly due to the fact that developers perceive documenting what they
know about the implementation as an overhead. The problems discussed above
are even more pronounced in the context of agile software development, where
the next release of the system is always only hours away.
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In summary the following problems need to be addressed in the concept-centric
environment we describe in the next section:

• Implicit Domain Knowledge
The concept-centric environment must provide a mechanism that makes it
possible to capture domain knowledge in an explicit form. This will reduce
the possible loss of domain knowledge.

• Detached Domain Knowledge
The concept-centric environment must provide a mechanism to couple the
domain knowledge to the implementation. This will reduce the effort spent
by developers on retroactively matching the knowledge to the corresponding
implementation.

• Passive Domain Knowledge
The concept-centric environment must provide a way to involve the domain
knowledge actively in order to provide the functionality of the software sys-
tem. This will motivate developers to pay attention to the domain knowl-
edge, since it potentially yields a short-term benefit. Moreover an enhanced
malleability of the software can be achieved by devoting time on the concept
level.

• Overhead for the Developer
The concept-centric environment must be built in a way that it is not per-
ceived by developers as an overhead. This means that the interaction with
the concept environment must be as transparent as possible.

4.2 The Concept-centric Environment

In the previous section we identified four key points related to the absence of
domain knowledge in the context of evolving a software system. We already
hinted at the requirements for the concept-centric environment we discuss in
this section. We will now couple these problems to the different elements of
our solution. This is based upon a symbiotic integration between a concept
environment and a programming environment. In essence we base the discourse
of this section on the following ‘antonyms’ for the problems that were identified:

• From implicit towards explicit (section 4.2.1)
Discusses our view on an explicit concept level representation.

• From detached towards coupled (section 4.2.2)
Describes how we envision the coupling of code and concepts.

• From passive towards active (section 4.2.3)
Elaborates on the way we see the active participation of the concept level.
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• From overhead towards transparency (section 4.2.4)
Explains the transparency that is achieved by a symbiotic integration of the
code and concept environments.

The following subsections are structured according to these cornerstones of
our solution. We conclude by presenting the thesis statement for this dissertation
in section 4.2.5. In figure 4.2 we present a legend for the main elements in the
drawings of this chapter.

a Terminalabc

C000 a Concept

a Relation

a Concept representing deified code

a Concept representing reified domain knowledge

a Code entity that contains concept statements

a Code entity

Concept Level Elements Code Level Elements

Figure 4.2: Legend for the concept drawings.

4.2.1 Explicit Concept Level Representation

Having access to the underlying domain knowledge of a software system is of
paramount importance during evolution. This is why we set up an ontology
inspired infrastructure in which the domain knowledge is made explicit.

Let us consider the definition for an ontology we presented in chapter 3, sec-
tion 3.2.1: “an ontology is a shared and explicit representation of a concep-
tualisation”. If we instantiate this definition then the explicited set of domain
knowledge, the ConceptBase, will act as an ontology. The ConceptBase first of all
contains an explicit representation of the domain knowledge associated with the
application domain under consideration. As a consequence it acts as an explicit
representation of a conceptualisation. Secondly, the developers and the domain
experts commit to using the domain concepts as defined in the ConceptBase.
Hence it is not only an explicit representation, but also a shared representation.

We do not focus on formal ontologies and foundational ontologies in this dis-
sertation. In part this is motivated by the fact that we do not wish to introduce
elements that can be perceived as an extra overhead by the developer. We envi-
sion an open lightweight representation that does not introduce an extra overhead
for a developer during the evolution of a system in an agile context. We return
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Figure 4.3: Domain knowledge is manually reified inside the ConceptBase.

to this in a subsection below on the knowledge representation for the ontology.
Note that even though it is desirable, we do not set ourselves the goal to end up
with a collection of domain concepts that are reusable across different domains.

In figure 4.3 we illustrate how domain knowledge is made explicit inside a
ConceptBase. This process where experts manually write down the relevant do-
main knowledge is referred to as domain concept reification. For example for an
insurance software system it can be the reification of (problem domain) concepts
such as insurance object, contract, claim, . . . . It can also be about (solution
domain) concepts that describe certain assumptions made in the design of the
code (e.g., why was a composite pattern used). As shown in the figure, both the
domain knowledge of the software expert and the business expert is reified inside
a concept network. The resulting ConceptBase contains reified domain concepts
(represented by a cloud with a stick person inside) that are related to each other
or to terminals.

In the following subsections we discuss the explicit concept level representa-
tion. We will first delineate the domain and the scope of the ontology after which
we explain how the domain knowledge is represented in a ConceptBase.

Domain and scope of the ontology

In chapter 3 we defined domain knowledge as the set of knowledge that captures
the concepts and rules that govern a particular domain. We broadly distinguished
between business domain knowledge and application domain knowledge. Gener-
ally speaking, the distinction corresponds to the origins of the domain knowledge.
Business domain knowledge is rooted in the business (e.g., insurance, banking)
whereas application domain knowledge is rooted in the software applications that
are used in a particular business (e.g., insurance software, banking software).
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We want to go towards a systematic capture of domain knowledge instead
of the opportunistic way where it is only recorded from time to time. Hence
we advocate a situation in which the domain knowledge required to understand
and maintain a complex piece of software is no longer obscured within the code
or the heads of experienced developers. This systematic explicitation of domain
knowledge is essential to be able to cope with the current time-to-market driven
software development environments.

In order to limit the scope of the ontology (chapter 3, section 3.2.3.1), the
domain knowledge to which we refer can be broadly characterised as domain
concepts and domain relationships (chapter 3, section 3.1.2). We do not consider
for example rules that make it possible to infer new knowledge. We also do not
focus on how to obtain this domain knowledge. For that purpose there already
exists a large body of work in the field of knowledge management and knowledge
engineering (chapter 3, section 3.1.2 and 3.1.3).

As we have seen in the discussion of the knowledge conversion process there
are several conversion modes. In this dissertation we focus only on the externali-
sation mode (tacit to explicit) and the combination mode (explicit to explicit). In
summary, externalisation creates new explicit knowledge (e.g. green-field domain
analysis), and combination combines existing explicit knowledge into new explicit
knowledge (e.g. restructuring existing domain models).

Even though it is not a constraint, we mainly envision problem domain knowl-
edge that is associated with a vertical distributed domain (chapter 3, section 3.1.1).
Generally speaking this knowledge is associated with a domain that refers to a
set of applications within one business domain (e.g. insurance). Distributed in
this context refers to the fact that the corresponding functionality is scattered
throughout the implementation.

Knowledge representation for the ontology

Making implicit knowledge explicit requires some kind of formalism in which the
developer can express this knowledge. For our application context we choose an
open lightweight formalism. This is intended to minimise the overhead perceived
by developers when using the formalism. Moreover, the openness of the formalism
is required to enable the developer to customise it according to the particular task
at hand. As we will discuss in section 4.2.4, we prefer to use the same syntax and
interaction mechanisms of the programming language to manipulate and access
the concept level. This is in line with minimising the difficulties encountered by
users as described by Shipman and Marshall [SIM99]:

• minimize the cognitive overhead perceived by the users
(e.g. by using a syntax that is familiar to the user)

• not enforcing the user to commit to a premature structure
(e.g. by not enforcing the use of class hierarchy if it is better to model in a
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Figure 4.4: A concept is represented by a frame which holds a collection of slots.

different way)

• making it possible to tailor the representation according to the situation in
which it is being used
(e.g. by providing an open formalism that can be extended if necessary)

We use a frame-based representation (chapter 3, section 3.2.3.4) in which do-
main concepts are related to each other in a concept network. The concept net-
work itself represents the ontology and is stored in the ConceptBase. The notion
of frames was first introduced by Minsky in 1975 [Min75]. A frame is used to
capture a typical situation or view of a situation. It represents knowledge as
structured objects which consist of named slots with attached values. These slots
can be used to relate a particular frame to other frames, thus forming a network
of networks.

In figure 4.4 we illustrate the representation of a domain concept in a frame-
based fashion. A concept is defined by a definition frame that contains its def-
inition entries (a.k.a. slots). The definition entries consist of two elements: a
relation and a destination. Destination values can be another concept or a ter-
minal. A terminal represents a value about which we do not wish to record extra
information in the concept network other than its value. Hence its definition
frame does not contain definition entries but just the value that it represents. In
essence the choice of representing an element as a terminal or a concept defines the
ontological granularity in the concept network. The types of terminals that are
supported in a concept network are extensible. This makes it possible to adapt
the concept representation according to the particular needs of the developer.
For example if necessary it should be possible to relate a concept to a drawing
that clarifies its meaning. The relation that is used in the definition entry is also
represented as a concept in the network. As a consequence the concept network
is said to be self-describing, since the meaning of a relation is also described in
the concept network itself.
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Figure 4.5: Virtual layers within an ontology.

We choose to follow a prototype-based approach for the ConceptBase (chap-
ter 3, section 3.2.3.2). In a class-based approach the concepts are represented as
classes in the ontology. So before a concept can exist, there must first exist a class
that describes the general characteristics of that type of concept. In contrast a
prototype-based approach represents the actual concepts without the requirement
to specify the class first. Analogously to prototype-based programming languages
this results in a more natural and highly dynamic way of interacting with the con-
cepts. For instance, you do not have to switch between the class and object view
to alter a concept definition. The choice for a prototype-based approach follows
naturally from our goal not to enforce users to a premature structure. A class-
based approach on the contrary would force the user to commit to a taxonomy
of concepts from the start. Therefore it also enforces the use of existing relations
(e.g. is-a) to set up the hierarchy. As a consequence a mismatch is often created
if the pre-defined interpretation is not in line with the user’s intention (chapter 3,
section 3.2.3.5). Moreover, given the application context we envision, we want to
maximise the flexibility a developer has to reify his domain concepts.

Virtual layers in the ConceptBase

In chapter 3, section 3.2.2 we have already indicated that an ontology contains
several layers. In figure 4.5 we extend the figure of chapter 3 with a number of
example concepts from a wine ontology application. As is shown, the concepts
from one layer are described in terms of the concepts from another layer. For
example specifying the FavoriteWines grouping requires the WineGrouping con-
cept, which in turn uses the superconcept and Group concepts. The core layer
of the ontology represents the most stable concepts, whereas the application layer
represents concepts that have a transitional nature. These layers are virtual, and
depending on the viewpoint of the user of the ontology, concepts can switch roles.
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The role played by a concept depends on the application context. For instance
if the user is modeling the wine domain, then the WineGrouping concept will
reside in the application layer since it is being modeled. This also implies that
the WineGrouping concept in such an application context is more likely to be
changed. Hence, the application context for the ontology is important.

In chapter 3, section 3.2.3.6 we distinguished between ontology-aware, and
ontology-driven applications. This distinction is based upon the way that the
concepts from the ontology are used by the application (either passively or ac-
tively). Up until now, the ontology is only consulted by a developer as a source
for domain knowledge during software evolution. We can thus characterise the
concept-centric environment as ontology-aware. As we shall see in the follow-
ing sections, we move towards an environment that is better characterised as
ontology-driven. We will reflect on this in section 4.2.3.

4.2.2 Coupled Concept and Code Level

Having access to an explicit set of domain knowledge is a first step to support
developers during software evolution. Yet as we have seen in section 4.1.2, devel-
opers also need to know which part of the implementation the knowledge applies
to. In this section we set up a mechanism that makes it possible to make the link
between the concept level and the code level explicit. This way a developer can
attach his domain knowledge about the code to the corresponding code entity.

In the following subsections we explain the underlying mechanisms that are
required to couple concepts to code. We first explain how code level entities are
conceptified into the concept level. Next we discuss a number of decisions that
need to be made with respect to the granularity of conceptification. We end
by illustrating what it means to couple domain concepts and conceptified code
entities at the concept level.

Conceptification of code level entities

In figure 4.6 we illustrate how a code level entity is automatically deified towards
the ConceptBase. The process of generating a concept representation for a code
level entity is referred to as code level entity conceptification. At the left-hand side
of the figure we see a snippet of a Smalltalk definition of a Manager class. On the
right-hand side we see the concept network that is the result of the conceptification
process6. The link between the code level entity and its concept level counterpart
remains explicit at all times. In essence this means that both are inextricably
linked to each other. As shown in the figure, the class Manager is represented
as a concept that is related to amongst others three terminals representing its
instance variables (name, salary, and manages). It is also related to a super

6Note that this example is for illustrative purposes only. See chapter 5 for a full example in
which we explain the granularity of conceptification in more detail.



80 CHAPTER 4. THE CONCEPT-CENTRIC ENVIRONMENT
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C731

#{Fluffy.Playground.Manager}

C2332 name

C4321

C801

...

Fluffy.Playground defineClass: #Manager
    superclass: #{Core.Object}
    indexedType: #none
    private: false
    instanceVariableNames: 
        'name salary manages '
    classInstanceVariableNames: ''
    imports: ''
    category: 'Manager example'.

...

Code

= Explicit link is maintained = Code entity = Conceptified code entity

salary

manages

superclass

#{Core.Object}

...

...

Figure 4.6: Code is automatically deified inside the ConceptBase.

concept representing its superclass Core.Object. Note that this super concept is
inextricably connected to the Core.Object code level entity.

The conceptification process requires access to information about the code
level. Hence this requires support for reflection from the programming language.
Deciding what to represent at the concept level for a code entity is the first choice
to make with respect to granularity (see chapter 3, sections 3.1.1, 3.2.2, 3.2.3.1).
In essence this means deciding which slots to compute for the concept level.
You can restrict, for example, the available slots at the concept level to instance
variables, methods, and a superclass. The second granularity decision is how to
represent the information you obtain about the code entity. This boils down to
specifying whether the value of a computed slot contains a terminal or a concept.
You could for example represent the value for a superclass slot as a concept and
the value for an instance variable slot as a terminal. If a value is represented as
a concept then it can be related to other concepts or terminals at the concept
level. When a value is represented as a terminal then it has no definition frame
but just the value. As a consequence it cannot be defined further at the concept
level.

Depending on the amount of information that can be consulted about the
code level entity, the process will be able to generate a richer definition for its
concept level representation. For example if the process can consult the code level
to obtain information about the superclass of the Manager class, it will be able to
provide a link to it at the concept level. Since conceptification is an automated
process, it follows a prescription based on the granularity that was chosen. This
prescription defines what to represent and how to represent it, and is referred to
as the intension of a concept (chapter 3, section 3.2.3.2). Note that since the
concept representation of a code entity is computed, changes to the code entity
are reflected at the concept level as well.

At the concept level, there is no difference between code level concepts that
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= Coupling Code and Domain Level Concepts

"My concept..."

"A text definition"

"A comment"
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"A specification"

= Deified Code = Reified Domain Knowledge

ConceptBase

Figure 4.7: The reified domain concepts and the deified code concepts can be
coupled inside the ConceptBase.

are the result of deification and domain level concepts that are the result of
reification. As a consequence both can be manipulated in the ConceptBase using
the same mechanisms. Furthermore this implies that the definition of a code level
concept can also be extended with slots at the concept level. Slots that are added
this way represent the extension of a concept (chapter 3, section 3.2.3.2).

The coupling between code level entities and domain knowledge is realised by
providing an extension for a conceptified code entity. Since there is no difference
between code level concepts and domain level concepts, they can be related to
each other by adding a relation to a concept. This is illustrated in figure 4.7.
As shown, you can add relations to the concept network in the ConceptBase
between concepts representing reified domain knowledge (cloud with stick person
inside), concepts representing deified code level entities (cloud with rectangle
inside), or a combination. This means that it becomes possible to connect a
domain concept such as e.g., Insurance Policy Holder to a conceptified class.
This means that deified and reified concepts are treated uniformly from a technical
perspective (hence they are represented by a simple cloud symbol if the distinction
is conceptually unimportant).

Since the link between the code level concept and the code entity is explicitly
available, it is possible to install a bi-directional navigation between both levels.
This implies that it is possible to go from the code level to the concept level and
vice versa. We discuss this further in the next section.

4.2.3 Active Use of the Concept Level

In section 4.1.1 we discussed several reasons why domain knowledge becomes
implicit during software development. Here we will mainly focus on short-term
software development economics and the genericity of the implementation. In
summary the former referred to the problem that developers neglect making ex-
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Figure 4.8: Consult, create, and update concepts from within the code level.

plicit what they know in favor of producing code. The problem associated with
the genericity of the implementation was essentially about the fact that gener-
icity results in less explicit code. As a consequence a lot of domain knowledge
becomes implicit when developers strive towards malleability to help them realise
their part of the adaptability challenge. So the mere existence of an explicit con-
cept level that is coupled to the code level is not enough to eliminate the problems
we discussed in section 4.1.

Therefore the concept-centric environment must facilitate the active partici-
pation of the concept level at the code level. Consequently:

• developers are stimulated to spend time at the concept level to keep it
up-to-date

• developers can achieve a malleable implementation without the drawback
of making knowledge implicit

The way we activate the concept level is by making it accessible from within
the code level. Consequently it must be possible to write concept statements
within normal code that consult, create, update or delete concept level entities.
This is depicted abstractly in figure 4.8. The figure shows that both domain
concepts and deified code entities can be involved in the computation at the code
level. The drawing is separated in a domain concept and code entity concept part
to illustrate that both ‘types’ of concepts can be accessed from the code level for
example. For example in the left-hand side of the figure we see that an existing
concept is updated from within the code (e.g., a slot is added programmatically).
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Figure 4.9: Code entities can be upped to, and downed from the concept level.

In the right-hand side we see the consultation of a deified concept (e.g., consulting
a slot that points to a terminal)7.

Besides interacting with concepts, support is also provided to trigger concep-
tification by writing a statement at the code level. This gives a developer the
means to ‘up’ a code level entity to the concept level during the execution of a
method. This enables a developer to write code that consults its own concept
representation to perform a given task. A corresponding ‘down’ operation ex-
ists, which returns the code level counterpart of the conceptified entity. This is
illustrated by the left-hand side of figure 4.9.

The availability of an up/down mechanism lets a developer take advantage
of concept level relationships between code level entities or between code level
entities and domain level entities. This bi-directional navigation is shown in the
right-hand side of figure 4.9. The code entity A up’s itself to the concept level
(1), where it has a relation to another conceptified entity B (2). Consequently
code entity A can down the conceptified entity (3) to its code level counterpart.
Thus code level entity A can interact with code level entity B (4), by the aid of
the relation at the concept level.

When an active concept level is installed, a developer can refactor the imple-
mentation so it becomes driven by the concept level. This is similar to the devel-
opment approach followed in dynamic object models (chapter 3, section 3.2.3.6),
where object types are represented as data to improve the malleability of a soft-
ware system. As a consequence, the concepts play an active role in the functioning
of the software system. Hence our system is better characterised as ontology-
driven instead of ontology-aware. This implies that certain adaptations are re-
alised by changing the concept level instead of the code level, hence resulting in

7See chapter 6 for examples of the different interactions that can take place between the
code level and the concept level.
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Figure 4.10: Concepts can be accessed and used actively from within the code.

run-time malleability of the software (chapter 2, section 2.1.7). Even though this
results in less explicit code, the corresponding concept network will contain what
is no longer visible at the code level.

We illustrate the consultation of a domain concept from within the code in fig-
ure 4.10. The figure presents the manages: method of a Manager class on the left-
hand side. The manages: method accepts one argument, namely a team member,
who is managed by a project manager. Deciding whether the project manager
can manage an extra team member is done by consulting the concept level (right-
hand side). In essence the code consults the multiplicity of the manages concept,
and uses the value returned to execute the conditional statement.

The activation of the concept level is the enabler to turn the antibiosis between
the concept and code level into a symbiosis. This implies that an interaction
must be set up that is advantageous to both sides. So spending time on the
concept level must become advantageous to the code level and vice versa. As
a consequence, the benefit of maintaining an explicit concept level is no longer
limited to a documentation role for the purpose of code comprehension. It plays
an active role during development, which results in an interplay between code
and concepts during the implementation of the software. With this we refer to an
interplay where code is refactored to make use of the concept level to improve the
malleability of the system. Refactoring the concept level to strengthen what can
be done at the code level is part of this interplay. This installs a co-evolutionary
relation between the code and the concepts.

4.2.4 Transparency for the Developer

We want to achieve transparency for the developer with respect to how the in-
teraction with the concept level is perceived. This is achieved by setting up a
symbiotic integration of the concept level and the code level.
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A first step towards transparency is to use the same syntax to represent con-
cepts as the syntax of the programming language. As a result, the developer
is not required to learn another one. Moreover there is no need to switch be-
tween syntax each time a developer works on either the concepts or the code.
Hence the programming experience is not disturbed by the concept language,
since syntax-wise there is no visible difference between concepts or code. This is
the reason why we did not use an existing ontology language such as OWL, or
RDF (chapter 3, section 3.2.3.4).

A second step to obtain transparency is to ensure that interacting with con-
cepts and objects is done by using the same mechanisms. Hence, concepts are
manipulated by sending messages. This was already indicated in figure 4.10,
where the multiplicity slot of the manages concept was accessed by sending
the corresponding message. Moreover, in order to be able to refer to concepts, a
referencing scheme is needed that is similar to the one used by the programming
language (e.g. to refer to a class). This was also indicated in figure 4.10, where
the manages concept was accessed by the reference Concepts.manages.

The third step to achieve transparency lies in the close integration between
the programming environment and the concept environment. This means that
all the tools available for interacting with concepts are closely integrated with
the existing programming tools. Consequently, there is no need for a developer
to continually switch between environments. Moreover it is desirable to provide
an open malleable implementation of the concept environment. This enables the
developer to adapt the environment to fit more closely to the particular task at
hand. As a consequence, the openness of the environment contributes to the fact
that developers will no longer experience the concept level as an overhead.

In the beginning of this section we referred to a symbiotic integration to
achieve transparency. Similar to endosymbiosis in biology we envision a situation
in which the concept level (in this case the symbiont) lives inside the program-
ming environment (in this case the host). The symbiosis is obtained by using the
same syntax and mechanisms as the programming language. It is strengthened
by a close integration of the concept environment and the programming environ-
ment. In table 4.1 we summarise the main definitions that were introduced in
this section.

4.2.5 Thesis Statement

From implicit towards explicit

The fact that most domain knowledge in software systems is only available in an
implicit form, hampers the programmer’s understanding process of the system.
This means that when a programmer tries to comprehend the intended meaning
of a piece of code, he will need to fall back on his own expertise or the expertise
of others. Since domain knowledge forms an essential ingredient for performing
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ConceptBase Holds the ontology for the software which
is represented in a frame-based, prototype-
based concept network.

Domain concept reification The process where domain experts manually
write down the relevant domain knowledge.

Code level entity deification The process of generating a concept repre-
sentation for a code level entity (a.k.a. con-
ceptification).

Concept intension A prescription that defines what to represent
about a code level entity and how to repre-
sent it. The conceptification process will use
this prescription to compute the correspond-
ing slots at the concept level.

Concept extension Slots that are added manually to a concept
definition and that are not captured by the
concept intension.

Table 4.1: Definitions for section 4.2

software evolution, it is of the utmost importance to make it available in a more
reliable form.

Consequently we foresee a ConceptBase to represent this valuable source of
information in an explicit way.

From detached towards coupled

Unfortunately, having access to an explicit representation of domain knowledge
(the concept level) presents only a partial solution to the problem. A programmer
still needs to map this knowledge to the implementation (the code level) in a
retroactive way. This is unfortunate since there probably existed a clear link
between the knowledge and the implementation when it was first conceived.

Therefore we establish a coupling between the concept level and the corre-
sponding code level in a proactive way. This means that a developer will be able
to connect the entities of both the concept level and the code level.

From passive towards active

Since no universal function exists that can transform the concept level into the
code level and vice versa, special care must be taken to make sure that both levels
do not become out-of-sync. As we have seen, since the economics of performing
changes at the code level will yield the best short-term benefits, programmers will
tend to neglect the concept level. In general they will focus on getting the code
right since this results in a consequential improvement of the overall behavior of
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the application. Hence allocating a lot of effort to update this passive promise
of documentation usually has a very low priority. As a consequence the concept
level will quickly become out of sync with the code level. Subsequently it will be
of little or no use for future evolution efforts.

We stress the importance of ensuring that the domain knowledge plays an
active role. With this active role we mean that it contributes to the function-
ality of the software. Additionally, in the context of agile evolution, this active
participation will result in an improved malleability of the implementation. This
is achieved by factoring out explicit decisions in the code to the concept level.
Even though this results in less explicit code, the ConceptBase holds the explicit
representation of the associated concept network. Moreover this results in a co-
evolutionary situation that is mutually beneficial for the concept and the code
level.

From overhead towards transparency

In order to promote making explicit what one knows, coupling it to the imple-
mentation, and using it actively from within the code, it is necessary to ensure
that programmers don’t perceive the concept level as an extra overhead. In
section 4.1.3 we already indicated that part of the problem was a result of the
antibiosis between the concept and the code level.

Therefore we set up an environment in which both levels exist in symbiosis
with each other. As a consequence the use of both sides becomes as transparent as
possible for the programmer. This is realised by making sure that the interaction
with objects and concepts is done in a similar fashion. The transparency is
further obtained by a close integration between the concept environment and the
programming environment.

Thesis Statement

This brings us to the thesis statement of this dissertation:

A symbiotic integration of a programming environment with
an explicit concept level that is coupled to the code level

supports domain knowledge documentation
in the context of agile evolution

and amplifies the malleability of software through
active concept level participation
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4.3 Summary

In this chapter we presented the problem context, problem statement and thesis
statement for this dissertation. We discussed our concept-centric environment
which is based upon a symbiotic integration between the code level and the con-
cept level.

The following requirements were set for the ontology-driven concept-centric
environment:

• Explicit concept level representation
The concept-centric environment must provide a mechanism that makes it
possible to capture domain knowledge in an explicit form. This will reduce
the possible loss of domain knowledge. The concept level is represented in
a frame-based, prototype-based ontology. Concepts are defined by relat-
ing them to other concepts or to terminals in their definition frame. The
corresponding concept network is stored inside a ConceptBase.

• Coupled concept and code level
The concept-centric environment must provide a mechanism to couple the
domain knowledge to the implementation. This will reduce the effort spent
by developers on retroactively matching the knowledge to the corresponding
implementation. Code level entities are deified towards the concept level by
a conceptification process that follows a prescription to generate the concept
representation. This is referred to as the intension of the concept, which is
based on the granularity chosen for what is represented at the concept level
and how it is represented.

• Active participation of the concept level
The concept-centric environment must provide a way to involve the domain
knowledge actively so as to provide the functionality of the software system.
This will motivate developers not to neglect the domain knowledge, since
it potentially yields a short-term benefit. Moreover an enhanced malleabil-
ity of the software can be achieved by devoting time on the concept level.
Concept statements can be written within normal code so that domain con-
cepts and conceptified code entities can be involved in the computation at
the code level. An up/down mechanism facilitates a bi-directional naviga-
tion between the code level and the concept level.

• Transparency for the developer
The concept-centric environment must be built in a way that it is not per-
ceived by developers as an overhead. This means that the interaction with
the concept environment must be as transparent as possible. The syntax of
the programming language is used to represent concepts at the code level.
The mechanisms to interact with concepts are based on the mechanisms
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to interact with objects. The programming environment and the concept
environment are implemented in symbiotic integration with each other.

In the next chapter we present the proof-of-concept implementation of the
concept-centric environment. The interaction with the environment is illustrated
by example in chapter 6.





Chapter 5

The CoBro environment

In order to validate our research we created a proof-of-concept environment named
the Code to Concept Browser (CoBro). CoBro is implemented in Smalltalk
and uses a relational database to store the concepts that are present in the sys-
tem. The main constituents of CoBro are the Concept Manipulation Language
(CoBro-CML) and the Graphical Concept Network Navigator (CoBro-Nav).
In addition to these, the environment contains a number of tools that support
developers in constructing and exploring concept networks.

This chapter focuses on the technical underpinnings of CoBro. Its conceptual
counterpart was discussed in chapter 4, whereas the actual use of the elements
presented here will be illustrated with examples in chapter 6.

We start by presenting an overview of the architecture of CoBro in sec-
tion 5.1. Here we also motivate the choice of Smalltalk and a relational database
as implementation medium. In section 5.2 we explain CoBro-CML. The dis-
cussion focuses on the underlying mechanisms that take care of accessing and
manipulating concepts. Section 5.3 focuses on the features of CoBro-Nav and
discusses the way it can be extended. We also present the integration with an ex-
isting tool named the Star Browser. This browser provides an alternative way to
navigate through a concept network in a tree-based fashion. The other elements
of CoBro are discussed in section 5.4. This section outlines the support that
is available to manipulate a concept network. We end the chapter in section 5.5
with a discussion of the default core ontology of CoBro. We also explain how
it can be customised and how it is used by the CoBro environment

5.1 CoBro Architecture

In this section we provide an overview of the CoBro environment and its different
parts. We also illustrate the interplay of the various meta and base levels that
are necessary to understand how CoBro functions. In addition we motivate the
choice for Smalltalk and a relational database.

91
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Figure 5.1: An abstract view on the CoBro environment

In chapter 4, section 4.1.4 we put forward the following requirements for a
concept-centric environment:

• Explicit concept level representation
The concept-centric environment must provide a mechanism that makes it
possible to capture domain knowledge in an explicit form.

• Coupled concept and code level
The concept-centric environment must provide a mechanism to couple the
domain knowledge to the implementation.

• Active participation of the concept level
The concept-centric environment must provide a way to involve the domain
knowledge actively to provide the functionality of the software system.

• Transparency for the developer
The concept-centric environment must be built in symbiotic integration
with the programming environment.

The proof-of-concept environment we discuss in this chapter was built to meet
each of the above requirements. Figure 5.1 presents an abstract overview of the
CoBro environment. As is shown, developers and Smalltalk programs interact
with the concept-centric environment through CoBro-CML which is part of the
CoBro kernel. CoBro consists of the following elements which we will discuss
in detail in the remainder of this chapter:
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• CoBro Kernel:
The core of the system that is closely integrated with Smalltalk for the
purpose of transparency through symbiosis (section 5.2).

• CoBro-CML:
All the interaction with the concept level is done through the Concept
Manipulation Language (section 5.2), consequently it is an integral part of
the CoBro kernel.

• CoBro-Nav:
A tool that allows you to navigate and explore concept networks in a graph-
ical way. (section 5.3).

• CoBro-Star:
An extension to the standard Star Browser in which you can explore a
concept network in a tree-based fashion (section 5.4).

• Concept Locator:
A tool that helps you locate a concept if you do not know its reference
(section 5.4).

• Concept Bag:
A tool that groups a set of concepts so they can be manipulated together
by other tools (section 5.4).

• Basic Concept Viewer:
A tool that shows the elementary details of a concept definition (section 5.4).

• Basic Concept Editor:
A tool that helps you build or manipulate a concept definition (section 5.4).

• CoBro Statistics:
A basic visualisation of statistics of the ConceptBase usage (section 5.4).

• CoBro Integration with the Smalltalk Refactoring Browser:
The Refactoring Browser is the main tool used to program in Smalltalk. We
have closely integrated the CoBro tools within the Refactoring Browser,
so they are easily accessible for the developer (section 5.4).

The CoBro environment is implemented in Smalltalk. The particular Smalltalk
implementation we used is VisualWorks Smalltalk 7.31. The ConceptBase that
holds the concept networks is implemented as a relational database. More specif-
ically we used the open source database PostgreSQL 8.102. Since both Visual-
Works and PostgreSQL are cross-platform implementations, CoBro can run on
all major platforms.

1http://www.cincomsmalltalk.com/
2http://www.postgresql.org/
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In the following we briefly motivate the choice of Smalltalk and a relational
database as an implementation medium for CoBro.

Motivation for Smalltalk

Smalltalk is a pure object-oriented, dynamically typed, reflective programming
language. Even though it is a class-based language, the statement ‘everything
is an object’ still holds through the existence of metaclasses. Classes, methods,
and user interface specifications (to name a few) are also accessible as objects.
One of the inherent properties of the Smalltalk philosophy is that everything in
the environment can be adapted. This means that you can alter the behavior of
the language-core or the development environment from within Smalltalk itself.
Another important aspect is that you can inspect and manipulate objects in real
time. This results in a highly interactive way of programming that is especially
suited for agile development.

Since Smalltalk is a reflective language, it has a meta-level interface that fa-
cilitates introspection and intercession. These reflective capabilities are required
to implement CoBro. There is also an interplay between the meta and base
level within CoBro and within the ConceptBase. Moreover there is a similar
interplay between Smalltalk, CoBro and the ConceptBase as well. It is impor-
tant to distinguish between these interplays, so we present an abstract overview
in figure 5.2. In the following we discuss how each interplay contributes to the
realisation of CoBro.

Smalltalk

CoBro
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2
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5

Meta

Base

Meta

Base

Meta

Base

Meta

Base

Meta

Base
ConceptBase

Figure 5.2: Interplay of the different meta and base levels.
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Smalltalk ↔ Smalltalk
The first arrow in the figure represents the basic interplay that makes Smalltalk
a reflective language. These reflective properties are mainly used to implement
CoBro in symbiosis with Smalltalk. Together with Smalltalk’s open implemen-
tation this results in a high degree of transparency.

Smalltalk ↔ CoBro
The second arrow represents the interplay between Smalltalk and CoBro. Since
Smalltalk code entities can be ‘upped’ into concepts and vice versa (i.e. deification
or reificiation), the CoBro system acts as a meta layer. This interplay is used
to obtain the coupling of entities at the code level to entities at the concept level.
Moreover it makes it possible to use concept level entities actively from within
the code level. This active participation results in an improved malleability of
the software. As a result of the close integration with Smalltalk, this interplay is
transparent for the programmer.

CoBro ↔ CoBro
The third arrow indicates the interplay within CoBro itself. CoBro implements
a meta layer interface through which concepts can be manipulated. This meta
layer can be adapted for instance to change the way it reacts to concept slot ac-
cessing. Moreover, the meta layer of CoBro uses concepts as well to implement
its behavior. This means that CoBro can be extended and adapted through the
concept level, and accessing the concept level is done through CoBro. Broadly
speaking, this interplay results in a more malleable implementation of CoBro.

CoBro ↔ ConceptBase
The fourth arrow indicates the interplay between CoBro and the ConceptBase.
Since part of the behavior of CoBro depends on the active use of concept level
entities, adapting the concept definitions in the ConceptBase has a direct impact
on the way CoBro behaves. a core ontology from the ConceptBase. This inter-
play improves the malleability of CoBro.

ConceptBase ↔ ConceptBase
The fifth and final arrow represents the interplay within the conceptbase itself.
This interplay is different from the previous ones in the sense that it concerns
the interplay between model-entities. More specifically it refers to the fact that
concepts from the base level are described in terms of concepts from the meta
level. Such a division of the ConceptBase is virtual and, depending on the view
of the current use, the concepts can play different roles (chapter 3, section 3.2.2).
The main benefit of this interplay is that the concept level is self-describing.

Note that CoBro can be implemented in any language that has reflective
capabilities similar to Smalltalk. Preferrably the language environment has an
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open implementation so that it can be extended with CoBro specific elements.
In essence implementing the CoBro environment was done by using the following
properties of Smalltalk:

• Introspection
The conceptification process (section 5.2.3) of code level entities requires a
mechanism to inspect the representation of these entities. Broadly speaking,
the intension for a conceptified code entity is assembled by consulting the
Smalltalk environment. The granularity of the conceptification process is
constrained by the code entities that can be reified. For instance if methods
cannot be reified then it is not possible to conceptify them.

• Intercession
Implementing CoBro in symbiosis with Smalltalk requires a way to adapt
the default binding lookup (section 5.2.1) and method lookup (section 5.2.4)
mechanisms. Intercession is also required to make it possible to adapt the
CoBro behavior at runtime by changing the concept network (section 5.3).

• Open implementation
The symbiotic integration we envision requires an open implementation.
Also a close integration of the CoBro tools with the programming envi-
ronment is needed for a non-obstrusive synergy between the concept level
and the code level (section 5.4). This enables a developer to work with
concepts and objects in a transparent way.

Motivation for a relational database

The fact that we use a relational database to store the ConceptBase is transparent
to the user of the system. We also took special care to make it possible to
switch the storage medium without affecting the surrounding tools. The database
schema we implemented stores the concept network as a graph. The main reasons
why we opted for a relational database are:

• Sharing
An important aspect of an ontology is that it is a shared representation
of a conceptualisation (chapter 3, section 3.2). Since the sharing aspect of
relational databases is evident, this was a point in favor. Moreover if the
ConceptBase is used by different developers, it could be installed at a single
point of access.

• Relationships
A prime constituent of a concept network are relations (chapter 4, sec-
tion 4.2.1). In essence a concept is defined by relating it to other concepts
or terminal values. Consequently the choice of a relational database was
quite evident.
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• Querying
One of the main operations on a concept network is querying. Concepts are
often not only located by their reference, but also through the values that
are related to them.

• Volume and Persistency
It should be possible to store a large volume of concepts persistently.

5.2 Concept Manipulation Language

CoBro-CML is the language we created to manipulate concepts in the CoBro
environment. The language is an extension of the base language Smalltalk. Con-
sequently it uses the same syntax and uses message sending as the prime way
to manipulate concepts in the ConceptBase. It can be used to create, modify,
delete, and query concept definitions. Similarly to Smalltalk it contains a num-
ber of inspector-alike utilities that make it easier for the programmer to navigate
through the concept network.

Through CoBro-CML it is possible to couple code level entities to concept
level entities in a transparent way. This transparency is achieved by the close
symbiotic integration with the base language. Hence the ConceptBase can be
manipulated from within existing Smalltalk programs as well. This makes it
possible to use concept definition slots in an active way to ensure the behavior of
the software. Since part of the behavior can be factored out to the ConceptBase,
this results in an improved malleability of the software. This is mainly due to the
fact that changes to the software can be made at the concept level instead of at
the code level.

In the following subsections we discuss CoBro-CML in detail. We start by
explaining the integration with the standard Smalltalk namespace mechanism.
Subsequently we discuss how concepts can be created and how code level entities
are conceptified. Next we focus on the manipulation of concepts by slot accessors
and setters. Also the lookup of slots through the parent chain is described.

5.2.1 Concept Namespace

Namespaces are used in Visualworks Smalltalk to disambiguate names. They pro-
vide a context where the object to which the name refers can be uniquely resolved.
The standard Smalltalk namespace starts at the Root namespace, and stores the
classes that make up the base system in the Root.Smalltalk namespace.

The dotted notation is used to describe a path to a binding for a particular
name in the system. For example the full path to the OrderedCollection class
is Root.Smalltalk.Core. This path combined with the name of the class gives a
fully qualified reference (e.g., Root.Smalltalk.Core.OrderedCollection) that
is unique in the system.
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A namespace definition can import bindings of other namespaces. Doing so al-
lows the programmer to refer to them as if they reside in the local namespace (e.g.,
OrderedCollection instead of Root.Smalltalk.Core.OrderedCollection).

To be able to refer to concepts we have created a dedicated Concepts names-
pace (e.g., Root.Smalltalk.CoBro.Concepts). Through this namespace, you
can directly access concepts that are stored in the ConceptBase. As a result of
namespace imports, the programmer can refer to concepts simply by using the
prefix Concepts3. For example the binding for the Wine domain concept is looked
up by evaluating the statement Concepts.Wine.

As we have explained in chapter 4, implementation entities have a concepti-
fied counterpart. This is needed so that domain knowledge described as concepts
can be hooked up to the implementation. The Concepts namespace allows us to
distinguish between references to the implementation entity and references to the
conceptified version. For example, if we want to access the concept associated to
the OrderedCollection class, we can refer to it as Concepts.OrderedCollection.

Extension of the Binding Lookup Mechanism

As we have described in section 5.1, concepts are not stored in the Smalltalk image
but in an external relational database. Hence we also extended how Smalltalk
resolves references into bindings. In figure 5.3 we present a flowchart that outlines
this mechanism.

If the path of the reference does not contain the Concepts namespace then the
reference refers to an implementation entity. Consequently the binding is resolved
using the standard Smalltalk lookup mechanism. If the path does contain the
Concepts namespace, then our extended lookup mechanism resolves the binding.
There are two possibilities:

1. the reference refers to a domain concept, or
(e.g., Concepts.Wine)

2. the reference refers to a conceptified version of an implementation entity
(e.g., Concepts.OrderedCollection).

In the first case, we can directly retrieve the binding for the reference from
the ConceptBase. The concept reference (i.e. the part of the reference after
Concepts) acts as a fully qualified reference in the ConceptBase.

For the second case, we must first retrieve the fully qualified reference of the
implementation entity from the Smalltalk image. This is necessary since, as a
result of namespace imports, programmers are not required to provide the full
path to an entity. Moreover, to avoid a naming conflict between normal concepts

3Since namespaces are dictionaries, an alternative way to access its contents is by sending
the at: message (e.g., Concepts at:#{Wine}).
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Figure 5.3: The CoBro extension of the standard Smalltalk binding lookup
mechanism.
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and implementation concepts, concepts that are the result of conceptification are
stored in the ConceptBase using this fully qualified reference. For example the
concept Concepts.OrderedCollection is stored with fully qualified reference
‘Root.Smalltalk.Core.OrderedCollection’. Note that if a domain concept is
created manually with this exact reference, it will be automatically promoted to
a conceptified code entity.

If the reference does not already exist in the ConceptBase, then we automat-
ically generate a conceptified version of the implementation entity. This concep-
tification process is described in section 5.2.3.

5.2.2 Concept Creation

The creation of a concept can be done either:

• ex nihilo, or

• by using an existing concept definition, or

• by automatic conceptification, or

• by using the basic concept editor.

Ex nihilo creation of a concept corresponds to creating the concept’s defini-
tion ‘out of nothing’. It can be done by sending a new: message to the Concepts

namespace with the fully qualified reference for the concept as argument. A cor-
responding delete: message exists for removing concepts from the ConceptBase.
Note that CoBro contains a mnemonic generator to ensure the uniqueness of
fully qualified references.

You can also create a concept by reusing the definition of an existing one.
By sending the message smalltalkDefinition to an existing concept, you get
a generated textual definition of that concept in CoBro-CML. By editing the
values in this template you can create a concept that is similar to the existing
one.

Creating a concept by conceptification is done by prefixing the reference (ei-
ther fully qualified or not) of the code entity with ‘Concepts.’. How this reference
is resolved was explained in the previous section.

Also the basic concept editor can be used to create a new or update an existing
concept. This is explained in section 5.4.

Before we explain the conceptification process we show examples of the four
ways to create a concept in CoBro-CML.



5.2. CONCEPT MANIPULATION LANGUAGE 101

(Concepts new: #{HelloWorld})
hasPreferredLabel: ‘Hello World Concept’ ;

superconcept: Concepts.Concept ;

comment: ‘Testing concept creation’ ;

save.

−→ ex nihilo creation of a concept

Concepts.HelloWorld smalltalkDefinition

−→ generates a template based on the existing concept definition
of HelloWorld (i.e. the statements of the ex nihilo creation)

Concepts.Root.Smalltalk.Core.OrderedCollection.

−→ returns the existing concept or automatically conceptifies
the class OrderedCollection

ConceptEditor open.

−→ Opens the basic concept editor to create a concept

Note that a concept is only stored in the conceptbase if you explicitly tell the
system to do so. This is done by sending the message save to the concept. We
discuss concept slot manipulation, which allows you to add entries to a concept
definition, in section 5.2.4. Depending on the core-ontology that is loaded, certain
slots are mandatory when creating a concept. We discuss the default core ontology
and its underpinnings in section 5.5. For a detailed discussion with examples we
refer to chapter 6.

5.2.3 Conceptification Process

Conceptification takes place if you try to access a reference in the ConceptBase
that corresponds to a code level entity. If conceptification is triggered then the
resulting concept receives the fully qualified reference of the code level entity.
As we have explained in the previous section, concepts are accessed through
the Concepts namespace. This namespace is connected to a concept factory
that takes care of building the concepts. The use of a factory makes it possible
to add several mechanisms to construct concepts in a way that is transparent
for the Concepts namespace. There are currently two factories active in the
implementation of CoBro, one that takes care of domain concepts, and one that
handles the conceptification of code level entities.

A definition of a conceptified code entity contains two parts: an extension and
an intension. The notion of extensions and intensions of a concept were introduced
in chapter 3, section 3.2.3.2. In summary, the extension part lists all the slot
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Figure 5.4: The conceptification process of code level entities

entries that belong to a concept. The intension part provides a prescription that
is used to compute the slot entries.

The intensional part of a concept definition takes care of automatically trans-
forming information about the code level entity into relevant slots at the concept
level. As we have seen in chapter 4, a completely automatic mapping process
between the code level and the concept level is unfeasible. This is mainly due to
the inherent nature of domain knowledge as was described in chapter 3.

In figure 5.4 we illustrate how a code level entity is conceptified. The ex-
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tended lookup mechanism will delegate the retrieval of a concept to either the
code level concept-factory or the domain level concept-factory. In the case of the
Concepts.OrderedCollection retrieval, it is resolved by the code level concept-
factory. Assembling the definition consists of bringing together the extension
(stored in the ConceptBase) and the intension (computed) of the concept. Com-
puting the intension is done by querying the Smalltalk image through its meta
level interface. Note that we use the convention to prefix the names of relations
that point to a computed result with the letters ‘vw’.

A concept that is the result from conceptification is only made persistent in
the ConceptBase if:

• an extensional definition part was defined, or

• another concept refers to the conceptified code level entity, or

• an explicit save message was send.

By default only the extension of a concept is stored in the ConceptBase. Hence
the slots that are computed by interpreting the intension of the concept are not
stored in the ConceptBase. Working with domain concepts or concepts that are
the result of conceptification, is transparent to the programmer.

Granularity of Conceptification

The first decision related to granularity is deciding what to represent at the con-
cept level. Computing the intension of a concept requires access to the meta level
of the base language. Introspection is used to get all the necessary information
about the code level entity. For instance in order to compute the slots for the
OrderedCollection class, we can ask the base language for its superclass, in-
stance variables, method names, method bodies, or user interface specification.
Note that the default conceptification process in the code level concept factory
can be adapted so that a different intension is computed.

The next decision is how to represent these elements at the concept level. As
we have discussed in chapter 4, entities in a concept network are either concepts
or terminals. The main difference between both was that a concept definition
contains slot entries, and a terminal definition contains a value. Hence only
concepts can be related to concepts or terminals in the concept network. A
terminal represents an element about which we do not want to know any extra
information beyond its value.

The choice of whether to define a code element as a concept or as a terminal
has to do with the ontological granularity that is required (see chapter 3) by the
application for which CoBro is used.

The default granularity for conceptifying code entities in CoBro is at the
class level. However, CoBro is implemented in a way that allows the adaptation
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of this granularity. An example of such an adaptation would be to represent the
methods of a class as concepts, which are currently represented as terminals by
the default process. This would make it possible to couple domain knowledge to
these conceptified methods as well. The changes that are required for this boil
down to:

• setting up a fully qualified reference scheme that can be used to uniquely
identify these entities, both at the code level and at the concept level, and

• adapting the conceptification process of the code level concept-factory so
that it knows how to compute the intension.

5.2.4 Concept and Relation Manipulation

Similarly to manipulating objects in Smalltalk, concepts are manipulated through
message sends. Hence accessing a slot of the definition frame of a concept is done
by sending a message. The name of the message corresponds to the fully qualified
reference of the relation that is used in the slot4. If the slot does not exist and
it cannot be resolved through the concept parent chain then an exception is
raised. The extended message lookup mechanism that takes care of this process
is explained later in this section.

Unary messages in Smalltalk are messages with no arguments (e.g., List

new). These are used in CoBro-CML to access the values of a slot. Keyword
messages are messages with arguments (e.g., myList add: ‘Hello’). These are
used to add a slot to a definition frame. The message names in CoBro-CML
correspond to the fully qualified reference of the relation. The relation reference
can be used readily as a unary message to access slot values. If the reference is
appended with a colon then it can be used as a keyword message to set the value
for a slot (the value is an argument of the message).

Since we use the same message sending mechanism as Smalltalk, it is also
possible to cascade messages. This is used to send two or more messages to the
same concept, and is done by separating the messages with a semicolon. This
way it is possible to avoid repeating the concept name for each message.

Relations themselves are concepts. So before a relation can be used, a cor-
responding concept should be created. We will first summarise the prerequisite
slots, after which we will illustrate these with an example. The default required
slots for a concept are:

• Exactly one fullyQualifiedReference slot
This is used to uniquely identify a concept.

4In Smalltalk a message name may contain letters, numbers, and underscores. It may not
begin with a number. Therefore the same restrictions apply to the fully qualified references of
relations. We follow the same naming convention as Smalltalk, hence the references to concepts
begin with an uppercase letter, and the references to relations begin with a lowercase letter.
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• exactly one hasPreferredLabel slot
This is used for printing the concept.

• one or more superconcept slots
This is used to connect a concept to a superconcept in order to set up a
parent chain.

• the Concepts.Concept concept in its parent chain
This core concept indicates to CoBro that the current concept should be
treated as a Concept. In addition it provides a number of default slots that
are necessary for the functioning of the CoBro tools.

For a relation these requirements are extended with:

• exactly one multiplicity slot
This is used to specify the multiplicity of the relationship.

• exactly one allowedDestinations slot
This is used to specify the allowed destinations of the relationship.

• the Concepts.Relationship concept in its parent chain
This core concept indicates to CoBro that the current concept should be
treated as a Relationship. In addition it provides a number of default
slots that are necessary for the functioning of the CoBro tools.

The multiplicity slot refers to the number of slots of this type that can be
added to a concept. The allowedDestinations slot holds a collection of fully
qualified references. These constrain the possible destinations of the relation. For
instance the definition of the comment relation is:

(Concepts new: #{comment})
hasPreferredLabel: ‘comment’;

superconcept: Concepts.Relationship ;

multiplicity: ‘#(1 #n)’ ;

allowedDestinations: ‘#(#{String})’.

Note that the argument of the new: message is the value of the fully qualified
reference slot in the concept definition frame. In the example the destinations
for a comment slot are restricted to strings (a terminal). We come back to this in
section 5.5.

Depending on the characteristics of the relation, sending a unary message will
either return a single value or a collection of values. For example the multiplicity
of hasPreferredLabel is one-to-one, and the multiplicity of comment is one-to-
many. This is shown by the following examples (see chapter 6 for more examples):
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Concepts.HelloWorld comment.

−→ returns an ordered collection containing the comment slots
for the HelloWorld concept: #(‘Testing concept creation’)

Concepts.HelloWorld comment: ‘Test adding a slot’.

−→ adds an extra comment slot to the HelloWorld concept

Concepts.HelloWorld hasPreferredLabel.

−→ returns a single value: ‘Hello World Concept’

Concepts.HelloWorld hasPreferredLabel: ‘Goodbye World’.

−→ the multiplicity of hasPreferredLabel is one-to-one,
a slot already exists, so this throws an exception

Extension of the Message Lookup Mechanism

To be able to manipulate concepts with message sends (for which the method
bodies are not defined in the class of the receiver), we have overridden the default
Smalltalk message lookup mechanism for concepts. When a message in Smalltalk
is sent, the corresponding method is located in the inheritance chain of the class
of the receiver. If the method is found in the class of the receiver, it is executed.
Otherwise the lookup will continue with the superclasses. If the method is not
found and the root of the class hierarchy is reached, the doesNotUnderstand:

message is sent to the receiver together with the initial message. The default be-
havior of the doesNotUnderstand message is to throw an exception. In figure 5.5
we present a flowchart that outlines our mechanism.

Basically three possibilities exist:

• the corresponding method is found in the Smalltalk class hierarchy
e.g., Concepts.HelloWorld extendedDisplayString

→ ‘ (C6352) Hello World Concept’

• the corresponding method is not found in the Smalltalk class hierarchy, but
it can be found as a relation in the ConceptBase
e.g., Concepts.HelloWorld hasPreferredLabel

→ ‘Hello World Concept’

• the corresponding method is not found in Smalltalk and in the ConceptBase
e.g., Concepts.HelloWorld unknownMessage

→ exception is raised by doesNotUnderstand
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To override the default handling of slot messages, you can add a method with
the slot name in the class hierarchy (more specifically in the meta level interface
of the Concept class).

If the relation that corresponds to the message is found, it is either handled as
a setter (keyword message) or a getter (unary message) (figure 5.5). In the case of
a setter, the characteristics of the relation are consulted to verify if the requested
operation is permitted or not (i.e. multiplicity and allowedDestinations).
In the case of a getter, the value for the slot is retrieved from the conceptbase.
Before the value of the slot is returned, a value interpreter is applied to it. A
value interpreter is a smalltalk block that is stored in the conceptbase. The
default value interpreter simply returns the value stored. Value interpreters are
explained in chapter 7, section 7.1.6.

In the following we describe how a slot is retrieved through the concept parent
chain if it does not exist in the receiver definition frame.

Lookup of Slots in the Concept Parent Chain

With the default core ontology installed, multiple superconcept slots can be
added to the definition of a concept. A superconcept slot refers to a parent
concept of the slot holder. Currently we have implemented a breadth-first lookup
mechanism that traverses the parent chain if a slot is not found in the current
concept. The choice of implementing a breadth-first lookup is a modeling decision.
This lookup mechanism can easily be adapted in the meta level interface of the
CoBro kernel. The reason for its existence is that the implementation of a
number of CoBro tools depends on the availability of a number of concept slots.
Certain information is identical for all the concepts, so it is stored only at the
topmost level (and hence acts as a default slot). In section 5.3 we will show the
use of such information in the implementation of CoBro-Nav. In figure 5.6 we
illustrate the lookup mechanism.

As is shown, when a slot does not exist in the concept to which the message
was sent, the slot lookup mechanism climbs up one level. At this level the slot
is searched in the immediate parents of the concept from left to right. As a
consequence the order of the parent slots in the definition frame of a concept is
important. If the slot is not found on this level, the lookup continues at the next
level. If the slot name is not found in the parent chain a doesNotUnderstand

message is sent to the super class of the receiver’s class (by default this throws
an exception).

A number of helper messages for accessing the parent chain are provided
in the meta level interface of a concept. The first two are super and super:

which allow us to select either the first or a specific parent slot. The messages
allSuperconcepts and withAllSuperconcepts facilitate collecting all the par-
ent slots of a concept. Accessing the children that refer to a concept as their parent
is done by sending the message allSubconcepts, or withAllSubconcepts. In
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Figure 5.6: Default breadth-first lookup of slots in the concept parent chain.

chapter 6 section 6.1.4 we illustrate the use of these messages.

Coupling Domain Level and Code Level Concepts

Using the mechanisms we described, it is possible to connect domain level con-
cepts and code level concepts in a straightforward way. Connecting concepts is
done by relating them to each other. This means adding a slot to a concept that
relates it to another concept. The following possibilities exist:

• Domain level concept → Domain level concept
e.g., Concepts.HelloWorld isRelatedTo: Concepts.HelloStreet.

• Domain level concept → Code level concept
e.g., Concepts.HelloWorld isRelatedTo: Concepts.OrderedCollection.

• Code level concept → Domain level concept
e.g., Concepts.OrderedCollection isRelatedTo: Concepts.HelloStreet.

• Code level concept → Code level concept
e.g., Concepts.List isRelatedTo: Concepts.OrderedCollection.

The examples above require the existence of an isRelatedTo: relation with
allowed destination #(#{Concept}). HelloWorld and HelloStreet are domain
concepts. OrderedCollection and List are Smalltalk classes.

Since conceptification of code level concepts is transparent for the user, all
these combinations are simply done by sending a keyword slot message. Note
that besides relations between concepts, both domain level concepts and code
level concepts can be related to terminal values as well (e.g., with a comment

relation).
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Active Use of Concepts in the Implementation

As a result of the symbiotic integration of CoBro within Smalltalk it is possible
to write CoBro-CML statements everywhere in the programming environment
where Smalltalk statements are allowed. Consequently you can write a method
that relies on concepts to provide its behavior. This is not limited to consulting
the ConceptBase, it is also possible to manipulate the concepts (e.g., creation of
new slots) from within Smalltalk methods.

Part of the CoBro implementation relies on the existence of the concept level
to provide its functionality. Consequently one could say that part of the behavior
is pushed towards the concept level. This is similar to Dynamic Object Models
(discussed in chapter 2) where part of the behavior is pushed towards the data.
The main benefit obtained is a more malleable implementation of CoBro. This
is because changes to the system can be done by manipulating concepts instead
of adapting code.

In the following section we introduce the graphical concept network navigator.
The implementation of the network navigator makes use of concepts. Besides
describing its main characteristics, we will also highlight how it can be adapted
through changes at the concept level.

5.3 Graphical Concept Network Navigator

Programmatic access to a concept network is beneficial for several reasons. Yet a
graphical approach to navigate a concept network is more intuitive for exploration.
This is why we have created the graphical concept network navigator (CoBro-
Nav). The tool is based upon the Hotdraw framework [Bra95]. Hotdraw is
a popular structured drawing framework that can be used to build graphical
editors.

In this section we describe the main characteristics of CoBro-Nav and how
it can be extended to support different types of nodes. The implementation of
CoBro-Nav makes use of CoBro. As a consequence certain adaptations can
be done at the concept level. Since visualisation is not the prime objective of this
dissertation we will only briefly summarise its elements.

Overview of Functionality

CoBro-Nav facilitates graphical browsing of the concept network stored in the
ConceptBase. It can be opened on a collection of concepts, and starting from
these you can navigate to the related concepts and terminals. In order to improve
the interaction with the concept network, the nodes that represent terminals and
concepts are built up as user interface components. Consequently manipulating
nodes can be done using the same mechanisms used in standard user interfaces.
Currently CoBro-Nav is only used to provide a view on the entities in the
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ConceptBase. The main window through which all interaction is performed is
shown in figure 5.7.
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Figure 5.7: The CoBro-Nav graphical concept browser.

Analogously to a concept network, there are two types of nodes in CoBro-
Nav: concepts and terminals. The main difference is that terminals do not have
a definition frame that can be exploded. As described later in this section, it is
possible to add different visualisations for both types. This is extremely useful
for terminal nodes. In figure 5.8 we show the two main types of nodes and their
minimised and expanded forms.

Each node in a concept drawing has a number of quick-action buttons, one
on each corner. The corresponding actions are:

• Red (top-left): Remove
Removes the node from the drawing. Note that the corresponding entity in
the ConceptBase remains unaffected.

• Blue (top-right): Explode
Explodes the definition frame of the concept node. Exploding a node means
that for each slot, an arrow is drawn to the corresponding node. If the
node is already shown in the drawing then the arrow is directed towards it.
Otherwise a new node is added to the drawing.

• Orange (bottom-left): Minimise / maximise
Minimises or maximises a node. This is useful if a large volume of concepts
is shown and you want to make the drawing more concise.
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• Green (bottom-right): Expand / collapse
Expands a node to show its definition frame. For a concept node, all the
slots of its definition are shown inside the node. Double-clicking a slot
allows a selective explode (i.e. an arrow will be added to the drawing for
the selected slot). For a terminal node, the corresponding value is shown.
Depending on the type of terminal, this value is visualised differently (see
later).

Concept node Terminal node

Normal
(Maximised &
          Collapsed)

Expanded

Minimised

Figure 5.8: The available CoBro-Nav node types.

Different node layout strategies have been included in CoBro-Nav. It is pos-
sible to rearrange all the nodes in the drawing or a selection of nodes. Currently
it supports circular, vertical, horizontal, and diagonal layout.

In figure 5.9 we present an overview of the toolbar and the corresponding op-
erations. These operations are accessible through several context-sensitive menus
as well. Depending on whether nodes in the drawing are selected, they will apply
to all the nodes or to the selection.

Interaction with relations is done by opening a context-sensitive menu on the
corresponding arrow. This way you can add the corresponding relation concept
as a node to the drawing for further inspection. Other possible operations include
browsing concepts that use the relation or that refer to the relation, for instance.
Also the visualisation properties, such as line thickness and color of the arrow,
can be manipulated. Note that there is support for visualising circular relations
as well.

The concept drawings can be saved as a postscript file or exported to GraphViz
format5. The latter is open source graph visualisation software that takes graph
descriptions in a simple text-based format, and renders the graph into an op-
timal layout. We show the generated output for the HelloWorld example in

5http://www.graphviz.org/
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Figure 5.9: The CoBro-Nav toolbar

figure 5.10 (concepts are drawn as double-line boxes, terminals are drawn as
single-line boxes).
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Figure 5.10: CoBro-Nav export to GraphViz.

We have also integrated CoBro-Nav in the Star Browser tool of Roel Wuyts6.
In this way a concept network can be traversed in a tree-based fashion. One of
the goals of the Star Browser is to allow developers to browse the Smalltalk
environment and classify code level entities while browsing. Classification can be
done by dragging and dropping the entities (e.g., classes, methods, . . . ) inside an
extensional classification. The extension we made also supports classification of
concepts in this way. The screenshot in figure 5.11 shows the tree-based navigation
in Star Browser combined with the network-based navigation of CoBro-Nav.

Extensibility of CoBro-Nav

In this section we will briefly touch the extensibility of CoBro-Nav. A compre-
hensive discussion can be found in chapter 7, section 7.1.5.

It is possible to extend CoBro-Nav with different visualisations of nodes.
One of the experiments we performed with CoBro was in the context of sepa-
rating user interface concerns [GD04, GD05]. For this purpose it was necessary

6http://homepages.ulb.ac.be/~rowuyts/StarBrowser/
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Concept node Terminal node Relationship

Figure 5.11: The extended Star Browser.

to be able to relate concepts to user interface specifications (a.k.a. a window
spec in Smalltalk). We adapted the conceptification process for classes so that
a vwWindowspec slot was added if a user interface specification existed. The
specification itself is represented as a terminal in the concept network.

Using the CoBro-Nav tool to visualise such a terminal would result in one
long string to be displayed (i.e. the textual representation of a window specifi-
cation). So we added a different terminal node class to CoBro-Nav that would
show the visual counterpart of this specification. Instead of writing explicit code
for the decision to represent a terminal in the drawing as a standard terminal
node or as a windowspec node, we added this information to the ConceptBase.

In doing so, CoBro-Nav can ask the terminal (or concept for that matter)
its node representation class by accessing the corresponding slot in the Con-
ceptBase. Note that up until now we only referred to the basic visualisations
of a concept node and of a terminal node (i.e. the classes CBViewConcept and
CBViewTerminal). In the previous section we already explained that slots are
looked up through the parent chain in the concept network. Consequently we
added this information as default slots (gbConceptViewClass:) to the concepts
Concept and Terminal. We illustrate this in the following code excerpt:
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Concepts.Concept

gbConceptViewClass: Concepts.CBViewConcept;

save.

Concepts.Terminal

gbConceptViewClass: Concepts.CBViewTerminal;

save.

This means that extending CoBro-Nav with new node visualisations boils
down to:

• creating a new node class that is instantiated by CoBro-Nav to visualise
the information (e.g., the class CBViewTerminalWindowSpec), and

• adding a gbConceptViewClass slot to the corresponding concept in the
ConceptBase.

We show the window specification visualisation in figure 5.12. Note that this is
a running user interface, so it is possible to interact with it if it has an associated
application model.

Another terminal visualisation that was added in the same way to CoBro-
Nav is to visualise images. This makes it possible to attach images as docu-
mentation to code and domain level entities. This illustrates the malleability of
CoBro-Nav as a result of using CoBro in its implementation. We will illustrate
the extension of CoBro-Nav with new node types in chapter 7.

5.4 Assorted Tools

In this section we will briefly introduce the other elements of CoBro that support
a developer in interacting with concepts. In chapter 6 we also illustrate how these
tools can be used from within CoBro-CML.

The CoBro launcher is the main window from which all the tools can be
accessed. It is also the place where you can set up a connection to a ConceptBase
and where you can initialize the system.

Also, as a result of the symbiotic integration with Smalltalk, one of the main
ways to interact with the ConceptBase is by using a Smalltalk workspace in
which you evaluate CoBro-CML statements interactively. Both are shown in
the screenshot in figure 5.13.

Querying concepts interactively from within a workspace could result in a
collection of concepts. If you want to manipulate this collection of concepts they
can be sent to a concept bag window. From within a concept bag these concepts
can be sent to the different tools of CoBro or they can be grouped together in
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Figure 5.12: Visualising user interface specifications in CoBro-Nav.

the ConceptBase7. In figure 5.14 we show a concept bag window that contains a
number of concepts.

Concepts can be manipulated programmatically by accessing and setting their
slots. If more complex editing is required, it is often useful to use the basic
concept editor. An example of this use is changing the order of the slots in a
definition frame of a concept. This ordering is especially important for parent
slots for instance, since they are handled from top to bottom during lookup. As

7As we will illustrate in chapter 6 grouping can be done by setting up a notion of group
concepts in the ConceptBase.
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Evaluates, Prints, Inspects, or Debugs
the selected statement

CoBro-CML statements can be
evaluated in a standard
Smalltalk Workspace

Figure 5.13: The CoBro launcher and a Smalltalk workspace.
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Figure 5.14: The CoBro concept bag.
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Figure 5.15: The basic concept editor.

a consequence the order of these slots determines the order in which the parent
chain is traversed. Dedicated versions of this editor can be created to be more
suited for a specific task. Figure 5.15 shows a screenshot of the basic editor. Note
that this editor can also be used to adapt the extension of a conceptified code
level entity.

Concepts are identified by their fully qualified reference. If this reference is
not known, it can be located by examining the associated terminals (e.g., the
comment slots). The concept locator allows us to search for concepts without
knowing their fully qualified reference. It also has shopping bag functionality to
collect all the concepts of your session. This is shown in figure 5.168.

Consulting the internal representation of concepts can be done through the
basic concept viewer. Another way to view the internals would be to open a
Smalltalk object inspector on a concept. We will illustrate this in chapter 6.
Figure 5.17 shows a screenshot of the basic viewer.

The main tool for programming in VisualWorks Smalltalk is the Refactoring
Browser. We integrated the CoBro tools in this browser to ease the manipulation
of the concept level. Currently there are three CoBro extensions (a.k.a. code
tools) for the system browser. The first is shown in figure 5.18 and is used to
browse the concept intension and extension of the currently selected code entity
in a tree-based fashion. It is also possible to send the conceptified code entity
to the different CoBro tools. An evaluation pane is available in which CoBro-
CML statements can be evaluated within the context of the conceptified class

8This is the same tool that was used in figure 5.12 to illustrate the window specification
node of CoBro-Nav.
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Figure 5.16: The concept locator.

Figure 5.17: The basic concept viewer.

(self refers to the concept). As illustrated in the screenshot, the relatedTo:

Concepts.HelloStreet slot was added this way.

The second code tool is similar to the first but is used for editing the definition
frame of the selected code entity (figure 5.19). Slot setter messages can be send
to the current selected concept. It is also possible to edit a slot, delete a slot,
or move the position of a slot in the definition frame. The second code tool
integrates CoBro-Nav in the Refactoring Browser. This is shown in figure 5.20,
where we navigated to a number of concepts related to the selected class.

Note that both code tools depend on the granularity of conceptification (sec-
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Conceptified class can be
opened in the CoBro tools

Definition frame
of the conceptified class

(extension and/or intension)
Evaluate CoBro-CML statements in the

context of the conceptified class

Figure 5.18: The CoBro code tool in the Smalltalk refactoring browser.

tion 5.2.3). Currently they are only available to the developer if a class is selected
in the upper pane of the system browser. If methods are conceptified as well for
instance, then the code tool is also available if the developer selects a method in
the upper right pane of the browser.

5.5 Default Core Ontology

In section 5.2.4 we discussed a number of prerequisite slots for the creation of
concepts and relations. For example concepts must have at least a fully qualified
reference, a label, and a super concept. These prerequisites are set forth in the
CoBro kernel. CoBro requires the existence of these slots to be able to function
properly. For example without these slots CoBro would not be able to identify
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Figure 5.19: The CoBro edit tool in the Smalltalk refactoring browser.

and print the concepts9. Consequently it also requires the existence of relation
concepts that can be used to set these slots. Hence both elements are part of
the core ontology for the CoBro system. For greater flexibility we have tried to
keep the prerequisites to a minimum.

Depending on the part of the CoBro environment, different prerequisites
with respect to the ConceptBase are set. For example in section 5.3, CoBro-
Nav expects the existence of a gbConceptViewClass slot to be able to visualise
ConceptBase entities. Hence it requires the existence of a gbConceptViewClass

relation concept in its core ontology. Note that such a prerequisite originates from
refactoring the CoBro-Nav implementation so that it made use of concepts for

9Note that in essence the only hard requirement to define a concept is that it has a fully
qualified reference. So it is possible to create concepts with just that one slot. If no label slot is
defined then printing the concept will print ‘error - unknown’. In the case that no super concept
slot is provided, all the slots that are required by the CoBro tools should be added locally to
the concept (e.g., the gbConceptViewClass slot for CoBro-Nav). Otherwise the tools are not
able to handle the concept properly.
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Figure 5.20: The CoBro-Nav code tool in the Smalltalk refactoring browser.

the purpose of malleability.

In figure 5.21 we show the upper level of the core ontology for the CoBro ker-
nel. Note that the distinction between Terminals and Concepts is made explicit
by modeling them as distinct concepts in the ConceptBase. Table 5.1 summarises
elements of the core relations and concepts in the ConceptBase.

So in order to function properly, certain elements of the CoBro environ-
ment require the use and the existence of a number of core concepts. If other
applications are built in a concept-centric fashion, then they will also require
the existence of their own core ontology. Consequently we have foreseen two
mechanisms that allow us to verify if the concept prerequisites are met.

The first mechanism should verify the existence of concepts in the Concept-
Base. For this purpose we have incorporated a containsConcept: message that
can be sent to the Concepts namespace. The use of this message is illustrated in
chapter 6, section 6.2.4.

The second mechanism should verify the existence of slots in the concept
definitions in the ConceptBase. This could be done by using the existing S-Unit
testing framework in Smalltalk. An S-Unit test makes it possible to write down
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C1539 Entity

C1542 Concept

C20 Relationship
C2428 SmalltalkClass

C1546 Terminal

C1741 WindowSpec
C1550 String

...

...

...

...

C20 hasPreferredLabel

Figure 5.21: Part of the upper level of the CoBro core ontology.

a piece of code that verifies whether a part of the implementation satisfies a
certain condition. We have set up a number of S-Unit tests that verify if the
concepts in the ConceptBase have the required slots for the CoBro kernel. This
also results in a good documentation of the core ontology and its usage for the
different CoBro elements.

The elements of the different core ontologies can also be accessed as groups in
the ConceptBase. One of these groups is used for instance by the CoBro kernel to
cache certain core concepts to speed up the system (i.e. EntitiesToCacheGroup).
Hence adding a concept to this group (e.g., by evaluating a CoBro-CML state-
ment) will result in the concept to be cached.

Launching CoBro without its core ontology is not possible since CoBro-

Defining concepts hasPreferredLabel, fullyQualifiedReference,
superconcept, Concept, Terminal

Defining relations allowedDestinations, multiplicity
Conceptifying classes vwHasPreferredLabel, vwHasSuperclass,

vwHasSelector, vwHasInstVar,
vwHasClassVar, vwHasWindowSpecVisual,
SmalltalkClass, . . .

Grouping isGroupFor, comment, Group
Existing groups AllGroups, EntitiesToCacheGroup,

SmalltalkEntitiesGroup,
CoBroEntitiesGroup, . . .

Table 5.1: Overview of selected core relations and concepts



124 CHAPTER 5. THE COBRO ENVIRONMENT

CML makes use of these concepts to ensure its behavior. To avoid this chicken
and egg problem, it is possible to dump core ontology concept definitions as SQL
queries. Consequently these can be loaded into an empty ConceptBase, after
which the CoBro system can be launched.

5.6 Summary

In this chapter we presented CoBro as a practical proof-of-concept implemen-
tation so as to validate our research. We introduced the overall architecture of
CoBro and explained the different requirements that it should meet. We briefly
summarise these requirements and how they are met by CoBro:

• Explicit Concept Level Representation
Domain knowledge can be explicited in CoBro-CML by creating a concept
network in the ConceptBase.

• Coupled Concept and Code Level
Code level entities are deified into the concept level through an implicit
conceptification process. This enables the coupling of both sides at the
concept level.

• Active Participation of the Concept Level
The concept level can be accessed and manipulated from within the imple-
mentation. Consequently it is possible to refactor code so that it depends
on the concept level for its behavior. The participation of the concept level
results in malleable software.

• Transparency for the Developer
Interaction with objects and concepts is made transparent for the developer
through symbiotic integration with the programming environment. This
symbiotic integration is the main enabler for realising the active participa-
tion and coupling mentioned above.

We also motivated the use of Smalltalk as an implementation medium for our
environment. This motivation was based on the interplay of the different meta
and base levels within CoBro. Also the main motivations behind choosing a
relational database to hold the concepts in the ConceptBase were discussed.

A prime element in CoBro is the concept manipulation language CoBro-
CML. We presented a detailed explanation of its integration with Smalltalk and
how it is used to manipulate concepts. The conceptification process that takes
care of representing code level entities at the concept level was illustrated as well.
This led to a discussion of the ontological granularity that is required. In essence
this is a choice of what to represent at the concept level and how to represent it.
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To support easy navigation in a concept network we have also described
CoBro-Nav, the graphical network navigator we created. We have also illus-
trated how this tool is extensible since concepts play an active role in its im-
plementation. Moreover we integrated CoBro-Nav in the Star Browser, which
enables tree-based navigation.

The other tools that are part of the CoBro environment were briefly illus-
trated. This shows the kind of support a developer gets when interacting with
CoBro.

We conclude with a discussion of the core ontologies that are used by CoBro
in its implementation.

In the next chapter we present the CoBro environment in an example-based
fashion. This should give an idea of how the elements introduced here are used
in practice. Moreover it will show certain aspects of CoBro that did not fit in
the discussion of the current chapter.





Chapter 6

CoBro by Example

The goal of this chapter is to give an idea of what interacting with the CoBro
environment is like. This is done in an example-based fashion, where each example
will highlight a particular aspect of the environment.

We begin by illustrating the manipulation of domain concepts in section 6.1.
The main theme of the section is to demonstrate the use of CoBro to make do-
main knowledge explicit. Furthermore we illustrate the symbiosis with Smalltalk
which makes manipulating concepts or objects transparent for the programmer.
The examples show how to access, create, update, and delete concepts in CoBro-
CML. We also zoom in on the interplay between CoBro-CML and the other
tools of CoBro (e.g. CoBro-Nav).

In section 6.2 we focus on manipulating concepts that stem from the code
level. The main theme of the section is to show the use of CoBro for coupling
domain knowledge to code entities. Moreover we will illustrate how this domain
knowledge can be used actively within the implementation. Similar to section 6.1
this is possible in a non-obtrusive way as a result of the symbiosis with Smalltalk.
The examples will illustrate how code level concepts are created by conceptifying
their corresponding code level entities. We will also illustrate how these code
level concepts can be manipulated in CoBro-CML.

For each example we show what is returned by the system when the state-
ments are evaluated. This is indicated by a ‘−→’, followed by the result. If the
system responds to a statement by opening a window, then we will show this in
a screenshot if it improves the understanding. All the examples in this chapter
are included with the current CoBro distribution and can be evaluated in a
standard Smalltalk workspace. A detailed discussion of advanced applications of
CoBro is presented in chapter 7.

127



128 CHAPTER 6. COBRO BY EXAMPLE

6.1 Domain Concept Examples

In this section we present a number of examples that show how a programmer can
manipulate domain concepts. This illustrates the way in which domain knowledge
can be made explicit by using CoBro-CML. How this domain knowledge can
be coupled to the implementation, and how it can be used actively from within
the implementation is shown in section 6.2.

The running example for this section consists of a small wine ontology for
which we show the relevant subset in figure 6.1. The clouds represent concepts,
the arrows represent relationships, and the rectangles represent terminal values.
For example the Wine concept has an internal identification C516, an external
identification (fully qualified reference) #{Wine}, a label that can be used for
printing ‘Wine’, a number of comment slots, and a superconcept slot relating
it to the Concept concept.

We first show how existing concepts can be retrieved from the ConceptBase,
as well as a number of helper tools that can be called from within CoBro-CML.
Next we illustrate how the slots in a concept definition can be manipulated by
accessor and setter messages. We end this section with examples that illustrate
the creation of a group-concept and a notion of projects in the ConceptBase.

6.1.1 Retrieving Concepts

In chapter 5 we introduced the Concepts namespace and our extended lookup
mechanism that takes care of retrieving concepts from the ConceptBase. Since
this forms the basis for the rest of this section, we first show how this namespace
works in practice.
There are several ways to access a concept through the Concepts namespace.
You can either use the dotted notation to indicate the path to the concept, or
you can use the namespace as a dictionary by sending the at: message. The
examples below will all return the Wine concept:

Root.Smalltalk.CoBro.Concepts.Wine.

Smalltalk.CoBro.Concepts.Wine.

CoBro.Concepts.Wine.

Concepts.Wine.

Concepts at: #{Wine}.
−→ a concept: Wine

The notation used for the concept key in the last example, is identical to the
one Smalltalk uses to indicate a fully qualified reference of a binding. This is
important since it allows the system to handle Smalltalk and concept references
transparently. Verifying whether an entity is a concept or not can be done by
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Figure 6.1: A subset of a simple wine ontology.

sending the isConcept message. As illustrated in the following example, even
though OrderedCollection is not a concept, it has the same fully qualified ref-
erence as its concept counterpart Concepts.OrderedCollection1:

1Note that in Smalltalk the fully qualified reference of a class by default starts from
Root.Smalltalk. We illustrate how to get the complete reference later in this chapter.
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Concepts.Wine isConcept.

−→ true
Concepts.Wine fullyQualifiedReference.

−→ a binding reference: #{Wine}

OrderedCollection isConcept.

−→ false
OrderedCollection fullyQualifiedReference.

−→ a binding reference: #{Core.OrderedCollection}
Concepts.OrderedCollection isConcept.

−→ true
Concepts.OrderedCollection fullyQualifiedReference.

−→ a binding reference:
#{Root.Smalltalk.Core.OrderedCollection}

The following illustrates what happens if you refer to a concept that does not
exist in the ConceptBase, and that cannot be conceptified. Similar to Smalltalk,
this will throw an exception which reports that it is an unbound identifier:

Concepts.TheConceptThatNeverExisted.

−→ an exception: The identifier has no binding

To find out programmatically whether a concept exists or not, you can send the
message containsConcept: or containsAllConcepts: to the concepts names-
pace. This is useful for code that depends on the existence of certain concepts2:

Concepts containsConcept: #{TheConceptThatNeverExisted}.
−→ false
Concepts containsAllConcepts:

#(#{Wine} #{RedWine} #{WhiteWhine}).
−→ true

Since CoBro-CML is implemented in symbiosis with Smalltalk, it can be mixed
with and used from within Smalltalk programs. So if you do not want to refer
directly to a concept, you can manipulate it through a variable. This is shown
in the following where the concept Wine is retrieved from the ConceptBase and

2In Smalltalk, an instance of a collection can be created by enumerating the elements using
the following notation: aCollection := #(element1 ... element3).
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stored in the variable d13:

d1:= Concepts.Wine.

−→ a variable d1 bound to: Concepts.Wine

Opening a Smalltalk object inspector on d1 shows the internal details of the Wine
concept4:

Concepts.Wine inspect.

−→ a Smalltalk object inspector on: the Wine concept (see figure 6.2)
d1 inspect.

−→ a Smalltalk object inspector on:
d1 containing the Wine concept (see figure 6.2)

Figure 6.2: A Smalltalk object inspector on Concepts.Wine.

Using the inspector you can navigate to the collection that holds the definition
frame of the concept5. Each slot that is added to the concept is represented by its
own entry in this frame. Note that every definition entry consists of a relationship

3From now on when we refer to d1, we refer to the variable assigned to Concepts.Wine.
4If we refer to d1 in the coming examples then we refer to Concepts.Wine.
5Note that a concept definition is only loaded on demand. To force loading the definition,

evaluate self definition in the evaluation pane of the inspector.
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concept that is associated with a collection of destinations (a collection to support
n-ary relationships). This is shown in figure 6.3.

Figure 6.3: A Smalltalk object inspector on the definition frame of
Concepts.Wine.

6.1.2 Helper Messages

Helper messages are useful for interacting with concepts during programming.
They are also used by the different CoBro tools to provide certain parts of their
functionality. Some of these messages will open a concept or a collection of con-
cepts in one of the CoBro tools6:

d1 toConceptViewer.

−→ opens a basic concept viewer on the Wine concept
d1 toConceptEditor.

−→ opens the Wine concept in the basic concept editor
d1 toGraphBrowser.

−→ opens CoBro-Nav on the Wine concept for visual browsing
d1 toStarBrowser.

−→ opens the extended StarBrowser on the Wine concept for hierarchi-
cal, textual, and visual browsing
d1 toConceptBag.

−→ opens the Wine concept in a concept bag for further manipulation

6For an explanation of the respective tools we refer to chapter 5.
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Other helper messages can be used for instance to generate a textual represen-
tation of a concept. The following example shows only two of these. The first,
smalltalkDefinition, will generate a string that corresponds to the definition
of the concept in Smalltalk syntax. This is useful to generate a template if you
want to define a concept that has many slots in common with an existing one
(see section 6.1.5):

d1 smalltalkDefinition.

−→ c := Concepts new: #{Wine}.
c hasPreferredLabel: ‘Wine’.

c superconcept: Concepts.Concept.

c comment: ‘Most wines taste good.’.

c comment: ‘Only Beaujolais Nouveau is gross.’.

c save.

A second helper message, sqlDefinition, generates the SQL representation
that is used to store the concept in the ConceptBase. This is useful for boot-
strapping the definition of elements in the core ontology:
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d1 sqlDefinition.

−→ INSERT INTO Strings (ID, value)

VALUES (3484,‘#{Wine}’);
INSERT INTO Concepts (entryID, entryPos, fromID,

relationID, toID, fromType, toType, relationType)

VALUES (6055,1,516,1240,3484,1,2,1);

INSERT INTO Strings (ID, value)

VALUES (1971,‘Wine’);

INSERT INTO Concepts (entryID, entryPos, fromID,

relationID, toID, fromType, toType, relationType)

VALUES (6056,1,516,1,3485,1,2,1);

INSERT INTO Concepts (entryID, entryPos, fromID,

relationID, toID, fromType, toType, relationType)

VALUES (6057,1,516,6,1542,1,1,1);

INSERT INTO Strings (ID, value)

VALUES (3486,‘Most wines taste good.’);

INSERT INTO Concepts (entryID, entryPos, fromID,

relationID, toID, fromType, toType, relationType)

VALUES (6058,1,516,687,3486,1,2,1);

INSERT INTO Strings (ID, value)

VALUES (3487,‘But Beaujolais Nouveau is gross.’);

INSERT INTO Concepts (entryID, entryPos, fromID,

relationID, toID, fromType, toType, relationType)

VALUES (6059,1,516,687,3487,1,2,1);

6.1.3 Querying Concepts by Accessing Slots

The slots in the definition frame of a concept can be accessed by sending messages
to the concept. The message names that are used are the fully qualified references
of the slot’s relationship. For example accessing the preferredLabel slot is done
as follows:

Concepts.Wine hasPreferredLabel.

−→ a terminal for the string: ‘Wine’

The following example illustrates what happens if you send a message to access
a slot that does not exist in the concept. Similarly to Smalltalk, this will throw
an exception that it is a new message:
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Concepts.Wine theSlotThatNeverExisted.

−→ an exception: theSlotThatNeverExisted is a new message

As we have seen in chapter 5, relationships themselves are represented by con-
cepts. Consequently we can access the concept that represents a relationship, e.g.
the hasPreferredLabel concept:

Concepts.HeadacheWine hasPreferredLabel.

−→ a terminal for the string: ‘Headache Wine’
Concepts.hasPreferredLabel.

−→ a concept: hasPreferredLabel

Depending on the multiplicity that was defined for a certain relationship, a slot
accessor message will return either:

• a single terminal representing the slot’s value

• a collection of terminals containing the values for each occurrence of the
slot

To find out whether a slot accessor will return a single terminal or a collection of
terminals, you can access the multiplicity slot of the corresponding relation-
ship concept. This is illustrated by the next example:

Concepts.fullyQualifiedReference multiplicity.

−→ a collection representing the multiplicity: #(1 1)
d1 fullyQualifiedReference.

−→ a terminal for the fully qualified reference: #{Wine}

Concepts.comment multiplicity.

−→ an ordered collection representing the multiplicity: #(1 #n)
d1 comment.

−→ an ordered collection with terminals for all comment slots:
#(‘Most wines taste good.’ ’Only Beaujolais Nouveau is gross.’)

d1 comment first.

−→ a terminal for the string: ‘Most wines taste good.’

So if multiple slots of the same type are allowed, and accessing these returns
a collection, then you can use normal Smalltalk collection behavior to iterate
over the elements in the collection (e.g. first, last, at: anIndex, . . . ). The
next example opens a concept in the graph browser which shows that it has two
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comment slots (figure 6.4). Accessing the comment slot results in a collection of
terminals. In the example we illustrate iterating over this collection by printing
every comment in a Transcript window:

d2 := Concepts.BeaujolaisNouveau.

d2 toGraphBrowser.

−→ opens d2 in CoBro-Nav(see figure 6.4)
d2 comment first.

−→ a terminal for the string:
‘One bottle a day won’t enlighten your day.’

d2 comment do:

[:each | Transcript cr.

Transcript show: each printString].

−→ loops over the collection of comments and prints each
in the Smalltalk Transcript window

Figure 6.4: Exploring Concepts.BeaujolaisNouveau in the CoBro-Nav graph
browser.
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6.1.4 Lookup of Slots in the Parent Chain

As explained in chapter 5, the default behavior of accessors can be overridden in
CoBro. The default core ontology includes a superconcept relationship-concept
that indicates a parent/child relationship between concepts. The default inter-
pretation of superconcept is that a concept can have multiple parents. As we
discussed in chapter 5, section 5.2.4, The lookup mechanism is implemented as a
breadth-first search. Hence it will first look within the concept itself after which
it will go up one level and look within its parents from left to right. If the slot is
not found at that level, it will repeat this process for the next level. Note that
the meta-level interface of CoBro makes it possible to deviate from this default
lookup mechanism as described in chapter 5, section 5.2.4. Hence you can easily
override the current lookup or install your own relationship in the ConceptBase
(e.g. Concepts.myOwnSuperconcept). The following examples illustrate the de-
fault superconcept accessor, as well as a number of helper messages, namely:

• super

→ selects the first superconcept encountered at this level

• super:aRef

→ selects the first superconcept named aRef at this level

• allSuperconcepts

→ returns a collection containing the superconcept chain

• withAllSuperconcepts

→allSuperConcepts including the current concept

• allSubconcepts

→returns a collection containing the subconcept chain

• withAllSubconcepts

→allSubConcepts including the current concept

d2 := Concepts.BeaujolaisNouveau.

d2 superconcept.

−→ an ordered collection containing the concepts
RedWine and HeadacheWine

d2 superconcept collect:

[:each | each hasPreferredLabel printString].

−→ an ordered collection containing the labels of the concepts:
#(‘Red Wine’ ‘Headache Wine’)



138 CHAPTER 6. COBRO BY EXAMPLE

The following example shows what happens if you want to access a slot that should
be looked up through the parent chain. In this case Concepts.BeaujolaisNouveau
has no hasLabel slot of its own. The breadth-first lookup will first look inside
Concepts.RedWine after which the slot is found in Concepts.HeadacheWine:

d2 := Concepts.BeaujolaisNouveau.

d2 hasLabel first.

−→a terminal for the string: ‘Ouch!’

Selecting the first superconcept slot is done by sending the super message. If
you want to select a particular superconcept, then you need to use the super:

message by indicating the reference of the concept:

d2 := Concepts.BeaujolaisNouveau.

d2 super comment first.

−→ a terminal for the string: ‘A wine with color RED’

d2 super: #{Wine}.
−→ Wine is not a direct parent so: nil

(d2 super: #{HeadacheWine}) comment first.

−→ a terminal for the string:
‘Your head will not appreciate this kind of wine’

(d2 super: Concepts.HeadacheWine fullyQualifiedReference)

comment first.

−→ a terminal for the string:
‘ Your head will not appreciate this kind of wine’

(d2 superconcept at: 2) comment first.

−→ a terminal for the string:
‘Your head will not appreciate this kind of wine’

It is often necessary to have access to the entire chain of parents or children start-
ing at a particular concept. In the following we illustrate how this can be done.
At the end of the example we open the resulting set of concepts in a concept bag
for further manipulation:
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d2 := Concepts.BeaujolaisNouveau.

d2 allSuperconcepts.

−→ an ordered collection containing the concepts
RedWine, HeadacheWine, Wine, Concept, Entity

d2 withAllSuperconcepts toConceptBag.

−→ opens a concept bag on an ordered collection containing
BeaujolaisNouveau, RedWine, HeadacheWine,
Wine, Concept, Entity

Concepts.RedWine allSubconcepts.

−→ an ordered collection containing the concepts
BeaujolaisNouveau, SenorDeLosLanos,
MarquesDeCaceres

Concepts.RedWine withAllSubconcepts toConceptBag.

−→ opens a concept bag on an ordered collection containing
RedWine, BeaujolaisNouveau, SenorDeLosLanos,
MarquesDeCaceres (see figure 6.5)

Figure 6.5: A concept bag holding the result from Concepts.RedWine

withAllSubconcepts
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6.1.5 Creating Concepts and Setting Slots

A concept is created by sending the new: message to the Concepts namespace.
The argument to this message is the fully qualified reference that will be used to
uniquely identify the concept. With the default core ontology loaded, a concept
is expected to have:

• exactly one unique fully qualified reference (fullyQualifiedReference:)

• exactly one preferred label (hasPreferredLabel:)

• one or more super concepts (superconcept:)

The save message is used to make the concept persistent in the ConceptBase:

d3 := Concepts new: #{ChateauMigraine}.
d3 hasPreferredLabel: ‘Le Grand Chateau Migraine’.

d3 superconcept: Concepts.HeadacheWine.

d3 comment: ‘My name says it all’.

d3 save.

−→ a variable d3 bound to: Concepts.ChateauMigraine

d3 toStarBrowser

−→ opens the ChateauMigraine concept in the extended Star Browser
(see figure 6.6)

A concept can be deleted from the ConceptBase by sending the delete: mes-
sage. If the concept is found and can be deleted, this returns true, otherwise it
returns false:

Concepts delete: Concepts.ChateauMigraine.

−→ deletes the concept Concepts.ChateauMigraine: true

Using Smalltalk’s cascading message sending style, a concept can be created in a
less verbose way. The semicolons in the example are used to cascade the messages:

d4 := (Concepts new: #{ChateauMigraine})
hasPreferredLabel: ‘Le Grand Chateau Migraine’ ;

superconcept: Concepts.HeadacheWine ;

comment: ‘My name says it all’ ;

save.

−→ a variable d4 bound to: Concepts.ChateauMigraine
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Figure 6.6: A Star Browser opened on the newly created ChateauMigraine con-
cept.

The following example illustrates what happens if you attempt to create a con-
cept that already exists:

Concepts.TheConceptThatExists.

−→ a concept: Concepts.TheConceptThatExists

Concepts new: #{TheConceptThatExists}.
−→ an exception and name suggestion:

The fully qualified reference is already taken.

Try using ‘#{TheConceptThatExists1}’

As shown, the system uses a mnemonic generator to suggest a name that is unique
within the system.

Since relationships are also concepts, they can be created in the same way. As
we have seen, the fully qualified reference of a relationship is used as the message
name to access a slot. With the default core ontology loaded, a relationship is
expected to have:
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• exactly one unique fully qualified reference

• exactly one preferred label

• the Concepts.Relationship as one of its superconcepts

• exactly one multiplicity: slot

• exactly one allowedDestinations: slot

For instance the definition of the comment relationship looks like:

(Concepts new: #{comment})
hasPreferredLabel: ‘comment’;

superconcept: Concepts.Relationship ;

multiplicity: ‘#(1 #n)’ ;

allowedDestinations: ‘#(#{String})’ ;

save.

−→ a concept: Concepts.comment

This definition can easily be generated by sending the smalltalkDefinition

message to a concept. This way you can use an existing definition as a template
for creating your own relationship for instance.

The multiplicity: in the previous example indicates how many occurrences
of this slot are allowed within one concept. The allowedDestinations: contains
a collection of concept references to which the relationship may point. In the
above example, the #{String} concept refers to a Terminal concept. Such a
destination type means that it will point to a terminal value (in this case a
string).

The former examples showed how to create a concept from scratch. Adding
a slot to an existing concept definition can be done by sending a message or by
opening a concept editor. Note that the editor can be used to change the order
of the slots in the definition frame:

Concepts.ChateauMigraine

comment: ‘Is it the chateau or the migraine

that is grand?’ ;

save.

−→ adds a comment slot to ChateauMigraine

Concepts.ChateauMigraine toConceptEditor

−→ opens the ChateauMigraine concept in the basic
concept editor (see figure 6.7)
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Figure 6.7: A concept editor opened on the ChateauMigraine concept

6.1.6 A Notion of Groups and Projects

In practice it happens a lot that there is a set of concepts that you need to work
with frequently, or that simply belong together. Therefore it would be useful to
have some kind of mechanism that allows you to group them. Instead of having
some special kind of concept, this is achieved by defining a group concept.

The way to go is to start by defining a Group concept and an isGroupFor: re-
lationship. In the following examples we will show the corresponding statements:
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(Concepts new: #{Group})
hasPreferredLabel: ‘Group’ ;

superconcept: Concepts.Concept ;

save.

−→ a concept: Concepts.Group

(Concepts new: #{isGroupFor})
hasPreferredLabel: ‘isGroupFor’ ;

superconcept: Concepts.Relationship ;

multiplicity: ‘#(1 #n)’ ;

allowedDestinations: ‘#(#{Concept})’ ;

save.

−→ a concept: Concepts.isGroupFor

Now that a Group concept and an isGroupFor relationship is created, we can use
them as follows to create a group to hold some favorite wines:

(Concepts new: #{MyFavoriteWines})
hasPreferredLabel: ‘Favorite wines’ ;

superconcept: Concepts.Group ;

comment: ‘These are all the wines I like’ ;

isGroupFor: Concepts.SenorDeLosLanos ;

isGroupFor: Concepts.MarquesDeCaceres ;

isGroupFor: Concepts.Concepts.RoseWine ;

save.

−→ a concept: Concepts.MyFavoriteWines

Concepts.MyFavoriteWines isGroupFor toConceptBag

−→ opens a concept bag with the concepts
SenorDeLosLanos, MarquesDeCaceres, RoseWine

Browsing all groups in the system or creating a group that holds them all, can
be done by:
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Concepts.Group allSubconcepts toConceptBag

−→ opens a concept bag on all the group concepts currently in the system

g := (Concepts new: #{AllGroups})
hasPreferredLabel: ‘All Groups’ ;

superconcept: Concepts.Group ;

comment: ‘Holds all the groups at this

point in time’ ;

save.

Concepts.Group allSubconcepts do:

[:each | g isGroupFor: each].

g save.

−→ a concept AllGroups referring to all the groups in the system
at this point in time

Another way to indicate that concepts belong together is to use the dotted nota-
tion we introduced earlier for namespaces. Concept names can thus be organised
similarly to the way namespaces in Smalltalk are organised. This provides an easy
way to disambiguate concepts with the same name between projects (instead of
having to append the names with numbers for instance):

(Concepts new: #{MyProjectX.SubTaskA.Employee})
hasPreferredLabel: ‘Employee’ ;

superconcept: Concepts.Concept ;

comment: ‘An Employee concept in the context of

Project X - Subtask A’ ;

save.

(Concepts new: #{MyProjectX.SubTaskB.Employee})
hasPreferredLabel: ‘Employee’ ;

superconcept: Concepts.Concept ;

comment: ‘An Employee concept in the context of

Project X - Subtask B’ ;

save.

−→ the creation of two distinct Employee concepts,
each with a different dotted name
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As might be expected, you need to take care that the dotted concept names do
not overlap with the possible paths in the Smalltalk environment. If such an
overlap does occur, an exception will be raised that indicates that the name is
already taken.

6.2 Implementation Concept Examples

The previous section targeted examples that illustrated the manipulation of do-
main level concepts. In this section we focus on a number of examples that
manipulate concepts that stem from the code level. The manipulation of either
domain or code level concepts is transparent for the programmer. This means
that all the domain concept examples can be applied to code level concepts as
well.

We start by showing how a code level concept is retrieved through the Concepts
namespace and what is returned as a result of the implicit (default) conceptifi-
cation process. Next we show the different ways in which domain concepts can
be coupled to the code level concepts and vice versa. Consequently we present
examples that illustrate the active use of domain concepts in the implementation.
We end the section by showing what happens if we visualise a code level concept
in CoBro-Nav, when the corresponding code entity has a user interface defined.

6.2.1 Retrieving Concepts

In section 6.1.1 we illustrated the use of the Concepts namespace. Retrieving
concepts that stem from the code level is done through the same namespace. The
only difference lies in the origin of the fully qualified reference that is preceded
with ‘Concepts.’. Whereas for domain concepts we could use our own references
to uniquely identify them, we now have to use the fully qualified reference of the
code entity in the Smalltalk environment. Again, as a result of namespace im-
ports, the dotted name can be abbreviated if necessary. The following examples
will all return the conceptified version of the Root.Smalltalk.Core.Number class:

Concepts.Root.Smalltalk.Core.Number.

Concepts.Smalltalk.Core.Number.

Concepts.Core.Number.

Concepts.Number.

Concepts at: #{Root.Smalltalk.Core.Number}.
−→ a concept with fully qualified reference

#{Root.Smalltalk.Core.Number},
representing the conceptified Number class
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Currently we have implemented the system in a way that reserves all the existing
class names as fully qualified references. Hence trying to create a domain concept
with the name Root.Smalltalk.Core.Number will result in an exception indicat-
ing that it is already taken. Nevertheless, this behavior can be easily overridden
so that this does become possible if needed. Note that the fully qualified reference
that is stored in the ConceptBase always contains the full path to the code entity7:

Concepts.Number isConcept.

−→ true
Concepts.Number fullyQualifiedReference.

−→ a binding reference: #{Root.Smalltalk.Core.Number}

Number isConcept.

−→ false
Number fullyQualifiedReference.

−→ a binding reference: #{Core.Number}
Number fullyQualifiedReferenceFrom: nil.

−→ a binding reference: #{Root.Smalltalk.Core.Number}
Number fullyQualifiedReferenceFrom: Root.Smalltalk.Core.

−→ a binding reference: #{Number}

As we have already stated in section 6.1.1, the fact that the Smalltalk and
the concept references are implemented identically allows the programmer to ma-
nipulate them transparently. This is shown in the following where we open a
Smalltalk system browser on the binding value for the reference:

Number fullyQualifiedReference value browse.

Concepts.Number fullyQualifiedReference value browse.

−→ opens a system browser on the class Number

(see figure 6.8)

It is important to note that conceptified entities are not saved by default. An
explicit save message is needed to store the extensional part of its definition. This
is because conceptification consists of adding a number of slots that are defined
by an intensional definition. Since these slots are computed, they are not stored

7By default, Smalltalk looks up references starting at Root.Smalltalk. To get an envi-
ronment independent unique name that includes this part, you should send the basic message
fullyQualifiedReferenceFrom: nil.
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Figure 6.8: A Smalltalk refactoring browser on Root.Smalltalk.Core.Number).

explicitly in the ConceptBase. Moreover, when saving a conceptified concept,
only the extensional part of its definition is stored. This can be seen by opening
such a concept in the basic concept editor, since it will only show the extensional
slots.

6.2.2 Querying Concepts by Accessing Slots

The slot accessing mechanism has already been described in section 6.1.3. Since
there is no difference between a domain level concept and a conceptified concept,
we will just show a number examples that illustrate the slots that are available
after conceptification:
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d1:= Concepts.Number.

d1 fullyQualifiedReference.

−→ a binding reference: #{Root.Smalltalk.Core.Number}

d1 hasPreferredLabel.

−→ a terminal for the string: ‘Root.Smalltalk.Core.Number’

d1 toStarBrowser.

−→ opens the Root.Smalltalk.Core.Number concept in
the extended Star Browser (see figure 6.9)

As is shown in figure 6.9, the Number concept has the same structure as a domain
concept. The relationship names that are prefixed with ‘vw’ are generated from
the implementation by the conceptification process. Depending on the concept
granularity that was defined in the CoBro kernel, these will either refer to con-
cepts or terminals. If a class is conceptified then it will have a superconcept

link to Concepts.SmalltalkClass. This indicates that part of the concept is
computed. The vw-superclass slot that is generated refers to the (conceptified)
superclass of Number, namely ArithmeticValue. These references are only com-
puted on demand. In the following we demonstrate querying the superconcept
and superclass chain:

Concepts.Number superconcept.

−→ an ordered collection containing SmalltalkClass

Concepts.Number super.

−→ a concept: SmalltalkClass

Concepts.Number allSuperconcepts.

−→ an ordered collection containing
SmalltalkClass, Concept, Entity

Concepts.Number vwHasSuperclass.

−→ a concept: Root.Smalltalk.Core.ArithmeticValue

Concepts.Number vwHasSuperclass

vwHasSuperclass

vwHasSuperclass.

−→ a concept: Root.Smalltalk.Core.Object



150 CHAPTER 6. COBRO BY EXAMPLE

Figure 6.9: An extended Star Browser on Concepts.Number

Concepts.Number allSuperclasses.

−→ an ordered collection containing
Root.Smalltalk.Core.ArithmeticValue,
Root.Smalltalk.Core.Magnitude,
Root.Smalltalk.Core.Object

Concepts.Number withAllSuperclasses.

−→ an ordered collection containing
Root.Smalltalk.Core.Number,
Root.Smalltalk.Core.ArithmeticValue,
Root.Smalltalk.Core.Magnitude,
Root.Smalltalk.Core.Object
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The latter two (helper) messages were added to the meta-level interface of the
CoBro kernel. This is because they do not follow the default behavior of slot
accessor messages (by default they return a slot value or a collection of values).
As a consequence you need to override the default behavior. This is similar to
the way superconcept was added to the meta-level interface.

6.2.3 Coupling Domain and Concept Level Concepts

Up to this point we have described how to get a concept version of a class. In
the following examples we will show that it is possible to relate it to domain level
concepts, code level concepts, or plain annotations such as comments. The first
example illustrates how to set up a relatedTo relationship that is consequently
used to hook up the conceptified Number class in a concept network:

(Concepts new: #{relatedTo})
hasPreferredLabel: ‘related to’ ;

superconcept: Concepts.Relationship ;

multiplicity: ‘#(1 #n)’ ;

allowedDestinations: ‘#(#{Concept})’ ;

comment: ‘A generic association’ ;

save.

−→ a concept: Concepts.relatedTo

Concepts.Number

comment: ‘I think this class is used

for counting’ ;

relatedTo: Concepts.Wine ;

relatedTo: Concepts.OrderedCollection ;

save.

Concepts.Number toGraphBrowser.

−→ opens Concepts.Number in CoBro-Nav(see figure 6.10)

Of course it is also possible to connect a domain level concept to a a code level
concept as well. Adding slots to a code level entity can be done by using the
integrated editor tool in the refactoring browser. A slot can be added by typing
the slot message, e.g. comment: ’The CoBro launcher tool’, and pressing
the add-button. What happens is that the message is evaluated in the context
of the conceptified class entity. In screenshot 6.11 we illustrate the addition of
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Figure 6.10: CoBro-Nav on the hooked up Number class

an image slot to the concept representation of the class. The value for the slot is
the filename of the png-image. Screenshot 6.12 shows the corresponding concept
network in the CoBro-Nav tool that is also integrated in the refactoring browser.
We discuss the extension of CoBro-Nav to support images in chapter 7.

6.2.4 Active Use of Concepts in the Implementation

Another important aspect we need to show is how concepts can be used actively
from within the implementation. We have already illustrated how concepts can
be manipulated using CoBro-CML. These statements can be used in Smalltalk
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1 2

3

Figure 6.11: Adding an image to the CoBroMain class concept with the refactoring
browser edit tool.

method bodies as well. As a matter of fact, certain parts of the CoBro envi-
ronment were implemented this way. In the following examples we will show a
number of method bodies that use elements from the ConceptBase to fulfill their
task8.

The first example illustrates a helper method on the ConceptNameSpace that
dumps the definition of a collection of concepts. This is useful to export concepts
from the ConceptBase, for instance:

8In the examples we use ClassX>>messageA to indicate an instance side method, and ClassX
class>>messageA to indicate a class side method
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Figure 6.12: Visualising the CoBroMain class concept in the refactoring browser
CoBro-Nav tool.

ConceptNameSpace>>dumpConcepts: conceptCollection

| result |

result := conceptCollection collect:

[:each | each smalltalkDefinition].

result := (result fold:

[:a :b | a, ‘\\’, b]) withCRs.

(Workbook new replaceAllTextPagesWith:

(WorkspacePage labeled: ‘Concept Dump’

with: result)) open.

−→ This method will open a Smalltalk workbook on
the definitions of a collection of concepts. For example:
Concepts dumpConcepts:

Concepts.MyFavoriteWines isGroupFor
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In the following we show the implementation of the actual method that caches a
set of (core) concepts to speed up the CoBro kernel. If you want CoBro to cache
your own concepts, simply add them to the group concept EntitiesToCacheGroup
by sending the message isGroupFor:9:

ConceptNameSpace>>cacheCoreConcepts

| conceptsToCache |

conceptsToCache :=

Fluffy.Concepts.EntitiesToCacheGroup isGroupFor.

conceptsToCache do:

[:each |

each definition. "disable lazy loading"

self at: each fullyQualifiedReference

put: each].

−→ This method will cache the concepts in the group
EntitiesToCacheGroup

Another example in which the domain knowledge stored in the ConceptBase is
used is shown by the manages method of the class Manager. The assumption
made by the domain model is that a manager cannot manage more than five
employees. So instead of hardcoding this information in the code level, we escape
to the concept level to find it:

Concepts containsAllConcepts: #(#{Manager} #{TeamMember}
#{manages}).

−→ true

Concepts.Manager manages.

−→ a concept: Concepts.TeamMember

Concepts.manages multiplicity.

−→ an ordered collection representing the multiplicity: #(1 5)

9Note that for performance reasons, the definition of a concept is only loaded if it is accessed.
So it is necessary to load the definition before the concept is stored in the cache.
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Manager>>manages: aTeamMember

self manages size <

(Concepts.manages multiplicity at: 2)

ifTrue: [self manages add: aTeamMember]

ifFalse: [Dialog warn:

‘This manager cannot

manage extra team members !’]

−→ This method will complain if you add a team member and the
instance already manages too many people

The implementation above clearly assumes the existence of certain concepts in
order to function properly. As was illustrated you can test the existence by us-
ing the containsAllConcepts message. Another way is to have a concept-setup
and concept-teardown message on the class side. Such methods will take care of
setting up the necessary concepts. An excerpt of both methods for the manager
example is shown below:

Manager class>>setup

(Concepts new: #{Manager})
hasPreferredLabel: ‘Manager’ ;

superconcept: Concepts.Concept ;

comment: ‘A manager manages team members.’ ;

save.

...

(Concepts new: #{manages})
hasPreferredLabel: ‘manages’ ;

superconcept: Concepts.Relationship ;

multiplicity: ‘#(1 5)’ ;

allowedDestinations: ‘#(#{TeamMember})’ ;

save.

...

Concepts.Manager manages: Concepts.TeamMember ; save.

...
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Manager class>>teardown

Concepts delete: Concepts.Manager.

Concepts delete: Concepts.TeamMember.

...

Concepts delete: Concepts.manages.

As we have shown in the previous section, it is possible to connect a class to
another class at the concept level. In order to be able to switch to the concept
level you can use the asConcept message. The asConcept message allows you
to write a statement that looks up the concept version of a class. This provides
access to a path at the concept level that is not available at the code level. For
instance in the setup method of the Manager class we connect the Manager class
to the existing Manager concept as follows:

Manager class>>setup

...

self asConcept implements: Concepts.Manager ; save.

...

−→ adds an implements slot to the
Root.Smalltalk.Playground.Manager concept.
The destination of the slot is the Manager concept (see figure 6.13)

The corresponding concept network is shown in figure 6.13.

Figure 6.13: CoBro-Nav illustrating the manager example



158 CHAPTER 6. COBRO BY EXAMPLE

6.3 Summary

In this chapter we have illustrated the interaction with CoBro in an example-
based fashion. In the first part we limited the discussion to concepts that come
from the domain level. The examples we covered clearly illustrated how to manip-
ulate domain concepts in CoBro-CML in a variety of ways. This demonstrated
that domain knowledge can indeed be made explicit in CoBro.

The second part focused on concepts that stem from the code level. In essence
this showed how conceptified code level entities can be connected to the domain
knowledge and vice versa. This illustrated that the domain knowledge and the
implementation can also be coupled.

By implementing CoBro in symbiosis with Smalltalk we made it possible to
manipulate objects and concepts in an identical way. This was shown throughout
the different examples where we manipulated concepts from a standard Smalltalk
workspace, or from within method bodies. This illustrated that manipulating
concepts can be done transparently for the programmer.

Moreover these examples in the second part showed an interaction between
standard Smalltalk code and the concepts in the ConceptBase. This illustrated
that the concept level can participate actively in the implementation.

We have also demonstrated the use of different tools and helper messages that
support the programmer in working with the concept level. These were all built
to support a highly interactive way of manipulating the system similar to the way
you program in the Smalltalk environment.

In the following chapter we will demonstrate a number of advanced applica-
tions of CoBro.



Chapter 7

CoBro Applied

The discussion in this chapter is divided into two main sections. In the first
part we illustrate a number of applications of CoBro in practice. We base the
discussion on a small Media Library case study that we use to highlight the
different aspects introduced in the previous chapters. We will show how CoBro
is used to set up a malleable implementation that is documented by the explicit
concept level. In addition this demonstrates the active interplay between entities
at the code level and entities at the concept level. We also illustrate how CoBro
can be extended to support a developer when writing malleable code. This also
illustrates how small adaptations to the ConceptBase enable the use of CoBro
within other contexts than originally intended.

The second part focuses on our work performed in the context of research
projects in collaboration with industry. It provides insights in how the concept-
centric environment was conceived over the years and how CoBro builds upon
the experience gained by its (several) predecessors.

7.1 CoBro: The Power of Malleability

The running example for this section is a media library system (MediaLibrary)
that can be used to manage a collection of media items (MediaItem). The different
media items that are supported by the library are games (Game), digital video discs
(DVD), compact discs (CD), and books (Book). Depending on the configuration of
the library, the available media item choices can vary (itemChoices). For each
of the media items, a corresponding user interface is available that enables a user
to record information for an item (windowSpec). The class diagram for the media
library example, together with the user interfaces for the media items, is shown
in figure 7.1.

The main user interface of the media library contains a dropdown list from
which a user can select a media item type to add. Depending on what was selected

159
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MediaLibrary MediaItem
*1

Game
gameTitle
gamePlatform
gameRating

save

DVD
director
movieTitle

save

CD
albumTitle
artist
price
year

save

Book
bookTitle
author
bookBinding

save

windowSpec windowSpec windowSpec windowSpec

itemChoices

1 1

1 1

Figure 7.1: Media Library class diagram.

in the list, we open the corresponding user interface within a subcanvas of the
main window. This is illustrated by the screenshot in figure 7.2.

In the following section we illustrate a basic implementation that makes no
use of CoBro. Next we evolve this implementation into a malleable one by
creating configurations at the concept level. We use this extension to illustrate
the interplay between the code level and the concept level. Subsequently we
extend the implementation with a notion of library users that require different
user interfaces according to their level of expertise. This illustrates the active
participation of the concept level during the execution of the system. Moreover it
also shows how domain knowledge is made explicit at the concept level. The last
addition to the library example sets up a validation mechanism. This can be used
by developers to verify whether a configuration definition contains no conflicts.
We end with two sections where we discuss how the CoBro environment can be
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windowSpec

LibraryManager

...

...

Figure 7.2: Media Library main window.

extended in different ways.

7.1.1 Media Library: Standard Implementation

In this section we discuss a standard implementation of the media library sys-
tem. In the next section we refactor this implementation so it makes use of the
concept level. As we will see, this results in a malleable implementation that is
customisable at the concept level.

There are several valid implementations that can provide the behavior for
the media library application. One approach is to store the classnames for the
itemChoices in a list. Subsequently this list can be used to provide the choices
that are available to a user. This is illustrated by the following method body:
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initializeItemChoices

self itemChoices: List new.

self addChoice: ‘Game’

value: Game.

self addChoice: ‘Digital Video Disc’

value: DVD.

self addChoice: ‘Compact Disc’

value:CD.

self addChoice: ‘Book’

value:Book.

Additionally we also need to take care of opening the user interface for the se-
lected media item. Opening the user interface for the selected item type requires
three steps which are triggered when a user clicks the add-button. First of all we
ask the corresponding media item class for its windowSpec. Secondly we create
an instance of the media item which serves as the application model. Thirdly,
we install the combination of both in the subcanvas of the main library window.
These three steps are illustrated in the body of the addItem method:

addItem

| app spec |

spec := self selectedItem

interfaceSpecFor: #windowSpec.

app := self selectedItem new.

(self widgetAt: #subcanvas) client: app spec: spec.

At this point the media library is able to switch the user interface according to
the selected media item type. Changing the media item choices that are available
to a user is done by editing the code of the initializeItemChoices method.

Now suppose that we want to sell the media library system to different cus-
tomers. For each customer we need to change the available choices according to
the desired configuration. One way to achieve this is to include a conditional
statement in the initializeItemChoices method. The conditional checks the
current customer configuration and sets up one of the predefined lists:
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initializeItemChoices

self itemChoices: List new.

self mediaConfiguration = #MediaConfigurationA

ifTrue: [

self addChoice: ‘Game’

value: Game.

self addChoice: ‘Digital Video Disc’

value: DVD.

self addChoice: ‘Compact Disc’

value:CD.

self addChoice: ‘Book’

value:Book ].

self mediaConfiguration = #MediaConfigurationB

ifTrue: [

self addChoice: ‘Digital Video Disc’

value: DVD.

self addChoice: ‘Book’

value:Book ].

Even though this is a feasible implementation, it does not scale to a large number
of possible configurations. First of all the conditional would become very difficult
to maintain due to its length. Secondly if we need to change for example the
label of a particular media item (indicated by the key:), then we have to update
each occurrence in the itemChoices method.

Therefore we will refactor the implementation to make the available itemChoices
no longer hardcoded in the implementation. There are several ways to refactor the
code into a more generic implementation that provides support for different con-
figurations. For example an abstract factory design pattern can be implemented
that takes care of the different configurations. Even though such a solution is
perfectly acceptable, as a developer you will need to invest time in setting up the
necessary infrastructure to accommodate this. Moreover the resulting malleable
implementation will contain less explicit code that is more difficult to understand.

In the following we discuss how this can be done by representing the configura-
tion information at the concept level. Besides illustrating the use of the up/down
mechanism between the code level and the concept level, this also shows the
improved malleability of the implementation. In addition the malleable imple-
mentation is documented in the associated concept network.
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7.1.2 Media Library: Configurations at the Concept Level

In this section we refactor the basic implementation of the media library. We will
make the implementation more generic so as to accomodate different configura-
tions.

In order to be able to represent different configurations at the concept level
we need to create a number of relations and concepts to accomodate such a
configuration. This boils down to creating concepts for the domain layer of the
ontology. After this step we can use the concepts in the domain layer to describe
concepts in the application layer of the ontology.

First we create a mediaConfiguration relation that is used to connect the
MediaLibrary class to a configuration at the concept level. Next we create a
supportsMediaItems relation that is used to connect a configuration to the me-
dia items it supports:

(Concepts new: #{mediaConfiguration})
hasPreferredLabel: ‘media configuration’;

superconcept: Concepts.Relationship;

multiplicity: ‘#(1 1)’;

allowedDestinations: ‘#(#{Concept})’;
save.

(Concepts new: #{supportsMediaItems})
hasPreferredLabel: ‘supports media items’;

superconcept: Concepts.Relationship;

multiplicity: ‘#(1 n)’;

allowedDestinations: ‘#(#{SmalltalkClass})’;
save.

Subsequently we can use both relations to create a MediaConfigurationA, and a
MediaConfigurationB concept. These concepts respectively represent the con-
figurations for customer A and customer B. Customer A has access to DVDs, CDs,
Books and Games. Customer B has access to DVDs and Books. The corresponding
CoBro-CML statements for this are:
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(Concepts new: #{MediaConfigurationA})
hasPreferredLabel: ‘Media Configuration A’;

superconcept: Concepts.Concept;

comment: ‘Configuration for customer A.’;

supportsMediaItems: Concepts.DVD;

supportsMediaItems: Concepts.CD;

supportsMediaItems: Concepts.Book;

supportsMediaItems: Concepts.Game;

save.

(Concepts new: #{MediaConfigurationB})
hasPreferredLabel: ‘Media Configuration B’;

superconcept: Concepts.Concept;

comment: ‘Configuration for customer B.’;

supportsMediaItems: Concepts.DVD;

supportsMediaItems: Concepts.Book;

save.

Note that the CoBro environment provides concept editors that can be used to
define these concepts instead of manually writing the CoBro-CML definitions.

The alternative labels that are used to present the media items in the drop-
down list are attached to the conceptified media item classes. The following shows
this, as well as the final step where the MediaLibrary class is connected to a par-
ticular configuration concept:

(Concepts new: #{prettyLabel})
hasPreferredLabel: ‘pretty label’;

superconcept: Concepts. Relationship;

multiplicity: ‘#(1 1)’;

allowedDestinations: ‘#(#{String})’;
save.

Concepts.DVD prettyLabel: ‘Digital Video Disc’; save.

Concepts.Book prettyLabel: ‘Book’; save.

Concepts.CD prettyLabel: ‘Compact Disc’; save.

Concepts.Game prettyLabel: ‘Game’; save.

Concepts.MediaLibrary

mediaConfiguration: Concepts.MediaConfigurationA;

save.
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This concludes the setup of the concept level to support media item configura-
tions. As shown by these examples we did not need to set up our own code-level
infrastructure to support the meta-level for the configurations (e.g. by imple-
menting a number of analysis and design patterns). The work presented up to
this point was limited to ‘configuring’ the meta-level (in this case the concept
level).

Changing the supported media items of a configuration is done by editing the
corresponding configuration concept. New configurations can be added at will.
Changing the configuration of the media library is done by connecting it to a
different configuration concept.

Now that we have the necessary elements at the concept level, we can refac-
tor the initializeItemChoices method so it looks up the configuration at the
concept level (CoBro-CML shown in red):

initializeItemChoices

self itemChoices: List new.

self class

asConcept

mediaConfiguration

supportsMediaItems

do: [:each | self addChoice: each prettyLabel

value: each ]

An abstract schema of the corresponding interplay between the code level and
the concept level is given in figure 7.3. As shown, the class is ‘upped’ to the
concept level with the statement self class asConcept (1). Next we consult
the mediaConfiguration slot, which returns the MediaConfigurationA concept
(2). Consequently we can ask the supportsMediaItems slot of this concept,
which returns a collection of conceptified classes (i.e. the ones we added earlier to
the configuration concept) (3). Each of the media item concepts are subsequently
added to the available choices in the dropdown list. The prettyLabel slots we
attached earlier to these conceptified classes are used to present the choices in
the dropdown list.

The only thing left to do is to adapt the addItem method. As shown in the
following code, the only difference with the previous version is that we send the
message asSmalltalk to the selected item. This ‘downs’ the conceptified media
item class to its corresponding code level representation (4). As a result we can
ask it for the necessary information in order to install the user interface in the
main window’s subcanvas. This way we obtain a code level connection between
for example the MediaLibrary class and the Game class (5) (CoBro-CML shown
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Figure 7.3: Media Library with concept level configuration.
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in red):

addItem

| app spec |

spec := self selectedItem asSmalltalk

interfaceSpecFor: #windowSpec.

app := self selectedItem asSmalltalk new.

(self widgetAt: #subcanvas) client: app spec: spec.

In figure 7.4 we show a screenshot of the refactoring browser in which we have
explored the live concept network that corresponds to the abstract schema in
figure 7.3.

In the next section we will show how we can evolve the implementation in
order to accommodate different user interfaces according to the current user of
the library system. We do so by invoking the concept level in order to provide
the necessary information for the code level. This improves the malleability of
the corresponding implementation. Even though the resulting implementation
contains less explicit code, the domain knowledge is still available to the developer
in the explicit concept level.

7.1.3 Media Library: Adding a Notion of Users

In this section we extend the media library with a notion of media library users
(MediaLibraryUser). The information we want to record about a user is limited
to a name and age. The goal is to be able to show different media item user
interfaces according to the current user’s level of expertise, which is based on his
age.

We foresee two kinds of users: a novice user and an expert user. We model
these users at the concept level with the concepts NoviceUser and ExpertUser.
A screenshot of the novice user interface (specNoviceUser) and expert user in-
terface (specAdvancedUser) for the book media item is shown in figure 7.5.

The level of expertise for a user is based on the age category he or she is in.
We provide the following age categories at the concept level: Children (age 0 -
14), Youth (age 14 - 24), Adults (age 25 - 64), and Seniors (age 65 - 150). By
representing the age categories at the concept level, they can be customised for
each customer. The corresponding concept definitions are shown by the following
statements:
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Figure 7.4: Media Library configuration in a Smalltalk Browser
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#specAdvancedUser #specNoviceUser

Figure 7.5: The novice and expert user interface for books.

(Concepts new: #{AgeCategory})
hasPreferredLabel: ‘Age category’;

superconcept: Concepts.Concept;

hasLabel: ‘Life cycle grouping’;

comment: ‘Used to distinguish between categories

of people according to their age.’;

save.

(Concepts new: #{ageRange})
hasPreferredLabel: ‘age range’;

superconcept: Concepts. Relationship;

comment: ‘e.g. #(1 20) indicates an age range

from 1 to 20 years’;

multiplicity: ‘#(1 1)’;

allowedDestinations: ‘#(#{SmalltalkValue})’;
save.

(Concepts new: #{Children})
hasPreferredLabel: ‘Children age category’;

superconcept: Concepts.AgeCategory;

ageRange: ‘#(0 14)’;

save.

. . .

Calculating the age category for a user is done by consulting the age ranges of
the categories at the concept level (Concepts.AgeCategory allSubconcepts).
If the user’s age is in the ageRange of a category then the corresponding category



7.1. COBRO: THE POWER OF MALLEABILITY 171

concept is returned (i.e. Children, Youth, Adults, or Seniors). The correspond-
ing method body is written as follows (CoBro-CML shown in red):

ageCategory

^ Concepts.AgeCategory allSubconcepts

detect:

[:each |

(self age >= each ageRange first) &

(self age <= each ageRange second)].

Next we define the method body that returns the level of expertise for a user
based on the age category he or she is in. For the current customer we classify
Children and Youth as novice users, and Adults and Seniors as expert users.
The corresponding method body is (CoBro-CML shown in red):

expertiseLevel

^ (self ageCategory is: Concepts.Children) |

(self ageCategory is: Concepts.Youth)

ifTrue: [Concepts.NoviceUser]

ifFalse: [Concepts.ExpertUser].

In the following code excerpt we illustrate the use of both messages for two dif-
ferent users:

userA := MediaLibraryUser name: ‘Wim’ age: 12.

userB := MediaLibraryUser name: ‘Linda’ age: 32.

userA ageCategory.

−→ Concepts.Children
userB ageCategory.

−→ Concepts.Adults

userA expertiseLevel.

−→ Concepts.NoviceUser
userB expertiseLevel.

−→ Concepts.ExpertUser

Now that we have implemented the necessary elements for library users, it is time
to set up the infrastructure for showing the correct user interface. First of all we
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need to extend the MediaLibrary so that it knows the current user. Next we
need to annotate the different media item classes with a slot that returns the
name of the particular window specification for a kind of user. Consequently we
can install this in the subcanvas of the main window. In order to set up a slot
that holds a piece of Smalltalk code, you need to set the allowedDestinations

of the relation to SmalltalkValue. In doing so, you can evaluate the block by
sending the value: message with the current user as an argument. For example
if the implementation of the Book class provides a user interface specification for
an expert user (#specAdvancedUser) and a novice user (#specNoviceUser), then
the slot annotation for the Book class is:

Concepts.Book

specNameForUser:

‘[:user |

(user expertiseLevel is: Concepts.ExpertUser)

ifTrue: [#specAdvancedUser]

ifFalse: [#specNoviceUser]]’;

save.

The same can be done for the other media item classes if they support differ-
ent window specifications as well. Otherwise it suffices to add the following slot,
which contains the default behavior, to the MediaItem class:

Concepts.MediaItem

specNameForUser:

‘[:user | #windowSpec]’;

save.

The final step consists of updating the addItem method that takes care of in-
stalling the user interface for the selected media item in the subcanvas of the
main window. In addition to setting the current user for the instantiated applica-
tion model, the hard coded reference to #windowSpec is replaced by a statement
that evaluates the specNameForUser slot (changes shown in blue).
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addItem

| app spec |

spec := self selectedItem asSmalltalk

interfaceSpecFor:

(self selectedItem specNameForUser

value: self currentUser).

app := self selectedItem asSmalltalk new.

app currentUser: self currentUser.

(self widgetAt: #subcanvas) client: app spec: spec.

In figure 7.6 we present the library main window that shows different user inter-
faces for a book according to the current user of the system.

Changing the age ranges of the different age categories can be done by edit-
ing the corresponding concepts. Consequently it becomes possible to adapt the
categorisation of users at the concept level.

The media library implementation can be made more generic by refactoring
the ageCategory and expertiseLevel methods. Currently these methods are
shared by all customers of the media library system. This means that if one cus-
tomer wants to present a novice user interface to Senior users (whereas they now
get an expert user interface), we need to update the corresponding method. This
results again for example in the introduction of a conditional for each customer1.
In such case, it is better to include the corresponding code as a Smalltalk block
that is stored as a slot (e.g. expertiseLevelDecision) in the corresponding
MediaConfiguration concept:

Concepts.MediaConfigurationA expertiseLevelDecision:

‘[:aUser | (aUser ageCategory is: Concepts.Children) |

(aUser ageCategory is: Concepts.Youth)

ifTrue: [Concepts.NoviceUser]

ifFalse: [Concepts.ExpertUser]]’;

save.

The corresponding method body is consequently reduced to consulting the con-
cept level and evaluating the block. As shown in the code excerpt below, this code
is less explicit than the original version (i.e. the actual decision is no longer visible
at the code level). Yet since we implemented it in a concept-centric environment,
what has become implicit in the code as a result of a malleable implementa-
tion, can still be consulted interactively at the concept level. For example the

1Another implementation strategy would be to use subclassing and method overriding.
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MediaLibraryUser name: 'Wim' age: 12. MediaLibraryUser name: 'Linda' age: 32.

Figure 7.6: Different user interfaces according to user expertise.

expertiseLevel method is reduced to the following (CoBro-CML shown in
red):

expertiseLevel

^ MediaLibrary asConcept mediaConfiguration

expertiseLevelDecision value: self.

In the next section we illustrate how a validation mechanism can be set up.
This enables a developer to verify the correctness of a configuration for a partic-
ular customer.

7.1.4 Media Library: Configuration Validation

Of course a developer wants to be able to verify that a media configuration only
contains media items that are a subclass of MediaItem. This can be achieved
by setting up a validation mechanism which is stored at the concept level. The
reason to invoke the concept level for this is to make it possible to write different
configuration validators for each kind of configuration. In addition this results in
an active documentation of how the code should be used (or in this case how it
should be instantiated for a particular customer).

In order to implement the validation mechanism we first need to create a con-
cept that points to a ConfigurationValidator. The configuration validator is
a terminal value that holds a Smalltalk block. This block accepts a particular
configuration concept as its argument, and returns either an empty collection or
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a collection that contains the conflicting elements. The corresponding relation
definition is:

(Concepts new: #{configurationValidator})
hasPreferredLabel: ‘configuration validator’;

superconcept: Concepts.Relationship;

multiplicity: ‘#(1 1)’;

allowedDestinations: ‘#(#{SmalltalkValue})’;
save.

The configurationValidator slot can be individually added to each configu-
ration concept, or to a common superconcept. In the following CoBro-CML
statements we have chosen to add a common superconcept that holds the slot
and makes it available to all subconcepts. In this case, in order to have a valid
configuration, we only require it to support media items that are a subclass of
the MediaItem class:

(Concepts new: #{MediaConfiguration})
hasPreferredLabel: ‘Media Configuration’;

superconcept: Concepts.Concept;

configurationValidator:

‘[:config | config supportsMediaItems reject:

[:each|each asSmalltalk

inheritsFrom: MediaItem]]’;

save.

Consequently we can use the validation slot to validate a configuration we have
assembled. For example, verifying whether MediaConfigurationA is a correct
configuration is achieved by the following statement:

Concepts.MediaConfiguration configurationValidator

value: Concepts.MediaConfigurationA

−→ An empty collection

If the configuration supported media items that didn’t inherit from the MediaItem
class, then these would have been returned in a collection.

The (default) configurationValidator slot can be overridden by adding it
to the configuration that you want to validate with another Smalltalk block. Note
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that the configuration slot acts as an explicit documentation of what is expected
from a configuration by the code level.

In the next section we examine the extensibility of CoBro-Nav to support
new node visualisations. We will use this flexibility to add a dedicated node that
supports the validation of media configurations.

7.1.5 CoBro-Nav: Adding a New Node Visualisations

In this section we explore how CoBro-Nav can be extended to visualise concepts
with new kinds of nodes. A node is a visual representation of a concept or terminal
in the concept network drawn by CoBro-Nav.

Before we add a node for media configurations, we will describe the general
principle. We illustrate this with the addition of a dedicated node that visualises
the concepts that are the result of conceptification. This way we can provide
support for a developer when navigating to code entities through the concept
level. For example in the media library case it is useful if you can open the class
of a supported media item from within CoBro-Nav. We also add support to
the node to restrict the slots shown in the concept node to either the intension
or the extension of the concept.

As already indicated in chapter 5, section 5.3, adding a new visualisation boils
down to:

• the creation of a node class that can be instantiated by CoBro-Nav, and

• the addition of a gbConceptViewClass slot to the corresponding concept.

In figure 7.7 we present the extended user interface so as to represent a con-
ceptified class. As shown it contains checkboxes for filtering the slots according to
the intension or extension of the concept. For this purpose we reuse the existing
functionality provided by the standard concept node to show the definition frame.
All we need to do is filter the elements according to the value of the checkboxes.
The new visualisation also supports a button that opens the corresponding class
in a Smalltalk browser. This is implemented by opening the refactoring browser
on the ‘downed’ concept. The user interface for the node is installed on the
CBViewConceptSmalltalk class, which is also used as the application model.

Since by default all conceptified entities are represented as subconcepts of the
SmalltalkClass concept, all that is left to do is add a gbConceptViewClass slot
to it:

Concepts.SmalltalkClass

gbConceptViewClass: Concepts.CBViewConceptSmalltalk;

save.
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Open a
Smalltalk Browser
on the class

Filter slots

SmalltalkClass Concept node

Figure 7.7: A dedicated CoBro-Nav node visualisation for deified classes.

This overrides the default gbConceptViewClass slot that is provided at the top
level Entity concept.

The concept level is consequently used in the implementation of CoBro-Nav.
As shown by the following code excerpt from the CoBro-Nav implementation,
we instantiate the correct node according to the ConceptBase entity that needs
to be visualised:

...

entityView := self cbEntity gbConceptViewClass

asSmalltalk new.

...

This concludes the discussion of adding a special node for visualising a concept.
Adding a dedicated node for terminals is done in a similar fashion. Yet an ad-
ditional slot is required for terminals since these can be browsed as a concept or
as a value in CoBro-Nav. Therefore terminals require an extra slot to indicate
the class by which a terminal value should be visualised (gbTerminalViewClass).
For example the Image terminal concept has both a gbConceptViewClass, and
a gbTerminalViewClass slot. The former is used to display the concept. The
latter refers to the way terminal values of this type are to be represented. The
difference between both slots is shown in figure 7.8.

In a similar fashion other elements of CoBro-Nav can be customised ac-
cording to the ConceptBase entity that should be represented. For example the
default color and width of the arrow that represents a relation can be altered at
the concept level. The slots responsible for this are gbDefaultLineColor and
gbDefaultLineWidth. For example the superconcept relation overrides the de-
fault slots provided in the Relationship concept (i.e. a thick red line is used).
This is illustrated by the following CoBro-CML statements.
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Terminal Concept
node

Terminal Value
node

gbConceptViewClass

gbTerminalViewClass

CBViewConcept CBViewConcept

CBViewTerminalImage CBViewTerminal

Figure 7.8: Nodes for a terminal concept and a terminal value.

Concepts.Relationship

...

gbDefaultLineColor: ‘ColorValue navy’;

gbDefaultLineWidth: ‘1’.

Concepts.superconcept

...

gbDefaultLineColor: ‘ColorValue red’;

gbDefaultLineWidth: ‘2’.

Now that we have shown the general principle of extending CoBro-Nav we
will add a dedicated media library node (CBViewMediaConfiguration). Again,
we take the existing node visualisation for concepts as a basis for the user inter-
face. A button is added that can be pressed to validate the current configuration.

For the implementation of the method that is called when the button is
pressed, we reuse the configuration validator infrastructure we introduced in the
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previous section. If a configuration is valid, then we show a dialog box that says
so. If a configuration contains conflicts, then we show a dialog box together with
the conflicting elements in a concept bag. The corresponding method body is:

validateConfiguration

| result |

result := self cbEntity configurationValidator

value: self cbEntity.

result isEmpty

ifTrue:

[Dialog warn: ’This configuration is valid.’]

ifFalse:

[result toConceptBag.

Dialog warn: ’Invalid configuration’.]

Next we add the gbConceptViewClass slot to the MediaConfiguration concept:

Concepts.MediaConfiguration

gbConceptViewClass: Concepts.CBViewMediaConfiguration;

save.

In figure 7.9 we show the node in action. We have opened it on a media config-
uration that contains a conflicting element. As shown in the node, the Number

class was added as a supported media item. Since the configuration validator
expects the supported media items to be subclasses of MediaItem, it rejects this
element. As a consequence the Number concept is opened in a concept bag for
further inspection.

In the following section we discuss value interpreters, which are used to inter-
pret the value of a terminal. This makes it possible to compute the value of a
terminal each time it is accessed.

7.1.6 CoBro: Adding Terminal Value Interpreters

In order to facilitate the integration of CoBro with other environments, we pro-
vide a notion of value interpreters. Value interpreters are Smalltalk blocks that
are used to interpret a terminal value. Consequently they are stored as slots in
the terminal concept which they apply to. In the following we show a number of
already existing value interpreters:
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Validate this
configuration

! INVALID ENTRY !

Figure 7.9: A dedicated node for media library configurations.

Concepts.Terminal cbValueInterpreter

−→‘[:aTerminal | aTerminal definition ]’

Returns the value of the terminal as provided in its definition.

Concepts.SmalltalkValue cbValueInterpreter

−→‘[:aTerminal | Compiler evaluate:

aTerminal definition ]’

Returns the Smalltalk value for the terminal.

Concepts.Image cbValueInterpreter

−→‘[:aTerminal | (ImageReader fromFile:

aTerminal definition) image ]’

Returns an image for the value of the terminal as provided.

The meta level interface of CoBro applies the cbValueInterpreter slot to
the terminal value of a relation destination. So for example if you set the allowed
destination for the hasImage relation to #{Image}, then the corresponding value
interpreter is applied to the destination when it is returned. This is illustrated in
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the following:

Concepts.HelloWorld hasImage: ‘myWorldPicture.png’ ; save.

Concepts.HelloWorld hasImage first.

−→Returns an image object for the file ‘myWorldPicture.png’,
which is the result of applying the cbValueInterpreter

of the Image concept on the terminal containing
the string ‘myWorldPicture.png’.

In the media library example this could be used to represent the destination
of ageRange as a special kind of terminal. Currently the allowed destination for
this relation was defined as #{SmalltalkValue}. As a consequence, providing the
terminal value ‘#(0 14)’ is returned as a Smalltalk array (since the Smalltalk
compiler evaluates this string to an array). Hence it can be manipulated with
the messages provided by the Array class (e.g. first, at:). Another option
would be to introduce a dedicated terminal to represent age ranges. This allows
us to provide a cbValueInterpreter, which converts the terminal value into an
instance of an AgeRange class:

Concepts.AgeRange cbValueInterpreter:

‘[:aTerminal | AgeRange new: aTerminal definition ]’

save.

The above illustrates that it is possible to relate concepts to terminals whose
value is computed each time it is accessed. This could be used to represent the
conceptification process at the concept level for example. In essence this boils
down to storing the Smalltalk conceptification prescription at the concept level.
Moreover this makes it possible to integrate CoBro with other environments so
it relates to terminals for which the values are provided by these environments.
For example a terminal representing a Prolog query whose value is computed by
invoking the Prolog engine. Invoking the Prolog engine with the terminal value is
realised by implementing a value interpreter for that particular kind of terminal.

7.2 The Origins of CoBro

In this section we discuss how different elements of the concept-centric environ-
ment were conceived and put to the test in projects with industry. We present
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the lessons learned and relate this to the current version of our concept-centric
environment.

7.2.1 SoFa

SoFa is the acronym used for the project titled ‘Component development and
product assembly in a software factory: organisation, process and tools’. It was
an IWT funded research project in collaboration with MediaGeniX and EDS
Belgium.

As already indicated by the acronym, the main topic of investigation were
software factories (a.k.a. software product-lines). A software factory is a system
that is intended to automate part of the software development lifecycle. Broadly
speaking it divides the application to be built into commonalities and variabili-
ties. The commonalities are the elements of the software that can be reused for
several customers. The variabilities indicate the variation parts that are needed
to customise the software towards the needs of the specific customer. The soft-
ware products that share this set of commonalities and predicted variabilities are
referred to as product families (e.g. financial applications). A software factory
thus refers to the fact that a developer should only specify the variabilities of
the product to be built, whereas the factory takes care of assembling the fully
customised application according to these variabilities. An example family-based
software development process that can be used to set up a software product-line
is FAST [WL99].

The work package relevant in the context of this dissertation looked into the
difficulties encountered by software companies to manage their domain-specific
business expertise (e.g. about the domain of finance or broadcast management).
The ultimate goal was to find a way to represent the variabilities in terms of
business concepts, and to have these automatically translated into the required
adaptations of the implementation. A less ambitious goal was set forth however
where a first step was to support a business modeler in capturing the domain
expertise of the software company. The next step was to use this explicit model
of (internal) domain knowledge during the elicitation of (external) domain knowl-
edge from a customer. This way the developer had a point of reference to which
he could map the domain knowledge provided by the customer [WDVP00]. As a
consequence, he could for instance indicate conflicting or synonymous terminology
for the internal and external domain concepts.

For this purpose we built an ontology tool in Visual Basic in which the domain
knowledge could be made explicit [Der02b, Der02a]. The internal representation
was network-based and was used to relate the domain concepts to other domain
concepts and terminals (e.g. images, unstructured text). Browsing the domain
knowledge was done in a hyperlinked fashion. A screenshot of the tool is shown in
figure 7.10. The window in the back is the main concept browser, the window in
the front is one of the several concept editors. The left-hand pane of the concept
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Figure 7.10: The SoFa Ontology Browser

browser supports navigating through the domain concepts in a tree-based fashion.
As is shown the Post Transmission Reconciliation concept is selected, and
its corresponding definition is rendered as HTML in the right-hand pane of the
browser. The relationships, as well as the destinations in this HTML view on
the concept are represented with hyperlinks to the corresponding concepts in the
concept network. Within SoFa, this tool was proposed as a way to:

• avoid terminological confusion between the different stakeholders,

• guide interviews by business modelers and customers so as to couple the
terminology of the customer to the terminology used within the software
development company (and implicitly the implementation),

• use the existing domain knowledge as a reusable asset across project bound-
aries,

• use the domain knowledge as a starting point for identifying the variabilities
and commonalities of the software product-line.

One of the results was a side-effect of making the domain knowledge explicit
in the hyperlinked concept browser. We identified separate concepts (i.e. differ-
ent words were used) that actually referred to the same thing. As it occurred,
after looking up the corresponding implementation by hand, we found that they
were implemented as separate but almost identical subsystems. As a result of this



184 CHAPTER 7. COBRO APPLIED

observation both implementations were integrated, which eliminated the subse-
quent maintenance overhead. This was a first indication that it is important to
be able to couple domain concepts to an implementation [DWL00]. Moreover, if
a business modeler assembles the necessary delta’s with respect to the existing
domain knowledge, it is easier to identify which elements of the implementation
probably require adaptation as well.

The tool that was built in the context of this project was not generic at all.
For instance the meta model that defined the concept representation and the
relations was hard-coded. As a consequence it was extremely difficult to extend
the concept browser to accomodate new kinds of relations (e.g. one that allows
the specification of the allowed destinations), previously unsupported terminals
(e.g. a user interface specification), and corresponding browser visualisations
(e.g. changing the rendered html-layout of the concept definition). Moreover,
even though we identified the coupling towards the implementation as extremely
important, this was not possible within the SoFa Browser.

The lessons learned during SoFa that are important for this dissertation can
be summarised as follows:

• Domain knowledge is an important asset in software development, yet a lot
of it remains implicit. There is a real need to be able to make it explicit.

• Terminology is often ambiguous since the same term can have different
meanings in different contexts (i.e. because they are represented as termi-
nals). Therefore it is necessary to have an underlying notion of concepts,
which makes it possible to define the terminology by relating it in a concept
network.

• Maintaining a link between domain knowledge and an implementation is a
valuable tool for developers.

• A domain knowledge environment requires a highly flexible implementation
so it can be easily customised and extended towards different uses.

7.2.2 eVRT MPEG

As indicated by the name, the context of the eVRT MPEG project was multimedia
content. It was performed in collaboration with VRT, VUB, and IMEC. 2

The central theme of the project was to investigate and develop the neces-
sary technology to set up an enterprise-wide content management system in the
context of a public radio and television broadcaster. The content stored in the
system ranged from old archive material to material that was still in the process
of being created [PNVB+03].

2This work was performed together with Peter Soetens.
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The work-package of interest for this dissertation concentrated on meta-data
management for a large multimedia archive. The multimedia archive consisted
of over 500,000 digital archive documents with a growth of approximately 30,000
documents each year. The annotations of these documents were grounded in a
thesaurus that contained 229,860 lead terms. The search engine of the archive
made use of the lead terms and the relations between them to guide user searches.
The use of the archive itself ranged from a work of reference for preparing news-
casts to providing interesting material for game shows and documentaries. It is
still used on a daily basis and is considered as a main asset for the broadcaster.

The constant pressure to accommodate new demanding search operations lead
to uses of the thesaurus infrastructure that were never anticipated at the time
of its conception. Even though the software had evolved, the underlying rep-
resentation had not. It still was a thesaurus with a limited set of predefined
relationships that could not be extended. Not surprisingly we found that this re-
sulted in a number of ‘inconsistencies’ in the data as well as a number of creative
abuses of the existing tools. Hence there was a major interest in investigating
new ways of organizing and managing the archives’ meta-data by revaluating the
existing thesaurus.

For this purpose we built an experimental ontology-aware environment in
which we could explore different ways to navigate through the content of the
archive. The content for the ontology was given by converting the thesaurus
into a prototype based concept network. Given the high number of concepts
that were defined in the concept network, we encountered a number of scalability
issues with respect to user interface components and the persistency layer. Our
implementation was used to explore different ways to address these issues. The
CoBro persistency layer is partially based on the work done at that time.

Also, during the analysis of the existing thesaurus we found that there were
several conceptual lapses and inconsistencies [DS03]. These were mainly the result
of its inadequacy as a medium to support the daily operation of the programme
makers. Broadly speaking, the problems we identified were related to:

• Lead term ambiguity
To resolve ambiguity, terms were suffixed with extra information. Yet these
suffixes themselves were often ambiguous.

• Taxonomy
As a result of the small number of available relations in the thesaurus, the
existing relations were often overloaded to serve different purposes.

Similarly to our experience during the SoFa project this clearly indicated the need
for an underlying notion of concepts. Moreover it became clear that the available
relations should not be fixed beforehand. Again this results in the observation
that a concept environment which is used to maintain such an asset should be as
extensible as possible.
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7.2.3 Advanced Media

The Advanced Media Project took place in collaboration with VRT, Vrije Uni-
versiteit Brussel, IMEC, and Universiteit Gent. The project covered a wide range
of research objectives for which the main themes were:

• Software automation and knowledge engineering (SaKe)

• Semantic Web Services for Media Adaptation and Adaptation of Scalable
Multimedia Documents (Castalot)

• Compression through Audiovisual Analysis (Cavia)

The theme that is important in the context of this dissertation was soft-
ware automation and knowledge engineering. In the following we will restrict
the discussion to research performed in this workpackage. The context of the
workpackage was interactive media software development. In this project we pro-
posed to install an iMedia Software Generation System, which combined elements
of the research performed by Thomas Cleenewerck (Linglet Transformation Sys-
tem [Cle03]), Johan Brichau (Generative Logic Meta Programming [Bri05]), and
myself (CoBro) [CDBD04, DCBD05]. It was during this project that the cur-
rent version of CoBro was implemented. Hence the main characteristics of the
concept-enviroment were made concrete during this project.

Interactive Media

Media broadcasters have observed that media consumers are no longer satisfied
with the traditional situation in which the consumer had to ‘sit back, relax and
consume the media’. Hence they are extending their media product range with
a more interactive form, i.e. interactive media. An iMedia product is created
by integrating the traditional content component (audio, video, text, . . . ) with
a behavioural component (software, website, . . . ) that is responsible for provid-
ing the interactive experience. Note that interactivity in this context should be
interpreted more widely than the mere addition of a feedback channel. Exam-
ples of such behavioural components are online games that follow a TV show’s
story-line, interactive quizzes and online virtual communities for kids. All of
these are highly ‘integrated’ with the content component (i.e. the corresponding
TV show). Developing this kind of behavioural component not only requires an
advanced set of software development tools, but also requires a different view on
software development in general. This is easily motivated when looking at the
specific characteristics of iMedia software development.

Interactive Media Software Development

First of all, iMedia software development takes place in an environment in which
extremely strict deadlines constrain the development process. The most strict
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Figure 7.11: Main characteristics of iMedia software development.

deadline that manifests itself is the time at which a certain media production is
put on air. Since media broadcast companies want to provide a total and in-
tegrated media experience, it is necessary that the content part as well as the
interactive part are presented as a whole at that time. As broadcasting occurs in
realtime, missing the broadcast deadline consequently renders the software com-
pletely useless. This is also related to the fact that broadcasting companies find
themselves in a highly competitive market. Therefore it is of utmost importance
to maintain high standards in order to obtain high viewer ratings and customer
lock-in. In short this means that it is not acceptable to interrupt broadcasts,
alter programme schedules or provide the software at a later time (e.g. at a later
episode of a TV show) simply because it isn’t ready yet.

Another characteristic of iMedia, which is very much related to the previous,
is the extremely short time-to-market situation one is confronted with in this
business context. Especially in the case of developing the (supporting) software
component this aspect has a dual nature. First, software for media plays an
enabler-role instead of being the product. Consequently this limits the number
of justifiable person-months for development. It is clear that, unlike a game
development company, a broadcaster cannot justify spending several man-years
for developing an iMedia game. Second, the general media situation is one in
which many events and decisions occur in real-time and on extremely short notice.
This means that the necessary software components must allow fast assembly,
configuration, and adaptation. In part this can be attributed to the creative
aspect of media production in general. Last minute changes are no exception,
since a lot of product features are crystallised as development moves onwards.
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This implies that more evolution-power should go to the media producer, thus
whenever possible bypassing the involvement of a software expert.

The last characteristic we will discuss is the current need for multi-platform
and multi-channel publication of media. The former means that the iMedia have
to be deployed on a plethora of devices (PDA, mobile phones, desktop computers).
Each of these devices has its own set of specific capabilities which are clearly not
overcome by using a cross-platform virtual machine. Examples of these are the
available display size and memory for instance. The multi-channel aspect of media
has to do with bringing the same content (and in the case of iMedia also the same
behaviour) to different target audiences and media (e.g. TV, website). It is clear
that this rather extreme deployment requirement is difficult to fulfil within the
strict deadline / short time-to-market context.

In Figure 7.11 we summarise the main characteristics of the context of iMedia
software development. This kind of business environment is an E-type system in
the extreme. CoBro was proposed in part to meet the extremely strict deadlines,
short time-to-market, flexibility and adaptability.

7.3 Summary

In this chapter we presented a number of applications of CoBro in practice. We
illustrated this by refactoring a media library system to make use of an explicit
concept level. This results in a malleable implementation that makes it more
flexible towards future evolution efforts. Even though this results in a more
generic implementation, all the information is still available to the developers at
the explicit concept level. The resulting implementation depends heavily on the
concept level to provide the functionality of the application. This illustrates the
interplay between the code level and the concept level. Moreover it also shows
how relationships available at the concept level can be used to establish a link
between code level entities.

In addition to the application of CoBro to the media library software we
also illustrated the extensibility of the CoBro environment. This is achieved by
applying CoBro to itself. As a consequence it becomes possible to alter CoBro
by applying changes at the concept level. Consequently a more malleable version
of CoBro was obtained by refactoring it to make use of CoBro.

We also discussed the origins of CoBro, which lie in projects performed in
collaboration with industry. We briefly introduced the SoFa, eVRT MPEG, and
Advanced Media projects. The experiences obtained during each of these projects
contributed to the formulation of this dissertation.



Chapter 8

Conclusion

In this dissertation we proposed the symbiotic integration of a programming envi-
ronment with an explicit concept level that is coupled to the code level. We have
demonstrated that this concept-centric environment amplifies the malleability of
software through active concept level participation. Moreover we have shown that
it supports program comprehension in the context of agile evolution.

In this chapter we present the conclusions of this dissertation. We begin by
summarising the work presented, after which we discuss the main contributions.
We end with a presentation of future research directions.

8.1 Summary

Current software development practices are put under a continuous strain to keep
a software implementation in sync with the needs of the business environment it
supports. Consequently software evolution is no longer an occasional activity, but
a dire necessity that occurs on a daily basis. This implies a high degree of agility
to accommodate the changes conceived in the business domain of the software.

A major amount of time during the evolution of software is dedicated to pro-
gram comprehension. Developers first need to understand an implementation be-
fore they can alter it. For this they rely heavily upon their own domain expertise,
but in practice a lot of time is ‘wasted’ on rediscovering the domain knowledge
of the original developers. The main reason why this domain knowledge needs to
be rediscovered is because the majority of knowledge about the software system
and the associated business domain is not captured in an explicit form. Most of
it remains implicit in the brains of the original developers or is lost over time.
Also, even when the domain knowledge is available in an explicit form, it is often
detached from the implementation. Nevertheless, developers need a link from
the domain knowledge to the implementation. Establishing this coupling is far
from trivial. Moreover it is unfortunate if you have to do it retroactively since
there probably existed a clear link between both at some point in time. In addi-
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tion, developers apply implementation techniques that make an implementation
more malleable to anticipate future evolution efforts. A downside of such ‘generic’
implementations is that they result in less explicit code. This makes code compre-
hension an even more time consuming process, since a lot of assumptions become
implicitly available to the developer. Implicit means that he or she needs to dis-
cover the assumptions that have become hidden in the data used to configure
such systems at run time. Hence there is a tradeoff between malleability and
simplicity. Besides this, creating a malleable version of an implementation intro-
duces an overhead to the developer. Each time a developer adapts code to achieve
malleability, he or she needs to implement a corresponding meta-infrastructure
that governs the operational level of the system. This meta-infrastructure refers
to the part of the implementation that governs the configuration of the instances
that live in the operational level.

To overcome the problem of implicit domain knowledge we proposed a concept-
centric environment. In this environment, domain knowledge is made explicit and
is coupled to the corresponding code entities. As a consequence, developers can
make explicit what they know about the software. In summary this is done
in a frame-based representation where concepts are defined by relating them to
other concepts or terminals in a concept network. The concept network itself is
stored in a ConceptBase which is used as an ontology for both the developers and
the implementation. Besides making explicit what they know, developers can
also consult the domain knowledge that was made explicit by other developers.
Combined with an explicit link between the domain knowledge (represented at a
concept level) and the implementation (represented at the code level), this reduces
the effort needed for code comprehension. This was done with an automatic
conceptification process that represents code level entities at the concept level.
Subsequently these code level concepts can be connected to other entities with
the same mechanisms used for domain concepts.

However this is only a partial solution to avoid that domain knowledge be-
comes implicit in the context of agile evolution. There is no short term benefit for
a developer who spends time on writing down domain knowledge relevant to the
implementation. This is because it is used as a passive source of documentation.
As a consequence the domain knowledge is still neglected in favor of writing code
since the latter has a clear benefit of delivering the system in time. Moreover,
spending time at the concept level implies that there is less time available to
spend at the code level. We characterised this situation as an antibiosis between
the concept and the code level. Therefore we added an important requirement
to the concept-centric environment, namely that the concept level must partici-
pate actively in providing the functionality of the system. This activation of the
concept level implies that concepts are invoked at runtime to provide the func-
tionality of the system. Thus spending time at the concept level no longer has a
negative impact on delivering the software in time.

To ensure that developers no longer perceive the concept level as an overhead
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or old-style passive documentation, we put forth the requirement of transparency
to the programmer. This boils down to ensuring that the manipulation of the
concept level is done in the same medium as the code level. In essence, the concept
level is manipulated through the same syntax, semantics and environment as the
code level. This is referred to as the symbiotic integration of the programming
environment with the concept environment.

To validate and verify the practical feasibility of a concept-centric environment
we implemented CoBro. CoBro is the proof-of-concept environment which we
implemented in Smalltalk. It provides all the necessary elements to cover the
requirements put forth in this dissertation. We discussed the implementation
of CoBro and investigated the requirements for the code level. The practical
application of CoBro was illustrated with examples and on a media library case
study. Moreover we have also shown how CoBro was applied to itself to show
its power for amplifying the malleability of software.

8.2 Conclusions

In this dissertation we proposed and implemented a concept-centric environment
in which domain knowledge can be made explicit and can be coupled to the corre-
sponding implementation. Moreover this environment was conceived in a way as
so it becomes possible to invoke the domain knowledge to provide the function-
ality of a software system. Through a symbiotic integration with a programming
environment and the concept environment we achieved a level of transparency
necessary to motivate developers to spend time at the concept level. As a con-
sequence the boundary between what is considered as domain knowledge and
what is considered as programming becomes oblivious to the developer. This was
expressed by the thesis statement of this dissertation:

A symbiotic integration of a programming environment with
an explicit concept level that is coupled to the code level

supports domain knowledge documentation
in the context of agile evolution

and amplifies the malleability of software through
active concept level participation.

In the remainder of this section we briefly summarise the main contributions
of this dissertation.
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Identification of the Need for an Explicit Concept Level

We have identified and analysed the need for an explicit concept level in the con-
text of software evolution. In essence we synthesised the result of this analysis
into four key points. First of all the majority of domain knowledge about an im-
plementation and its associated business domain is only available in an implicit
form to the developers. As a result, a lot of time is spent on rediscovering what
was known when the system was initially conceived. Secondly, even when this
is not the case, the domain knowledge is detached from the implementation. As
a consequence developers need to reconnect the domain knowledge to the imple-
mentation in a retroactive way. Thirdly, domain knowledge is seen as a passive
asset that does not contribute to the next release of the implementation. The
potential benefit is realised on the long term, and is not a certainty. Therefore
it is neglected in favor of writing code that does have a clear short term benefit.
Lastly developers perceive writing down what they know as an overhead. In part
this can be attributed to the passive role that is played by the domain knowl-
edge. Another reason is that documentation is done outside the programming
environment, which is considered a disturbance of their programming experience.

Concept-centric Environment

We constructed a conceptual framework for a concept-centric environment in
which the key points identified in the previous contribution were addressed. To
reduce the possible loss of domain knowledge we set up an explicit concept level
that is represented in a frame-based ConceptBase. The effort spent by developers
on retroactively matching domain knowledge to an implementation is supported
by a mechanism that enables the coupling of entities from the code level to enti-
ties from the concept level. This is supported with an automatic conceptification
process that takes care of representing code entities at the concept level. This
way they can be coupled to other entities at the concept level, which can be
domain concepts or concepts that are the result of conceptification themselves.
Moreover the concept level can be actively used from within the code level. As a
consequence the concept level is involved in realising the behavior of the applica-
tion. This results in a visible short term benefit for developers, which motivates
them to dedicate time to the concept level. Consequently we made it possible
to embed concept level statements within normal code. Moreover an up/down
mechanism was provided by which (de)conceptification can be triggered in a pro-
grammatic way. This lets a developer take advantage of the relationships between
code entities that are only available at the concept level. The potential overhead
of the concept-centric environment is eliminated by implementing a symbiotic
integration between the concept level and the code level. As a consequence a de-
gree of transparency is achieved in which it becomes oblivious to the programmer
whether he is working with concepts or with objects.
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Concept-driven Malleability

The mechanism that enables the active use of concepts in the execution of a pro-
gram is the main force behind concept-driven malleability. To obtain a malleable
implementation, a developer changes the implementation so it makes use of the
concept level to provide its functionality. As a consequence the software can be
adapted by applying changes at the concept level. Even though this results in
less explicit code, the corresponding concept network that contains the implicit
assumptions of the code level, remains available to the developers at all times.

The active use of the concept level is facilitated through the symbiotic in-
tegration of the programming environment and concept environment, and the
availability of an up/down mechanism. This enables among others to use hor-
izontal relationships between code level entities that are only available at the
concept level.

Evolving the concept level to strengthen what can be done at the code level re-
sults in an iterative incremental interplay which was characterised as co-evolution
between both levels.

Moreover, the concept-centric environment provides the basic infrastructure
required to set up a malleable implementation. Consequently a developer can
focus all his attention to the operational level and the meta-level of the imple-
mentation, instead of setting up his own dedicated meta-level infrastructure.

CoBro

We implemented a highly extensible proof-of-concept environment named Co-
Bro which was used as a vehicle to validate the feasibility of a concept-centric
environment. We discussed the prerequisites to implement a concept-centric en-
vironment as well as the technical implementation of this environment. The Co-
Bro environment illustrates that it is indeed feasible to have a strong symbiotic
integration between the concept environment and the programming environment.
The integration manifests itself throughout the different tools (e.g. CoBro-Nav)
that are provided to a developer. The symbiosis is the result of using the same
syntax and interaction mechanisms of the programming language which resulted
in CoBro-CML. We validated the practical applicability of a concept-centric
environment by evolving a media library case study with CoBro. Moreover, the
power of malleability was stressed by applying CoBro to itself.

8.3 Future Work

In this section we present a number of directions for future research as well as a
number of possible improvements.
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ConceptBase Versioning and Management

Currently we have no mechanisms in place for supporting different versions of
concepts in the ConceptBase. This is needed to be able to support a large network
of interrelated concepts where certain relations only hold for a particular version
of the concept network. Evolving the concept network often results in the addition
or deletion of relations to a concept definition. This introduces a new version of
a concept, hence it should be verified if related concepts still ‘commit’ to the
new definition. Therefore each concept should be versioned, as well as the slots
that hold the relations. In part we believe we can base ourselves on temporal
ontologies. In addition to this we want to verify if we can use concepts from
temporal ontologies to annotate software versions as well.

We would like to explore different ways to manage the concept network in
the ConceptBase. In part this is solved by providing tool support, but we would
like to explore support at the concept level as well. For example to organise the
slots in the definition frame of a concept it would be useful to have a grouping
mechanism available (e.g. analogously to traits in prototype-based programming
languages). Moreover support is needed to verify the validity of the core ontology.
For example verifying whether the core ontology meets the prerequisites for a
particular application. In part we have already indicated that this can be done
by setting up a validation mechanism at the concept level or by writing S-Unit
test cases. Yet this should be further investigated to provide a more rigourous
approach to validation.

Granularity of Conceptification

In the current implementation of CoBro we have restricted the granularity of
conceptification to the class level. We already discussed in this dissertation how
this granularity can be extended to include for example methods at the concept
level. We would like to investigate the potential use of concept level relationships
between such finer grained code level entities. This could be used for example
to express relations between two particular methods or instance variables. The
conceptification process could make use of existing software meta-models to decide
how to represent code level entities at the concept level.

Representing finer grained concepts and versions of concepts at the concept
level introduces a large number of concepts in the concept network. This requires
a scalability study to see whether this is feasible in practice. Each time concepts
are accessed there is a performance penalty by accessing the ConceptBase. Im-
plementations that depend heavily on concepts to provide their behavior generate
a lot of ConceptBase traffic at runtime. Consequently special care is needed with
respect to the performance of ConceptBase access. We need to explore the dif-
ferent possibilities further to improve the performance of the concept level (e.g.
caching, indexing). Moreover, depending on what to represent in the concept
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level, it might be better to move away from the current relational database to an
object-oriented database.

Concept-based Pointcuts

We would like to explore the use of CoBro in the context of Aspect-Oriented
Software Development. More specifically we want to investigate concept-based
pointcuts. A pointcut defines where and when an aspect must be invoked in
the execution of the code. Since traditional pointcuts rely upon the structure
of the code, only the structural information can be used in the specification.
Since concepts are actively invoked by code that is written in a concept-oriented
fashion, we can use the concept level ‘annotations’ to specify pointcuts that take
domain information into account. This is related to the work on a model-driven
pointcut language by Kellens et al. [KMBG06].

User Interface Composition

We would like to investigate how a concept-centric environment can be applied
to obtain reusable user interface components. This is also an experiment that
is based on the granularity of the conceptification process. Initial experiments
were already performed together with Sofie Goderis [GD04, GD05]. In these
experiments we conceptified a user interface specification up to the level of the
individual user interface components (e.g. text boxes, buttons). This made it
possible to relate these components to each other and to annotate them with
domain concepts (e.g. part-of edit-group). Example relations that were used
indicated the relative position of the components with respect to other compo-
nents (e.g. left-of, above), and the grouping of components at the concept-level
(e.g. buttons that are enabled or disabled according to the current edit mode of
a window). The resulting concept network was used by a system called Deuce to
automatically lay out the user interface components according to the information
provided at the concept level. Also the grouping of components was used by this
system to be able to enable or disable user interface components based on this
domain knowledge.

We would like to investigate further how the composition of user interfaces can
be facilitated at the concept level. For this we envision a situation in which do-
main concepts are annotated with small user interfaces. For example an Address

concept contains a Street, Town, and Country concept. Each of these concepts
have associated user interfaces (e.g. Street is represented by a label and a
textbox) which are used to compose the user interface of the Address concept.
This requires among others a number of domain knowledge annotations with
respect to lay out and component dependencies.
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Integration with Existing Research Artifacts

One of the strengths of the current implementation of CoBro is its extensibility.
On a short term basis we want to explore the added value of connecting CoBro to
existing research environments. This can be done by creating dedicated terminals
and value interpreters at the concept level. Examples of such environments are
SOUL [Wuy01] and intensiVE [MK06]. These environments are more oriented
towards code-based knowledge (e.g. design or architectural knowledge), whereas
CoBro is oriented towards domain-based knowledge. This means that they have
investigated different mechanisms to be able to query the code base. This can be
used for example to couple domain knowledge to code based on such a query.

Another endeavour is the connection between CoBro and Domain-Specific
Languages research (more specifically the work performed by Thomas Cleenew-
erck [Cle03]). We want to investigate how an explicit concept level can be used
to ground and document the domain-specific language constructs in the context
of evolution.

Concept-Oriented Programming

Refactoring an existing implementation into a concept-centric implementation
requires further research. First of all a decision needs to be made about what
to represent at the concept level and what to represent at the code level. This
should not be done on an ad hoc basis, but requires a number of guidelines. Sec-
ondly, dedicated concept-centric refactoring steps are required. The definition
of refactoring states that it is a technique for restructuring an existing body of
code, where the internal structure of the code is altered, but not the external
behavior [FBB+99]. So we would like to identify a number of small behavior pre-
serving transformation steps (concept-centric refactorings) that transform code
into concept-centric code.

This is a first step towards a concept-oriented programming language in which
the interplay between the concept level and the code level is not seen as something
special, but as the normal way of doing things.
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