
A Model-driven Pointcut Language for More Robust Pointcuts

Andy Kellens∗

andy.kellens@vub.ac.be
Kris Gybels

kris.gybels@vub.ac.be
Johan Brichau

johan.brichau@lifl.fr

Kim Mens
kim.mens@uclouvain.be

1 Introduction

Improved modularity and separation of concerns do
not only intend to aid initial development, but are
conceived such that developers can better manage
software complexity, evolution and reuse [9]. Para-
doxically, the essential techniques that AOSD pro-
poses to improve software modularity seem to restrict
the evolvability of that software. More specifically,
because aspects need to define a pointcut that states
when and where they need to be invoked in the ex-
ecution of the base program, aspects are not robust
to evolutions in that base program. This is because
these pointcut definitions typically rely heavily on the
structure of the base program. This tight coupling of
the pointcut definitions to the base program’s struc-
ture and behaviour can seriously hamper the evolv-
ability of the software [12]: it implies that all point-
cuts of each aspect need to be checked and possi-
bly revised whenever the base program evolves. This
problem has been coined the fragile pointcut prob-
lem [11, 5] and causes current aspect-oriented lan-
guages to produce software that is as hard, or even
harder to evolve than before.

We tackle the fragile pointcut problem by replacing
the intimate dependency of pointcut definitions on
the base program by a more stable dependency on a
conceptual model of the program. These model-based
pointcuts are less likely to change upon evolution, be-
cause they are no longer defined in terms of how the

∗Ph.D. scholarship funded by the “Institute for the Promo-
tion of Innovation through Science and Technology in Flan-
ders” (IWT Vlaanderen).

program happens to be structured at a certain point
in time, but rather in terms of a model of the pro-
gram that is more robust to evolution. Of course,
the fragile pointcut problem is now transformed into
the problem of keeping a conceptual model of the
program synchronised with that program, when the
program evolves. To solve this derived problem, we
rely on previous research that enables documenting
the program structure and behaviour at a more con-
ceptual level, where appropriate support is provided
for keeping the ‘conceptual model documentation’
consistent with the source code when the program
evolves. More specifically, we implement our partic-
ular solution to the fragile pointcut problem through
an extension of the CARMA aspect language[2] com-
bined with the formalism of intensional views [6].

2 The Fragile Pointcut Prob-
lem

Pointcuts are fragile because their semantics may
change ‘silently’ when changes are made to the base
program, even though the pointcut definition itself
remains unaltered [11, 5]. The semantics of a point-
cut change if the set of join points that is captured
by that pointcut changes. We therefore define the
fragile pointcut problem as:

The fragile pointcut problem occurs in
aspect-oriented systems when pointcuts un-
intentionally capture or miss particular join
points as a consequence of their fragility

1

with respect to seemingly safe modifications
to the base program.

Therefore, in an aspect-oriented program, one can-
not tell whether a change to the base code is safe
simply by examining the base program in isolation.
All pointcuts referring to the base program need to
be examined as well.

Intuitively, because pointcuts capture a set of join
points based on some structural or behavioural prop-
erty shared by those join points, any change to the
structure or behaviour of the base program can im-
pact the set of join points that is captured by the
pointcut definitions. If, upon evolution of the base
program, source-code entities are altered which acci-
dentally leads to the capture of a join point related
to these source-code entities, we say that we have an
unintended join point capture. Conversely, when
the base program is changed in such a way that one
of the join points that was originally captured by the
pointcut is no longer captured, even though it was
still supposed to be captured, we say we have an ac-
cidental join point miss.

2.1 Fundamental Cause

In general, a pointcut definition makes an assump-
tion about the structure of the base program. More
precisely, pointcuts impose ‘design rules’ that devel-
opers of the base program must adhere to in order to
prevent unintended join point captures or accidental
join point misses (also see [12]). These rules originate
from the fact that pointcuts try to define intended
conceptual properties about the base program, based
on structural properties of the source code. How-
ever, often this intended conceptual property cannot
be syntactically expressed in a pointcut description.
Therefore, it is required that base program develop-
ers adhere to certain rules when implementing the
base program, so that the pointcut definition can be
expressed in terms of those rules. For example, the
following ‘accessors’ pointcut tries to define the con-
ceptual property of an ‘accessor method’ by relying
on the coding convention that the name of an acces-
sor method starts with set or get:

pointcut accessors()
call(* set*(..)) || call(* get*(..));

Because the rules imposed by such a pointcut are not
enforced by any mechanism, not only do the develop-
ers need to be aware of these rules, they also need to
manually ensure not to break them when evolving the
base program. This requires very disciplined devel-
opers that have a good understanding of the actual
rules that the pointcut definitions depend on. Conse-
quently, in practice these rules get broken very often,
especially upon evolution.

To the best of our knowledge, none of the pro-
posed solutions that exist today (pointcut delta anal-
sysis [11], expressive pointcut languages [2, 1, 8],
source-code annotations [3, 4], design rules [12]) ad-
dress both the too tight coupling of pointcuts to the
structure of the source code, and the brittleness of the
imposed design rules with respect to the source code
when it evolves. In the next section, we introduce a
novel technique to define pointcuts, that achieves low
coupling and provides a means to detect violations of
the imposed rules. This technique is orthogonal to
the techniques mentioned above.

3 Model-based Pointcuts

We tackle the fragile pointcut problem with model-
based pointcuts. This new pointcut definition mech-
anism achieves a low coupling of the pointcut defi-
nition with the source code, while at the same time
providing a means of documenting and verifying the
design rules on which the pointcut definitions rely.

Model-based pointcut definitions are defined in
terms of a conceptual model of the base program,
rather than referring directly to the implementation
structure of that base program. Figure 1 illustrates
this difference between model-based and traditional
source-code based pointcuts. On the left-hand side,
a traditional source-code based pointcut is defined
directly in terms of the source code structure. On
the right-hand side, a model-based pointcut is de-
fined in terms of a conceptual model of the base pro-
gram. This conceptual model provides an abstrac-
tion over the structure of the source code and classi-
fies base program entities according to the concepts

Aspect using traditional
pointcuts

Source-code
pointcut
definition

Aspect using
model-based pointcuts

Class
Name

Attributes
Attributes
Operations
Operations

Class
Name

Attributes
Attributes
Operations
Operations

Class
Name

Attributes
Attributes
Operations
Operations

Class
Name

Attributes
Attributes
Operations
Operations

Class
Name

Attributes
Attributes
Operations
Operations

Class
Name

Attributes
Attributes
Operations
Operations

1

*

1

*

1

*

Pointcut in terms of
source code

Classifications and constraints

Pointcut in terms of
conceptual model

Model-based
pointcut
definition

Source code

Conceptual model

Join point model

Legend

specified in terms of

captured join point

uncaptured join point

Figure 1: Traditional pointcuts versus model-based
pointcuts

that they implement. As a result, model-based point-
cuts capture join points based on conceptual proper-
ties instead of structural properties of the base pro-
gram entities. In addition to decoupling the pointcut
definitions from the base program’s implementation
structure, model-based pointcuts are significantly less
fragile to evolution of the base program because the
classifications in the conceptual model are specifically
conceived to be more robust to evolution of the base
program. For example, assuming that the concep-
tual model contains a classification of all accessor
methods in the base code, the model-based point-
cut that captures all call join points to these accessor
methods could be defined as:

pointcut accessors():
classifiedAs(?methSig,AccessorMethods) &&
call(?methSig);

where classifiedAs(?methSig,AccessorMethods)
matches all methods that are classified as accessor
methods in the conceptual model of the base pro-
gram and the variable ?methSignature is bound
to the method signature of such a method. This
pointcut definition explicitly refers to the concept
of an accessor method rather than trying to cap-

ture that concept by relying on implicit rules about
the base program’s implementation structure. Con-
sequently, this pointcut does not need to be ver-
ified or changed upon evolution of the base pro-
gram: if the conceptual model correctly classifies
all accessor methods, this pointcut remains correct.
In a certain sense, model-based pointcuts are sim-
ilar to Kiczales and Mezini’s annotation-call and
annotation-property pointcuts [4]. Indeed, the clas-
sifications of source-code entities in the conceptual
model could be constructed using annotations in the
source code.

By defining pointcuts in terms of a conceptual
model, the fragile pointcut problem has now been
diverted to the level of the conceptual model. Hence,
to solve the problem, we still need a mechanism for
automatically verifying the correctness of the classi-
fications defined by the conceptual model.

To detect incorrectly classified source entities, the
conceptual model goes beyond mere classification (or
annotation) and defines extra design constraints that
need to be respected by those source-code entities, for
the model to be consistent. Formally, we distinguish
two cases, defined below and illustrated by figure 2:

1. We define the set of possible unintended captures
for a concept A as those entities that are clas-
sified as belonging to A but that do not satisfy
some of the constraints defined on A:

UnintendedCapturesA =
⋃

C∈CA

(A− ext(C))

where CA is defined as the set of all constraints on
A and ext(C) denotes the set of all source-code
entities satisfying constraint C. The intuition
behind this definition is that if an entity belongs
to A but does not satisfy the constraints defined
on A then maybe the entity is misclassified.

2. We define the set of possible accidental misses
as those entities that do not belong to A, but do
satisfy at least one of the constraints C defined
on A:

AccidentalMissesA =
⋃

C∈CA

(ext(C)−A)

A ext(C)
1. accidental

miss

2. unintended

capture
Unintended
Captures A

Accidental
Misses A

Figure 2: Detecting potential unintended captures
and accidental misses

The intuition behind this definition is that if an
entity does not belong to A but does satisfy some
of the constraints defined on A, then maybe the
entity should have been classified as belonging
to A. To avoid having an overly restrictive def-
inition (yet at the risk of having a too liberal
one), we do not require the missed entity to sat-
isfy all constraints defined on A. As soon as it
satisfies one constraint, we flag it as a potential
accidental miss.

Whenever there is an unintended capture (resp. ac-
cidental miss) this can have one of 3 possible causes:

1. Either a source-code entity was misclassified and
should be removed from (resp. added to) A;

2. Either a constraint C no longer applies and thus
needs to be modified or removed;

3. Either a source-code entity accidentally satisfies
(resp. invalidates) a constraint C and should be
adapted.

In summary, model-based pointcuts are effectively
less fragile than source-code based pointcuts because
of the following fundamental properties:

• Model-based pointcut definitions are decoupled
from the source-code structure of the base pro-
gram. They explicitly refer to a conceptual
model of the program that classifies base pro-
gram entities according to concepts that are of
interest to define pointcuts.

• Although the conceptual model classifies base
program entities based on their implementation

structure, the specification of the model is en-
hanced with additional constraints that can be
verified to guarantee robustness of the classifica-
tions to evolution of the program’s source code.

Model-based pointcuts offer aspect developers a
means to extract the structural dependencies from
the pointcut definition and move these dependencies
to the conceptual model specification, where they can
be more easily enforced and checked. Upon evolution
of the base program, the ‘design rules’ that govern
these structural dependencies are automatically veri-
fied and the developer is notified of possible conflicts
of the source code w.r.t. those rules.

4 View-based Pointcuts in
CARMA

To experiment with model-based pointcuts, we cre-
ated an extension to the CARMA aspect language
that instantiates the conceptual model using the for-
malism of intensional views [6]. We also applied our
extension to the implementation of two aspects in
the SmallWiki application[10], a fully object-oriented
and extensible Wiki framework.

4.1 Intensional Views

Similarly to how aspects define the set of join points
on which they need to apply their advice, intensional
views describe concepts of interest to a programmer
by creating views which are groups of program en-
tities (classes, methods, . . .) that share some struc-
tural property. These sets of program entities are
specified intensionally, using the logic metaprogram-
ming language Soul [7]. For example, to model the
concept of “all actions on Wiki pages” (save, lo-
gin,. . .) in SmallWiki, we specify an intensional view
named Wiki Actions, which groups all methods of
which the name starts with execute, based on the
observation that all action methods indeed respect
that naming convention :

classInNamespace(?class,[SmallWiki]),
methodWithNameInClass(?entity,?name,?class),
[’execute*’ match: ?name asString]

Without explaining all details of the Soul syntax and
semantics, upon evaluation the above query accumu-
lates all solutions for the logic variable ?entity, such
that ?entity is a method, implemented by a class in
the SmallWiki namespace, whose name starts with
execute. This query is the intension of the view.

Upon evolution of the program, a view can cap-
ture or miss particular program entities accidentally,
which is similar to the fragile pointcut problem.
Therefore, a set of constraints on and between views
(as defined in section 3) is at the heart of the inten-
sional views formalism. This set of constraints can be
validated with respect to the program code and al-
lows keeping an intensional view model synchronized
with the program. We highlight two different types of
constraints that can be defined on intensional views:
alternative intensions and intensional relations.

Alternative Intensions. Often, the same set of
program entities can be specified in different ways,
e.g. when they share multiple naming or coding con-
ventions. A first kind of constraints that can be de-
clared on an intensional view is through the definition
of multiple alternative intensions for that view. Each
of these alternatives is required to be extensionally
consistent, meaning that they need to describe ex-
actly the same set of program entities.

Intensional Relations. Whereas alternative in-
tensions declare an equality relation between the dif-
ferent alternatives of a view, a second means of spec-
ifying constraints is through intensional relations,
which are binary relations between intensional views,
of the canonical form:

Q1 x ∈ V iew1 : Q2 y ∈ V iew2 : x R y

where Qi are logic quantifiers (∀, ∃, ∃! or @), V iewi

are intensional views, and R is a verifiable binary
relation over the source-code entities (denoted by x
and y) contained in those views.

The IntensiVE tool suite [6] can be used to verify
the validity of the constraints, imposed by alternative
intensions and intensional relations, with respect to
the program code. As explained in Section 3, in-
validations of these constraints either indicate unin-

tended captures or accidental misses, or maybe the
constraint itself is simply no longer valid and should
be modified or removed.

4.2 CARMA

The CARMA aspect language [2] is very similar to
the AspectJ language but features a logic point-
cut language, and is an aspect-oriented extension to
Smalltalk instead of Java. Pointcuts in CARMA are
logic queries that can express structural as well as dy-
namic conditions over the join points that need to be
captured by the pointcut. CARMA also features an
open-ended pointcut language. We defined an ad-
ditional predicate classifiedAs(?entity,?view)
that allows to define join points in terms of the in-
tensional views defined over a program. For example,
the following view-based pointcut captures all calls to
methods contained in the Wiki Actions view as:

pointcut wikiActionCalls():
classifiedAs(?method,Wiki Actions),
methodInClass(?method,?selector,?class),
send(?joinpoint,?selector,?arguments)

The above pointcut definition is tightly coupled to
the intensional view model of SmallWiki but it is de-
coupled from the actual program structure. In com-
bination with the previously introduced robustness of
the intensional views model, we can alleviate part of
the fragile pointcut problem.

5 Discussion

We do not claim that our technique detects and re-
solves all occurrences of the fragile pointcut prob-
lem. Everything depends on the constraints imposed
by the conceptual model. In general, the more con-
straints defined by the conceptual model, the lesser
the chance that certain inconsistencies go unnoticed.
Further research is required on methodological guide-
lines to design the conceptual model such that it pro-
vides sufficient coverage to detect violations of the
design rules.

Adoption of our model-based pointcut approach re-
quires developers to describe a conceptual model of

their program and its mapping to the program code.
This should not be seen as a burden, because it pro-
vides an explicit and verifiable design documentation
of the implementation. Such documentation is not
only valuable for evolution of aspect-oriented pro-
grams but for the evolution of software in general.
Providing a means of explicitly codifying and ver-
ifying the coding conventions and design rules em-
ployed by developers allows them to better respect
these conventions and rules. The short term cost
of having to design the conceptual model thus pays
off on longer-term because it allows keeping the de-
sign consistent with the implementation and, conse-
quently, allows detecting potential conflicts when the
program evolves.

6 Conclusion

The fragile pointcut problem is a serious inhibitor to
evolution of aspect-oriented programs. At the core of
this problem is the too tight coupling of pointcut def-
initions with the base program’s structure. To solve
the problem we propose the technique of model-based
pointcuts, which translates the problem to a concep-
tual level where it is easier to solve. This is done, on
the one hand, by decoupling the pointcut definitions
from the actual structure of the base program, and
defining them in terms of a conceptual model of the
software instead. On the other hand, the conceptual
model classifies program entities and imposes high-
level conceptual constraints over those entities, which
renders the conceptual model more robust towards
evolutions of the base program. Potential evolution
conflicts can be detected at that level, and solved by
changing either the conceptual model or its mapping
to the program code; the model-based pointcut defi-
nitions themselves are left intact.

References

[1] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura, and M. Südholt. An expres-
sive aspect language for system applications
with arachne. In 4th International Confer-

ence on Aspect-Oriented Software Development
(AOSD), 2005.

[2] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based cross-
cuts. In Proceedings of the Second International
Conference of Aspect-Oriented Software Devel-
opment, 2003.

[3] W. Havinga, I. Nagy, and L. Bergmans. Intro-
duction and derivation of annotations in aop:
Applying expressive pointcut languages to intro-
ductions. In European Interactive Workshop on
Aspects in Software (EIWAS), 2005.

[4] G. Kiczales and M. Mezini. Separation of con-
cerns with procedures, annotations, advice and
pointcuts. In European Conference on Object-
Oriented Programming, ECOOP 2005, 2005.

[5] C. Koppen and M. Stoerzer. Pcdiff: Attack-
ing the fragile pointcut problem. In First Eu-
ropean Interactive Workshop on Aspects in Soft-
ware (EIWAS), 2004.

[6] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts.
Co-evolving code and design with intensional
views - a case study. Computer Languages, Sys-
tems and Structures, 2006.

[7] K. Mens, I. Michiels, and R. Wuyts. Support-
ing software development through declaratively
codified programming patterns. Special issue of
Elsevier Journal on Expert Systems with Appli-
cations, 2001.

[8] K. Ostermann and C. Mezini, M. Bockisch. Ex-
pressive pointcuts for increased modularity. In
European Conference on Object-Oriented Pro-
gramming (ECOOP), 2005.

[9] D. L. Parnas. On the criteria to be used in de-
composing systems into modules. Comm. ACM,
15(12):1053–1058, December 1972.

[10] L. Renggli. Collaborative web : Under the cover.
Master’s thesis, University of Berne, 2005.

[11] M. Stoerzer and J. Graf. Using pointcut delta
analysis to support evolution of aspect-oriented
software. In 21st IEEE International Conference
on Software Maintenance (ICSM), pages 653–
656, 2005.

[12] K. Sullivan, W. G. Griswold, Y. Song, Y. Chai,
M. Shonle, N. Tewari, and H. Rajan. On the cri-
teria to be used in decomposing systems into as-
pects. In Proceedings of ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineer-
ing joint with the European Software Engineer-
ing Conference (ESEC/FSE 2005). ACM Press,
2005.

