A Family of Domain-Specific Aspect Languages on Top of
KALA

Johan Fabry
Vrije Universiteit Brussel, Programming
Technology Lab
Pleinlaan 2,
1050 Brussel, Belgium

johan.fabry@vub.ac.be

1. INTRODUCTION

Transactions are a long-standing example of a cross-cutting
concern, and therefore it should come as no surprise that
previous work has aspectized this concern [7, 9, 10]. We
can, however, consider transactions as just one instance of
the much broader field of advanced transaction management
(ATMS) [2, 6]. In this field a multitude of advanced models
have been defined. Each model has its own specific proper-
ties, and is typically designed to overcome one known short-
coming of classical transactions. For example, the poor per-
formance of long-lived transactions is addressed by the Sagas
model [5], which we discuss later.

Our work addresses the field of advanced transaction man-
agement, and aims for aspectizing a wide variety of mod-
els. To achieve this, we have built an aspect language and
weaver for advanced transaction management, called KALA
[4]. KALA is a domain-specific aspect language for ATMS,
based on a formalism for advanced transaction management
models. This formalism is called ACTA [1], and is well-
known within the ATMS research community. KALA reifies
the ACTA constructs. This allows for the aspectisation of a
wide variety of advanced transaction management models.

In this paper we discuss how the use of KALA has lead
us to build a family of domain-specific languages (DSLs)
on top of KALA. Experience in using KALA has shown us
that, indeed, KALA aids greatly in the specification of the
use of advanced transaction management models. However,
we see that for the use of specific models, we can further
simplify the work of the transaction programmer by pro-
viding a DSL specific to that ATMS. Instead of covering
the field of ATMS, such a model-specific language reifies the
concepts of one model, which yields a higher level of ab-
straction. Furthermore, as different ATMS share common
concepts, we can also share these concepts in the different
model-specific languages. This sharing of concepts yields a
family of domain-specific aspect languages.

OAL Workshop At AOSD@@arch 20, 2006, Bonn

Theo D’Hondt
Vrije Universiteit Brussel, Programming
Technology Lab
Pleinlaan 2,
1050 Brussel, Belgium

tidhondt@vub.ac.be

2. EXAMPLE ATMS

We provide here a short description of two of the best-
known ATMS: Nested Transactions and Sagas, as we shall
describe the domain-specific languages for these models later
in the text.

Nested transactions [8] is one of the oldest and easily the
most well-known ATMS. It allows for a running transaction
T to have a number of child transactions Tc. Each Tc is
given access to the data used by 7. This is in contrast
to classical transactions, where the data of T is not shared
with other transactions. T'c may itself also have a number
of children, forming a tree of transactions. When a child
transaction T'c commits its data, this data is not written to
the database, but instead delegated to its parent T, where
it becomes part of the data of T'. If a transaction T'x is the
root of a transaction tree, i.e. it has no parent, T'x’s data
will be committed to the database when 7' commits. Lastly,
if a child transaction T'c aborts, the parent T' is unaffected,
i.e. T is not required to also abort.

Sagas [5] is, next to Nested Transactions, one of the oldest
ATMS and also arguably one of the most referenced ATMS
in the community. Sagas is tailored towards long-lived trans-
actions. Instead of one long transaction T, a saga S splits
T into a sequence of sub-transactions 7'1 to Tn. Each sub-
transaction is a normal classical transaction, and this se-
quence has to be executed completely before the saga can
commit. To abort, or rollback, a running saga S, the cur-
rently running sub-transaction 7% is aborted, and the work
of already committed transactions 7'1 to 7% — 1 has to be
undone, as their results have already been committed to the
database. To allow this, the application programmer has
to define for each sub-transaction 7% a compensating trans-
action C'i that performs a semantical compensation action.
To undo the work of T1 to T% — 1, C1 to Ci — 1 are ran
by the runtime transaction monitor in inverse sequence, i.e.
starting with Ci — 1.

3. KALA

The domain-specific aspect language for ATMS we created
is called KALA, which stands for Kernel Aspect Language
for ATMS. Code in KALA implements the ATMS aspect for
Java applications that use the Enterprise JavaBeans middle-
ware architecture. KALA was designed to reify the concepts
of the ACTA formal model for ATMS. In ACTA [1], a trans-
action can be given a number of different properties, of three
possible categories: dependencies, views and delegation. The



main purpose of KALA code is to declare such dependencies,
views and delegation for a Java method that corresponds to
a transaction. These properties can be declared to apply at
begin, commit or abort time of the transaction.

An advanced transaction, e.g. a Saga, usually is built
up from multiple classical transactions that are related in
some way. In the example, the Saga S comprises the sub-
transactions 71 to Tn. In KALA the basic ACTA build-
ing blocks of dependencies, views and delegation, combined
with extra elements: naming, grouping and termination, are
used to declare the transactional behavior of the different
methods (i.e. transactions) of the advanced transaction.

As an example, we show here the KALA code for one
step of a saga, corresponding to a Java method with name
methodName and parameter list parameterList, of the class
className, contained in the package packageName. (Code
which is emphasized is discussed later)

packageNamel.classNamel.methodNamel (paramList1) {
alias (Saga <Thread.currentThread()>);
alias (CompPrev <""+Saga+"Comp">);
groupAdd (self <""+Saga+"Step">);
autostart (methodNamelc(paramListic)
<actualslist1> (wraplistl) {
name (self <""+Saga+"Comp">);
groupAdd(self <""+Saga+"Comp">);
b
begin {
alias (Comp <""+Saga+"Comp">);
dep(Saga ad self, self wd Saga, Comp bcd self);

commit {
alias (Comp <""+Saga+"Comp">) ;
dep(CompPrev wcd Comp, Comp cmd Saga,
Comp bad Saga);
3

Using the ACTA building blocks permits the aspect pro-
grammer to implement a wide variety of ATMS and also
allows for the creation of a new ATMS. This is done by ei-
ther tweaking a known ACTA specification or constructing
a complete specification from scratch. We do not further
introduce KALA and ACTA in detail here, as this is outside
of the scope of this paper. For a more detailed introduction
we refer to [4] and [1].

The use of KALA has shown to yield a significant advan-
tage over manually implementing the transaction concern
in the equivalent Java code [3, 4]. Not only do we achieve
a good separation of concerns, but thanks to the domain-
specific nature of KALA, a significant number of implemen-
tation concerns are abstracted, yielding much more concise
code [3]. For example, we have an implementation of an
application using the Sagas model, where the amount of
transaction code in Java is 230 lines of code, scattered over
multiple methods. The equivalent code in KALA is only 52
lines long and contained in one module.

Further examining such KALA code, however, we have
seen that a significant amount of this code is redundant.
For example, in Sagas the only changes between the code
for the different steps is the code which is emphasized in the
listing shown above. Therefore we have a large amount of
code duplication within one saga definition. The only excep-
tions are the elements referring to the actual methods and
compensating methods of the saga, i.e. the code emphasized
above.

The underlying cause for this code duplication is that
KALA code is too low-level and does not abstract over the

part of the application which is using this ATMS. KALA
code defines an ATMS by combining the fundamental ACTA
building blocks, and linking these combinations to a part of
the application being developed. This results in a definition
of the transactional behavior of that part of the application.
As a consequence, everywhere the same ATMS is used this
construction and linking process is repeated. This leads to
the code duplication identified above, and it would be bet-
ter if this is avoided. Furthermore, this construction process
implies that the application programmer is required to know
the complex technical implementation of the ATMS.

We should avoid the need for an application programmer
to write such low-level code, as this programmer, simply us-
ing an ATMS, should not be exposed to the internals of this
ATMS. Doing so, as in KALA, is not necessary as the appli-
cation programmer will not want to modify the ATMS be-
havior. More importantly, this is dangerous as it needlessly
exposes the internals of the ATMS, breaking encapsulation
and more easily allowing errors to be written'.

The upside of KALA is that it is a generally applicable
programming language for declaring the transactional prop-
erties of code for an ATMS. Therefore KALA can be used
as a common base, i.e. a kernel, for other programming lan-
guages, which further simplifies specifying the transactional
properties of code for a given ATMS, trading-off generality.

4. A DSL FAMILY

We can add an extra layer of abstraction to ease program-
ming an ATMS; sacrificing generality for a higher ease of use.
If we drop the requirement to be able to build a new ATMS,
or modify an existing ATMS, we can shield the programmer
from the implementation concepts of an ATMS. Program-
mers that simply use an existing ATMS can work at a higher
level of abstraction, using the ATMS as a black box compo-
nent. This raises the abstraction level of the program to the
level of the concepts present in the ATMS.

For example, in the saga example discussed in the pre-
vious section, the programmer should only concern himself
with how the Sagas behavior is applied to the application
and not with the implementation of this behavior. In other
words, the programmer should only need to specify the code
we emphasized. An example step specification could be as
follows:

step packageNamel.classNamel.methodNamel(paramList1)
compensate methodNamelc(paramListic)
<actualslist1> (wraplistl);

To achieve such a higher level of abstraction we created
a family of DSLs, each language specific to one ATMS, i.e.
a model-specific aspect language. The advanced transac-
tion management concern is programmed in such a DSL.
At compile time the DSL code is translated to equivalent
KALA code. This KALA code is then woven into the base
concern.

We consider the DSLs we have built for this purpose to
be a family of languages because they share and reuse as
much syntax and semantics as possible. For each (seman-
tical) concept of an ATMS we identified, we created one
syntactical representation of that concept, which is used in
all the DSLs that use that concept. For example, the con-
cept of a compensating transaction is always programmed

!Following the simple rule that the more code is written,
the higher chance for errors in that code.



using the compensate keyword. This aids the programmer
because the skill set acquired by using one DSL can be trans-
ferred to other DSLs. It is easier to switch between different
languages, as the same concepts are written down the same
way, and this also aids in learning new languages, as con-
cepts which are already known need not be re-learned.

We have created five DSLs for our language family, of
which we discuss three here. The first model for which we
have created a DSL is the classical transaction model. Sec-
ond and third we created DSLs for the most well-known
ATMS: nested transactions [8] and Sagas [5]. For each DSL
we first give a brief introduction of the ATMS it addresses,
and discuss the different concepts present in that model.
We then show how these concepts are addressed in the DSL
through an example transactional declaration. Last, we in-
troduce how this example program is translated to the equiv-
alent KALA code, giving an informal definition of this trans-
lation step. Note that we have chosen not to devise names
for the different DSLs we create, instead referring to these
languages as the transactions DSL, the nested transactions
DSL, the Saga DSL, et cetera.

5. TRANSACTIONS DSL

The first language we introduce here is the DSL for clas-
sical transactions. There is only one concept present in this
model, which is the indication that a method is a transac-
tion. Therefore the transactions DSL is simple: programs
consist of a list of declarations declaring a method to be
transactional. Such a declaration takes the form of a trans
keyword, followed by the full signature of a method.

For example, consider the method with name methodName
and parameter list parameterList, of the class className,
contained in the package packageName. In order to declare
this method transactional, the following line of code is re-
quired in the transactions DSL:

trans packageName.className.methodName (paramList) ;

Translating such a program to the equivalent KALA code
is straightforward, as can be seen below. The only imple-
mentation concern which is added to the KALA code is the
termination of the transaction.

packageName.className .methodName (paramList) {
commit {terminate(self); }
abort {terminate(self); } }

Using the transactions DSL here frees us from one imple-
mentation concern, which is termination of transactions.

6. NESTED TRANSACTIONS DSL

We built a DSL for nested transactions, which supports
two ways to structure the transaction hierarchy. We discuss
a specific form of nested transactions where the transaction
hierarchy is equal to the method call hierarchy. We also
specified the general form, without such equality, but due
to lack of space we only discuss the first form here.

In the first form, every method which is transactional will
be a child transaction of its caller transactional method.
Note that the parent transaction need not be the immediate
calling method, as this caller can be non-transactional. In
this case we must conceptually go back up the call chain
to locate the nearest transactional method. We chose to
explicitly support this form of nested transactions in the

DSL, as this is a quite popular interpretation of the nested
transactions ATMS.

The new concept apparent in this ATMS, over classical
transactions, is that this method is a sub-transaction of the
(possibly indirectly) calling transaction. This is declared
by reusing the naming from the classical transactions DSL,
and extending it with the extends caller statement. If no
transactional method can be found in the call chain, this
implies that the transaction is a root of a nested transaction
hierarchy. Root transactions can be stated explicitly in the
DSL as well, an as they do not extend any other transaction,
they are therefore specified by omitting extends caller.

Specifying a root transaction is, in other words, identical
to specifying a transaction in the classical transaction DSL.
In other words, all the concepts from classical transactions
are reused. This shows that indeed we have a family of
languages, where concepts are reused over different DSLs
and are declared the same way in these DSLs.

Both kinds of transactions can be seen in the example be-
low, which uses analogous names for package, class, method
and argument list:

trans packageNameR.classNameR.methodNameR (paramListR) ;
trans packageNameC.classNameC.methodNameC (paramListC)
extends caller;

The equivalent KALA code, given below, uses a naming
technique based on the identity of the current thread to
identify the calling transactional method. The root trans-
action will register itself in the global naming registry using
the current thread, and child transactions look up the par-
ent using current thread as key. These transactions, such as
declared for methodNameC, save the parent identifier locally
and register themselves under the current thread, to enable
their children to obtain a reference to them. At the end of
the transaction, the identity of the parent is restored using
the saved identifier.

packageNameR.classNameR.methodNameR (paramListR) {
name (self <Thread.CurrentThread()>);
commit {terminate(self); }
abort {terminate(self); } }

packageNameC. classNameC.methodNameC (paramListC) {
alias(parent <Thread.CurrentThread()>);
name (self <Thread.CurrentThread()>);
begin {
dep(self wd parent, parent cd self);
view(self parent);}
commit {
del(self parent);
name (parent <Thread.CurrentThread()>);
terminate(self); }
abort {
name (parent <Thread.CurrentThread()>);
terminate(self); } }

Because of the semantics of naming, dependencies, views
and delegation (discussed in detail in [3, 4]), when looking
up a parent which is non-existent (i.e. this child transaction
is in fact a root), no dependency, view and delegation will
be performed. In other words, if methodNameC does turn out
to be a root transaction, the effect of the KALA code will
be identical to the code of methodNameR.

We see that the use of the nested transactions DSL has
freed us from four implementation details: we do not need
to concern us with naming, setting the views, performing
delegation and termination of transactions. As a result of



such concise code, we can conclude that the use of the nested
transactions DSL here will indeed ease implementation, as
the programmer needs to take less implementation details
into account. Also, it is clear that the code in the DSL can
not be made more concise, as it only contains the minimum
of information required to construct a hierarchy of nested
transactions.

7. SAGA DSL

Considering the concepts present in the Sagas model, we
find more concepts present than in the previous ATMS. We
identify the following concepts: the saga, the steps and their
compensating steps. All three concepts can be identified
with a method signature as in the transactions and nested
transactions DSL. To run compensating steps, the equiva-
lent method has to be invoked, which leads us to two more
concepts present: the parameters for invoking the compen-
sating step, and which parameters are shared between meth-
ods, as defined in [3, 4].

The code below shows an example declaration of a saga
as a number of steps. Each has their compensating step,
which takes a list of parameters and an optional declaration
of wrapped parameters. We show only two steps in this
example, but conceptually allow for a varying number of
steps, as indicated by [...] in line 10.
saga packageName.className.methodName (paramList) {

step packageNamel.classNamel.methodNamel(paramList1)
compensate methodNamelc(paramListlc)
params <actualslistl>
wrap (wraplistl);

step packageName2.className2.methodName2(paramList2)
compensate methodName2c (paramList2c)
params <actualslist2>
wrap (wraplist2);

[...]
step packageNameN.classNameN.methodNameN(paramListN) ;

The above code contains five different concepts: the saga,
the steps, their compensating steps, the parameters for these
steps and which of these are wrapped. As this directly cor-
responds to the concepts of the Sagas model, leaving out
one of these concepts in the code implies that this code does
not implement usage of Sagas, but of another ATMS. As a
result, code in the Saga DSL is as concise as possible.

Regarding the KALA code generated from the above DSL
program, we do not include the full code here, due to lack of
space. Instead, we refer to section 3 where we have shown
the KALA code for one step of a Saga.

Considering the large size and obvious complexity of the
KALA code, treating many different implementation de-
tails: naming, grouping, placing of dependencies, starting
secondary transactions, and termination of transactions, it
is easy to conclude that the DSL version of the same spec-
ification is preferable. Using the Saga DSL, the application
programmer is kept unaware of these implementation de-
tails, and is solely confronted with the concepts present in
the ATMS. We state that the code in the Saga DSL is as
concise as possible and at a higher level of abstraction, which
therefore eases implementation.

Revisiting the example Saga implementation of section 3,
which requires 52 lines of KALA code, this only requires 10
lines of code in the Saga DSL. We stared with 230 lines of
Java code, and have reduced this to 10 lines, i.e. slightly
over four percent of its original size.

8. CONCLUSION

KALA is a domain-specific aspect language which covers
the domain of ATMS. In KALA, the basic building blocks of
ACTA are combined to form the specification of the trans-
actional behavior of Java methods. Using the same ATMS,
or parts of an ATMS, multiple times in an application re-
sults in code duplication. This is because the transactional
behavior of these different methods is, in essence, the same.

Because KALA gathers all transactional specifications to-
gether and brings them at the level of abstraction of the
ACTA model, we can more easily reason about this code
than the equivalent Java code. This allowed us to conceive
new avenues of abstraction and remove code duplication. If
we forgo the ability to create or modify models, we can add
an extra layer of abstraction through the use of a DSL per
model. The use of such model-specific languages allows us
to isolate the aspect programmer from the implementation
details of the model. Instead, the programmer now focuses
solely on the concepts of the ATMS being used. Such model-
specific aspect languages make the aspect programs as con-
cise as possible. As a result, we have eased implementation
of this code, with respect to the equivalent KALA code.

Furthermore, we have built a family of DSLs which reuse
as many concepts as possible between them. The same con-
cept in an ATMS will be written down in the same way in
the different DSLs. This reduces the learning curve for a
programmer learning a new DSL.

9. REFERENCES

[1] P. K. Chrysanthis and K. Ramamritham. A formalism
for extended transaction models. In Proceedings of the
17th International Conference on Very Large Data
Bases, pages 103-112, 1991.

[2] A. K. Elmagarmid, editor. Database Transaction
Models For Advanced Applications. Morgan
Kaufmann, 1992.

[3] J. Fabry. Modularizing Advanced Transaction
Management - Tackling Tangled Aspect Code. PhD
thesis, Vrije Universiteit Brussel, Departement
Informatica, Laboratorium voor Programmeerkunde
(PROG), July 2005.

[4] J. Fabry and T. D’Hondt. KALA: Kernel aspect
language for advanced transactions. In Proceedings of
the 2006 ACM Symposium on Applied Computing
Conference, to appear, 2006.

[5] H. Garcia-Molina and K. Salem. Sagas. In Proceedings
of the ACM SIGMOD Annual Conference on
Management of data, pages 249 — 259, 1987.

[6] S. Jajodia and L. Kershberg, editors. Advanced
Transaction Models and Architectures. Kluwer, 1997.

[7] J. Kienzle and R. Guerraoui. Aop: Does it make
sense? - the case of concurrency and failures. In
Proceedings of ECOOP 2002. Springer Verlag, 2002.

[8] E. B. Moss. Nested transactions: An approach to
reliable distributed computing. Technical report,
Massachusetts institute of Technology, 1981.

[9] A. Rashid and R. Chitchyan. Persistence as an aspect.
In 2nd International Conference on Aspect-Oriented
Software Development. ACM, 2003.

[10] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with AspectJ. In
Proceedings of OOPSLA 02. ACM, 2002.



