
A Modular Mixin-based Implementation of
Ambient References

Tom Van Cutsem∗

Programming Technology Laboratory
Vrije Universiteit Brussel

May 15, 2006

Abstract

This document describes the implementation of Ambient References as reflec-
tive extensions to the AmbientTalk programming language. The implementation is
based on a composition of three kinds of mixin objects which interact according to
an object-oriented protocol based on abstract methods. The implementation of all
kinds of ambient references is explained. Furthermore, the extensions made to the
discovery mechanism of AmbientTalk to support ambient references are detailed.
Finally, the usage and implementation of sustained message sends, snapshots and
multifutures which may be used in tandem with ambient references are described.

This document assumes the reader understands the AmbientTalk programming
language [DVM+06]. and has a thorough understanding of the design and the
taxonomy of ambient references, which are described elsewhere [VDM+06].

1 Introduction

Ambient references have been implemented in the actor-based ambient-oriented pro-
gramming language AmbientTalk. This minimal kernel features a metaobject protocol
for its actors, allowing one e.g. to change their default message receipt and message
sending behaviour. It is this metaobject protocol which allows AmbientTalk to be ex-
tended from within itself with novel language features. Ambient references have been
implemented reflectively on top of the more low-level event-based discovery system of
the kernel. Furthermore, because the low-level discovery system of the language does
not allow matching based on subtyping or filter queries, these extensions have been
added in the form of a metacircular discovery mechanism, The design of this discovery
mechanism is explained first. Subsequently, it is shown how ambient references are
implemented as actors whose default semantics has been altered using the MOP.

The paper is structured according to the following sections:

Services and Service Discoverydescribes the extended service discovery mechanism
based onservice types, offering a more rich mechanism for two AmbientTalk
actors to get acquainted.

∗Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O)

1

Ambient Reference Mixins constitutes the bulk of the article. It explains the core im-
plementation on which all kinds of ambient references are based and the different
kinds of mixin extensions which may be mixed into the core implementation to
acquire a specific kind of ambient reference.

Sustained Message Sendsintroduces support for sending sustained messages to am-
bient omnireferences. This allows clients to send messages to potential principal
actors which may be encountered in the future.

Snapshotsexplains the usage and implementation of thesnapshot operation (or
meta-message), which allows for the fixation and enumeration of the volatile
principal sets denoted by some of the ambient references.

Multifutures describes ambient references’ support for futures and thewhenEach
andwhenAll language constructs.

Ambient Reference Observersdescribes two useful language constructs (when found
andwhen lost) that allow for the registration of observers with ambient refer-
ences in order to monitor their binding behaviour.

2 Services and Service Discovery

The default service discovery mechanism of AmbientTalk is insufficient to implement
the scope of binding of ambient references. First, the discovery mechanism only allows
discovery based on simple tags or strings. This rules out more complex matching based
on a subtype relationship between service types. Second, the discovery mechanism has
no notion of property objects or filter queries to quickly advertise or filter based on
service properties.

In order to address these shortcomings, an extended service discovery mecha-
nism has been implemented in AmbientTalk itself. The implementation is based on
a metacircular definition of the native discovery mechanism itself. However, rather
than allowing for the provision and querying of simple tags, this extended implemen-
tation allows service actors to provide service types and property objects, or to require
service types accompanied by filter queries. The implementation of the extended dis-
covery mechanism can be found in the filediscovery.at .

2.1 Service Types

Service discovery using ambient references is based onservice types. Their implemen-
tation can be found in the fileservicetypes.at . The following code shows how
to define a hierarchy of service types:

servicetype (DeviceT, Service);
servicetype (PrintOptionT,DeviceT);
servicetype (PrinterT, PrintOptionT);
servicetype (FaxT, PrintOptionT);
servicetype (ColorT, Service);
servicetype (ColorPrinterT, ColorT, PrinterT);

Note that theservicetype function automatically recognizes its first parameter
as a symbol name and will declare it in the scope in which the function is called. The

2

service typeService is the root service type. Service types are always declared to be
a subtype of one or more other service types. The service typeGeneric is the least
element of the service type hierarchy.

Service type matching is based on the subtyping relation�. A provided service
type P matches a required service typeR if and only if P � R, i.e. the provided
type may be more specialized than the type asked for, but may never be more general.
Note that the� relation is reflexive, soS � S. For any service typeS, it follows that
S � Service andGeneric � S.

2.2 Service Actors

TheServiceMixin mixin whose implementation can be found in the fileservice.at
defines an interface with the new service discovery mechanism. Moreover, it defines a
new functionservice , which – when invoked with a behaviour object – returns an
actor with theServiceMixin mixed in. A service actor has access to the methods
provide andrequire . provide takes a service type and optionally a property ob-
ject as argument and makesthisActor advertise the given service type. The method
require takes a service type and optionally a one-argument lambda acting as a filter
query on the property object and makesthisActor require the given service type.
An actor which usesrequire mustimplement the following callback methods:

serviceDiscovered(resolution) :: { };
serviceLost(resolution) :: { };

They are invoked by the discovery manager when a matching service is discov-
ered. Theresolution argument is an object with four public fields:provider ,
containing the mail address of the providing actor,providedType , the service type
advertised by the provider,requiredType , the service type requested by the ac-
tor andproperties , referring to the property object describing the service actor’s
“service attributes” (which is an empty object if none was provided by the service).
Consider the following example of a printer service and a corresponding client.

service

PrinterBehaviour :: futuresMixin(root.object({
print(msg) :: { display("printing ",msg,eoln) };
init() :: {

props : object({ dpi :: 400 });
provide (ColorPrinterT, props)

}
}));
makePrinter() :: service (PrinterBehaviour);

client

PrinterClientBehaviour :: root.object({
printer : void;
print(msg) :: {

if(is_void(printer),
"could not print message",
{ printer#print(msg);

"message sent to printer" })
};
init() :: { require (PrinterT) };
serviceDiscovered (resolution) :: {

printer := resolution.provider;
display("got a printer of type ",resolution.providedType.getName(),eoln)

};
serviceLost (resolution) :: {

3

display("lost printer!",eoln)
}

});

3 Ambient Reference Mixins

The fileAmbientRefMixins.at defines theAmbientRefsMixin language mixin.
This mixin augments an actor with ambient reference constructors and support for mul-
tifutures and sustained message sends. A small usage example follows:

actor(AmbientRefsMixin(root.object({
printer : void;
init() :: {

printer := ambientFragileUni (PrinterT, lambda (p) -> { p.dpi > 300 })
};
...

})));

More details about theAmbientRefsMixin are explained later on. We first
turn our attention to the implementation of ambient references. Ambient references
are implemented as actors. The behaviour of an ambient reference actor is represented
by anAmbientReference object. This core object contains the behaviour which is
common toall kinds of ambient references. It also defines the behaviour for an ambient
reference’s scope of binding. The core object uses the discovery mechanism explained
above to translate generic discovery and MOP events into more high-level events which
are relevant to ambient references. The different strategies to deal with these events
depend on the elasticity and the cardinality of an ambient reference and have been
factored out into separate mixins. Mixins are composed via delegation. In order to
create a complete ambient reference actor behaviour, first anAmbientReference
core object is created. Next, one of three cardinality mixin objects is created whose
parent is the core object. Finally, one of three elasticity mixins is created with as its
parent the cardinality mixin. This elasticity mixin object together with its parent and
grandparent describe the complete behaviour of one kind of ambient reference and can
be used as the behaviour of an ambient reference actor.

serviceLost(res)
serviceDiscovered(res)
in(m)
query
type
AmbientReference

lostPrincipal(p)

acceptMessage(msg)
isBoundPrincipal(p)
foundPrincipal(p)

Cardinality mixins

principal_
UniRefMixin

cardinality
principals_
MultiRefMixin

principals_
OmniRefMixin

FragileRefMixin

elasticity
ElasticRefMixin

SturdyRefMixin

disconnected(p)
Elasticity mixins

Figure 1: Ambient References as delegating mixin objects

4

Figure 1 illustrates the implementation of ambient references as the composition of
one of three elasticity mixins, one of three cardinality mixins and anAmbientReference
object. The figure shows objects whose names correspond to the constructor method
that creates them. For example, the object namedFragileRefMixin is created by
invoking the constructor methodmakeFragileRefMixin(parent) whereparent
is a cardinality mixin object. The dotted arrows represent potential delegation. Each
object has at most one parent object; the elasticity mixins are shown delegating to all
cardinality mixins to emphasize that either one of them can act as their parent. This
flexibility of delegation enables the modular construction of all kinds of ambient refer-
ences. The slanted, abstract methods shown above the two mixin groups are methods
implemented by all of the mixins in the group. Their implementation is required by the
AmbientReference object. In the following sections, the implementation of the
core object and the two groups of mixin objects is described.

3.1 Core Ambient Reference Object

The coreAmbientReference object which is part of any ambient reference actor’s
behaviour is created by calling the following constructor method:

AmbientReference

makeAmbientRefCore(type, query) :: extend_with_args(root, lambda(type,query) -> {
// auxiliary methods
isMetaMessage(msg) :: { ... };
forwardCarbonCopy(msg, to) :: { ... };
forwardMessage(msg, to) :: { ... }
// MOP methods
init() :: {

.init();
inbox.addAddObserver(thisActor()#in);
require(type, query)

};
in(msg) :: {

if(!isMetaMessage(msg),
{ this().acceptMessage(msg) })

};
serviceDiscovered(resolution) :: {

discoveredService : resolution.provider;
joinedbox.add(discoveredService);
if(!this().isBoundPrincipal(discoveredService),

{ this().foundPrincipal(discoveredService) })
};
serviceLost(resolution) :: {

joinedbox.delete(resolution.provider);
if(this().isBoundPrincipal(resolution.provider), {

this().disconnected(resolution.provider)
})

}
}, [type, query]);

The purpose of the above object is to translate generic MOP and discovery events
into meaningful ambient reference events. This is achieved by the mailbox observer
methods, registered with their respective mailboxes in theinit method, and via the
discovery callback methods. After registering its mailbox observers, the ambient refer-
ence declares that it is interested in receiving notifications from the kernel pertaining to
services providing the required service type (viarequire(type, query)). Note
that arguments to the constructor function are translated into instance variables of the
core object viaextend with args .

Some method calls in the bodies of the mailbox observer and callback methods
remain unimplemented by the core object itself. Such methods denote abstract methods

5

whose implementation should be provided by an appropriate mixin object. Each of
these methods denotes a separate aspect of the ambient reference protocol. Each aspect
is detailed below.

In the in inbox observer, the ambient reference first checks whether the incoming
message is marked as ametamessage. Metamessages are those messages sent to the
ambient reference actor itself, rather than client messages sentvia the reference to the
principal(s). An example metamessage issnapshot which should be handled by
the ambient reference itself, rather than sent to the principal. The implementation of
snapshot is deferred to section 5. The message acceptance semantics depends on the
cardinality of the ambient reference, which is why the responsibility of dealing with
message acceptance is delegated to a cardinality mixin’sacceptMessage method.
Figure 2 illustrates the message acceptance protocol.

aCoreObject aCardinalityMixin

in(msg) acceptMessage(msg)

Figure 2: Message Acceptance Protocol

The serviceDiscovered callback method is invoked whenever a matching
service actor joins the network. The scope of binding of an ambient reference is im-
plicitly implemented via the discovery mechanism: the discovery manager invoking
the callback implicitly guarantees that the discovered actor’s provided type satisfies the
required type and that its property object has passed the given filter query. The new
service is a potential principal. Before propagating this event to the cardinality mixin
which is responsible for binding the principal, the core object first checks whether the
newly discovered actor isn’t already bound. An ambient reference may never bind
with the same actor more than once simultaneously. Because the act of binding a new
principal is again dependent on the cardinality of the ambient reference, its implemen-
tation is factored out into a cardinality mixin’sfoundPrincipal method. Figure 3
illustrates the principal binding protocol.

aCoreObject aCardinalityMixin

serviceDiscovered(res) b := isBoundPrincipal(res.prov)

[! b] foundPrincipal(res.prov)

Figure 3: Binding Protocol

TheserviceLost discovery callback is invoked whenever a joined service ac-
tor disappears from the network. The ambient reference only has to undertake action

6

upon such an event when the lost service is a bound principal. Whether a service is a
principal or not can only be determined by the cardinality mixin of the reference. If
the lost service turns out to be a bound principal, the ambient reference delegates the
responsibility of dealing with this event to an elasticity mixin by invoking the abstract
disconnected method. Figure 4 illustrates the disconnection resilience protocol.

aCoreObject aCardinalityMixin

serviceLost(res) b := isBoundPrincipal(res.prov)

[b] disconnected(res.prov)

anElasticityMixin

lostPrincipal(p)

Figure 4: Resilience Protocol

Note that the protocol allows a mixin implementor to make the following assump-
tions:

• Themsg parameter ofacceptMessage never refers to a meta message.

• The principal argument tofoundPrincipal is guaranteed to be a currently
unbound candidate principal.

• The principal argument todisconnected is guaranteed to be a currently
bound principal. For all ambient references described here, it also holds that
lostPrincipal ’s principal argument is a currently bound principal.

The following sections describe the cardinality and elasticity mixin objects, which
provide implementations for the abstract methods of the ambient reference object.

3.2 Cardinality Mixins

A cardinality mixin is responsible for managing the principal(s) of an ambient refer-
ence. This includes providing and managing the principal set and handling the for-
warding of received messages to the principal(s). A cardinality mixin must implement
the following methods:

AbstractCardinalityMixin() :: object({
acceptMessage(msg) :: { error("abstract method: acceptMessage") };
isBoundPrincipal(p) :: { error("abstract method: isBoundPrincipal") };
foundPrincipal(p) :: { error("abstract method: addPrincipal") };
lostPrincipal(p) :: { error("abstract method: lostPrincipal") }

});

The three different kinds of cardinality mixins are described below.

3.2.1 Ambient Unireferences

A unireference’s principal set consists of at most one element. Therefore, it is im-
plemented simply as a variable namedprincipal whose value determines the state
of the ambient reference. Ifprincipal containsvoid , the reference is unbound.
If it contains the mail address of a principal, the reference is bound. This variable is

7

toggled betweenvoid and a principal mail address in thefoundPrincipal and
lostPrincipal methods.

UniRefMixin

makeUniRefMixin(parentObject) :: extend(parentObject, {
principal_ : void;
acceptMessage(msg) :: {

if(!is_void(principal_),
{ forwardMessage(msg, principal_) })

};
isBoundPrincipal(p) :: { principal_ ˜ p };
foundPrincipal(newPrincipal) :: {

if(is_void(principal_), {
principal_ := newPrincipal;
inbox.asVector().iterate(lambda(msg) -> {

forwardMessage(msg, newPrincipal)
})

})
};
lostPrincipal(p) :: {

principal_ := void;
outbox.asVector().iterate(lambda(msg) -> {

if(msg.getTarget() ˜ p, {
inbox.addPrior(msg); //add to front to preserve ordering!
outbox.delete(msg)

})
})

}
});

The message forwarding behaviour of a unireference is described in theaccept-
Message method. If the reference is bound, the incoming message is rerouted to the
bound principal. If the reference is unbound, the message is kept in the inbox. The
foundPrincipal method determines how the reference reacts upon the availabil-
ity of a new candidate service provider. The appropriate behaviour depends on the
state of the unireference: if it is unbound the new service becomes the principal, if
it is bound the new service is disregarded, but is kept in the joinedbox for possible
later use. Upon binding to a new principal, the unireference flushes its inbox and for-
wards it all messages accumulated while it was unbound. A message forwarded using
forwardMessage is removed from the inbox.

ThelostPrincipal method can be regarded as the inverse of thefoundPrin-
cipal method. When the currently bound principal disconnects, the reference reverts
to unbound status. It may occur that messages forwarded to the disconnected principal
were not successfully transmitted. Therefore, all untransmitted messages destined for
the old principal are retracted from the outbox and added to the front of the inbox again,
such that they are retransmitted upon rebinding to a principal in the future. Note that
the lostPrincipal method does not check whether the lost principalp equals the
currentprincipal . This check is already performed via theisBoundPrincipal
invocation in theserviceLost method of the core ambient reference object.

3.2.2 Ambient Multireferences

A MultiRefMixin is parameterized by its cardinality and is used to create an ambi-
ent multireference. This reference’s principals are stored in an array whose size equals
its cardinality. A multireference’s cardinality denotes the maximum number of princi-
pals the reference can bind to simultaneously.

MultiRefMixin

makeMultiRefMixin(parentObject, cardinality) ::
extend_with_args(parentObject, lambda(cardinality) -> {

8

principals_[cardinality] : void;
firstFreeIdx : 1;
// auxiliary method, take a lambda(slot,index) and returns nothing
forEachSlot(block) : { ... };
// auxiliary method, takes a lambda(slot), returns slot idx or cardinality+1 if not found
findFirstSlot(block) : { ... };
bound_slot(slot) : { !is_void(slot) };
acceptMessage(msg) :: {

if(!is_number(msg.getTarget()), {
forEachSlot(lambda(slot,idx) -> {

if(bound_slot(slot), {
forwardCarbonCopy(msg, slot)

}, {
save: msg.copy();
save.setTarget(idx);
inbox.addSilent(save)

})
});
inbox.delete(msg)

})
};
isBoundPrincipal(p) :: { findFirstSlot(lambda(slot) -> { slot ˜ p }) <= cardinality };
foundPrincipal(p) :: {

if (firstFreeIdx <= cardinality, {
principals_[firstFreeIdx] := p;
inbox.asVector().iterate(lambda(msg) -> {

dest: msg.getTarget();
if(is_number(dest) & dest = firstFreeIdx, {

forwardMessage(msg, p)
})

});
firstFreeIdx := findFirstSlot(lambda(slot) -> { !bound_slot(slot) })

})
};
lostPrincipal(p) :: {

lostPrincipalIdx: findFirstSlot(lambda(slot) -> { slot ˜ p });
principals_[lostPrincipalIdx] := void;
outbox.asVector().iterate(lambda(msg) -> {

if(msg.getTarget() ˜ p, {
outbox.delete(msg);
msg.setTarget(lostPrincipalIdx);
inbox.addPrior(msg)

})
});
firstFreeIdx := minimum(firstFreeIdx, lostPrincipalIdx)

}
}, [cardinality]);

Upon receiving a message, theacceptMessage method first checks whether the
message is addressed to a slot index (its recipient is a number). If this is the case,
the message is ignored, as it is a message to be saved by the ambient multireference
for later use, as explained below. Upon receiving a regular message, the message is
duplicated for each principal slot. When a principal slot is bound (i.e. does not contain
void), the message is immediately forwarded to the bound principal. More precisely,
a copy of the message is forwarded. When a principal slot is unbound, (a copy of) the
message remains in the inbox with its destination set to the index of the unbound slot,
to be forwarded later on.

When a new candidate principal is found, the multireference first checks whether it
still has a free unbound slot available to bind the new reference. If the multireference
is entirely bound, the candidate principal remains stored in the joinedbox for possible
later use. A principal is always bound to the smallest slot index available. Whenever a
principal is bound to a slot, all messages whose destination is its slot index are removed
from the inbox and sent to the new principal.

When a bound principal disjoins, its slot is unbound and all untransmitted messages
sent to the principal are retracted from the outbox. Such retracted messages are added

9

in the correct order to the inbox and their destination is changed to point to the slot
index rather than the lost principal.

3.2.3 Ambient Omnireferences

An omnireference stores its principal set in an extensible vector object. There is no
limit to the number of principals an omnireference can simultaneously bind to. An om-
nireference mixin requires theafterMixin defined in the fileafter.at – which
contains the definition of theafter language construct – to be mixed in. Its use is
detailed in the support for sustained message sends in section 4.

OmniRefMixin

makeOmniRefMixin(parentObject) :: extend(afterMixin(parentObject), {
principals_ : vector.new();
acceptMessage(msg) :: {

principals_.iterate(lambda(principal) -> {
forwardCarbonCopy(msg, principal)

});
// support for sustained message sends, explained below
...

};
isBoundPrincipal(p) :: { principals_.contains(p) };
foundPrincipal(newPrincipal) :: {

principals_.add(newPrincipal);
inbox.asVector().iterate(lambda(msg) -> {

forwardCarbonCopy(msg, newPrincipal)
})

};
lostPrincipal(p) :: {

principals_.remove(p);
outbox.asVector().iterate(lambda(msg) -> {

if(msg.getTarget() ˜ p, {
outbox.delete(msg)

})
})

}
});

Upon receiving a message, the message is duplicated and sent to each principal
currently in the principal vector. The omnireference’s support for sustained message
sends is deferred to section 4. Regular (“ephemeral”) messages are simply deleted from
the inbox immediately.

Upon notification of a new candidate principal, the candidate is added to the princi-
pal set and receives a copy of all messages currently kept in the inbox. This mechanism
enables sustained messages waiting in the inbox to be received by principals which
bindafter the message has been received. When a bound principal is considered lost, it
is removed from the principal set and any untransmitted messages forwarded to it are
deleted.

3.3 Elasticity Mixins

An elasticity mixin specifies a policy on how to deal with disconnections of principals.
Whenever a disconnection occurs, an elasticity mixin’sdisconnected method is
invoked from within the core object. An elasticity mixin can decide whether the prin-
cipal must actually be removed from the principal set or not. An elasticity mixin must
implement the following method:

10

AbstractElasticityMixin() :: object({
disconnected(p) :: { error("abstract method: disconnected") }

});

This method is invoked by the core ambient reference object whenever a bound
principal disjoins. It is the responsibility of the elasticity mixin to invokelostPrincipal
if the ambient reference should effectively remove the bond with the disconnected prin-
cipal. The different kinds of elasticity mixins are described below. Fragile and elastic
ambient references share similar behaviour, which is factored out into aBreakableRefMixin .
Before describing this mixin, we first describe the fragile and elastic ambient reference
mixins.

3.3.1 Fragile Ambient References

The code for fragile ambient references is shown below:

FragileRefMixin

makeFragileRefMixin(parentObject) ::
extend(makeBreakableRefMixin(parentObject), {

disconnected(principal) :: { erase(principal) }
});

Thedisconnected method of a fragile ambient reference immediately detaches
a disconnected principal by invoking its parent object’serase method. This method’s
implementation is discussed below. What is important is that fragile ambient references
align network disconnections with the immediate loss of a principal.

3.3.2 Elastic Ambient References

Elastic ambient references are parameterized with an elongation period (denoting their
elasticity) which is a timeout period, in milliseconds, describing how long a princi-
pal may stay disconnected before becoming unbound. The code for elastic ambient
references is shown below:

ElasticRefMixin

makeElasticRefMixin(parentObject, elasticity) ::
extend_with_args(afterMixin(makeBreakableRefMixin(parentObject)),

lambda(elasticity) -> {
disconnectedPrincipals_ : smallmap.new(); // a map from principal to an expiration ID
expirationId_ : 0;
// method overridden from core object
serviceDiscovered(resolution) :: {

if(this().isBoundPrincipal(resolution.provider), {
disconnectedPrincipals_.delete(resolution.provider)

});
.serviceDiscovered(resolution)

};
disconnected(principal) :: {

expirationId_ := expirationId_ + 1;
markedExpirationId : expirationId_;
disconnectedPrincipals_.put(principal, markedExpirationId);
after(elasticity, lambda() -> {

currentExpirationId: disconnectedPrincipals_.get(principal);
if(!is_void(currentExpirationId) & (currentExpirationId = markedExpirationId), {

disconnectedPrincipals_.delete(principal);
erase(principal)

})
});
void

}
}, [elasticity]);

11

Elastic ambient references require theafterMixin to be mixed in, and as men-
tioned above “inherit” from aBreakableRef mixin. To keep track of which cur-
rently bound principal is currently disconnected, an elastic reference has a mapdiscon-
nectedPrincipals mapping principal mail addresses to expiration IDs. These ex-
piration IDs uniquely identify particular disconnections. The reason for introducing
them is explained below.

When an elastic reference’sdisconnected method is invoked, the principal that
has gone astray is marked as disconnected by placing it in the disconnected map, but
the principal isnot yetremoved from the principal set. Instead, the elastic reference
waits for its specified elongation period (denoted byelasticity) to time out and
then checks whether the disconnected principal is still in the principal set. Theafter
language construct provided by theafterMixin is used to accomplish this non-
blocking wait. The construct takes a timeout period and a zero-argument lambda and
executes the closure asynchronously after the timeout period has elapsed. If the princi-
pal is still disconnected after the elongation period has elapsed, the principal is detached
from the ambient reference using the breakable reference’serase method, making an
elastic reference exhibit the same behaviour as a fragile reference.

Note that, in order to check whether the principal is still disconnected, the expira-
tion ID plays a crucial role. More particularly, it is checked whether the principal stored
in the disconnected map is still linked to the same expiration ID (currentExpirationId)
as the one it was marked with at the start of the timeout period (markedExpirationId).
This check is necessary to abolish race conditions which may occur due to a principal
connecting and disconnecting multiple times during a single timeout period. For ex-
ample, a principal may disconnect from an elastic reference with a 2-minute elongation
period. If the principal rejoins after 1 minute but leaves again 30 seconds later, there
are now twoafter blocks scheduled for execution. The first to trigger is the one
scheduled when the principal originally disconnected. However, because the principal
already reconnected after 1.5 minutes, the principal should not yet be considered as
lost. To deal with this race condition, each disconnected event giving rise to a timeout
period is uniquely identified by an ID such that it can be checked that the delayed code
indeed deals with the latest disconnection or whether it has become obsolete.

It remains to be explained how a disconnected principal can be considered as re-
connected. An elastic reference overrides the core object’sserviceDiscovered
method to check if a discovered service is a bound principal. If this is the case, that prin-
cipal is removed from the disconnected principals set such that any delayed code deal-
ing with its disconnection will be silently ignored. The overriddenserviceDiscovered
method always performs a super-send to execute the default binding behaviour. Note
that, if the discovered service is a bound principal and thus possibly removed from the
disconnected principal map, it will not give rise to a call tofoundPrincipal be-
cause the originalserviceDiscovered method of the core object does not invoke
this method when discovering an already bound principal.

3.3.3 Sturdy Ambient References

The implementation of a sturdy reference mixin is simple. Itsdisconnected method
does nothing, thereby silently disregarding the disconnection event of the principal.
Any messages sent to the principal while it is disconnected keep on being forwarded
and await transmission in the outbox. The ambient reference implementation falls
back on the AmbientTalk kernel’s ability to properly flush untransmitted messages in
the outbox when it detects that the receiver has reconnected. Because the core ambient

12

reference object’sserviceDiscovered method checks whether a candidate prin-
cipal is already bound, the principal is not inserted into the principal set multiple times
when it rejoins. The implementation of sturdy references is shown below:

SturdyRefMixin

makeSturdyRefMixin(parentObject) :: extend(parentObject, {
disconnected(principal) :: { void }

});

3.3.4 Breakable Ambient References

Fragile and elastic ambient references factor out their common behaviour in theerase
method of a breakable reference mixin. The implementation of the latter mixin is
shown below:

BreakableRefMixin

makeBreakableRefMixin(parentObject) :: extend(parentObject, {
erase(principal) :: {

this().lostPrincipal(principal);
joinedProviders: joinedbox.asVector();
aSpareProviderIdx: joinedProviders.findFirst(lambda(spareProvider) -> {

!(this().isBoundPrincipal(spareProvider))
});
if(!is_void(aSpareProviderIdx), {

this().foundPrincipal(joinedProviders.get(aSpareProviderIdx))
})

}
});

First, the breakable reference signals the loss of the principal by invoking the
lostPrincipal protocol method. The actual removal of the principal from the
principal set is the responsibility of a cardinality mixin implementing that method. Af-
ter having unbound the principal, the breakable reference tries to potentially rebind
to spare candidate principals which are stored in the joinedbox. ThefindFirst
method searches for a service provider in the joinedbox which is currently unbound
and, when one is found, the breakable reference binds the spare candidate principal by
invoking thefoundPrincipal method to be implemented by a cardinality mixin.
Note that, again, the cardinality mixin is given the guarantee that its principal argument
is currently unbound.

3.3.5 Mixin Composition

Given the definition of the mixins depicted in figure 1, all different kinds of ambient
references can be composed. For example, the constructor method shown below creates
fragile ambient unireferences. The parameterscope denotes a table of either one
argument, containing a required service type or of two arguments, containing a service
type and the optional filter query.

makeFragileUniRef(scope) :: {
makeFragileRefMixin(

makeUniRefMixin(
makeAmbientRefCore@scope))

}

The1 + 3 + 3 mixins (1 core, 3 cardinality mixins, 3 elasticity mixins) described
above lead to a combination of1 × 3 × 3 = 9 different kinds of ambient references.

13

Their constructors have been made available via theAmbientRefsMixin . The
mixin augments its behaviour object with access to the following constructor meth-
ods (arguments after the . are considered optional, this is done for readability purposes
and is not regular AmbientTalk syntax):

AmbientRefsMixin

AmbientRefsMixin(obj) :: extend(obj, {
ambientFragileUni(serviceType . filterQuery) :: { ... };
ambientFragileMulti(cardinality, serviceType . filterQuery) :: { ... };
ambientFragileOmni(serviceType . filterQuery) :: { ... };

ambientElasticUni(elasticity, serviceType . filterQuery) :: { ... };
ambientElasticMulti(elasticity, cardinality, serviceType . filterQuery) :: { ... };
ambientElasticOmni(elasticity, serviceType . filterQuery) :: { ... };

ambientSturdyUni(serviceType . filterQuery) :: { ... };
ambientSturdyMulti(cardinality, serviceType . filterQuery) :: { ... };
ambientSturdyOmni(serviceType . filterQuery) :: { ... };
...

})

Each such constructor function simply creates the right kind of ambient reference
behaviour and wraps the resulting behaviour in a service actor. For example:

ambientFragileUni@args :: service(makeFragileUniRef(args));

4 Sustained Message Sends

Next to providing the constructor functions to create ambient references, theAmbient-
RefsMixin also introduces support for sustained message sends to ambient omniref-
erences. For example, sending a sustained zero-argument messagehello to an om-
nireferencepeople with a decay period of 10 seconds can be expressed using the
ambient reference mixin as follows:

sustain(people#hello, [], 10*1000)

Implementation The implementation of this new language construct is as follows:

AmbientRefsMixin

forever :: -1;
sustain(msg, args, decayPeriod) :: {

msg.setArgs(args);
sustainedmsg : extend_with_args(msg, lambda(p) -> {

decayPeriod :: p }, [decayPeriod]);
send(sustainedmsg)

}

As can be witnessed from the above code excerpt, a sustained message send is a reg-
ular message send, where the message being sent is tagged with a slotdecayPeriod ,
where an infinite decay period is encoded as a negative integer.

In order to support sustained message sends, ambient omnireferences check the
decayPeriod slot of an incoming message to determine how long they should keep
the message in the inbox. The remaining implementation of theacceptMessage
method of the omnireference cardinality mixin is given below:

14

OmniRefMixin

acceptMessage(msg) :: {
// broadcast message to all principals in the principal set
...
if(msg.has_slot("decayPeriod"), {

decayPeriod: msg.decayPeriod;
if (decayPeriod > 0, {

after(decayPeriod, lambda() -> {
inbox.delete(msg)

});
})
// else decayPeriod forever, leave it in inbox indefinitely

}, {
inbox.delete(msg) // regular messages deleted immediately

})

The omnireference first checks whether the message is tagged as a sustained mes-
sage. If not, the message is deleted from the inbox immediately. If it is a sustained
message, the ambient reference reads the decay period attached to the message and
schedules a block of code for execution after the decay period has elapsed. This is done
using theafter language construct provided by the already mixed inafterMixin
language mixin. The delayed code removes the message from the inbox. If the decay
period isforever , no removal code is scheduled and the message is left in the inbox.

Because a new principal joining the principal set receives a copy of all messages in
the inbox, sustained messages can be sent to principals that bind long after the sustained
message has been received.

5 Snapshots

All ambient references encapsulate their principal set, making it impossible for clients
to access, modify or enumerate the set of principals the reference is bound to at a
certain moment in time. The main reason for doing so is that, for a number of ambient
references (mostly the non-sturdy ones) the principal set is a volatile set which may
change at any time as devices move about. Principals may join or leave the set at
any time, hence also during an enumeration. In order to provide clean enumeration
semantics, ambient references provide a “meta-level”snapshot operation.

The snapshot operation is “meta” because it is a message sentto an ambient refer-
ence rather thanvia an ambient reference to the principal(s) it denotes. By convention,
meta-messages are prefixed by aµ1. The messageµsnapshot may be sent to any
kind of ambient reference and always returns a new sturdy multireference (referred to
as the snapshot) initialized with the set of all bound principals of its argument refer-
ence and whose cardinality equals the size of this initial principal set. Because all of
its principal slots are bound and sturdy, the snapshot will never bind with new services.
The principal set of a fully bound sturdy multireference is by definition constant and
can thus be safely enumerated by clients. It is never guaranteed that this enumera-
tion accurately reflects the current availability of services. Elements of the snapshot
can be disconnected but because the snapshot is sturdy, the bond with the service is
maintained.

As an example, consider a PDA application that requires a printing service. As-
sume that a fragile omnireference namedprinters has been declared, denoting all
available printing services on the network. In order to present the user with a list of all
available services, one may enumerate asnapshot of the omnireference:

1In the current implementation,µ must be typed asmeta .

15

availablePrinters : printers# µsnapshot ();
tableOfPrinters : availablePrinters# µenumerate ();

Implementation Snapshots are implemented by equipping every cardinality mixin
with an additionalmetasnapshot method. We survey the different implementations
for uni-, multi- and omnireferences below.

Unireference snapshots When making a snapshot of a unireference, the reference
may either be bound or unbound. If the reference is unbound at the moment a snapshot
is made, the result is an empty sturdy multireference with a cardinality of 0. If the
reference is bound, the result is a unary sturdy multireference with a cardinality of 1.
The implementation of a unireference’smetasnapshot method is given below. The
makeSnapshot function returns a new sturdy multireference with its principal table
initialized to the given argument table. Its implementation is given below.

UniRefMixin

...
metasnapshot() :: { p: if(is_void(principal_), [], [principal_]); makeSnapshot(p) }

Multireference snapshots When a snapshot is made of a multireference, the result
is a sturdy multireference whose principals correspond to all bound principal slots of
the original multireference. Hence, if the original multireference has a cardinality ofn
and at mostk ≤ n slots are bound at the moment the snapshot is made, the cardinality
of the new multireference isk.

MultiRefMixin

...
metasnapshot() :: {

boundPrincipals : vector.new();
forEachSlot(lambda(slot,idx) -> {

if(bound_slot(slot), {
boundPrincipals.add(slot)

})
});
makeSnapshot(boundPrincipals.asTable())

}

Omnireference snapshots When taking a snapshot of an ambient omnireference,
the result is a sturdy multireference whose cardinality equals the size of the omnirefer-
ence’s principal set. However, when taking a snapshot of an omnireference, one may
sometimes want to “postpone” the snapshot for a moment in order to allow the om-
nireference to “fill up” with useful service actors. In a sense, this requirement is related
to the issue of sustained messages, where a client wants the omnireference to store the
sustained message for a while in order to increase its chances of reaching a desired
service.

It turns out that sustained message sends are againt the abstraction needed to solve
the “delayed snapshot” problem. When sending themetasnapshot meta-message
to an omnireference in a sustained manner, the snapshot will only be taken after the
decay period of the message has elapsed. A good analogy exists between these delayed
snapshots and the act of taking a real photograph with a camera. In a sense, the decay
period corresponds to what is known as theshutter speedin photography. The shutter

16

speed is the time for which the shutter of the camera is held open during the taking
of a photograph, to allow light to reach the film or imaging sensor. When more light
is exposed to the sensor, the photograph will capture movement of objects, in a sense
capturing a “longer” period of time. When taking a sustained snapshot of a sturdy om-
nireference, one achieves essentially the same effect, capturing more and more service
actors as time progresses. Taking a snapshot with an infinite shutter speed is illegal.

OmniRefMixin

...
metasnapshot() :: {

msg: thisMessage();
if(msg.has_slot("decayPeriod"), {

shutterSpeed: msg.decayPeriod;
if (shutterSpeed > 0, {

after(shutterSpeed, lambda() -> {
makeSnapshot(principals_.asTable())

})
}, {

error("snapshot made with an infinite decay period")
})

}, {
makeSnapshot(principals_.asTable())

})
}

Fixed Sturdy Multireferences In the previous paragraphs, the return value of each
metasnapshot method is a snapshot created by invoking themakeSnapshot
function. Its implementation is shown below:

makeSnapshot(principalTable) :: actor(makeFixedSturdyMultiRef(principalTable));

As can be witnessed from the above code, the resulting ambient sturdy multirefer-
ence actor is not created by composing the multireference cardinality mixin with the
sturdy reference elasticity mixin as one might have expected. Rather, aFixedSturdy-
MultiRef is returned. This ambient reference is actually an ad hoc, hardcoded im-
plementation of sturdy multireferences. The reasons for introducing an ad hoc imple-
mentation are twofold:

• First, an ad hoc implementation of sturdy multireferences results in a huge effi-
ciency gain. Because the principal set of a fully bound sturdy multireference will
never change, the multireference has no need for a scope nor a service discovery
mechanism, nor for thefoundPrincipal and lostPrincipal methods.
A sturdy multireference only has to forward each message it receives to all of
its principals. Furthermore, as it knows that each principal slot is bound and
will never become unbound, most of the checks in the cardinality and elasticity
mixins become redundant.

• Second, sturdy multireferences can directly be initialized given a table of princi-
pals. The combination of mixins does not cater to such initialization.

• Third, a fixed sturdy multireference has ametaenumerate method which re-
turns the encapsulated principal set. This operation is safe as the principal set is
guaranteed to be constant.

The implementation of fixed sturdy multireferences is given below:

17

FixedSturdyMultiRefMixin

makeFixedSturdyMultiRef(principalTable) ::
extend_with_args(root, lambda(principalTable) -> {

principals_ : principalTable;
...
in(msg) :: { copied from core object };
acceptMessage(msg) :: {

for(i:1, i<=size(principals_), i:=i+1, {
to: principals_[i];
cc : msg.copy();
cc.setTarget(to);
outbox.add(cc)

});
inbox.delete(msg)

};
µsnapshot() :: { makeSnapshot(principals_) };
µenumerate() :: { principals_ }

}, [principalTable]);

TheAmbientReference language mixin also provides the following construc-
tor function to allow a client actor to explicitly construct a fixed sturdy multireference
from a table of actor addresses. This is useful for constructing groups for the purposes
of group (multicast) communication. TheambientGroup constructor is the only
ambient reference constructor allowing for direct initialization of the principal set (i.e.
it is the only ambient reference constructed from an external enumeration rather than
from an intensional service type description).

ambientGroup@args :: { makeSnapshot(args) };

6 Multifutures

Ambient references support multifutures. Message sends to ambient references result
in futures which represent the eventual return value. Messages sent to a multifuture
acquired in this manner are forwarded by the multifuture to all of its resolved values.
As more return values gradually become resolved, the multifuture sends all of the mes-
sages it has received thus far to a new resolved value such that the same messages are
sent to all resolved values. Messages are only forwarded if the resolved value is an
actor.

The value to which a multifuture resolves can be accessed using awhenEach
language construct. ThewhenEach language construct takes a multifuture and a clo-
sure and schedules the closure for execution every time the future is resolved with a
value. Note that it is never guaranteed how many times awhenEach observer will be
invoked. This can be zero, one or more times and depends on the cardinality of the
ambient reference and also on the availability of the principals. Whatcanbe guaran-
teed based on the cardinality is the maximum number of timeswhenEach is invoked:
once for unireferences,n times for a multireference with cardinalityn, an unbounded
number of times for an omnireference.

For uni- and multireferences, it makes sense to execute a block of code whenall
of the principals have replied, because the number of replies is bounded. Hence, for
multifutures returned by uni- and multireferences, one may subscribe a closure using
whenAll to be invoked when all replies have arrived.

To supportwhenAll , the multireference cardinality mixin and the fixed sturdy
multireferences are augmented with extra code to notify the multifuture of the maxi-

18

mum amount of resolved values it may expect. The extended code is shown below for
multireferences:

MultiRefMixin

acceptMessage(msg) :: {
if(!is_number(msg.getTarget()), {

if(msg.has_slot("expectedNumberOfResults"), {
msg.expectedNumberOfResults(cardinality)

});
...

7 Ambient Reference Observers

The following code snippet shows how an actor can act as an “ambient sensor”, moni-
toring the appearance and disappearance of any service of a certain type in the ambient:

AmbientSensor

AmbientSensor(aServiceType) :: service(extend_with_args(root, lambda(requiredType) -> {
init() :: {

// ambient* requiredType
sensor: ambientFragileOmni(requiredType);
when_found (sensor, lambda(ref) -> {

display("Service online: ", ref, eoln);
});
when_lost (sensor, lambda(ref) -> {

display("Service offline: ", ref, eoln);
})

}
}))

The language constructswhen found andwhen lost both take an ambient ref-
erence (of any kind) and a code block as an argument. The code block is parameterized
with the raw remote reference to the discovered or lost service actor. The code blocks
are invoked whenever the argument ambient reference becomes bound or unbound. The
semantics of binding and unbinding naturally depend on the kind of ambient reference
the block of code is registered with. For example, adding awhen lost observer to a
sturdy reference has no effect, as this kind of reference never lets go of its principals.

The two observer language constructs have as their return value a “subscription”
object which can be used to cancel the subscription of the code blocks with their ambi-
ent references. By default, the code blocks are permanently registered with the ambient
references. Oncecancel is invoked upon a subscription object, it is guaranteed that
the code block associated with the subscription will not be executed again. An example
of cancelling a subscription is show below.

Subscription cancellation

subscription : when_found (sensor, lambda(ref) -> {
display("Service online: ", ref, eoln);
subscription.cancel()

});

Implementation The implementation of the ambient reference observers comprises
three parts. First, the code of the core ambient reference mixin object is modified
to incorporate a typical observer design pattern: the core object maintains a vector

subscribers to hold bothwhen found andwhen lost observers. Further-
more, the meta-interface of the core mixin is extended with two management methods

19

to add and delete observers:metaSubscribeObserver andmetaUnsubscribe-
Observer .

The core ambient reference object now also implements the methodsnotifyFound-
Principal(p) and notifyLostPrincipal(p) . Invoking this method leads
to the notification of all registeredwhen found or when lost observers. The sec-
ond part of the implementation of the ambient reference observers consists of call-
ing these methods at the appropriate locations. This is done in each of the three
cardinality mixins. Whenever a cardinality mixin binds with a new principal (in its
foundPrincipal method) or loses a principal (in itslostPrincipal method),
it invokes the appropriate notification method.

A third part of the implementation consists of extending theAmbientRefsMixin
with the appropriate language constructs. This mixin keeps track of the registered clo-
sures via the map ambientRefObserverBlocks which maps integer IDs to
closures. The integer IDs represent a unique identity for the ambient reference ob-
servers. This ID management is necessary because closures should not be parameter-
passed directly to other actors – we pass their ID instead (cfr. the implementation of fu-
tures andwhen). These observers are implemented using theambientRefObserver
prototype. This object contains anotify method to be invoked by the ambient ref-
erence when the appropriate event takes place. It also provides acancel method to
unsubscribe itself with its reference.

The fixed sturdy multireferences explicitly disallow the registration of observers.
Due to their nature, registered observers would never trigger anyway because fixed
sturdy multireferences never bind anew or unbind.

References

[DVM +06] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. Ambient-oriented Programming in Ambienttalk. In Dave
Thomas, editor,Proceedings of the 20th European Conference on Object-
oriented Programming (ECOOP), Lecture Notes in Computer Science.
Springer, 2006.

[VDM +06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonzalez, Theo
D’Hondt, and Wolfgang De Meuter. Ambient references: Addressing ob-
jects in mobile networks. Technical Report VUB-PROG-TR-06-10, Vrije
Universiteit Brussel, 2006.

20

