
ShoppingScenario(customerId, guiActor) ::
actor(object ({

 discount: vector.new();
 cashier: void;
 shopDesk : DeleteUponDisjoinRef(discover("shop"));

 requestPayment()::{
 cashier: DeleteUponDisjoinRef(discover("payment"));

 when(ticket = cashier<-processPayment(customerId),
 {

guiActor<-show(ticket);
ticket.save();
shopDesk<-requestDiscount();
 })

 }

 receiveDiscount(discount) :: {
 discounts.add(TimeBoundRef(discount.getExpiryTime(),

 discount.getProduct()));
 }

 receiveInfo(from, info) :: {
 guiActor<-showText(from, info)

 }

 addWishList(productId)::{
 productlist.add(KeepAlwaysRef("productId"))

 }
});

The developer uses annotations to assist the collector to determine what to do
with inaccessible references.

Who is responsible for garbage collection?

Problem Statement

Devices consist of a set actors publishing and requiring services holding
remote object references to actors on other devices.

Elisa Gonzalez Boix, Tom Van Cutsem, Stijn Mostinckx, Jessie Dedecker, Wolfgang De Meuter
Programming Technology Laboratory - Vrije Universiteit Brussel - Belgium

An Annotation System for Semi-Automatic Garbage Collection

Developer

Motivation

Autonomous concurrent devices roaming freely collaborating
via adhoc wireless networks.

Disconnections are frequent

The system can never know if a remote reference is temporally lost or
if it will be no longer accessible.

remote
 object

reference

Device

payment
actorpayment

actor

local
references

Device

I provide payment
services

request for
payment

request for
payment

I provide
printing services

printing
actor

Communication

Failures

Context-Aware Applications

payment
actor

printing
actor

?
inaccessible

remote
object

reference

The System

Manual approach

Automatic Transparent
Garbage Collection

Semantics of the application are required to clear objects.

A combination of both:

Semi-Automatic Garbage Collection

DeviceDevice Device

Home Conference

printing actor printing actor

I do not need this
reference by the end

of the conference

Do not delete this
reference, I'll come

back

Ubiquitous Shopping Scenario

Receiving a discount
ticket

PayingAdding a product
to my wish list

Delete reference after
disjoin

Payment
Actor

Payment
Actor

Keep the reference

Info
Actor

Info
Actor

Reference valid for 15
days

Discount
Actor

Discount
Actor

Annotation System as an Aspect

Different events in relation to the remote
object references

(Annotations)

pointcut

Actions to be taken with the remote object
references

(Contract)

advice

Domain-specific language for garbage
collection.

Device

Device

Idiomatic expressions used in the contract conditions.

Solution

Marking every remote object reference with annotations is cross-cutting. http://prog.vub.ac.be/amop

pointcut advice

Ubiquitous Shopping Scenario

ForAll{
 call(discover("payment"))
}

Ref{event(disjoint)
 &&
 not(var(status,"InProgress"))

}

ForAll{
 call(discounts.add(discount))
}

{ when(
time = requestResource(
 discount.getExpiryTime()),
Ref{dueTo(time)})

}

ForAll{
 call(productList.add(data)}
}

Ref{}

ForAll{
 call(discover("shop")
}

Ref{not(event(disjoint))
 && var(status, "checkOut")
}

KeepAlwaysRef()

TimeBoundRef()

DeleteUponDisjoinRef()

DeleteUponDisjoinRef()

