An Annotation System for Semi-Automatic Garbage Collection

Elisa Gonzalez Boix, Tom Van Cutsem, Stijn Mostinckx, Jessie Dedecker, Wolfgang De Meuter
Programming Technology Laboratory - Vrije Universiteit Brussel - Belgium - X

Programming Technology Lab

Motivation Problem Statement Solution
Device
| | i

Autonomous concurrent devices roaming freely collaborating
via adhoc wireless networks.

|

Different events in relation to the remote
object references

(Annotations)

’ pointcut

Actions to be taken with the remote object > advice
references

1Y ., (Contract)
Who is responsible for garbage collection?

Developer } Mawach

| provide
printing services

request for
payment

7 request for

rovide payment
P Py payment

services

Annotation System as an Aspect

The System ’ Automatic Trarfsparent
local Garb ection Ubiquitous Shopping Scenario
references
remote T
object payment pointcut > advice
payment reference actor
actor

DeleteUponDisjoinRef ()

Devices consist of a set actors publishing and requiring services holding
remote object references to actors on other devices.

A combination of both:
ForAll{ Ref {not (event (disjoint))

: . . call (discover ("shop") && var (status, "checkOut")
Semi-Automatic Garbage Collection | |

Disconnections are frequent

DeleteUponDisjoinRef ()

» The developer uses annotations to assist the collector to determine what to do
with inaccessible references.

ForAll { Ref {event (disjoint)

call (discover ("payment")) i

/ % - \ not (var (status, "InProgress"))

Ubiquitous Shopping Scenario }
‘4/_‘ Adding a product
““inaccessible printing to my wish list

_______ Receiving a discount i EoundRETgY
- { when (
ForAll ({ time = requestResource (
remote payment actor call (discounts.add(discount)) discount.getExplryTIme SN
ObJeCt actor } Ref { dueTo (tlme) })
reference }
The system can never know if a remote reference is temporally lost or KeepAlwaysRet ()
if it will be no longer accessible.
ForAll({
COnteXt'Aware ApplicatiOnS call (productList.add (data) } Ref {}
}
Home - = = — Conference, = = = = Delete reference after '
P =~ -~ e Keep the reference e 4 £ ience valiciiolgy
’ - =~ SN T isjoin days
\ —_
/ N) | \ \ P |diomatic expressions used in the contract conditions.
\ | , I
\ < \\‘/k//’ |] ShoppingScenario(customerId, guiActor) :: receiveDiscount (discount) :: {
\ = D\ ~—~- actor (object ({ discounts.add (| TimeBoundRef (discount.getExpiryTime (]},
N | / 7 discount.getProduct ()))|
~ / N - & P - discount: vector.new(); }
e, * I cashier: void;
\ shopDesk :| DeleteUponDisjoinRef (discover ("shop")) receivelInfo (from, info) :: {

guiActor<-showText (from, 1info)

Do not delete this
reference, I'll come
back

requestPayment () : : { }
cashier:| DeleteUponDisjoinRef (discover ("payment"));

| do not need this
reference by the end
of the conference

Domain-specific language for garbage
addWishList (productId) : : {

when (ticket = cashier<-processPayment (customerId), productlist.add (f8eepAlwaysRef ("product Id") COI IECtIO n .
{ }
guiActor<-show (ticket) ; Y)
ticket.save();
shopDesk<-requestDiscount () ;

})

printing actor }

> Marking every remote object reference with annotations is cross-cutting. http ://prOg . VU b.aC. be/amOp

Semantics of the application are required to clear objects.

