
ShoppingScenario( customerId, guiActor ) ::  
actor( object ({

  discount: vector.new();
  cashier: void;
  shopDesk : DeleteUponDisjoinRef(discover("shop"));

  requestPayment()::{
    cashier: DeleteUponDisjoinRef(discover("payment"));
  
     when( ticket = cashier<-processPayment(customerId),
       { 

guiActor<-show(ticket);
ticket.save();
shopDesk<-requestDiscount();
 })

  }

  receiveDiscount(discount) :: {
 discounts.add( TimeBoundRef(discount.getExpiryTime(),

                                discount.getProduct()));  
  }  

  receiveInfo(from, info) :: {
 guiActor<-showText(from, info)

  }

  addWishList(productId)::{
 productlist.add( KeepAlwaysRef("productId"))

  }
});

The developer uses annotations to assist the collector to determine what to do 
with inaccessible references.

Who is responsible for garbage collection?

Problem Statement 

Devices consist of a set actors publishing and requiring services holding 
remote object references to actors on other devices. 
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Developer

Motivation

Autonomous concurrent devices roaming freely collaborating  
via adhoc wireless networks.

Disconnections are frequent

The system can never know if a remote reference is temporally lost or 
if it will be no longer accessible.
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Manual approach
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Semantics of the  application are required to clear objects.

A combination of both:

Semi-Automatic Garbage Collection
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Annotation System as an Aspect

Different events in relation to the remote 
object references 

(Annotations)

pointcut

Actions to be taken  with the remote object 
references 

(Contract)

advice

Domain-specific language for garbage 
collection.

   

Device

Device

Idiomatic expressions used in the contract conditions.

Solution

Marking every remote object reference with annotations is cross-cutting. http://prog.vub.ac.be/amop

pointcut advice

Ubiquitous Shopping Scenario

ForAll{ 
  call(discover("payment")) 
}

Ref{event(disjoint) 
   && 
  not(var(status,"InProgress"))

}

ForAll{ 
  call(discounts.add(discount))
}

{ when( 
time = requestResource(
     discount.getExpiryTime()),
Ref{dueTo(time)})

}

ForAll{ 
  call(productList.add(data)} 
}

Ref{}

ForAll{ 
  call(discover("shop") 
}

Ref{not( event(disjoint))
     && var(status, "checkOut")
}

KeepAlwaysRef()

TimeBoundRef()

DeleteUponDisjoinRef()

DeleteUponDisjoinRef()


