
Design of a Multi-Level Reflective Architecture
for Ambient Actors

Dieter Standaert1 Éric Tanter1? Tom Van Cutsem2??

1 DCC, University of Chile
Santiago – Chile

{dstandae,etanter}@dcc.uchile.cl

2 PROG Lab, Vrije Universiteit Brussel
Brussels – Belgium
tvcutsem@vub.ac.be

Abstract. Ambient-Oriented Programming (AmOP) languages are es-
pecially designed for software development for pervasive and ambient
computing. In this context, reflective abilities are highly desired to be
able to create adaptive software. In this paper, we propose a multi-level
reflective architecture for ambient actors, instantiated in the AmOP lan-
guage AmbientTalk. Our architecture is structured according to different
levels of abstraction, distinguishing between the metalevel for regular
objects, active objects and objects representing aspects of the virtual
machine (VM) itself. The architecture adopts at its core the concept of
mirrors and mirror methods to safeguard object encapsulation even in
the presence of powerful reflective facilities, such as access to the VM.

1 Introduction

In this paper, we approach pervasive computing and ambient intelligence from a
software engineering point of view and focus on a metalevel architecture for so-
called ambient-oriented programming (AmOP) languages [5]. AmOP is a novel
paradigm of computing that advocates distributed programming languages that
are explicitly geared towards creating software for pervasive ad hoc networks
populated by mobile and/or embedded devices.

It is a given fact that distributed programming is a difficult task. Pervasive
and ambient computing further complicate matters as mobile networks feature
an open network topology, where devices may join and leave at any point in time,
where reliance on central servers is usually impractical and where the connection
between two communicating devices is often volatile due to the limited wireless
communication range. These phenomena are unavoidable consequences of the
hardware and cannot be dealt with automatically by a language or library. If no
support to deal with the above phenomena is offered by a programming language,
a software developer will be forced to deal with them in an ad hoc manner in
each application, over and over again.

This paper describes a multi-level reflective architecture to address the above
problem. Rather than requiring the developer to manually deal with the difficult
? É. Tanter is financed by the Milenium Nucleous Center for Web Research, Grant

P01-029-F, Mideplan, Chile.
?? Research Assistant of the Fund for Scientific Research, Flanders, Belgium (F.W.O.)

issues engendered by the ambient hardware at the base level, where this code
would be severely tangled with and scattered throughout the functional code,
we want to offer the programmer a means to express a solution for the issues
in a generic manner, at the metalevel. We structure this metalevel according to
different levels of abstraction, which gives rise to what is known as a multi-model
reflection framework [8]. This structure is simply derived from the fact that not
all distribution-related issues are expressible at the same level of abstraction, as
will be explained later on.

The paper is organized as follows. In Section 2, we describe the concrete
ambient-oriented programming language AmbientTalk [5] in which we instantiate
our architecture. Furthermore, we describe mirror methods [9], which form the
basic language construct to shift from base to metalevel in our architecture and
which avoids a number of security issues related to reflection by sticking to the
extreme encapsulation principle [3]. Section 3 describes the proposed multi-level
reflective architecture, identifying different layers of abstraction at the metalevel
and, for each of these layers, identifying the useful aspects of the language to
reify. The conclusion summarizes the salient points of the architecture.

2 Motivation and Related Work

Because our work on ambient actors is realized in the programming language
AmbientTalk, we first briefly discuss the major characteristics of this AmOP lan-
guage [5]. We then focus on two trends in sound design principles for metalevel
architectures, which we aim at combining in our proposal: first, we survey related
work on how multi-model reflection frameworks (MMRF) enhance the structur-
ing of metafacilities; second, we discuss mirror methods, a language construct
that preserves the extreme encapsulation of objects in the presence of reflection.

2.1 AmbientTalk

AmbientTalk [5] is a distributed object-oriented programming language with
features that explicitly aid in the construction of software to be deployed on
mobile (ad hoc) networks. It has built-in provisions for discovering remote soft-
ware entities without relying on centralised name servers and for asynchronous
communication. The AmbientTalk language discriminates between passive and
active objects. Passive objects are regular objects without any concurrency or
distribution provisions, which are used to model typical object-oriented appli-
cations. AmbientTalk’s passive objects are not instantiated from classes; rather,
AmbientTalk has a prototype-based object model where objects are created ex-
nihilo or by cloning or extending other objects. This makes objects entirely
self-sufficient: they do not depend on a separate class description.

AmbientTalk’s active objects are heavily based on actors [1], but unlike pure
actors which are functional, AmbientTalk actors may be stateful. More precisely,
AmbientTalk follows the ambient actor model [4]. In this model, the behavior

Active Object
Layer

Passive
Object Layer

Behavior
Mailboxes

Actor (active object)

Actor message
communication
Passive object

Passive object
communication

Fig. 1. The AmbientTalk double-layered object model: an active object is implemented
by a behavior passive object (and aggregates), as well as 8 mailboxes.

and state of an actor is implemented by passive objects. Every actor has one spe-
cial passive object which is called its behavior. The methods which this passive
object implements are used to process the incoming messages of the actor. All
of the other passive objects to which the behavior object may point are never
shared with other actors. Passing passive objects in messages to other actors
results in a pass-by-copy semantics, enforcing the containment principle of am-
bient actors, which shields passive objects from concurrent accesses. Figure 1
illustrates AmbientTalk’s double-layered object model.

In addition to its behavior, an ambient actor is characterized by a number of
mailboxes. Some mailboxes are used for actor communications, while others are
used for service discovery. First, four mailboxes are used to store the messages an
actor has received, processed, sent and delivered. These mailboxes are called the
inbox, the rcvbox, the outbox and the sentbox. An actor encapsulates exactly
one thread of execution, which is an eternal event loop, taking a message from
its actor’s inbox, processing it and putting it in its rcvbox. Because an actor has
but one thread, race conditions within an actor cannot occur. Communication
between two actors is always asynchronous. When an actor a sends a message
to another actor b, it puts the message in its outbox, addressed to b. The actor
system (i.e. the virtual machine) is responsible for delivering this message by
putting it in b’s inbox. When the message has been delivered, the actor system
moves the message from a’s outbox to its sentbox. The beneficial properties of
asynchronous communication in mobile networks are described elsewhere [5, 7].

AmbientTalk actors can discover one another via AmbientTalk’s service dis-
covery mechanism. This mechanism consists of another set of mailboxes. An actor
may advertise its services on the network by adding patterns to its providedbox.
This mailbox describes what services an actor provides. Conversely, an actor may
indicate to the discovery mechanism that it requires a certain service by adding
a pattern to its requiredbox. When two devices running an AmbientTalk vir-
tual machine encounter one another, they exchange these required and provided
patterns. When a match is detected, the actor requiring the service is notified.
Notification happens via a dedicated mailbox known as the joinedbox: when a
provider actor is found, a reference to this actor is added to the requiring actor’s

joinedbox. When the provider actor leaves the network, the reference is moved
from the requiring actor’s joinedbox to its disjoinedbox. In short, these four
mailboxes allow an actor to discover other actors in its ambient.

The current implementation of AmbientTalk uses the dual-layer object model
described above, but its reflection architecture permits only the introspection
of the mailboxes of an actor. We now turn to several metalevel architectures
that incarnate sound design principles, and which we aim at combining in a
comprehensive reflective architecture for AmbientTalk and its dual-layer object
model.

2.2 Multi-Model Reflection Frameworks

Okamura et al [8] describe a multi-model reflection framework (MMRF) for a
distributed programming system known as AL-1/D. The motivation behind the
MMRF is to properly structure the metalevel so that several views on base-level
objects are provided. In other words, the MMRF does not associate a single
metaobject with each base object, but rather a set of metaobjects, each providing
a representation of the base-level object at a different level of abstraction. For
instance, AL-1/D provides the following metamodels:

– An operation model describing message sends and the behavior of objects.
– A resource model representing an object at the virtual machine level.
– A statistics model giving information of the object’s state and resource

occupation in the environment.
– A distributed environment model, reifying an object’s location, the se-

mantics of remote method invocation and other objects in its environment.
– A migration model describing how objects may migrate to remote hosts.
– A system model describing the semantics of the above models themselves.

As noted by Okamura et al. [8], the advantage of such an approach is that the
metalevel programmer may choose the right level of abstraction to fit his needs.
For example, for some metaprograms viewing an object as a structured collection
of method and field slots is a convenient representation, while other, more low-
level metaprograms (such as a garbage collector) may want to view objects as
segments in memory. In a context as complex as distributed computing, even
more pervasive and ambient computing, the design principle of the MMRF is
highly valuable to simplify the metalevel interface according to semantical views.

The application of a MMRF to ambient actors in AmbientTalk has been
explored by one of the authors in previous work [10]. The previously-described
metalevel architecture is structured according to a distinction between structural
and behavioral reflection and consists of three layers:

1. The base level consisting of actors, their mailboxes and the messages they
send and receive.

2. A structural metalevel providing a reification of messages and an actor’s
behavior, mailboxes, required and provided services and its identity.

makePoint(aX,aY):: object({

x:aX; y:aY;

moveTo(nX,nY)::{ x:=nX; y:=nY; }

cloning.copy()::{ this; }

mirror.invoker()::{

methods()::{ meta.methods(); }}

});

Fig. 2. Prototype point object featuring
a cloning method and a mirror method.

Meta repres-
entation of p

a Point p a Point Mirror
invoker

meta

fields
methods

...

moveTo
copy

...
Clients reflect on p
only via the mirror

methods

Mirror/creator
relation

Fig. 3. Mirror on a (passive) point object.

3. A behavioral metalevel defining an actor’s message delivery protocol, ser-
vice discovery protocol and a distributed garbage collection protocol.

The present work builds upon that metalevel architecture. However, rather
than structuring the metalevel according to the structural/behavioral distinc-
tion, we propose a different structuring based on levels of abstraction. The
structural and behavioral parts of a reified concept are now bundled together.
Furthermore, the architecture described in [10] does not describe a language
construct to ensure that reflection does not break encapsulation. This has been
addressed by mirror methods, explained below.

2.3 Mirror methods

A fundamental principle in the context of open networks is that of extreme en-
capsulation [3]: an object should be subject to message passing only, retaining
control over all operations done over it. This precludes the provision of omnipo-
tent cloning or reflection operators, which can act without the object’s consent.

AmbientTalk already features cloning methods, i.e. methods that when in-
voked, result in the creation of a clone of the receiver, and the evaluation of the
method body in the scope of the clone (Fig 2, method copy). The advantage of
a cloning method over a clone operation is that the method body can be used to
initialize the clone without any need to expose potential encapsulation breaching
accessors to allow state modification from the outside. This concept has been
extended to reflection, by relying on the notion of mirror methods [9]. First of all,
mirrors have been proposed as a structuring mechanism for metalevel facilities:
instead of reflecting on an object directly, metalevel facilities are exposed by
special objects called mirrors [2]. Relying on mirrors serves a number of design
principles, such as encapsulation (they separate the implementation of reflective
facilities from their interface), stratification and ontological correspondence. We
refer the interested reader to [2] for details.

A mirror method is a method whose evaluation results in the creation of a
mirror object providing metalevel facilities on the receiver. The precise set of
metalevel facilities provided by a mirror is controlled by the receiver itself, since
the body of the mirror method determines the expressive power of the mirror,

i.e. what it has access to. In [9], a reflective API based on mirror methods for
ChitChat – the precursor of AmbientTalk – is presented. It relies on the in-
troduction of a new pseudo-variable, meta, which gives access to the metalevel
representation of an object. Any object has a reference to its metalevel represen-
tation, has full access over it, and can hand out a selected set of capabilities to the
outside world via mirrors. A mirror object shares the meta of its creator. Fig. 2
shows a mirror method invoker on points, formulated in AmbientTalk: when
invoked, the invoker mirror method returns a mirror on the receiver, which has
one method, methods. Hence, if p is a point, p.invoker().methods() returns
the table of all the methods of p. One can then use this table to introspect and
invoke methods on p reflectively (Fig. 3).

The reflective API presented in [9] covers both structural (access to methods
and fields) and behavioral (listeners on execution events in the object) aspects.
Furthermore, a number of facilities are provided to control access rights given
over reifications. For instance, it is possible to hand out a mirror on a method
of an object while ensuring that only the signature of the method can be intro-
spected, but the method cannot be invoked reflectively.

The formulation of mirror methods in [9] is only in the context of passive
objects (mirrors are passive objects, mirror methods are declared in passive
objects), and hence needs to be extended to be applicable for ambient actors as
provided by AmbientTalk.

2.4 Motivation

This work aims at designing a comprehensive reflective architecture for ambi-
ent actors in AmbientTalk, by sticking to the fundamental design principles of
mirror methods and multi-model reflection. To reach this objective, we extend
the concept of mirrors and mirror methods to fit the passive and active object
model of AmbientTalk. We can then expose reflection on the different metalevels
we consider: reflection on passive objects, on active objects, and on the VM. At
each level, a comprehensive set of reflective capabilities is provided.

3 Multi-level Reflective Architecture for Ambient Actors

The proposed reflective architecture for ambient actors as provided by Ambi-
entTalk is illustrated in Fig. 4. It distinguishes three layers of abstraction. The
first two layers correspond to the double-layered object model of AmbientTalk,
distinguishing between reflecting upon passive or active objects. The third layer
is the virtual machine layer, which allows a metaprogrammer to reflect upon the
low-level machinery upon which the other layers are built. More precisely:

– The metaobject protocol for the passive object layer is based on mirror
methods as explained in Sect. 2.3.

– At the active object layer, we provide an adaptation of mirrors and mirror
methods in order to give metalevel facilities on actors respecting the encap-
sulation properties of mirror methods, but taking into account the issues

VM Layer

Active Object
Layer

Passive Object
Layer

Actor

VM Actor

VM Facilities

Actor message
communication

Active mirror

Actor's
passive objects

Passive object

Passive object
communication

Passive mirror

Mirror/creator
relation

Fig. 4. Overview of the Multi-level Reflective Architecture for Ambient Actors.

proper to actors: concurrent activities, message-based communication, and
no sharing of passive objects between actors to avoid race conditions. We
introduce the notion of active mirrors, which are themselves actors.

– To include reflection on the virtual machine in our language, the facilities of
the virtual machine at the VM layer are propagated to the level of actors.
Actors encapsulating such VM facilities are called VM actors: A VM actor
provides a set of mirror methods that give controlled and tailored access to
the VM facilities it represents, depending for instance on the client requesting
access to such facilities (e.g. the central VM actor in Fig. 4).

Compared to the current AmbientTalk architecture, our proposal includes
mirrors at both object levels (passive and active) in our to respect the extreme
encapsulation principle, and also includes specific entities for reflecting upon the
VM, a facility that AmbientTalk does not currently provide. Note that meta-
level programming is done in AmbientTalk itself, hence explaining why mirrors
(either passive or active) live among application objects. The same reason justi-
fies the presence of VM actors at the active object layer (the implementation of
AmbientTalk is not metacircular, the VM being written in Java).

3.1 The Passive Object Layer

The metalevel of the passive object layer is accessible via mirror methods as
discussed in Sect. 2.3. Mirrors may expose both structural and behavioral infor-
mation about a passive object. For space reasons we do not recapitulate all the
structural and behavioral aspects exposed by mirrors, instead we refer to [9].

A mirror is itself a passive object, which means that it can only be accessed by
the actor which owns its base-level object. If a passive mirror object is handed
out to another actor, it will be copied along with its base-level object. The
receiving actor can hence only reflect on a copy of a base-level object via a copy
of its mirror. This decision preserves the containment principle of actors, even
at the meta-level.

3.2 The Active Object Layer

The active object layer is populated by actors that communicate via asyn-
chronous message passing, as opposed to synchronous method invocation oc-
curring at the passive object layer. The meta-level is structured according to the
same ontology, consisting of active mirrors, which are actors describing other
actors (this design is similar to the use of active metaobjects in ABCL/R [12]).
Communication with active mirrors is realized via asynchronous message pass-
ing, which is the only communication abstraction available at this level.

To preserve extreme encapsulation, active mirrors can only be accessed by
invoking active mirror methods on base-level actors, analogous to the mirror
methods in the passive object layer. This allows a base-level actor to selectively
hand out different kinds of active mirrors on itself, offering more or less reflective
power depending on the client requesting the active mirror. The facilities that
can be handed out in an active mirror describe the core concepts of ambient
actors (Sect. 2.1): behavior (“facade” passive object), mailboxes (four mailboxes
to regulate message sending, four mailboxes to regulate service discovery) and
one thread used to process incoming messages. More precisely:

– behavior: an active mirror can offer structural information about the actor
based on its passive behavior object. This allows metalevel code to e.g. list
all messages an actor understands and to send such messages reflectively via
active mirrors. An example is given below.

– mailboxes: an active mirror can reify the eight mailboxes of an actor. This
allows metalevel code to introspect the mailboxes to e.g. discover what pat-
terns an actor requires or provides. Furthermore, the active mirror offers a
means to replace a mailbox object with an alternative object with a different
implementation. For example, one may substitute the default inbox mail-
box, which is implemented as a FIFO queue, by a priority queue such that
messages may be processed according to a certain priority. Behavioral reflec-
tion at the actor level is achieved by registering observers with mailboxes via
the active mirror, corresponding to how behavioral reflection is done with
passive mirrors [9]. For instance, a mailbox observer can be triggered each
time messages are added to or removed from a mailbox.

– thread: reification of the thread of an actor allows for extensive debugging,
e.g. forcing step-by-step execution of the thread. A reification of the thread
could also be used to divert from the standard serialized message processing
scheme of base-level actors. For example, an actor’s base-level methods may
be annotated as read-only and based on this information, meta-level code
may fork an actor’s thread to process these methods truly in parallel as long
as no mutator method is running. Such language customizations are useful
for actors in e.g. concurrency libraries.

Messages exchanged by actors are passive objects containing the sender ac-
tor, the receiver actor, a selector and a table of arguments. Messages are reified
at the active object layer as mirrors on such passive objects. The mirrors may
additionally contain metadata or annotations that can be added and inspected

by metalevel code (e.g. a message priority level to be taken into account by a
priority-based implementation of the inbox).

Example. Consider the following domotics actor which represents the interface
to a domotics system. The actor provides a number of methods to control the
pervasive hardware in a futuristic house:

domoticsController :: actor(object({

openGarage() :: { ... }

toggleLights(room, brightness) :: { ... }

...

amirror.controls():: {

messages()::{ metaActor#messages(); }

receiveMessage(messageMirror) :: {

metaActor#receiveMessage(messageMirror) }}

}));

Asynchronous message sending in AmbientTalk is denoted by a # token. An
actor may specify a mirror method returning an active mirror using the amirror
keyword. Within such methods, an actor may refer to its metalevel representation
using the metaActor keyword. The introduced distinction between meta and
metaActor is exactly the same as the distinction between this and thisActor
in AmbientTalk: the former refers to the (meta of the) passive object itself,
while the latter refers to the (meta of the) actor in which the passive object is
contained.

The controls mirror method allows client actors to introspect all of the
messages the controller actor understands, such that they may discover which
domotics-related operations it can perform. This allows e.g. a user interface actor
on a resident’s PDA to discover such functionality dynamically and to invoke
the controls reflectively (assuming it acquired a mirror on the toggleLights
message):

toggleLightsMsgMirror.setArguments(["kitchen", 0.8]);

aController#controls()#receiveMessage(toggleLightsMsgMirror);

3.3 The Virtual Machine and its meta-facilities

The virtual machine of AmbientTalk allows actors to abstract from such hard-
ware details as the type of machine on which they are running and the kind of
wireless networking protocol they use for remote communication. It has been
noted that in mobile networks, applications may want access to this informa-
tion because there is much more heterogeneity in the type of devices, operating
systems and network protocols used in such networks [6].

Extensible Virtual Machine. The heterogeneity encountered when dealing
with mobile networks furthermore requires an ambient-oriented virtual machine

Built-in VM FacilitiesPlugins

VM Layer

Active Object
Layer

WiFi

Bluetooth

Comm DGC

MemoryCPU

RM

Actor message
communication

Actor

VM Actor

VM Facilities

Active mirror

Mirror/creator
relation

Comm

Extends
faciltity

DomoCtrl
VMSetup

commUser

commAdmin

Fig. 5. Exposing VM facilities with VM actors residing at the Active Object Layer.

to be extensible. In our approach, the virtual machine supports extensibility
in the form of plugins. The core functionality of the virtual machine (such as
the message delivery protocol or the service discovery protocol) is customizable
and extensible via such plugins. A plugin is not reflective code, but rather an
extension of the VM written in the implementation language of the VM (Java
in the case of the AmbientTalk VM). Plugins must be dynamically-loadable so
that a choice between different plugins may be postponed until runtime, without
requiring all possible plugins to be statically compiled into the VM.

Fig. 5 shows our architecture for exposing metalevel facilities. Note that
we discriminate built-in facilities and plugin-provided facilities. For instance, a
communication protocol facility is built in the VM, while the WiFi and Bluetooth
extensions are provided via plugins.

VM Actors. The VM should reify its facilities via an interface which allows
actors to examine and toggle between available plugins or which allows them to
load specific plugins themselves. VM facilities are reified as special actors known
as VM actors (Fig. 5). Of course, not all actors in the ambient environment
should have permission to access all these metafacilities so a means of imposing
access control is necessary. This is again achieved via mirror methods. A VM
actor does not offer access to the VM services directly, but rather exposes a set
of mirror methods with differing access rights depending on what actor invokes
the method. These mirror methods return mirror actors which offer the proper
methods to access (and modify) VM-specific information.

When extending the VM with plugins, the plugin provider must also provide
the corresponding VM actor(s) for base-level actors to interact with the new
facilities. This can be done either be defining new VM actors, or by extending
existing VM actors. In Fig. 5, the Comm VM actor combines the default commu-
nication facilities of the VM with the Bluetooth and WiFi extensions. We show
an example using this VM actor below.

Typical facilities. The following is an enumeration of VM-specific information
which we deem interesting to make available to base-level actors, based on ideas
presented in [8, 10], as well as our own findings:

– Hardware/Software profiling (HSP): this service is a reification of all of
the facilities a VM has to its disposal, be they hardware facilities (such as a
WiFi and Bluetooth card) or software facilities (such as an input or output
stream for communication with the user or other programs). An actor may
introspect the profile to know which facilities, plugins, etc. are available on
the virtual machine. For example, an agent can remotely introspect a VM
to ensure it fits a required profile before the agent migrates to it.

– Network profiling (NP): a reification of the identity, position, etc. of the
VM in the network.

– Communication layer (Comm): this service is more concerned with the
connection type (IPX, TCP/IP, ...) as well as the management of different
network protocols (Bluetooth, WiFi, Infrared, etc.).

– Distributed Garbage Collection (DGC): this is a facility to offer actors
control over the memory reclamation of actors. To support remote commu-
nication, the VM stores special references to local actors which are remotely
addressable, such that these actors will not be garbage collected locally. Un-
fortunately, this precludes an actor from ever being garbage collected at all.
Leasing strategies such as employed by the JINI networking technology [11]
can be implemented at the metalevel via such a DGC service. A leased ref-
erence to an actor must be explicitly renewed in time by remote actors. If
it is not renewed before time, the special VM reference to the actor can be
cleared via the DGC VM actor such that the local actor can be garbage
collected if it is no longer used locally.

– Resource management (RM): a service to offer actors control over the
amount of memory and CPU time used. This also includes the scheduling
of actor computation. A metalevel programmer may want to assign different
priorities to different actors.

– Discovery protocol (DP): a service which controls how services are pub-
lished on the network. For example, in order to discover other AmbientTalk
virtual machines, the VM periodically broadcasts a discovery signal. Actors
may want to control the frequency of broadcasting to e.g. save battery power.
Another aspect of this protocol is how required and provided patterns are
encoded and how they are matched. Allowing actors to specify a custom
matching or encoding protocol for such patterns allows them to e.g. resolve
small discrepancies between different versions of the same service interface,
or to use Semantic Web ontologies standards such as RDF.

– Message delivery system (MDS): The message delivery system of a vir-
tual machine handles the message transmission between actors. This system
is primarily important for being able to change the quality of service (QoS)
parameters of a message. Is it guaranteed to be delivered? Is it guaranteed
to be delivered at most once, in sequence, . . . ?

Example. Consider a domotics controller actor DomoCtrl with the following
requirements w.r.t. communication protocols: if Bluetooth is available, it is pref-
ered; otherwise, encrypted WiFi should be used if it is available; if not, the
default protocol is used. First of all, this requires DomoCtrl to be able to in-
trospect the available communication protocols, and possibly to change the one
used for its own communications.

Comm :: actor(object({

amirror.getCommUser():{/* getPtcls(), getMyPtcl(), setMyPtcl(p) */ }

amirror.getCommAdmin():{/* CommUser + getDefaultPtcl(), setDefaultPtcl(p) */ }

getCommServices()::{

if(isAdmin(sender), this.getCommAdmin(), this.getCommUser());}

}))

Above is the skeleton of the code for the Comm VM actor, which reifies at the
actor level the communication layer of the VM (Fig. 5). In order to distinguish
between normal users and administrators, its getCommServices method checks
if the caller (obtained with the keywork sender) has administrator privileges or
not. If not (e.g. DomoCtrl), it returns the mirror produced by the mirror method
getCommUser, which contains only actor-specific services; if yes (e.g. a VMSetup
actor), then the returned mirror includes a more extensive set of services, includ-
ing the possibility to change the default protocol used for all actors in the VM.
This illustrates how reflective access to the VM can be customized via mirrors
on VM actors (see Fig. 5).

Now, the adaptive DomoCtrl can make use of the Comm VM actor as follows
in order to properly set its communication protocol during initialization:

DomoCtrl :: actor(object({
init():{
cs: Comm#getCommServices();
ptcls: cs#getPtcls();
if(contains(ptcls, "Bluetooth"), cs#setMyPtcl("Bluetooth"),

if(contains(ptcls, "Encrypted-WiFi"),
cs#setMyService("Encrypted-WiFi")))

}...}));

First, the list of communication services is obtained. Since DomoCtrl is not an
administrative actor, the commUser active mirror is returned (bound to cs).
Then, the actor checks if Bluetooth is available, and if so, sets its communication
protocol to Bluetooth. Else, if encrypted WiFi is available, it is set, otherwise
no change is done so the global default protocol will be used.

4 Conclusion

We have proposed a multi-level reflective architecture for ambient actors and its
instantiation in the AmOP language AmbientTalk. Our architecture combines

(a) the engineering benefits of multi-model reflection [8] by structuring meta-
level facilities according to different levels of abstraction (passive objects, active
objects, virtual machine), (b) the extreme encapsulation properties of mirror
methods [9] by ensuring that objects that are reflected upon can themselves
restrict access to their meta-level facilities depending on the client, and this at
all levels, and (c) the power offered by an extensible virtual machine in which
facilities are made accessible to actors so that they can customize their execution
environment, as well as adapting their own behavior according to it. Compared
to the actual MOP provided in AmbientTalk [5], our proposal goes further with
respect to the considered facilities (the AmbientTalk MOP is restricted to the
actor layer), and respects the extreme encapsulationp principle thanks to its
systematic use of mirror methods.

The implementation of the proposed architecture is currently on-going. Fu-
ture work includes addressing performance considerations, refining our design of
the virtual machine layer and actors, and performing concrete experiments.

References

[1] G. Agha. ACTORS: a model of concurrent computation in distributed systems.
The MIT Press: Cambridge, MA, 1986.

[2] G. Bracha and D. Ungar. Mirrors: Design principles for meta-level facilities
of object-oriented programming languages. In Proceedings of the 19th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2004), pages 331–344, Vancouver, British Columbia,
Canada, Oct. 2004. ACM Press. ACM SIGPLAN Notices, 39(11).

[3] W. De Meuter, É. Tanter, S. Mostinckx, T. Van Cutsem, and J. Dedecker. Flex-
ible object encapsulation for ambient-oriented programming. In ACM Dynamic
Language Symposium (DLS 2005), San Diego, CA, USA, Oct. 2005.

[4] J. Dedecker and W. Van Belle. Actors for mobile ad-hoc networks. In L. Yang,
M. Guo, J. Gao, and N. Jha, editors, Embedded and Ubiquitous Computing, volume
3207 of Lecture Notes in Computer Science, pages 482–494. Springer-Verlag, Aug.
2004.

[5] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter.
Ambient-oriented programming in AmbientTalk. In D. Thomas, editor, Proceed-
ings of the 20th European Conference on Object-oriented Programming (ECOOP
2006), Lecture Notes in Computer Science, Nantes, France, July 2006. Springer-
Verlag. To Appear.

[6] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for reflective middle-
ware. Communications of the ACM, 45(6):33–38, 2002.

[7] C. Mascolo, L. Capra, and W. Emmerich. Mobile computing middleware. In
Advanced lectures on networking, pages 20–58. Springer-Verlag, 2002.

[8] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming
system with multi-model reflection framework. In Proceedings of the International
Workshop on Reflection and Meta-level Architectures, pages 36–47, Tokyo, Japan,
Nov. 1992.

[9] É. Tanter. Mirror methods — reconciling reflection and extreme encapsulation.
In ECOOP Workshop on Object Technology for Ambient Intelligence, July 2005.

[10] T. Van Cutsem, J. Dedecker, S. Mostinckx, and W. De Meuter. A meta-level ar-
chitecture for ambient-aware objects. In ECOOP Workshop on Object Technology
for Ambient Intelligence, July 2005.

[11] J. Waldo. Constructing ad hoc networks. In IEEE International Symposium on
Network Computing and Applications (NCA’01), 2001.

[12] T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent lan-
guage. In N. Meyrowitz, editor, Proceedings of the 3rd International Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA 88), pages 306–315, San Diego, California, USA, Sept. 1988. ACM Press.
ACM SIGPLAN Notices, 23(11).

