
Ambient References:
Addressing Objects in Mobile Networks

Tom Van Cutsem∗ Jessie Dedecker∗ Stijn Mostinckx†

Elisa Gonzalez Theo D’Hondt Wolfgang De Meuter
Programming Technology Lab

Vrije Universiteit Brussel – Belgium

{tvcutsem,jededeck,smostinc,egonzale,tjdhondt,wdmeuter}@vub.ac.be

ABSTRACT
A significant body of research in ubiquitous computing deals with
mobile networks, i.e. networks of mobile devices interconnected
by wireless communication links. Due to the very nature of such
mobile networks, addressing and communicating with remote ob-
jects is significantly more difficult than in their fixed counterparts.
This paper reconsiders theremote object referenceconcept – one
of the most fundamental programming abstractions of distributed
programming languages – in the context of mobile networks. We
describe four desirable characteristics of remote references in mo-
bile networks, show how existing remote object references fail to
exhibit them, and subsequently proposeambient references: remote
object references designed for mobile networks.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—dis-
tributed languages; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Design, Languages

Keywords
pervasive computing, ubiquitous computing, mobile ad hoc net-
works, remote object references, language design

1. INTRODUCTION
The past couple of years, pervasive and ubiquitous computing have
received more and more attention from academia and industry alike.
Wireless communication technology and mobile computing tech-
nology have reached a sufficient level of sophistication to support

∗Research Assistant of the Fund for Scientific Research Flanders,
Belgium (F.W.O.)
†Author funded by a doctoral scholarship of the Institute for the
Promotion of Innovation through Science and Technology in Flan-
ders (IWT-Vlaanderen)

the development of a new breed of applications. Such applications
involve software running on mobile devices surrounded by amo-
bile network. The network’s wireless capabilities, combined with
the mobility of the devices, results in applications where software
entities spontaneously detect one another, engage in various collab-
orations, and may disappear as swiftly as they appeared.

At the software-engineering level, we observe that thus far, no gen-
eral stable, robust and standard ubiquitous computing platform has
emerged. Moreover, although there has been a lot of active research
with respect to mobile computing middleware [22], we see little in-
novation in the field of programming language research. Although
distributed programming languages are rare, they form a suitable
development tool for encapsulating many of the complex issues
engendered by distribution [6, 7]. The distributed programming
languages developed to date have either been designed for high-
performance computing (e.g. X10 [10]), for reliable distributed
computing (e.g. Argus [20] and Aeolus [32]) or for general-purpose
distributed computing in fixed, stationary networks (e.g. Emerald
[16], Obliq [9], E [25]). None of these languages has been explic-
itly designed for mobile networks. They lack the language support
necessary to deal with the radically different network topology.

This paper directly focusses on distributed programming language
support for mobile networks. This language support is founded
on what we have previously named theambient-oriented program-
ming paradigm [12]. This novel paradigm of computing is based
on the hardware phenomena fundamentally distinguishing mobile
from fixed networks and advocates languages which explicitly in-
corporate language support for dealing with them. Within the bound-
aries of this paradigm, this paper reconsiders one of the most funda-
mental language abstractions of a distributed object-oriented pro-
gramming language: the remote object reference. We show why
there is a mismatch between remote object references in their cur-
rent incarnation in contemporary distributed languages and the dy-
namically demarcated mobile networks in which they must operate.

The paper contributes to the intersection of two research areas, to
wit programming language design and ubiquitous computing. Four
characteristics of remote references are identified which are nec-
essary to expressively address and communicate with objects in
mobile networks. Subsequently, a family of referencing abstrac-
tions namedambient referencesare introduced which exhibit those
necessary characteristics. In order to motivate the need for better
referencing abstractions in mobile networks, we first discuss the
impact of the mobile hardware on software in section 2. After pre-
senting the characteristics in section 3, we introduce a small actor-

based language which we have used to explore ambient references.
Ambient references themselves are introduced in section 5 and are
shown to exhibit the characteristics in section 6. We illustrate the
implementation of ambient references on top of the actor language
in section 7. Before concluding, we summarize related work and
discuss limitations and future work.

2. MOTIVATION
Based on the fundamental characteristics of mobile hardware, we
distill a number of phenomena which mobile networks exhibit. These
phenomena form the direct basis for a characterisation of the de-
sired functionality of remote object references to be used for soft-
ware deployed in mobile networks in section 3. Because these phe-
nomena are so innate to the hardware from which a mobile dis-
tributed system is composed, they form a solid foundation for the
characteristics of remote object references explained later on.

There are two discriminating properties of mobile networks: ap-
plications are deployed onmobiledevices which are connected by
wirelesscommunication links with a limited communication range.
The type of device and the type of wireless communication medium
can vary, leading to a diverse set of envisaged applications. De-
vices might be as small as coins, embedded in material objects
such as wrist watches, door handles, lamp posts, cars, etc. They
may even be as lightweight as sensor nodes or they may be ma-
terial objects “digitized” via an RFID tag1. Devices may also be
as “heavyweight” as a cellular phone, a PDA or a car’s on-board
computer. All of these devices can in turn be interconnected by
a diverse range of wireless networking technology, with ranges as
wide as WiFi or as limited as IrDA.

In such a hardware landscape, the most modest type of applica-
tions are so-calledcollaborative applications[17] which are based
on e.g. a number of PDAs or laptops spontaneously interacting
with one another. Typical applications are distributed whiteboards,
collaborative text editors, instant messengers and file sharing ser-
vices, etc. Slightly more futuristic applications can be envisaged
where e.g. airports, railway stations and bus stops are equipped
with wireless base stations, allowing a passenger to obtain cus-
tomized information about his itinerary. Products in shops can be
tagged with digital information, accessible by customers such that
they can query clothes for preferred sizes or food for the amount
of calories it contains. In logistics, applications abound as prod-
ucts can be tagged on assembly lines, routed to the correct stock,
carrier and store. Buildings become pervaded by wireless sensor
networks which measure the structure’s strength or which can be
used to monitor air pollution. Cars communicate with one another
and with intelligent roads to avoid accidents and traffic jams. These
applications are not far-fetched, they exist or are being prototyped
as we speak.

Mobile networks composed of mobile devices and wireless com-
munication links exhibit a number of phenomena which are rare in
their fixed counterparts. In previous work, we have remarked that
mobile networks exhibit the following phenomena [12]:

Volatile Connections. Mobile devices equipped with wireless me-
dia possess only a limited communication range, such that
two communicating devices may move out of earshot unan-
nounced. The resulting disconnections are not always per-

1Such tags can be regarded as tiny computers with an extremely
small memory, able to respond to read and write requests.

manent: the two devices may meet again, requiring their con-
nection to be re-established. Quite often, such transient dis-
connections should not affect an application, allowing both
parties to continue with their conversation where they left
off. These volatile disconnections do expose applications to
a much higher rate of partial failure than that which most
distributed languages or middleware have been designed for.

Ambient Resources.In a mobile network, devices spontaneously
join with and disjoin from the network. The same holds for
the services or resources which they host. As a result, in con-
trast to stationary networks where applications usually know
where to find their resources via URLs or similar designa-
tors, applications in mobile networks have to find their re-
quired resources dynamically in the environment. Moreover,
applications have to face the fact that they may be deprived
of the necessary resources or services for an extended period
of time. In short, we say that resources areambient: they
have to be discovered on proximate devices.

Autonomous Devices.In mobile wireless networks, devices may
encounter one another in locations where there is no access
whatsoever to a shared infrastructure (such as a wireless base
station). Even in such circumstances, it is imperative that
the two devices can discover one another in order to start a
useful collaboration. Relying on a mobile device to act as
infrastructure (e.g. as a name server) is undesirable as this
device may move out of range without warning [17]. These
observations lead to a setup where each device acts as an au-
tonomous computing unit: a device must be capable of pro-
viding its own services to proximate devices. Devices should
not be forced to resort to a priori known, centralized name
servers.

As the complexity of applications deployed on mobile networks in-
creases, the above unavoidable phenomena cannot keep on being
remedied using ad hoc solutions. Instead, they require more princi-
pled software development tools specifically designed to deal with
the above phenomena. For some classes of applications – such as
wireless sensor networks – such domain-specific development tools
are emerging, as can be witnessed from the success of TinyOS [18]
and its accompanying programming language NesC [13].

If the above scenarios are modelled and implemented via an object-
oriented language, they can be abstractly interpreted as a set of mo-
bile object systems embedded in a wireless ether. In such systems,
remote object references form the glue between the different object
systems. However, classical remote object references break down
when these object systems physically move about in unpredictable
ways. In the following section, we describe necessary and desirable
characteristics of remote references for mobile networks.

3. ADDRESSING OBJECTS IN MOBILE
NETWORKS

This section identifies four characteristics which remote object ref-
erences should exhibit in order to adequately cope with the above
hardware phenomena. We discuss the driving forces behind the
characteristics and show how remote object references in contem-
porary distributed object-oriented languages fail to exhibit them.

3.1 Provisional Object References
In order to acquire initial remote object references to objects on
remote devices, these objects have to be initially addressed via an

external description. This description can take the form of a simple
string representing an object’s name (as e.g. in Java RMI) or it may
be a more intensional description of a service (e.g. an interface type
in JINI or an XML advertisement in JXTA). In traditional, station-
ary, distributed systems a lookup service or name server is used to
resolvesuch an external description into a remote reference. In a
network composed of mobile autonomous devices, it is clear that
such lookup services are too inflexible for acquiring the addresses
of services. Not only do they superimpose a fixed infrastructure on
the mobile network, most lookup servers such as e.g. Java RMI’s
registry make use of synchronous communication to resolve names
into references. A client queries a name server for a name, awaits
the response, and either receives a remote object reference or is
faced with an exception when the requested object is currently un-
available. However, in mobile networks, the chances of a requested
remote service being temporarily unavailable are much higher than
in stationary, administered networks. As the client cannot monitor
changes in the lookup service, it would be forced to periodically
poll the name server for the service’s presence.

In order to deal with the inflexibility of simple lookup services,
more elaborate service discovery protocols have been devised [23].
Such protocols typically employ a peer discovery protocol based
on broadcasting. For example, JINI uses such an approach to al-
low clients and services to spontaneously join an unadministered
network [30]. In such discovery protocols, a remote reference to
a service is often acquired asynchronously via publish-subscribe
communication. The discovery mechanism allows clients to ex-
press their interest in a particular service and notifies them asyn-
chronously when it becomes available on the network, usually pass-
ing along a reference to the remote service object.

Asynchronous notification of discovery events has drawbacks of its
own, however. It is well-known thatcallbackmethods used to pro-
cess asynchronous replies often lack sufficient context information
to process the result. At the time the callback method is invoked,
the notified object has to reconstruct the state and the scope it was
in when it performed the request that gave rise to this asynchronous
notification. Often, this problem can be mitigated by registering a
distinct callback object (an event listener) per calling context. Even
then, a manual transfer of the computational context to the callback
object may be required because it does not have access to all vari-
ables available in the object that spawned it. Also, one has to be-
ware of subtle concurrency issues such as race conditions: the dis-
covery mechanism’s thread invoking the callback operates on the
same scope and in parallel with the original thread that spawned
the discovery request.

In short, remote object references must be acquired from an exter-
nal description either synchronously, an impractical solution when
services are often unavailable, or asynchronously, leading to a frag-
mentation of the code requesting the reference and the code using
the reference. The root cause of the problem is that remote object
references lack the ability to explicitly represent “objects yet to be
discovered”. There is no means to construct ad interim remote ob-
ject references which may act as a stand-in for objects which are
not available yet. Such a stand-in would allow the client to send
messages to and pass around the stand-in object when the real ser-
vice is not yet discovered. The discovery mechanism would then
replace the stand-in by a real service when such a service would
become available. Such an abstraction is very reminiscent of the
concept of afuture[5], discussed in more detail in section 4.2.

The volatile connectionsand ambient resourceshardware phe-
nomena combined imply that applications will often have to refer
to remote communication partners which have not been discovered
yet. These phenomena thus lead us to define theprovisionality
characteristic: the ability of remote object references to provision-
ally denote “objects yet to be discovered” via an external descrip-
tion.

3.2 Resilience to Partial Failures
Once a remote reference has been acquired, it forms a communica-
tion channel between two objects, each located on another device.
Volatile connections, omnipresent in mobile ad hoc networks, have
a large impact on the behaviour of these communication channels.
Disconnections usually immediately percolate into the application
level by means of exceptions. For example, consider an instant
messaging application where one instant messenger tries to send a
text message to a remote instant messenger:

try {
instantMessenger.accept(userTextMessage);

} catch (RemoteException e) {
deal with the exception

}

The obligation to deal with potential exceptions whenever a mes-
sage is sent to a remote object precludes the developer from ab-
stracting from temporary ortransientnetwork disconnections, and
requires clumsywhile -loops or more advanced scheduling code
to retry sending the message. Note that our argument against dis-
connection exceptions is no argument in favour of completely trans-
parent distributed communication, which is impossible to attain
even in fixed networks [31]. It should, however, be possible for
the software developer to specify in an orthogonal manner when
a disconnection may be regarded as transient and may be ignored,
and when it must be dealt with as a permanent failure.

In many languages or middleware a disconnectionbreaksthe re-
mote object reference, rendering it useless. This behaviour is justi-
fied when failures are exceptional [25], but in networks where fail-
ures have a high chance of being only transient, a different mech-
anism is called for. In mobile networks, the expected behaviour is
for the remote reference to reconnect upon re-establishing a con-
nection. What is needed is a kind of “elastic” remote reference:
when the remote device it points to moves out of range, the refer-
ence should be maintained until the device comes back in range.

Thevolatile connectionshardware phenomenon, the fact that con-
nections are often intermittent due to device mobility, leads us to
postulate theresilience characteristicof remote object references:
their ability to survive transient network partitions.

3.3 Transitory Addressing
Remote object references act as a designator for a remote object.
A remote object reference is fundamentally different from a local
object reference because it cannot address the remote object with
a conventional memory address, as that object lives in a separate
address space. Therefore, a remote object reference typically uses
a unique ID (UID) which may be constructed from e.g. a hash of
the remote object’s address, the IP or MAC address of the remote
host, the time at which the object was created, etc. The remote

reference only exists in one’s mind’s eye: a remote object reference
is implemented as an empty local object storing the UID, requiring
the remote host to store an export table mapping the UID to a local
object reference.

Unfortunately, a remote reference using a UID-based address to
denote its remote object is inflexible. Remote object references are
intimately coupled to the internal UID which are only valid as long
as the particular remote object remains available. In mobile net-
works, identical services may be available on different devices. As
a device roams, it is desirable to make abstraction from the specific
devices hosting a service. For example, it is typically irrelevant to
a user which wireless base station provides his or her laptop with
internet access. Similarly, when using a cellular phone, a user is
not interested in which antenna connects it to the telecom network.
Moreover, as the user moves out of range of one service provider,
the desired behaviour is for the application to reconnect to an equiv-
alent provider, i.e. the “dangling” reference from client to service
should rebind to an equivalent, yet not identical remote service ob-
ject. UIDs are usually partly comprised of the address of a specific
machine and would disallow such rebinding. Being able to seam-
lessly rebind remote references is a crucial step towards more self-
reconfigurable mobile applications. Additionally, UIDs usually do
not persist across crashes of the host device or across version up-
dates of the remote service: either the remote reference becomes
dangling forever, or it remains bound to an obsolete object.

Because both the UID and the export table are generally inaccessi-
ble implementation details, the programmer is forced to deal with
the problem of rebinding by allocating anewremote object refer-
ence. The old one has become unusable and must be discarded. The
fact that a new remote object reference has to be allocated for ad-
dressing the conceptually identical object opens up the possibility
for unnecessary and subtle bugs if not all clients of the old remote
reference consistently update their variables to contain the new re-
mote reference.

In short, UIDs do not serve the role of a loosely-coupled, device-
independent, intensional description of a remote object; their only
purpose has been unique identification of a single object during
the lifetime of a single application process. However, theambi-
ent resourceshardware phenomenon, the fact that remote services
appear and disappear spontaneously, leads us to consider remote
object references which use atransitory addressingscheme to des-
ignate remote objects. Relationships with remote objects may be
transitory and require the remote reference to rebind to other, equiv-
alent but not identical remote objects.

3.4 Group Communication
Mobile networks are often comprised of a good many of devices or
services. A sensor network is one exemplar, but one can conceive
a mobile network in a supermarket comprised of base stations, cus-
tomer PDAs or wearable computers, cash registers and a myriad of
RFID tags on products and shelves. In such mobile networks, it
is often required to address not a single service, but rather a group
or even all services of a certain type. For example, one may query
for “all goods in the freezer whose expiration date is today”, “all
products in the customer’s shopping cart”, “all cars driving next to
my car”, “the PDAs of all participants of the meeting”, ...

In many distributed languages or middleware frameworks, groups
of remote objects have to be represented as a collection of solitary
remote object references. Unfortunately, this solution is not com-

positional: it precludes the programmer from treating the collection
as a single remote reference that denotes an entire group of objects.
This results in decreased expressiveness and leads to an increase in
error-prone, duplicated boilerplate code to e.g. iterate through the
collection to send a message to all members of the group. More
importantly, in mobile networks one is often interested in denot-
ing a group ofproximateobjects (more precisely: remote objects
hosted by proximate devices) only. It becomes very impractical to
let an application manually handle such an unstable collection of
proximate remote references. The application would manually and
perpetually have to track the arrival and departure of nearby devices
and deal with the influence of such events on the elements of the
collection.

Rather than treating groups of remote objects artificially as a col-
lection of single remote objects, collaborations in mobile networks
require the plural of a remote object reference, agroup reference
atomically denoting an entire group of objects with a single refer-
encing and communication abstraction.

3.5 Summary
In light of our analysis of the behaviour of objects deployed on mo-
bile networks in section 2, we have distilled four characteristics of
remote object references which are deemed necessary to properly
express certain communication patterns in mobile networks.

Provisional References.Volatile connections and ambient resources
require remote object references to be integrated with the ser-
vice discovery mechanism of the language in order to con-
struct provisional remote references using an external de-
scription of a remote object. Such provisional references are
an ad interim representation of the remote object which may
not have been discovered yet.

Resilient References.Volatile connections are often transient in
mobile networks. Remote object references should therefore
not simply break when their underlying connection gets dis-
rupted. They should be able to rebind upon reconnection and
allow communication along the reference to resume.

Transitory References. Ambient resources imply that the avail-
able services in the environment are in a constant state of
flux. Quite often, relationships with particular instances of a
service are transitory such that remote references should be
able to rebind to other service instances. Such reconfigurable
remote references must be decoupled from the low-level ob-
ject identity of the objects they bond with. Moreover, this
decoupling allows such references to become persistent in
the face of hardware crashes: they may rebind to the service
when its host device recovers.

Group References.Mobile networks may be comprised of large
amounts of small devices. In such a hardware setting, col-
laborations involve group communication. Groups will usu-
ally not be statically determined, but rather form in an ad
hoc manner as devices roam. In order for programs to scale,
an application programmer must be able to abstract from the
parts and rather directly address and communicate with the
group as a whole.

In the next section the AmbientTalk kernel language is described,
serving as a computational framework for ambient references.

4. THE AMBIENTTALK KERNEL LANGUAGE
Before describing ambient references, we establish the computa-
tional framework in which they have been conceived along with
some necessary terminology. Ambient references have been imple-
mented in the actor-based ambient-oriented programming language
AmbientTalk [12], a language designed specifically for writing ap-
plications deployed on mobile networks. AmbientTalk has been
implemented as an interpreter written in Java. An interpreter ex-
ists for the J2ME platform, such that AmbientTalk also runs on
PDAs and smartphones. Currently, two AmbientTalk interpreters
communicate with one another via the standard TCP and UDP pro-
tocols, which may be carried both over wired ethernet and over
wireless fidelity (WiFi) networks. The language is primarily meant
as an exploratory research vehicle to validate our language design
experiments. It is conceived as a small kernel language, support-
ing a minimum of operations. Language extensions may then be
introduced via a metaobject protocol. A discussion of the MOP
is postponed to section 7. Ambient references are reflectively im-
plemented via the MOP. The kernel itself consists of a sequential
prototype-based language and an actor-based concurrency and dis-
tribution layer.

Every device hosts at least oneactor systemand such actor systems
may communicate with one another via a wireless link. An actor
system is an abstract representation of a virtual machine process
and is said tohosta set of actors. Our model of concurrency and
distribution is heavily inspired by the actor model of computation
[1] and its incarnation in stateful active objects in languages such as
the ABCL language family [34, 33]. The AmbientTalk kernel dis-
criminates between passive objects and actors or active objects (in
what follows, we use the term actor and active object interchange-
ably). An active object has aninboxor incoming message queue,
containing unprocessed messages and anoutboxor outgoing mes-
sage queue, containing sent but not yet transmitted messages. An
actor encapsulates its own thread of execution which is an eternal
“event loop”, dequeueing the next message from its inbox and pro-
cessing the corresponding method. Internal concurrency within an
actor is prohibited to preclude race conditions on its state. Further-
more, active objects are the only objects which can be remotely
addressed. It follows that they are both the unit of concurrency
and distribution. A passive object is always owned by exactly one
active object. If it would be passed on to another actor, a copy is
passed instead to uphold this restriction. The details regarding this
double-layered object model can be found in previous work [12].

Actors communicate with one another asynchronously. When an
actora sends a message to another actorb, the interpreter places
the message ina’s outbox, addressed tob. From that point on,
the kernel takes care of delivering the message tob. AmbientTalk
does not explicitly introduce remote actor references as proxies in
the language. Instead, remote actors are represented by theirmail
address, as in the original actor model. If a message is sent to a re-
mote actor’s mail address, the kernel transfers the message to that
actor’s inbox whenever a connection with its host device is avail-
able. The kernel induces a partial order on message transmission: it
may deliver messages in any order, but two or more messages from
one sender to the same recipient actor are delivered to that recipient
in sending order. The kernel acknowledges a successful delivery by
removing the delivered message from the sender’s outbox.

From this point on, all source code examples are pseudo code.
We refrain from using AmbientTalk’s syntax for didactic purposes.
However, for the purposes of correctness and reproducibility, and

for those readers familiar with AmbientTalk’s syntax, we have pro-
vided the AmbientTalk equivalent of the relevant pseudo code ex-
amples in an appendix.

4.1 Service Discovery in AmbientTalk
Because AmbientTalk was conceived for mobile networks, it has a
built-in service discovery mechanism. Based on a publish-subscribe
mechanism, this mechanism allows actors on different devices to
get acquainted via an external description. This external descrip-
tion takes the form of aservice type. Service types are best com-
pared with empty Java interface types (the typical “marker” inter-
faces used to merely tag objects). A service type is a subtype of
one or more other service types. It denotes a set of actors which
conceptually provide the same service. Service types are univer-
sal: they serve as a common ontology between all devices in the
network. Service types are not associated with a set of methods.
Whether or not service types are aligned with interface types and
hence used for static typechecking is an orthogonal design decision
which is not further pursued in this paper.

An actor may declare its compliance with one or more service
types, informing the kernel that the actorprovidesthe services de-
noted by the service types. From that moment on, the actor is dis-
coverable by other actors. In order to distinguish itself from other
actors providing the same service type, an actor may accompany its
service type advertisement with a property object whose attributes
represent the service’s static properties. The property object is pig-
gybacked onto the list of provided service types sent in reply to a
discovery request by a remote device. This allows remote actors to
quickly filter a potential communication partner based on its prop-
erties without engaging in further remote communication. An ac-
tor may declare that itrequiresone or more actors compliant with
a certain service type. Once it does, the kernel informs the actor
every time a requested service actor (a serviceprovider) becomes
available (joins) or disconnects (disjoins).

The publish-subscribe mechanism is implemented by the interpreter
as follows. Each interpreter periodically broadcasts its presence on
the network. When two unacquainted interpreters “hear” one an-
other, they engage in a protocol where they exchange the service
types required by their local actors. Subsequently, each sends the
other a list of mail addresses (and property objects) denoting ser-
vice providers of the requested type. Local actors are then joined
with remote actors. When either interpreter disconnects, both in-
terpreters notify their joined actors that they have disjoined: their
provider actor is currently unavailable. Further details pertaining
the discovery mechanism such as the manner in which actors are
notified of join and disjoin events are given in section 7.

As an example, consider an instant messaging application deployed
on PDAs or cellular phones where different “instant messenger”
service actors may exchange text messages or files whenever they
are in each other’s proximity. Although the example may seem a
bit contrived, it is a generic example of a collaborative application.
Messengers may be substituted with agendas, sensors, players in a
multiplayer game, etc. The text messages they exchange can stand
for appointments, weather updates, traffic information, etc. Every
instant messenger provides theInstantMessenger service:

servicetype InstantMessenger < Service;

method makeInstantMessenger(nickname) {

return new actor {
provide (InstantMessenger);
...

}
}

The service typeInstantMessenger is declared to be a sub-
type of Service , the most general service type (cf. the use of
Object in Java). Upon creation, the instant messenger actor de-
clares that it provides this service.

4.2 Asynchronous Communication
As mentioned above, actors may send one another messages asyn-
chronously. Although the kernel provides basic support only for
simple one-way message sends without return value, AmbientTalk
has been reflectively extended with more suitable message passing
semantics, which is described here. Consider the scenario where
one instant messenger asks another instant messenger for its user’s
nickname:

nameFuture = anInstantMessenger#getNickname();

The # operator denotes an asynchronous message send. Ambi-
entTalk adopts asynchronous, non-blocking message passing be-
cause it decouples sender and receiver in time: a message can be
sent to a receiver even when it is not online (connected) at the time
the message is sent [22]. This is made possible by decoupling mes-
sage sending from message delivery: messages which cannot be
transmitted immediately are stored in the outgoing message queue
of the sending actor. Asynchronous message passing is the only
message passing style in which a sender can abstract from the state
of the connection with the receiver: any synchronous message pass-
ing style would either force an object to wait until the message has
been delivered or force it to deal with disconnection via an excep-
tion. Using synchronous message sending is impractical as it would
force actors to wait for remote actors that may be disconnected for
arbitrary amounts of time to reconnect, in order for the message to
be transmitted.

AmbientTalk employs the following parameter passing semantics
for asynchronous sends: passive objects are passed by copy (to up-
hold the ownership restriction, as noted above), actors are passed
by mail address. Asynchronous message sends are not easily rec-
oncilable with return values. It requires the use of either “callback”
methods or a program written in continuation-passing style in or-
der to process results. Such programming idioms clutter the code
which is why we adopt the use offuturesor promises, a frequently
recurring abstraction in concurrent and distributed languages (e.g.
in Multilisp [15], ABCL [34] and Argus [21]). An asynchronous
message send always immediately returns a future object, which
is a placeholder for the real return value. Once the real value is
computed, it “replaces” the future object; the future is said to be
resolvedwith the value.

Most languages, including the ones listed above, make a process
block on an unresolved promise or future (either implicitly by us-
ing its value in an expression or explicitly via e.g. atouch or
claim operator). One notable exception is the language E, which
disallows waiting for a promise to be resolved. Instead, E provides

awhen-construct which registers a closure, parameterized with the
determined value, with the promise. The promise schedules this
closure for execution when it has been resolved with a value. Am-
bientTalk adopts thiswhen-construct because it allows one to deal
with asynchronous replies in a completely non-blocking, event-
driven yet readable manner. In the instant messenger example above,
if the invoker ofgetNickname wants access to the nickname, it
can do so as follows:

when (nameFuture) lambda (name) {
println (name + " is online.");

}

Thelambda keyword denotes the construction of a lexically scoped
closure whose body is executed asynchronously at a later point in
time. Code directly following thewhen statement is guaranteed to
be executed before the body of the closure.

4.3 Why mail addresses are not sufficient
AmbientTalk’s distribution model directly inherits from the actor
model the notion of a mail address to represent remote actors. We
discuss why mail addresses do not yet exhibit the characteristics
discussed in section 3. Mail addresses are not provisional. A mail
address is always associated with a particular actor hosted on a lo-
cal or remote actor system. It is not possible to construct a mail
address from an external description (e.g. a service type) out of the
blue. Service typesdescriberemote actors, but are themselvesnot
actor addresses, e.g. it is impossible to address an available instant
messenger service by writing:

InstantMessenger#getNickname();

In order to properly express this intent, the service type has to be
resolvedinto a mail address first via the discovery mechanism. This
mechanism uses asynchronous callbacks to inform an actor that a
provider has been found which, as described in section 3.1, sepa-
rates the scope requiring the service from the scope having access
to the service, leading to fragmented code.

AmbientTalk actors’ mail addresses are resilient to the disconnec-
tions engendered by volatile connections. This makes them a suit-
able referencing abstraction for mobile networks: actors can send
one another messages while they are offline and be confident that
the message is transmitted whenever the connection between their
actor systems is restored. Of course, the catch is that the connec-
tion may never be restored. The actor model guarantees eventual
delivery, but because the guarantee is unbounded in time, it is not
a very pragmatic one. In other words, a mail address is perhaps
too resilient to failures: itneverbreaks, precluding the reference to
rebind to other actors. Mail addresses have the same limitations as
traditional UID-based references in this respect, so they do not fa-
cilitate transitory conversations. Finally, a mail address represents a
single actor, so it cannot be directly used for group communication.

Because of the shortcomings of mail addresses, we have introduced
a more advanced referencing abstraction, or rather a suite of them,
called ambient references. They are introduced in the following
section.

5. AMBIENT REFERENCES
An ambient reference is a local representative of a remote service.
Because services are modelled as actors, ambient references are
technically also implemented as an actors. In what follows, we de-
scribe ambient references from the point of view of an application
programmer. An explanation of how exactly ambient references ex-
hibit the characteristics from section 3 is postponed until section 7.

An ambient reference is a unidirectional reference to a remote ser-
vice actor created by aclient actor interested in discovering a par-
ticular service based on an external description. An ambient ref-
erence is initialized with a required service type. For example, a
client can address an instant messenger service actor by writing:

anInstantMessenger = ambient InstantMessenger;

After executing the above code, the variableanInstantMess-
enger contains an ambient reference which can bind to any avail-
able InstantMessenger service actor. Once an ambient ref-
erence has been constructed like this, objects can start sending it
messages just as is the case with regular remote object references.

An ambient reference can be in two states: at any point in time it
can beboundto an available remote service or it can beunbound.
When an ambient reference is bound, we refer to the bound remote
service as theprincipal. Figure 1 shows a graphical representa-
tion of an unbound ambient reference. It shows two devices, each
encapsulating an actor systemA andB. Their wireless communi-
cation links are represented as dotted circles which delimit their
communication range. Each actor system hosts a number of actors
(black circles).B hosts a service actor of a service type symbolized
as a diamond (actor with embossed diamond shape).A contains an
ambient reference (white circle) initialized with a service type (the
diamond shape). The reference is unbound (shown dangling and
dotted).

A B

Figure 1: An unbound ambient reference

Figure 2 depicts the situation where both devices move into one
another’s communication range. The ambient reference is now “in
range” of a service of the required service type and gets bound (its
shape fits into the provider’s mould). The reference is depicted
squiggly instead of rigid because its bond with the remote service
may be transient: ifB should move out of range, the reference
becomes dangling again and may rebind to other services.

Being a remote reference, an ambient reference is a communication
channel and hence responsible for the delivery of messages sent to
it to its principal. Because an ambient reference is an actor, mes-
sages sent to it are processed asynchronously. When a client sends
a message to an ambient reference, it does not wait for the message
to be forwarded by the ambient reference to its principal. Depend-
ing on the state of the ambient reference, messages are handled

A B

Figure 2: A bound ambient reference

as follows: if the ambient reference is bound to a principal upon
message reception, it forwards the message to the principal; if it is
unbound upon message reception, it stores the message internally
and forwards it whenever it gets bound in the future. Messages are
guaranteed to be forwarded to a principal in the same order as they
were accumulated by the ambient reference.

5.1 Design Dimensions in Object Designation
From our discussion in section 3 on which characteristics a remote
referencing abstraction for mobile networks is to exhibit, it is clear
that there is no singleright abstraction forall kinds of collabora-
tions. For example, collaborations with unknown devices encoun-
tered in a device’s direct proximity are likely to be transitory and
require a referencing abstraction which breaks when the service
moves out of earshot and rebinds to other services as the host device
moves about. On the other hand, an application running on a PDA
may have a reference to a service running on e.g. the user’s desktop
computer at home. Arbitrarily rebinding this reference to another
matching service while the user is off to work may not result in the
expected behaviour. As another example, consider the group com-
munication characteristic: some collaborations are point-to-point
while others are one-to-many or many-to-many.

These observations have lead us to scrutinize the different aspects
of the ambient referencing abstraction. Rather than designing one
uniform referencing abstraction, which is unable to capture all in-
teresting forms of collaboration, we have identified three axes along
which the behaviour of ambient references may vary. The remain-
der of this section describes each axis and the salient behaviours
identified on each axis. The result of composing the three orthogo-
nal axes gives rise to a taxonomy of ambient references. We discern
three dimensions in the addressing and communication behaviour
of ambient references:

The scope of binding determines which remote services an ambi-
ent reference may designate. In other words, it demarcates
the set of services to which the ambient reference may bind.

The elasticity of an ambient reference directly determines its re-
silience with respect to volatile connections. The more elas-
tic an ambient reference, the longer it can withstand discon-
nections and is able to resume its communication upon re-
connection.

The cardinality of an ambient reference determines the maximum
number of remote services it can represent simultaneously.
This can be one, a specific few or an unknown number of
services.

The differences in behaviour for each of these dimensions are dis-
cussed below.

Scope
The scope of binding of an ambient reference determines to which
remote services it may bind. Scoping is delimited using the service
types introduced before. An ambient reference initialized with a
required service typeR binds to a service actor providing a service
typeP if and only if P ≤ R, i.e. the provided service type must
be a subtype of the required service type. Conceptually, a provider
may offer a more specialized service than the one requested, but
not a more general one.

The more specialized the required service type, the narrower the
scope of binding of the ambient reference. Nevertheless, service
types are meant to denote groups of services. It frequently happens
that clients may want to distinguish between individual actors of
the same service type. As described in section 4.1, service actors
may more accurately describe their service by means of a property
object. Upon constructing an ambient reference using a required
service type, the scope of binding of the ambient reference may
be further restricted by means of a filter query over the properties
object of the service.

As a concrete example, recall that all instant messengers are of the
InstantMessenger service type. In order to discriminate be-
tween different messengers, each messenger may be attributed with
a user account id. Instant messengers attach thisaccountid at-
tribute to their provided service type as follows:

method makeInstantMessenger(id) {
return new actor {

provide (InstantMessenger, new object {accountid=id });
...

}
}

The property object acts as a struct whosevariable=value
fields denote the properties of the service. A filter query over this
property object is an arbitrary boolean expression over the fields of
the property object. If the filter query accesses an attribute which
the property object does not list, the query automatically fails. As
an example, consider the instant messenger service whose buddy
list is stored as a list of account ids. One instant messenger can
then establish a communication channel with a particular buddy by
creating the following ambient reference (providedbuddyId de-
notes the account id of a buddy in the buddy list):

ambient InstantMessenger m where m.accountid == buddyId;

In short, the scope of binding of an ambient reference consists of
a service type delimiting the set of services to which the reference
may bind. If necessary, the scope can be narrowed further by pro-
viding the ambient reference with a filter query.

Elasticity
The elasticity of an ambient reference directly determines its re-
silience with respect to volatile connections. We have chosen the
term elasticity because this conjures up the mental image of refer-
ences which stretch out whenever the remote actor they are pointing
to moves out of communication range. If the ambient reference is

elastic enough, it may survive the disconnection and allow the com-
munication to resume. If the disconnection lasts for too long, the
ambient reference snaps, like an elastic band under too much strain.
We discern three types of ambient references based on elasticity:

Fragile ambient references.These ambient references break the
bond with their principal from the moment the principal has
disconnected. As such, the communication channel repre-
sented by these ambient references is the most susceptible
to disconnection. However, remember that when an ambient
reference becomes unbound it can alwaysrebind later on, al-
lowing for the communication to resume.

Elastic ambient references.These ambient references are initial-
ized with an additionalelongation period. This is a timeout
period which specifieshow longa disconnection may last be-
fore the ambient reference breaks the bond with its principal.
Figuratively speaking, the higher the elongation period, the
“further” a principal’s device may wander from the ambient
reference’s device without breaking the bond. If a discon-
nection outlasts the elongation period, the reference reverts
to unbound status, similar to a fragile ambient reference. The
most important difference between elastic and fragile ambi-
ent references is that the former will not immediately rebind
to another service when it loses contact with its current prin-
cipal.

Sturdy ambient references.Sturdy ambient references are ambi-
ent references which never break the bond with their prin-
cipal upon disconnection. Hence, they come closest of all
to the standard notion of a remote object reference or that
of a mail address. The communication channel defined by a
sturdy ambient reference is most resilient to disconnections,
although it pays the price of decreased flexibility (it cannot
rebind to other principals). A sturdy reference may be ini-
tialized unbound. The sturdy reference then binds to the first
available principal and retains this bond indefinitely.

Although we have identified three different useful behaviours re-
garding elasticity, it is clear that fragile and sturdy references can
be subsumed under elastic references. An elastic reference covers
the entire spectrum between fragile and sturdy references, degener-
ating fragile references to those with a zero elongation period and
sturdy references to those with an infinite elongation period.

Depending on the kind of collaboration, different values for the
elasticity of an ambient reference are appropriate. Fragile ambi-
ent references, for example, are ideal for client-service interactions
that do not require session information, as it does not matter which
exact service is communicated with. Another useful application of
fragile ambient references is their use in encapsulating replicated
services. A fragile ambient reference may be declared with a suf-
ficiently narrow scope of binding such that it only denotes services
which are each other’s replica. Hence, it does not matter which
service is communicated with, assuming that the replicas are e.g.
interconnected via infrastructure to synchronize regularly.

Figure 3 depicts the ability of fragile and elastic ambient references
to rebind to similar services. The fragile ambient reference hosted
by actor systemA was bound to the service actor hosted by actor
systemB. As A andB move out of one another’s communication
range, the ambient reference becomes unbound. At a later point

in time, A encounters a new actor systemB’ hosting an equivalent
service within its scope of binding. The ambient reference rebinds
to the new service.

B'

B
A

Figure 3: Elastic ambient references may rebind.

When a client needs the guarantee that subsequent message sends
via an ambient reference are delivered to thesameservice actor, a
sturdy reference is a more suitable referencing abstraction. Sturdy
references most closely resemble mail addresses, but remain provi-
sional, i.e. they still allow a client to declare a stable communica-
tion channel to a remote service based on an external description.

Cardinality
The cardinality of an ambient reference determines how many re-
mote services it can denote simultaneously. Remaining consistent
with the terminology introduced by M2MI [17], we distinguish
three cases:

Ambient Unireferences A unireference denotesat most onere-
mote actor at a time. This is the kind of ambient reference
we have assumed until now and most closely corresponds to
a regular remote object reference.

Ambient Multireferences A multireference denotesat most nre-
mote actors at a time, wheren is the multireference’s cardi-
nality. It forms a useful group abstraction mechanism when
the members or the size of the group are known upfront.

Ambient Omnireferences An omnireference denotesall remote
actors in a given scope of binding which are available for
communication. It is a flexible communication mechanism
to discover an unknown number of services and to broadcast
information into the surrounding environment.

Multi- and omnireferences cannot simply be represented as a col-
lection of ambient unireferences. Consider trying to create a group
of 10 InstantMessenger actors based on a collection of am-
bient unireferences:

group = new Vector(10);
for i = 1 to 10 do

group.add(ambient InstantMessenger);

This code overlooks the fact that distinct ambient unireferences
may bind to thesameremote service object. Even if 10 distinct
InstantMessenger actors were available at the time the loop is
executed, the resulting collection may represent an arbitrary num-
ber of them because two or more unireferences can be bound to the
same principal. In order to correctly capture group communication,
ambient multi- and omnireferences are introduced. The following

code declares a fragile ambient omnireference (denoted by an aster-
isk suffix) to address all proximate instant messengers and a fragile
ambient multireference (denoted by an array suffix), addressing at
most 10distinct instant messengers. The multireference isnot an
array of 10 unireferences.

allMessengers = ambient* InstantMessenger;
tenMessengers = ambient[10] InstantMessenger;

Ambient multi- and omnireferences represent a set of remote ser-
vices, theprincipal set. A principal cannot occur in the set more
than once. Messages sent to an ambient multireference aremul-
ticast to all remote services in the set. Figure 4 illustrates how an
omnireference atA conceptually binds with all services of the same
type available in the network.

C

B
A

Figure 4: Ambient Omnireferences

Similar to the elasticity dimension, the cardinality dimension can
be regarded as a continuum of multireferences, unireferences being
multireferences with a cardinality ofn = 1 and omnireferences
being multireferences with a cardinality ofn = ∞.

Summary
Table 1 gives an overview of the different possible ambient refer-
ences which can be constructed by taking the cross-product of the
three dimensions discussed in this section. It also shows which am-
bient references are parameterized by what property. The scope of
binding is orthogonal to the other two dimensions. Therefore, only
the combinations of elasticity and cardinality are listed (parameter-
ized with the scopes – a service type and optional filter query).
Elastic references are parameterized with an elongation periode
expressed in milliseconds. Sturdy references are denoted with an
exclamation mark to stress that their bond is fixed. Multireferences
are parameterized with their cardinalityn, reusing typical array
syntax. Omnireferences are denoted with an asterisk to highlight
their unbounded cardinality. Each entry in the table denotes an ex-
pression which, when evaluated, returns a new ambient reference
of the indicated kind.

Table 1: Taxonomy of Ambient Reference Expressions
Scope of binding (s)

Elasticity→ Fragile Elastic(e) Sturdy!
Cardinality↓
Uni- ambient s ambient(e) s ambient! s

Multi- [n] ambient[n] s ambient(e)[n] s ambient![n] s

Omni- * ambient* s ambient(e)* s ambient!* s

5.2 Message Passing Semantics

The previous section has primarily discussed ambient references
from the point of view of a service designator: which and how
many services the reference binds to and how long this binding re-
mains intact after disconnection. This section focuses on ambient
references as a communication channel to the services they repre-
sent. We consider how message passing is influenced by the three
design dimensions. As shown below, the message passing seman-
tics of ambient references is independent of the scope of binding
and the elasticity of the ambient reference. On the other hand, the
cardinality of an ambient reference has a large impact on message
passing. We first detail the semantics for unireferences and gradu-
ally note the differences for increasing cardinalities.

UnireferencesAn ambient unireference is either bound or unbound.
Messages sent to it are never lost, regardless of the state of the
unireference. If it is bound, the message is forwarded to the princi-
pal. If it is unbound, messages are buffered until it becomes bound.
Message sends to unireferences return futures, whose resolved re-
sult is accessible using thewhen-construct as explained in section
4.2. The scope of binding and elasticity only influence the (re-
)binding behaviour of an ambient reference directly, thereby influ-
encing the message forwarding behaviour only implicitly.

Multireferences A multireference has a cardinalityn which is the
maximum number of principals it may bind to. Other than a uniref-
erence, a multireference can either be bound, unbound orpartially
bound (i.e. when onlyk < n principals are available). This re-
quires a generalisation of the message passing semantics employed
by unireferences. When a message is sent to a partially bound mul-
tireference, there are three possible semantics to consider. The mes-
sage may be sent to allk bound principals and then discarded, the
message may be stored until the multireference becomes entirely
bound, or the message may be sent to allk bound principals and
stored for then − k unbound principal slots. Ambient multiref-
erences employ the third semantics because it enables messages
to be sent independently to each principal at the moment it is en-
countered in the mobile network. On the one hand, discarding a
message right away is wasteful as the chances of a principal being
disconnected are high. On the other hand, waiting for all principal
slots of the multireference to be bound is wasteful as the chances of
all principals being connected at the same time are low. Moreover,
the third semantics is the correct generalization of the semantics of
unireferences, i.e. the semantics of a “multireference” with cardi-
nality n = 1 coincides with that of a unireference.

Messages sent to multireferences are multicast to all principals. As
a consequence, the message is duplicated and may result in multi-
ple replies. Message sends to multireferences returnmultifutures,
which are futures that may be resolved multiple times. Thewhen-
construct from section 4.2 remains equally applicable to multifu-
tures, only this time the closure is invokedevery timethe future
is resolved with an additional return value. Sturdy multireferences
come closest to standard group communication abstractions: they
encapsulate a fixed set and simply multicast received messages to
this set. The multireference enables an asynchronous multicast
whose return values may conveniently be collected via multifu-
tures and which buffers messages for those group members not
connected at message-sending time.

OmnireferencesAn omnireference differs from both uni- and mul-
tireferences in that it isalwayspartially bound. An omnireference
represents the set ofall available services in its scope of binding.
An omnireference is never completely unbound: an empty princi-

pal set is a valid set. Neither is it ever fully bound: there is no upper
bound on the size of its principal set. This has important repercus-
sions on the message passing semantics: it is clear that the message
passing semantics of uni- and multireferences cannot be upheld,
as this would require to somehow store a message for an infinite
number ofpotentialprincipals that may become available in the fu-
ture. If the message is stored only once and duplicated lazily as
new principals join the principal set, the omnireference would have
to remember which messages have already been forwarded to what
principal because principals may join and disjoin from the network
(and hence from the principal set) an arbitrary number of times.

Ambient omnireferences employ a much simpler message passing
semantics. When a message is sent to an omnireference, it is al-
ways multicast to all principals bound atthat moment. If the prin-
cipal set is empty, any message the omnireference receives is lost.
Figuratively speaking, the multireference shouts the message, with
the risk of no service being close enough to hear it. As the num-
ber of receivers of a message sent to an omnireference is unknown,
so are the number of replies. Hence, a client of the omnireference
employingwhen to gather return values should not make any as-
sumptions on the number of times the registered closure will be
invoked. Omnireferences are described in more detail in the fol-
lowing section.

5.3 Referencing Dynamic Object Clouds
Fragile ambient multi- and omnireferences form an ideal address-
ing mechanism to denote clouds of services whose boundaries are
vague and change constantly due to device mobility. Whereas sturdy
multireferences represent a logical link with services whose bond
is immune to the physical changes in the network, fragile multi- or
omnireferences represent a physical link which breaks and binds in
unison with changes in the network. Therefore, the principal set
of such references is generally intangible. However, an application
will at some point want to send a message to the cloud or grab hold
of each service “currently” in the set. Below, we describe language
support for fragile references to facilitate these communication and
designation properties.

Communication: Sustained Message Sends
With respect to message sending, clients of uni- and multirefer-
ences can abstract from the state of the reference (i.e. whether it is
bound or unbound) because messages are properly buffered. This
is no longer the case for omnireferences. As explained above, an
omnireference acts as black hole for messages when it is “empty”.
A typical programming idiom to deal with this fact is to send a
message repeatedly at regular intervals, increasing the chances that
it will eventually be received by an interested party. This idiom
expresses the intent to regularly broadcast information to nearby
devices. It is so inherently associated with the usage of omnirefer-
ences that the intent should be more directly expressible.

Ambient omnireferences may be sentsustainedmessages. These
are messages annotated with adecay period, specifying how long
the omnireference should store the sustained message. Upon recep-
tion of a sustained message, the message is multicast to the current
principal setand to any service joining the principal set within the
decay period. For example, to query the environment for all instant
messengers that are in range or come in range within the next 10
seconds, one may write:

messengers = ambient* InstantMessenger;
when(messengers#getNickname()@10000) lambda (name) {

println (name + " is online.");
}

The@10000annotation specifies a sustained message send ofget-
Nickname with a decay period of 10 seconds. This sustained
message is not continually broadcast during 10 seconds. Rather,
the message is multicast once to the principal set and then buffered
by the omnireference for the next 10 seconds. Ambient omnirefer-
encesdo notguarantee that a sustained message is delivered to each
principal only once. When services leave the principal set due to a
disconnection and reconnect within the decay period, they may re-
ceive the same sustained message multiple times. When duplicate
reception of a message is an issue, messages must be parameterized
with e.g. sequence numbers to identify duplicates.

Message sends to omnireferences which are not sustained can be
thought of as “ephemeral” messages having a decay period of 0
seconds. Message sends may declare an infinite decay period (via
an@forever syntax), which effectively allows the expression of
a message send targeting “all services of a given type that will ever
be encountered in the future”. Consider the following fragile am-
bient omnireference hosted by a device which is part of the infras-
tructure of e.g. a bus station which continually “beams” a refer-
ence to an appropriatetimetableActor into the environment
for interested passengers to query from their PDA. Note how, in
this scenario, the ambient reference plays the role of a service and
the remote service actors play the role of interested clients.

(ambient* Passenger)#announce(timetableActor)@ forever ;

The problem dealt with by sustained message sends (i.e. decreasing
the risk that messages are lost to empty omnireferences) is not di-
rectly dealt with by the elasticity dimension of ambient references.
For example, a sturdy omnireference is a reference that bonds with
all services of a certain type it ever encounters and which does not
break these bonds upon disconnection (it “memorizes” who it has
already encountered). When sending messages to such a sturdy
variant, one may communicate with all services encounteredin the
past, but without sustained messages one still lacks the ability to
communicate with services that will bindin the future. Sending
a sustained message with an infinite decay period to a sturdy om-
nireference effectively sends it to all services encountered in the
past and to be encountered in the future, without sending the mes-
sage twice to the same service actor.

Designation: Enumerating Object Clouds
Consider trying to enumerate the elements of the principal set of a
fragile omnireference. While enumerating the elements of this set,
new service actors may join the network; should these services be
taken into account during the enumeration? It is equally possible
that service actors which were enumerated or still have to be enu-
merated suddenly disjoin from the network; should those not yet
enumerated be silently skipped and should those already enumer-
ated be somehow revoked? It is clear that trying to enumerate a
volatile principal set shares all of the problems associated to the it-
eration over a collection object that is concurrently manipulated by
multiple threads.

In order to provide clean enumeration semantics, asnapshot op-
erator is introduced. Asnapshot takes any kind of ambient refer-
ence as its argument and always returns a new sturdy multireference
(referred to asthe snapshot) initialized with the set of all bound
principals of its argument reference and whose cardinality equals
the size of this initial principal set. A snapshot has those elasticity
and cardinality behaviours which most closely resemble traditional
group communication abstractions denoting a well-defined, fixed
set of remote services. Because all of its principal slots are bound
and sturdy, the snapshot will never bind with new services. The
principal set of a fully bound sturdy multireference is by defini-
tion constant and can thus be safely enumerated by clients. It is
never guaranteed that this enumeration accurately reflects the cur-
rent availability of services. Elements of the snapshot can be dis-
connected but because the snapshot is sturdy, the bond with the
service is maintained.

As an example, consider a PDA application that requires a printing
service. Assume that a fragile omnireference namedprinters
has been declared, denoting all available printing services on the
network. In order to present the user with a list of all available
services, one may enumerate asnapshot of the omnireference:

availablePrinters = snapshot (printers);
foreach printer in availablePrinters { ... }

5.4 Summary
We have introduced ambient references and have focussed on its
two roles as a referencing abstraction: how they designate and bind
to remote services and how they behave as a communication chan-
nel for messages. Ambient references are no single but rather an
entire family of referencing abstractions. The salient differences
between these abstractions stem from two properties: the refer-
ence’selasticity, the resilience of its bond to disconnections and
its cardinality, the maximum number of remote services it denotes.
A third property, the scope of binding, determines which remote
services are eligible principals for an ambient reference.

Ambient references feature asynchronous message passing with
return values. Return values are propagated back via futures or
multifutures and are accessible via thewhen-construct. Messages
are properly buffered by uni- and multireferences when they are
unbound. Omnireferences employ a broadcasting semantics, but
introduce sustained messages to address the loss of messages re-
ceived while they are unbound.

This section has described ambient references from the application
programmer’s point of view. The following section reconsiders am-
bient references with respect to the three characteristics outlined in
section 3. The implementation of ambient references is scrutinized
in section 7.

6. DISCUSSION
Section 3 has brought to light four necessary characteristics of re-
mote object reference abstractions in mobile networks. As ex-
plained in section 5.1, different collaborations require different kinds
of remote addressing abstractions. We discuss which ambient ref-
erences exhibit or lack which characteristics, making each member
of the ambient reference family suitable for a different kind of in-
teraction.

6.1 Ambient References are Provisional
Section 3.1 addressed the need for provisional remote object ref-
erences. Because required services are often unavailable, a remote
object reference should be able to address services which have not
yet been discovered. In doing so, the reference can abstract from
the temporary unavailability of the service and the application can
use the remote reference as if the service were already available.
Once the ambient reference is constructed with a required service
type, it can readily be used by clients as if it were a service of
the desired service type. In the case of uni- and multireferences,
the client may safely abstract from the fact that the reference may
be either bound or unbound. As previously discussed, messages
received by the reference while unbound are properly stored and
forwarded when a service becomes available.

In the same way that futures allow one to abstract from the return
value of an asynchronous message send (i.e. the result may or may
not yet have been computed), ambient references allow one to ab-
stract from the status of an asynchronous discovery request (i.e. a
suitable service has or has not yet been found). Messages sent to an
unbound ambient uni- or multireference are optimistically sched-
uled computations which are eventually triggered when a suitable
service is discovered. Ambient references “objectify” services to
be discovered, entirely similar to how futures “objectify” return
values to be computed. Hence, ambient references are the equiva-
lent of the well-known futures language abstraction transposed to
the context of service discovery. As such, they bring about the
same advantages: they do not require an application to be artifi-
cially fragmented into callback methods to process asynchronous
discovery events and allow a client to directly use a service (the re-
turn value of an asynchronous discovery request) in the same scope
where it was asked for.

6.2 Resilience and Elasticity
In section 3.2, we argued for resilient remote object references:
references which do not always align disconnections with excep-
tions or failures. This characteristic is founded on the observation
that disconnections in mobile networks are commonplace due to
the volatile wireless connections.

The prime factor influencing an ambient reference’s resilience is its
elasticity. Using this parameter, the resilience of a remote reference
to disconnections can be fine-tuned to the application’s needs. As
previously remarked, there is no single “right” way of dealing with
failures: some references ought to break immediately such that they
can rebind to other equally useful services, other references must
remain sturdy in the face of disconnections because their referent
must not change. Although fragile and elastic ambient references
may break upon disconnection with their principal, this does not
render them useless. Uni- and multireferences revert to an un-
bound state and any undelivered messages are properly buffered.
Although non-sturdy ambient references do not guarantee that they
will rebind to thesameprincipal, they still are a useful communi-
cation channel which resumes its message flow upon reconnection.

6.3 Transitory Relationships
Section 3.3 stressed the importance of a transitory addressing scheme
for remote references. Such a scheme promotes reconfigurable ref-
erences that may rebind to equivalent remote objects by decoupling
references from non-persistent object identities. The necessity for
such addressing is based on the flux of the devices in mobile net-
works. Similar services may be available on a multitude of hosts at

different locations, services are updated without global administra-
tion, devices may crash but also hibernate to save power.

There are two factors which determine an ambient reference’s tran-
sitory nature. The first factor is its scope of binding, which is delim-
ited using a service type and an optional filter query. Service types
allow clients to abstract from a service’s address (its UID or mail
address) similar to how URLs abstract from IP addresses, variables
abstract from memory addresses, file names abstract from files etc.
The second factor is the ambient reference’s elasticity. The prin-
cipal of elastic (and fragile) ambient references may change over
time, as long as it remains within the scope of binding, enabling
transitory relationships. Sturdy ambient references, once they are
bound, lose their transitory addressing ability, guaranteeing a sta-
ble communication channel to one particular service at the cost of
becoming as brittle as UID-based referencing mechanisms.

6.4 Group Communication
The cardinality design dimension of ambient references directly
addresses the need for expressively engaging in group communi-
cation. Whereas multireferences allow for a more conventional
representation of a set of remote services, ambient omnireferences
provide radically different messaging semantics. Omnireferences
allow for direct interaction withall services within their scope of
binding. Omnireferences are special because they allow one to de-
note an abstract collection of services intensionally. This collection
is impossible to construct via an enumeration of individual remote
references. When the connectivity of principals of an omnirefer-
ence is determined by the wireless communication range of the
host devices, ambient omnireferences form an ideal abstraction for
“shouting” information to proximate devices, such as the PDAs of
interested passersby in the bus station example.

7. IMPLEMENTATION
As discussed in section 4, ambient references have been imple-
mented in the actor-based ambient-oriented programming language
AmbientTalk. This minimal kernel features a metaobject protocol
for its actors, allowing one e.g. to change their default message re-
ceipt and message sending behaviour. It is this metaobject protocol
which allows AmbientTalk to be extended from within itself with
novel language features. The non-blocking futures and thewhen-
construct used previously have been implemented reflectively using
this MOP [12]. Ambient references themselves have been imple-
mented reflectively on top of the more low-level event-based dis-
covery system of the kernel explained in section 4.1. In order to
comprehend the implementation of ambient references, the rele-
vant parts of the MOP are first explained. Subsequently, it is shown
how ambient references are implemented as actors whose default
semantics has been altered using the MOP.

7.1 The AmbientTalk MOP
AmbientTalk actors feature first-class mailboxes; an actor has ac-
cess to the messages in its own mailboxes. Moreover, an actor can
monitor change in one of its mailboxes by registering mailbox ob-
servers with that mailbox. A mailbox observer is simply a closure
to be invoked whenever the event it is registered for occurs. Mail-
boxes fire two kinds of events: one when a message is added and
one when a message is deleted from the mailbox. The following
code illustrates how to log all messages sent to an actor by register-
ing a mailbox observer on the actor’s inbox.

inbox .uponAdditionDo(
lambda (msg) { println ("received message:"+msg) })

An actor may intercessively add messages to and delete messages
from its mailboxes. The following code snippet shows how an actor
can act as a router, forwarding every message it receives to a certain
destination actor:

inbox .uponAdditionDo(
lambda (msg) {

inbox .delete(msg);
outbox .add(msg.setDestination(destination)) })

The publish-subscribe actor discovery mechanism described in sec-
tion 4.1 interfaces with the MOP as follows. Actors may declare
that they provide a service by invoking the methodprovide(S,p)
whereS is a service type andp is an optional property object. An
actor may declare that it requires a service by invokingrequire(S) ,
whereS is a service type. An actor that requires one or more ser-
vices is notified by the kernel whenever it joins or disjoins with
matching services. This notification happens via a dedicated mail-
box called thejoinedbox. Whenever a matching service joins with
the actor, aresolutionobject is added to this mailbox. Conversely,
whenever a joined actor disjoins, the resolution is removed from
that mailbox. An actor can trap these events using mailbox ob-
servers. A resolution is a regular object with slots containing the
service type which the joined actor provides, the mail address of the
joined actor and the property object (if any) of the joined service
actor. These mechanisms are exemplified by the following generic
“sensor actor” which prints information on any service actor that
becomes available. For the complete details of the metaobject pro-
tocol we refer to previous work [12].

require (Service);
joinedbox .uponAdditionDo(

lambda (res) {
mailaddr = res.provider;
service = res.serviceType;
println ("discovered "+service+": "+mailaddr);

})

7.2 Ambient Reference Mixins
Ambient references are implemented as actors. In AmbientTalk, an
actor is constructed from a passive object which is known as thebe-
haviourof the actor. An actor can be considered as a concurrency
shell wrapped around its behaviour object. AmbientTalk objects
are not instantiated from classes. Rather, objects may be created
ex-nihilo or by cloning other objects. In the rest of this section,
we employ the idiom of creating objects by calling methods which
return new objects. The method acts as a constructor for the newly
created object. In AmbientTalk, subclassing is replaced by object
inheritance via delegation [19]. The combination of constructor
methods and delegation allows for flexible mixin-based composi-
tion of objects, which is further illustrated below.

The behaviour of an ambient reference actor is represented by an
AmbientReference object. This core object contains the be-
haviour which is common toall kinds of ambient references. It also
defines the behaviour for an ambient reference’s scope of binding.

The core object uses the MOP explained above to translate generic
MOP events into more high-level events which are relevant to am-
bient references. The different strategies to deal with these events
depend on the elasticity and the cardinality of an ambient refer-
ence and have been factored out into separate mixins. Mixins are
composed via delegation. In order to create a complete ambient ref-
erence actor behaviour, first anAmbientReference core object
is created. Next, one of three cardinality mixin objects is created
whose parent is the core object. Finally, one of three elasticity mix-
ins is created with as its parent the cardinality mixin. This elasticity
mixin object together with its parent and grandparent describe the
complete behaviour of one kind of ambient reference and can be
used as the behaviour of an ambient reference actor. The fact that
elasticity and cardinality concerns can be cleanly factored out into
separate mixins strongly indicates their orthogonality.

serviceLost(res)
serviceFound(res)
messageReceived(m)
filterQuery
serviceTypeScope
AmbientReference

lostPrincipal(p)

acceptMessage(msg)
isBoundPrincipal(p)
foundPrincipal(p)

Cardinality mixins

principal
UniRefMixin

cardinality
principalvector
MultiRefMixin

principalset
OmniRefMixin

FragileRefMixin

elasticity
ElasticRefMixin

SturdyRefMixin

disconnected(p)
Elasticity mixins

Figure 5: Ambient References as delegating mixin objects

Figure 5 illustrates the implementation of ambient references as the
composition of one of three elasticity mixins, one of three cardinal-
ity mixins and anAmbientReference object. The figure shows
objects whose names correspond to the constructor method that cre-
ates them. For example, the object namedFragileRefMixin is
created by invoking the constructor methodmakeFragileRef-
Mixin(parent) whereparent is a cardinality mixin object.
The dotted arrows represent potential delegation. Each object has at
most one parent object; the elasticity mixins are shown delegating
to all cardinality mixins to emphasize that either one of them can act
as their parent. This flexibility of delegation enables the modular
construction of all of the ambient references introduced in section
5. The slanted, abstract methods shown above the two mixin groups
are methods implemented by all of the mixins in the group. Their
implementation is required by theAmbientReference object.
In the following sections, the implementation of the core object and
the two groups of mixin objects is described.

Core Ambient Reference Object
The coreAmbientReference object which is part of any ambi-
ent reference actor’s behaviour is created by calling the following
constructor method:

AmbientReference

method makeAmbientReference(aServiceType, aQuery) {
return new object {

serviceTypeScope = aServiceType;
filterQuery = aQuery;
method init() {

joinedbox .uponAdditionDo(this .serviceDiscovered);
joinedbox .uponDeletionDo(this .serviceLost);
inbox .uponAdditionDo(this .messageReceived);
require (serviceTypeScope);

}
method messageReceived(msg) {

if (!msg.isMetaMessage())
this . acceptMessage (msg);

}
method serviceDiscovered(resolution) {

if (filterQuery(resolution.properties)) {
this. foundPrincipal (resolution.provider);

} else {
joinedbox .delete(resolution);

}
}
method serviceLost(resolution) {

if (this . isBoundPrincipal (resolution.provider))
this . disconnected (resolution.provider);

}
}

}

The purpose of the above object is to translate low-level MOP
events into meaningful ambient reference events. This is achieved
by the three mailbox observer methods, registered with their re-
spective mailboxes in theinit method2. init is the first mes-
sage sent to an actor after it has been created and initialized with a
behaviour. After registering its mailbox observers, the ambient ref-
erence declares that it is interested in receiving notifications from
the kernel pertaining to services providing the required service type
(via require(serviceTypeScope)).

Some method calls in the bodies of the mailbox observer methods
are denotedslanted. Such methods denote abstract methods whose
implementation should be provided by an appropriate mixin object.
If the aboveAmbientReference object were used stand-alone,
the resulting actor would soon raise aMessageNotUnderstood
exception when trying to invoke such an unimplemented method.

In themessageReceived inbox observer, the ambient reference
first checks whether the incoming message is marked as ametames-
sage. Metamessages are those messages sent to the ambient refer-
ence actor itself, rather than client messages sentvia the reference
to the principal(s). An example metamessage issnapshot which
should be handled by the ambient reference itself, rather than sent
to the principal. The implementation of such meta-level operations
is omitted in this description of the implementation. We only focus
on how ambient references implement the forwarding of regular,
base-level messages. This semantics depends on the cardinality
of the ambient reference, which is why the responsibility of deal-
ing with message acceptance is delegated to a cardinality mixin’s
acceptMessage method.

TheserviceDiscovered joinedbox observer method is invoked
whenever a matching service actor joins the network. Because the
kernel discovery mechanism has no notion of filter queries, filter-
ing services based on property objects must be done explicitly. The
kernel itself only guarantees that the joined actor provides a service
type which is a subtype of the requested type. Hence, the ambient
reference first checks whether the properties of the new service sat-
isfy the filter query. If so, the new service is a potential principal.
Because the act of binding a new principal is again dependent on
the cardinality of the ambient reference, its implementation is fac-
tored out into a cardinality mixin’sfoundPrincipal method.
If the service does not satisfy the query, its resolution is discarded.

2In AmbientTalk, methods may be selected from an object thereby
wrapping them in a closure. This makes it possible to register a
method rather than an explicit closure as a mailbox observer [12].

The serviceLost joinedbox observer is invoked whenever a
joined service actor disappears from the network. The ambient ref-
erence only has to undertake action upon such an event when the
lost service is a bound principal. Whether a service is a principal
or not can only be determined by the cardinality mixin of the refer-
ence. If the lost service turns out to be a bound principal, the ambi-
ent reference delegates the responsibility of dealing with this event
to an elasticity mixin by invoking the abstractdisconnected
method. The following sections describe the cardinality and elas-
ticity mixin objects, which provide implementations for the abstract
methods of the ambient reference object.

Cardinality Mixins
A cardinality mixin is responsible for managing the principal(s) of
an ambient reference. This includes providing and managing the
principal set and handling the forwarding of received messages to
the principal(s). In order to give a concrete example of the be-
haviour of an ambient reference, we show the complete implemen-
tation of unireferences below.

UniRefMixin

method makeUniRefMixin(parentObject) {
return extend parentObject {

principal = null;
method acceptMessage(msg) {

if (principal != null) {
outbox .add(msg.setDestination(principal));
inbox .delete(msg);

}
}
method isBoundPrincipal(p) { return principal==p }
method foundPrincipal(newPrincipal) {

if (principal == null) {
principal := newPrincipal;
// forward all messages in inbox to principal
foreach msg in inbox {

outbox .add(msg.setDestination(principal));
inbox .delete(msg);

}
}

}
method lostPrincipal(p) {

principal := null;
// return untransmitted messages to inbox
foreach msg in outbox {

inbox .addToFront(msg);
outbox .delete(msg);

}
}

}
}

A unireference’s principal set consists of at most one element. There-
fore, it is implemented simply as a variable namedprincipal
whose value determines the state of the ambient reference. Ifprin-
cipal containsnull , the reference is unbound. If it contains
the mail address of a principal, the reference is bound. This vari-
able is toggled betweennull and a principal mail address in the
foundPrincipal andlostPrincipal methods.

The message forwarding behaviour of a unireference is described
in theacceptMessage method. If the reference is bound, the in-
coming message is rerouted to the bound principal. If the reference
is unbound, the message is kept in the inbox. ThefoundPrincipal
method determines how the reference reacts upon the availability
of a new candidate service provider. The appropriate behaviour
depends on the state of the unireference: if it is unbound the new

service becomes the principal, if it is bound the new service is dis-
regarded, but is kept in the joinedbox for possible later use. Upon
binding to a new principal, the unireference flushes its inbox and
forwards it all messages accumulated while it was unbound.

The lostPrincipal method can be regarded as the inverse of
the foundPrincipal method. When the currently bound prin-
cipal disconnects, the reference reverts to unbound status. It may
occur that messages forwarded to the disconnected principal were
not successfully transmitted. Therefore, all untransmitted messages
destined for the old principal are retracted from the outbox and
added to the front of the inbox again, such that they are retrans-
mitted upon rebinding to a principal in the future. Note that the
lostPrincipal method does not check whether the lost princi-
pal p equals the currentprincipal . This check is already per-
formed via theisBoundPrincipal invocation in theservice-
Lost method of the core ambient reference object.

Due to space limitations, we cannot completely describe the imple-
mentation of the other two cardinality mixins. An outline of their
implementation is sketched below.

MultiRefMixin A MultiRefMixin is parameterized by its car-
dinality and is used to create an ambient multireference. This ref-
erence’s principals are stored in an array whose size equals its car-
dinality. When a candidate principal is found, it is stored in the
first free slot of the array. If all slots are bound, the candidate is
stored for later use in the joinedbox. Upon receiving a message,
the message is duplicated for each principal slot. When a principal
slot is bound (i.e. does not containnull), the message is imme-
diately forwarded to the bound principal. When a principal slot is
unbound, the message remains in the inbox with as its destination
the index of the unbound slot. Whenever a principal is bound to a
slot, all messages whose destination is the slot index are removed
from the inbox and sent to the new principal.

OmniRefMixin An omnireference stores its principals in a set.
Upon receiving a message, the message is duplicated and sent to
each principal in the set. Subsequently the reference checks whether
the message is tagged as a sustained message. If not, the message
is deleted from the inbox. If it is a sustained message, the ambi-
ent reference reads the decay period attached to the message and
starts a timer which calls back on the omnireference after the de-
cay period has elapsed such that the message can then be removed
from the inbox. If the decay period is infinite, no timer is started
and the message is left in the inbox. Whenever a principal joins the
principal set, it receives a copy of all messages in the inbox.

Elasticity Mixins
An elasticity mixin specifies a policy on how to deal with discon-
nections of principals. Whenever a disconnection occurs, an elas-
ticity mixin’s disconnected method is invoked from within the
core object. An elasticity mixin can decide whether the principal
must actually be removed from the principal set or not. As a con-
crete example, the implementation of fragile references is shown
below.

FragileRefMixin

method makeFragileRefMixin(parentObject) {
return extend parentObject {

method disconnected(principal) {
this . lostPrincipal (principal);
// try to rebind to spare candidate principals
foreach res in joinedbox {

if (! this . isBoundPrincipal (res.provider)) {
this . foundPrincipal (res.provider);
break ;

} } } }
}

The disconnected method of a fragile ambient reference im-
mediately detaches a disconnected principal. The actual removal
of the principal from the principal set is the responsibility of a
cardinality mixin’s lostPrincipal method. After having un-
bound the principal, the fragile reference tries to potentially rebind
to spare candidate principals which are stored in the joinedbox. The
foreach loop searches for a service provider in the joinedbox
which was previously unbound and, when one is found, binds it by
invoking thefoundPrincipal method to be implemented by a
cardinality mixin.

ElasticRefMixin When an elastic reference’sdisconnected
method is invoked, the principal that has gone astray is marked as
disconnected but isnot yetremoved from the principal set. Instead,
a timer is started to call back on the reference after the elongation
period. An elastic reference overrides the core object’sservice-
Discovered method to check if a discovered service is an exist-
ing principal marked as disconnected. If so, the principal’s mark is
removed. When the timer calls back on the elastic reference, the
latter checks whether the disconnection mark on the principal that
gave rise to the notification has been removed in the mean time. If
not, the elastic reference removes the principal from the principal
set identical to how a fragile reference removes it.

SturdyRefMixin The implementation of a sturdy reference mixin
is simple. Itsdisconnected method does nothing, thereby silen-
tly disregarding the disconnection event of the principal. Any mes-
sages sent to the principal while it is disconnected keep on being
forwarded and await transmission in the outbox. The ambient refer-
ence implementation falls back on the AmbientTalk kernel’s abil-
ity to properly flush untransmitted messages in the outbox when
it detects that the receiver has reconnected. Because the cardinal-
ity mixins’ foundPrincipal method checks whether a candi-
date principal is already bound, the principal is not inserted into the
principal set multiple times when it rejoins.

Mixin Composition
Given the definition of the mixins depicted in figure 5, all different
kinds of ambient references can be composed. For example, the
constructor method shown below creates fragile ambient unirefer-
ences. The entries in table 1 are mere surface syntax for the invo-
cation of such constructor functions.

method makeFragileUniReference(aServiceType, aQuery) {
return new actor (

makeFragileRefMixin(
makeUniRefMixin(

makeAmbientReference(aServiceType, aQuery)));
}

8. RELATED WORK
Related work exists in diverse research domains. First, we discuss
M2MI which is a paradigm addressing the same issues as ambi-
ent references. Second, we describe the addressing and commu-
nication features of computational models and languages and their

applicability to mobile networks. Finally, we describe two middle-
ware systems which have been explicitly designed for supporting
applications deployed in mobile networks.

M2MI The design of ambient references has been inspired by the
notion of ahandlein the many-to-many invocations (M2MI) paradigm
[17]. M2MI is a paradigm for building collaborative systems de-
ployed on wireless proximal ad hoc networks. M2MI handles use
Java interfaces to denote remote objects in a loosely coupled fash-
ion. This usage of interfaces coincides with our notion of ser-
vice types. M2MI distinguishes betweenunihandles, multihandles
and omnihandles. Uni- and multihandles resemble sturdy ambi-
ent uni- and multireferences, although with different messaging se-
mantics, while omnihandles resemble fragile omnireferences. An
omnihandle represents all objects in communication range imple-
menting the handle’s interface. A message sent to an omnihandle
means “every object out there that implements this interface, call
this method” [17]. M2MI handles also employ asynchronous mes-
sage passing.

Although M2MI has influenced the design of ambient references,
there are some important differences. First, M2MI offers no de-
livery guarantees: if a message is sent to an object which is not
in communication range at that time, the message is lost. Hence,
message sending and delivery are not decoupled as is the case with
ambient references. Only fragile omnireferences offer a similar
message passing semantics, but they are augmented with sustained
message delivery to widen the “temporal scope” in which messages
may be delivered. In M2MI, the responsibility of guaranteed mes-
sage delivery is always passed on to the application itself.

A second difference between M2MI handles and ambient refer-
ences is that messages sent to M2MI handles do not return a value:
all methods of a handle’s associated interface must have avoid re-
turn type and cannot throw exceptions. M2MI advocates the use of
callbacks to deal with return values and exceptions. As mentioned
previously this solution may lead to fragmented code and requires
the programmer to manually pass context information along with
the method call in order to identify the source that gave rise to the
callback. Ambient references employ futures (and multifutures) to
deal with (multiple) return values. Furthermore, by registering clo-
sures with the future usingwhen, the return value can be processed
directly in the scope of invocation.

M2MI’s handles are not provisional: although they may represent
as yet undiscovered objects, any messages sent to this undiscov-
ered object are lost. Moreover, as explained above, messages sent
while disconnected are lost, so the communication channel defined
by handles is not resilient. Omnihandles feature a transitory ad-
dressing scheme based on Java’s interfaces, but are not able to re-
tain their bond with remote objects. M2MI provides direct support
for group communication via multi- and omnihandles. In short,
M2MI’s handlers are a suitable remote referencing abstraction for
mobile networks, but they are situated at a lower level of abstrac-
tion. As a consequence, they are more sensitive to the behaviour
of mobile devices and require the programmer to focus attention
on dealing with discovery, delivery and message ordering, return
values and disconnections.

Actors In the actor model of computation [1], actors refer to one
another viamail addresses. When an actor sends a message to a
recipient actor, the message is placed in a mail queue and is guar-
anteed to be eventually delivered by the actor system. The prop-

erties of mail addresses when used as “remote actor references”
have already been discussed in section 4.3. To summarize, a mail
address is neither provisional nor transitory (a mail address repre-
sents a unique, existing actor) but it is resilient to disconnections.
Although its resilience makes actor-based systems perform well in
open, loosely-coupled distributed systems, a mail address cannot
be rebound to refer to another actor.

The contemporary actor language Salsa [28], which is designed for
distributed computing in open networks such as the internet, intro-
ducesuniversalactors. Such actors are remotely addressable using
a universal actor name (UAN). The UAN is a globally unique name
for an actor, which may persist across crashes and – because actors
may migrate – allows one actor to specify another actor in a device-
independent fashion. Hence, Salsa’s remote references based on
UANs use a transitory addressing scheme. However, Salsa was
not designed for infrastructure-shy mobile networks as the reso-
lution of UANs to remote actors involves name servers. There is
no discovery mechanism to get acquainted with actors that become
available in the network.

E The E language [25] is designed for writing secure peer-to-peer
distributed programs in open networks. The language has its roots
both in the actor model and in concurrent logic/constraint program-
ming. Interestingly, E does not differentiate between local and re-
mote objects. Rather, it differentiates between different kinds of
object references.Near references may only point to local ob-
jects, while references to remote objects must be so-calledeventual
references. Near references may carry synchronous method invo-
cations, while eventual references only carry asynchronous mes-
sage sends. Such asynchronous message sends immediately return
promises (similar to futures and Argus’ promises). E pioneered the
when construct to deal with the resolution of promises in an en-
tirely non-blocking, event-driven manner. Thewhen construct is
based on the well-known notion ofcontinuationactors from the
actor model [2] which are also incorporated in the ABCL family of
actor languages [34].

E’s eventual references, although providing a communication chan-
nel geared towards mobile networks, do not feature any of the char-
acteristics exhibited by ambient references. They are not provi-
sional but rather always point to live remote objects. They are not
resilient: disconnections are treated as exceptions and once a re-
mote reference is broken, it cannot be mended. The references
are not based on a transitory addressing mechanism and cannot
be rebound. This design of remote references was intentional and
enforces application designs where the restoration of communica-
tion links is separated from the use of the communication links. In
E, devices can reestablish contact based on a special kind of ob-
ject reference named asturdy reference. A sturdy reference in E
can be regarded as a persistent, resilient designator for a remote
object. It designates an object on a remote host by encapsulating
the host’s authentication and discovery information and a so-called
swiss number. This is a large unguessable number which the tar-
get hosts associates with the remote object (it can be regarded as a
“secret” UID).

A sturdy reference in E is, however, not a remote object reference
the way a sturdy reference in AmbientTalk is. Rather, it can be used
to spawn new eventual references pointing to the remote object it
designates. When an object asks an E sturdy reference for a new
eventual reference, it receives a promise which will either eventu-
ally resolve to the remote object, or which is resolved with an ex-

ception if reconnection to the remote host was impossible. When
a host creates an E sturdy reference for one of its local objects, it
may associate a lease time with the reference, denoting how long
the host should maintain the mapping of the swiss number to the
local object. E features a persistence model with checkpointing, so
its sturdy references may persist across crashes. The salient dif-
ferences between E’s sturdy references and ambient references are
that first, ambient references are remote object references, subsum-
ing designation and communication in one abstraction. Second,
ambient references are provisional and have the possibility to de-
note classes of remote services via service types. Third, ambient
references automatically detect and bind to matching service actors
in the proximate environment; E’s sturdy references are meant to
denote one unique object only, so they do not cater to transitory ad-
dressing or group communication. E’s sturdy references were not
designed for use in mobile networks but rather for regaining con-
nectivity after network partitions in traditional stationary networks.

Tuple SpacesTuple spaces as originally introduced in the coor-
dination language Linda [14] have received renewed interest by
researchers in the field of mobile computing. A tuple space is a
logically shared address space between processes. Processes in-
serttuplesin the tuple space which can be read by other processes
on a pattern-matching basis. Because the process that adds a tuple
to the tuple space does not have to address who reads the tuple,
Linda is ideal for loosely-coupled distributed tasks. The notion of
(asynchronous) communication without addressing is referred to as
distributed naming: rather than using explicit addresses, programs
coordinate based on patterns stored in the tuples.

Adaptations of tuple spaces for mobile computing distribute the tu-
ple space across several devices. Linda in mobile environments
(Lime) [26] is one such adaptation of Linda for mobile networks.
Lime featuresagentswhich have their own, localinterface tuple
space(ITS). Whenever their host device makes contact with other
devices in the proximity, the ITSes of different agents are tran-
siently shared, making tuples in a remote agent’s tuple space ac-
cessible while the connection lasts.

Because tuple spaces use a very process-oriented (as opposed to
object-oriented) approach to distributed computing, there is no no-
tion of a remote object reference. However, the tuple space, re-
garded as a communication channel does exhibit the characteristics
shown to be beneficial to mobile computing in section 3. Regard-
ing provisionality, tuples can be placed in a tuple space well ahead
before an agent is available to read the tuple. With respect to re-
silience, tuples are stored in the tuple space until an agent reads
them. Hence, they survive network disconnections. With respect
to transitory addressing, tuples are addressable based on their se-
mantic content which is device-independent and persistent. Group
communication can be expressed by adding multiple tuples at once
to the tuple space. On the downside, whereas remote references
provide a private communication channel between a client and a
service, tuple space-based communication is necessarily global to
the entire space, which may lead to unexpected interactions. For
example, if one process places a tuple in the tuple space which de-
notes the “return value” of an earlier request, care has to be taken
that this tuple is not accidentally read by another process that was
also waiting for a return value but for a different request. Finally,
the primitives which read tuples from the tuple space usually block
a process until a matching tuple is available. In mobile networks,
this may result in processes being blocked for extensive periods,
potentially diminishing the responsiveness of the application.

ActorSpaceThe restrictions of mail addresses for the purposes of
distributed naming have been addressed in the ActorSpace model
[3, 8]. This model is a unification of concepts from both the actor
model and the tuple space model of Linda. Agha and Callsen note
that, on the one hand, the actor model provides a secure model
of communication as an actor may only communicate with actors
whose mail address it has been explicitly handed over via message
passing. On the other hand, this disallows actors to get acquainted
with other actors in a loosely-coupled, time- and space-independent
manner, as is the case in Linda via tuple spaces.

The ActorSpace model augments the actor model withpatterns,
denoting an abstract specification of a group of actors, andac-
torspaces, which are containers for actors and nested actorspaces
and act as a hierarchical scoping mechanism for the resolution of
patterns to mail addresses. The actor model’ssend primitive,
which is parameterized by a receiver mail address and a message, is
replaced by two new primitives: asend and abroadcast primi-
tive where the receiver of the message is denoted by a pattern rather
than a mail address. A message send whose receiver is a pattern,
e.g.send("InstantMessenger", "getNickname") , can
be received by any actor whose own name matches the pattern
within the context of an actorspace. Thesend primitive deliv-
ers the message to a non-deterministically chosen matching actor,
while thebroadcast primitive delivers it to all matching actors.
When there are no matching actors, the message send is suspended
until at least one matching actor appears. This makes patterns a
provisional, potentially resilient and transitory addressing mecha-
nism.

AmbientTalk’s use of service types and filter queries to delimit
the scope of binding of an ambient reference is reminiscent of the
ActorSpace model’s notion of patterns to describe actors and ac-
torspaces to delimit the scope of pattern resolution. The semantics
of the send andbroadcast primitives resembles the message
sending behaviour of ambient uni- and multireferences. However,
in the ActorSpace model, a broadcast message is suspended until a
receiver is available. Ambient references introduce a more general
and flexible notion of sustained message sends. Furthermore, there
is no direct analogue for multireferences nor for elastic or sturdy
references in the ActorSpace model. The model has been designed
for open systems, but not for mobile networks as it introduces cen-
tralized authorities to manage the actorspaces.

Jini Sun Microsystem’s Jini architecture for network-centric com-
puting [29, 4, 30] is a Java-oriented development platform for service-
oriented computing. Jini introduces the notion of lookup services.
Services may advertise themselves by uploading a proxy to the
lookup service. Clients search the network for lookup services (ei-
ther via a point-to-point or a broadcasting protocol) and may launch
queries for services they are interested in. Java interface types are
used as a common ontology between the devices, similar to the
service types of ambient references. Clients may download the ad-
vertised proxy of a remote service and may interact with the remote
service through the proxy. Although Jini’s architecture is also ap-
plicable to pure ad hoc networks, its lookup service architecture
works best in mobile networks with a shared infrastructure.

Jini provides direct support to deal with the two most apparent
phenomena of mobile networks: the fact that clients and service
providers may join with and disjoin from the network at any time,
without any prior warning. As already mentioned, spontaneous dis-
covery is taken care of via a periodic broadcasting protocol man-

aged by the lookup services. To deal with unheralded disconnec-
tions, Jini employs a lease-based referencing mechanism: services
must explicitly renew their lease with the lookup service; if they
cannot, the lookup service will remove the service advertisement
such that it doesn’t provide stale information. Likewise, clients
should interact with services on the basis of a lease such that a
service may reclaim any resources allocated for the client session
whenever either one disjoins from the network.

Jini is primarily a framework for bringing clients and services to-
gether. Once a client has downloaded a service proxy, the proxy
is the communication channel to the service. This proxy may be
implemented however the service sees fit. Using the proxy tech-
nique, it is possible to construct proxy references which e.g. cor-
rectly buffer requests thereby allowing for resilience in the face of
network partitions and which may internally use a transitory ad-
dressing scheme to contact their home service in a loosely-coupled
manner. It may also shield a client from the communication pro-
tocol used and even from service upgrades [27]. Hence, Jini’s ar-
chitecture is flexible enough to cater for ambient references. How-
ever, to the best of our knowledge, Jini does not directly offer any
advanced remote “service” references. By default, the proxies ad-
vertised by services communicate synchronously with their service
over point-to-point protocols such as JRMP or JERI.

STEAM Scalable Timed Events and Mobility (STEAM) is an event-
based middleware designed for supporting collaborative applica-
tions in mobile ad hoc networks [24]. Like AmbientTalk, STEAM
shuns the use of centralized components such as lookup and nam-
ing services to void any dependencies of mobile devices on a com-
mon infrastructure. STEAM builds upon the observation that the
physically closer an event consumer is located to an event producer,
the more interested it may be in those events. It allows events dis-
seminated by producers to be filtered based on e.g. geographical
location usingproximity filters. Examples include traffic manage-
ment scenarios where cars notify one another of nearby accidents
and traffic lights automatically signal their status to cars near a road
intersection. Proximity filters operate onproximities, which may be
absolute or relative (i.e. a relative proximity denotes a surrounding
area relative to a mobile node). STEAM offers a location service
which uses sensor data and GPS coordinates to determine the geo-
graphical location of nodes in the network.

STEAM proximities relate to ambient omnireferences in the sense
that both may be used for event dissemination to a select set of
services within proximity. However, STEAM is publish-subscribe
middleware and has no notion of remote object references. On the
other hand, STEAM’s proximity mechanism to denote “scope of
binding” is more elaborate than that of omnireferences. Ambi-
entTalk does not include a location service but rather uses UDP
multicasts over WiFi to discriminate proximate from distant ser-
vices. We regard the incorporation of the notion of STEAM prox-
imities into ambient references via service types representing loca-
tions as interesting and essential future work.

9. LIMITATIONS AND FUTURE WORK
A number of open issues which are not adequately dealt with by
ambient references are discussed below.

Service Discovery
AmbientTalk’s discovery mechanism based on service types is very
similar to e.g. Jini’s discovery mechanism which is based on in-
terface types. A common critique on such discovery mechanisms

is that they lack rich service representations, the ability to spec-
ify constraints on the search and that they do not support inexact
matches. Alternative discovery approaches have been proposed
based on agents and ontology reasoning engines [11]. We are aware
of the limited expressive power of the discovery mechanism of am-
bient references. The mechanism, however, is lightweight and suf-
ficient for supporting the applications it has been designed for. We
consider the use of more advanced discovery mechanisms orthog-
onal to our work on ambient references. Obviously, the discovery
mechanism of ambient references is part of a language design ex-
ercise; it is not meant to supplant existing standardised discovery
mechanisms. For an overview of the state of the art in service dis-
covery protocols, we refer to the survey paper by McGrath [23].

Security
In mobile ad hoc networks, security issues are exacerbated because
the network is usually not administered, nor is there any central
authority e.g. to validate the identity of hosts and services. From
the perspective of ambient references, two prime security issues
become apparent. First, how can an ambient reference guard itself
from binding with (and sending information to) a compromised or
malicious service? Second, how can a service protect itself from
being bound to malicious ambient references? Both problems re-
quire the proper authorization of clients and services. Asymmet-
ric public/private key encryption algorithms may in part alleviate
these problems, using public-key encryption to ensure confiden-
tiality and public-key digital signatures for authentication. These
mechanisms are definitely not a panacea for all security issues, and
sometimes require centralised authorities (e.g. public key infras-
tructures) which are highly undesirable in ad hoc mobile networks.

Mechanisms to deal with trust and authorization could be incor-
porated into the ambient reference design space via the scope of
binding. For example, if one can discriminate between trusted and
distrusted services, the scope of binding can be used to disallow a
reference from binding to distrusted ones.

Customized Ambient References
One important observation with respect to the mixin-based imple-
mentation of ambient references sketched in section 7 is that the
abstract methods referred to by the core ambient reference object
define aprotocol, which, when made available to the programmer
is the basis for what one might call ameta-ambient reference pro-
tocol. If an AmbientTalk programmer can write his own modular
mixin objects implementing the required abstract methods, this al-
lows him to specify entirely new, application-specific addressing
and communication abstractions, within the framework provided
by ambient references. Actually, this is already perfectly possible
as ambient references have been implemented reflectively and are
as such plain accessible AmbientTalk objects. However, it remains
an open question as to what level of detail the ambient references
implementation should be opened up to the programmer and what
kinds of adaptations lead to useful application-specific ambient ref-
erences.

Distributed Garbage Collection
For remote references to remain valid, the host of the designated
remote object is responsible for keeping an export table mapping
UIDs to local object references. As a consequence, exported ob-
jects cannot simply be reclaimed, giving rise to the notion of dis-
tributed garbage collection. DGC requires a set of hosts to coop-
eratively clean up garbage objects by informing one another when

e.g. a remote reference has become of no use to them. In open and
especially mobile networks where relationships between devices
are short-lived, such cooperative DGC approaches are impractical.
As illustrated by networking technology such as Jini, the notion of
a leasedreference provides more robust garbage collection in the
face of both transient and permanent disconnections.

We have described ambient references as a unidirectional reference
from clients to services. A service is oblivious to any ambient refer-
ences pointing to it and has no direct means of communicating with
and controlling connected clients. We are looking into the incorpo-
ration of leasing into ambient references. The amalgam would be
an ambient reference which, upon binding with a remote service,
establishes a contract with its service under which conditions the
connection between them remains valid. For example, both could
agree on a lease duration and the ambient reference is then respon-
sible for renewing the lease in time. The important difference with
regular ambient references is that such references explicitly involve
the remote service itself in the binding process.

10. CONCLUSION
Applications deployed on mobile networks require language con-
structs that abstract from the complex hardware phenomena while
remaining translucent enough to deal with the inescapable issues
of distributed computing. When objects are distributed over mo-
bile devices connected by an unadministered volatile network, it is
no longer trivial to discover and communicate with remote parties.
Object references should be augmented with additional machinery
to remain aware of the hardware constellation surrounding their de-
vice. We have named such referencesambient references.

Ambient references are an object-oriented language abstraction that
exhibit four distinct characteristics which prove essential to prop-
erly address and communicate with remote parties in mobile net-
works. They are provisional meaning that they can denote services
based on an external description that are not yet available. They
are resilient in the face of transient network disconnections. They
may be rebound to equivalent yet distinct service objects on dif-
ferent devices via a transitory addressing scheme which is device-
independent and persistent. Finally, as mobile networks may be
populated by a multitude of small devices, it is important to make
abstraction of each individual object and to address and communi-
cate with groups of objects directly. Ambient multi- and omniref-
erences cater to such interactions.

Rather than designing one kind of ambient reference, we have de-
signed a family of ambient reference kinds, the behaviour of which
may vary according to three different axes. Thescope of binding
of an ambient reference demarcates the set of service objects to
which the reference may bind. Theelasticity of an ambient ref-
erence determines the resilience of its bond with a remote service
with respect to disconnections. Finally, thecardinality of an am-
bient reference determines how many services it can denote simul-
taneously. Each combination along these design axes gives rise to
a kind of reference that is suitable for a particular type of collabo-
ration in a mobile network. These axes are clearly distinguishable
not only in the design of the ambient references, but also in their
implementation as a composition of independent mixin objects in
AmbientTalk. Although further research is necessary to turn our
proposal into scalable engineering, the orthogonality of these mixin
objects strongly indicates that our analysis adequately unravels the
design space of object referencing for dynamically demarcated mo-
bile networks.

11. REFERENCES
[1] AGHA, G. Actors: a Model of Concurrent Computation in

Distributed Systems. MIT Press, 1986.

[2] AGHA, G. Concurrent object-oriented programming.
Communications of the ACM 33, 9 (1990), 125–141.

[3] AGHA, G., AND CALLSEN, C. J. Actorspace: An open
distributed programming paradigm. InProceedings of the 4th
ACM Conference on Principles and Practice of Parallel
Programming, ACM SIGPLAN Notices(1993), pp. 23–32.

[4] A RNOLD, K. The jini architecture: Dynamic services in a
flexible network. In36th Annual Conference on Design
Automation (DAC’99)(1999), pp. 157–162.

[5] BAKER JR., H. G.,AND HEWITT, C. The incremental
garbage collection of processes. InProceedings of
Symposium on AI and Programming Languages(1977),
vol. 8 of ACM Sigplan Notices, pp. 55–59.

[6] BAL , H. E., STEINER, J. G.,AND TANENBAUM , A. S.
Programming languages for distributed computing systems.
ACM Comput. Surv. 21, 3 (1989), 261–322.

[7] BRIOT, J.-P., GUERRAOUI, R., AND LOHR, K.-P.
Concurrency and distribution in object-oriented
programming.ACM Computing Surveys 30, 3 (1998),
291–329.

[8] CALLSEN, C. J.,AND AGHA, G. Open heterogeneous
computing in ActorSpace.Journal of Parallel and
Distributed Computing 21, 3 (1994), 289–300.

[9] CARDELLI , L. A Language with Distributed Scope. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(1995), ACM Press, pp. 286–297.

[10] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA ,
C., KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND

SARKAR , V. X10: an object-oriented approach to
non-uniform cluster computing. InOOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming systems languages and
applications(New York, NY, USA, 2005), ACM Press,
pp. 519–538.

[11] CHEN, H., JOSHI, A., AND FININ , T. Dynamic service
discovery for mobile computing: Intelligent agents meet jini
in the aether.Cluster Computing 4, 4 (Oct 2001), 343–354.

[12] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S.,
D’H ONDT, T., AND DE MEUTER, W. Ambient-oriented
Programming in Ambienttalk. InProceedings of the 20th
European Conference on Object-oriented Programming
(ECOOP)(2006), D. Thomas, Ed., Lecture Notes in
Computer Science, Springer. To Appear.

[13] GAY, D., LEVIS, P.,VON BEHREN, R., WELSH, M.,
BREWER, E., AND CULLER, D. The nesC language: a
holistic approach to networked embedded systems. InACM
SIGPLAN Conference on Programming Language Design
and Implementation(2003).

[14] GELERNTER, D. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems 7, 1
(Jan 1985), 80–112.

[15] HALSTEAD, JR., R. H. Multilisp: a language for concurrent
symbolic computation.ACM Trans. Program. Lang. Syst. 7,
4 (1985), 501–538.

[16] JUL , E., LEVY, H., HUTCHINSON, N., AND BLACK , A.
Fine-grained mobility in the Emerald system.ACM
Transactions on Computer Systems 6, 1 (February 1988),
109–133.

[17] KAMINSKY, A., AND BISCHOF, H.-P. Many-to-many
invocation: a new object oriented paradigm for ad hoc
collaborative systems. InOOPSLA ’02: Companion of the
17th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications(New
York, NY, USA, 2002), ACM Press, pp. 72–73.

[18] LEVIS, P., MADDEN, S., GAY, D., POLASTRE, J.,
SZEWCZYK, R., WOO, A., BREWER, E. A., AND CULLER,
D. E. The emergence of networking abstractions and
techniques in TinyOS. InProceedings of the first Symposium
on Networked Systems Design and Implementation (NSDI
2004)(March 29-31 2004), USENIX, pp. 1–14.

[19] L IEBERMAN, H. Using prototypical objects to implement
shared behavior in object-oriented systems. InConference
proceedings on Object-oriented Programming Systems,
Languages and Applications(1986), ACM Press,
pp. 214–223.

[20] L ISKOV, B. Distributed programming in Argus.
Communications Of The ACM 31, 3 (1988), 300–312.

[21] L ISKOV, B., AND SHRIRA, L. Promises: linguistic support
for efficient asynchronous procedure calls in distributed
systems. InProceedings of the ACM SIGPLAN 1988
conference on Programming Language design and
Implementation(1988), ACM Press, pp. 260–267.

[22] MASCOLO, C., CAPRA, L., AND EMMERICH, W. Mobile
Computing Middleware. InAdvanced lectures on
networking. Springer-Verlag New York, Inc., 2002,
pp. 20–58.

[23] MCGRATH, R. E. Discovery and its discontents: Discovery
protocols for ubiquitous computing. Tech. Rep.
UIUCDCS-R-99-2132, Department of Computer Science
University of Illinois Urbana-Champaign, 2000.

[24] MEIER, R., AND CAHILL , V. Exploiting proximity in
event-based middleware for collaborative mobile
applications. InProceedings of the 4th IFIP International
Conference on Distributed Applications and Interoperable
Systems (DAIS’03)(2003).

[25] M ILLER , M., TRIBBLE, E. D., AND SHAPIRO, J.
Concurrency among strangers: Programming in E as plan
coordination. InSymposium on Trustworthy Global
Computing(April 2005), R. D. Nicola and D. Sangiorgi,
Eds., vol. 3705 ofLNCS, Springer, pp. 195–229.

[26] MURPHY, A., PICCO, G., AND ROMAN , G.-C. Lime: A
middleware for physical and logical mobility. InProceedings
of the The 21st International Conference on Distributed
Computing Systems(2001), IEEE Computer Society,
pp. 524–536.

[27] SEN, R., HANDOREAN, R., HACKMANN , G., AND

ROMAN , G.-C. An architecture supporting run-time upgrade
of proxy-based services in ad hoc networks. InProceedings
of the International Conference on Pervasive Computing and
Communications, PCC’04(June 21-24 2004), pp. 689–695.

[28] VARELA , C., AND AGHA, G. Programming dynamically
reconfigurable open systems with SALSA.SIGPLAN Not.
36, 12 (2001), 20–34.

[29] WALDO , J. The Jini Architecture for Network-centric
Computing.Commun. ACM 42, 7 (1999), 76–82.

[30] WALDO , J. Constructing ad hoc networks. InIEEE
International Symposium on Network Computing and
Applications (NCA’01)(2001), p. 9.

[31] WALDO , J., WYANT, G., WOLLRATH , A., AND KENDALL ,
S. C. A note on distributed computing. InMOS ’96: Selected
Presentations and Invited Papers Second International
Workshop on Mobile Object Systems - Towards the
Programmable Internet(1996), Springer-Verlag, pp. 49–64.

[32] WILKES, C., AND LEBLANC, R. Rationale for the design of
aeolus: A systems programming language for an
action/object system. InProceedings of the IEEE CS 1986
International Conference on Computer Languages(New
York, Oct. 1986), IEEE, pp. 107–122.

[33] YONEZAWA, A., Ed.ABCL: An Object-Oriented Concurrent
System. Computer Systems Series. MIT Press, 1990.

[34] YONEZAWA, A., BRIOT, J.-P.,AND SHIBAYAMA , E.
Object-oriented concurrent programming in ABCL/1. In
Conference proceedings on Object-oriented programming
systems, languages and applications(1986), ACM Press,
pp. 258–268.

APPENDIX
A. AMBIENTTALK EXAMPLE CODE
The AmbientTalk equivalent of all code examples and mixin imple-
mentations of the paper are shown below. The syntax is discussed
in more detail in previous work [12].

Section 4.1

servicetype (InstantMessenger, Service);

makeInstantMessenger(nickname) :: {
actor (object ({

init() :: { provide (InstantMessenger) };
...

}))
}

Section 4.2

nameFuture : anInstantMessenger#getNickname();

when(nameFuture, lambda (name) -> {
display (name, " is online.")

})

Section 5

anInstantMessenger : ambientFragileUni(InstantMessenger);

Section 5.1

makeInstantMessenger(id) :: {
actor (object ({

init() :: { provide (InstantMessenger, object ({accountid :: id })) };
...

}))
}

ambientFragileUni(InstantMessenger, lambda (m)-> { m.accountid.equals(buddyId) });

group : vector.newWithSize(10);
for (i:1, i<=10, i:=i+1, {

group.add(ambientFragileUni(InstantMessenger));
})

allMessengers : ambientFragileOmni(InstantMessenger);
tenMessengers : ambientFragileMulti(10, InstantMessenger);

Section 5.3

messengers : ambientFragileOmni(InstantMessenger);
when(sustain (messengers#getNickname,[],10000), lambda (name)-> {

display (name, " is online.")
})

sustain (ambientFragileOmni(Passenger)#announce,[timetableActor], forever);

availablePrinters : printers# µsnapshot();
when(availablePrinters# µenumerate(), lambda (collection) -> {

collection.iterate(lambda (printer) -> { ... })
})

Section 7.1

inbox .uponAdditionDo(
lambda (msg)-> { display ("received message:",msg) })

inbox .uponAdditionDo(
lambda (msg)-> {

inbox .delete(msg);
outbox .add(msg.setDestination(destination)) })

require (Service);
joinedbox .uponAdditionDo(

lambda (res)-> {
mailaddr : res.provider;
service : res.serviceType;
display ("discovered ",service,": ",mailaddr);

})

AmbientReference

makeAmbientReference(aServiceType, aQuery) :: {
object ({

serviceTypeScope : aServiceType;
filterQuery : aQuery;
init() :: {

joinedbox .uponAdditionDo(this .serviceDiscovered);
joinedbox .uponDeletionDo(this .serviceLost);
inbox .uponAdditionDo(this .messageReceived);
require (serviceTypeScope)

};
messageReceived(msg) :: {

if (!msg.isMetaMessage(),
this . acceptMessage (msg))

};
serviceDiscovered(resolution) :: {

if (filterQuery(resolution.properties), {
this. foundPrincipal (resolution.provider)

}, {
joinedbox .delete(resolution)

})
};
serviceLost(resolution) :: {

if (this . isBoundPrincipal (resolution.provider),
this . disconnected (resolution.provider))

}
})

}

UniRefMixin

makeUniRefMixin(parentObject) :: {
extend (parentObject, {

principal : void ;
acceptMessage(msg) :: {

if (!is_void(principal), {
outbox .add(msg.setDestination(principal));
inbox .delete(msg)

})
};
isBoundPrincipal(p) :: { principal == p };
foundPrincipal(newPrincipal) :: {

if (is_void(principal), {
principal := newPrincipal;
// forward all messages in inbox to principal
inbox .iterate(lambda (msg)-> {

outbox .add(msg.setDestination(principal));
inbox .delete(msg)

})
})

};
lostPrincipal(p) :: {

principal := void ;
// return untransmitted messages to inbox
outbox .iterate(lambda (msg)-> {

inbox .addToFront(msg);
outbox .delete(msg);

}) } })
}

FragileRefMixin

makeFragileRefMixin(parentObject) :: {
extend (parentObject, {

disconnected(principal) :: {
this . lostPrincipal (principal);
// try to rebind to spare candidate principals
found : joinedbox .findFirst(lambda (res)-> {

! this . isBoundPrincipal (res.provider)
});
if (!is_void(found),

this . foundPrincipal (found.provider))
} })

}

Section 7.2

makeFragileUniReference(aServiceType, aQuery) :: {
actor (

makeFragileRefMixin(
makeUniRefMixin(

makeAmbientReference(aServiceType, aQuery))))
}

Ambient Reference Constructor Example

// variable argument function: if one parameter is given, default filter is used
ambientFragileUni@args :: {

serviceType : args[1];
filterQuery : if (size(args) < 2, lambda (props)-> { true }, args[2]);
makeFragileUniReference(serviceType, filterQuery)

}

