
Ambient-Oriented Programming in AmbientTalk

Jessie Dedecker?, Tom Van Cutsem?, Stijn Mostinckx??,
Theo D’Hondt, and Wolfgang De Meuter

jededeck | tvcutsem | smostinc | tjdhondt | wdmeuter@vub.ac.be

Programming Technology Laboratory
Vrije Universiteit Brussel, Belgium

Abstract. A new field in distributed computing, called Ambient Intel-
ligence, has emerged as a consequence of the increasing availability of
wireless devices and the mobile networks they induce. Developing soft-
ware for mobile networks is extremely hard in conventional programming
languages because the network is dynamically demarcated. This leads us
to postulate a suite of characteristics of future Ambient-Oriented Pro-
gramming languages. A simple reflective programming language, called
AmbientTalk, that meets the characteristics is presented. It is validated
by implementing a collection of high level language features that are used
in the implementation of an ambient messenger application .

1 Introduction

Software development for mobile devices is given a new impetus with the advent
of mobile networks. Mobile networks surround a mobile device equipped with
wireless technology and are demarcated dynamically as users move about. Mo-
bile networks turn isolated applications into cooperative ones that interact with
their environment. This vision of ubiquitous computing, originally described by
Weiser [38], has recently been termed Ambient Intelligence (AmI for short) by
the European Council’s IST Advisory Group [12].

Mobile networks that surround a device have several properties that distin-
guish them from other types of networks. The most important ones are that
connections are volatile (because the communication range of wireless technol-
ogy is limited) and that the network is open (because devices can appear and
disappear unheraldedly). This puts extra burden on software developers. Al-
though system software and networking libraries providing uniform interfaces to
the wireless technologies (such as JXTA and M2MI [21]) have matured, devel-
oping application software for mobile networks still remains difficult. The main
reason for this is that contemporary programming languages lack abstractions
to deal with the mobile hardware characteristics. For instance, in traditional
programming languages failing remote communication is usually dealt with us-
ing a classic exception handling mechanism. This results in application code
? Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.)

?? Funded by a doctoral scholarship of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen), Belgium.

2

polluted with exception handling code because failures are the rule rather than
the exception in mobile networks. Observations like this justify the need for a
new Ambient-Oriented Programming paradigm (AmOP for short) that consists
of programming languages that explicitly incorporate potential network failures
in the very heart of their basic computational steps.

The goal of our research is threefold:

– First, we want to gain insight in the structure of AmOP applications.
– Second, we want to come up with AmOP language features that give pro-

grammers expressive abstractions that allow them to deal with the charac-
teristics of the mobile networks.

– Third, we want to distill the fundamental semantic building blocks that are at
the scientific heart of AmOP language features in the same way that current
continuations are at the heart of control flow instructions and environments
are the essence of scoping mechanisms.

As very little experience exists in writing AmOP applications, it is hard to
come up with AmOP language features based on software engineering require-
ments. Therefore, our research departs from the hardware phenomena that fun-
damentally distinguish mobile from stationary networks. These phenomena are
listed in section 2.1 and form the basis from which we distill a number of funda-
mental programming language characteristics that define the AmOP paradigm.
These characteristics are the topic of section 3. A concrete scion of the AmOP
paradigm — called AmbientTalk — is presented starting from section 4. Ambi-
entTalk’s design is directly based on our analysis of the hardware phenomena
and features a number of fundamental semantic building blocks designed to deal
with these hardware phenomena. Since AmbientTalk was conceived as a reflec-
tively extensible language kernel, the semantic buidling blocks turn AmbientTalk
into a language laboratory that allows us to investigate the language features
that populate the AmOP paradigm. Section 5 validates this by realising three
language features that facilitate high-level collaboration of objects running on
devices connected by a mobile network. The language features are used in a
concrete experiment we conducted, namely the implementation of an ambient
peer-to-peer instant messaging application that was deployed on smart phones.

2 Motivation

The hardware properties of the devices constituting a mobile network engender
a number of phenomena that have to be dealt with by distributed programming
languages and/or middleware. We summarize these hardware phenomena below
and describe how existing programming languages and middleware fail to deal
with them. These shortcomings form the main motivation for our work.

2.1 Hardware Phenomena

With the current state of commercial technology, mobile devices are often char-
acterised as having scarcer resources (such as lower CPU speed, less memory and

3

limited battery life) than traditional hardware. However, in the last couple of
years, mobile devices and full-fledged computers like laptops are blending more
and more. That is why we do not consider such restrictions as fundamental as
the following phenomena which are inherent to mobile networks:

Connection Volatility. Two devices that perform a meaningful task together
cannot assume a stable connection. The limited communication range of the
wireless technology combined with the fact that users can move out of range
can result in broken connections at any point in time. However, upon re-
establishing a broken connection, users typically expect the task to resume.
In other words, they expect the task to be performed in the presence of a
volatile connection.

Ambient Resources. If a user moves with his mobile device, remote resources
become dynamically (un)available in the environment because the availabil-
ity of a resource may depend on the location of the device. This is in con-
trast with stationary networks in which references to remote resources are
obtained based on the explicit knowledge of the availability of the resource.
In the context of mobile networks, the resources are said to be ambient.

Autonomy. Most distributed applications today are developed using the client-
server approach. The server often plays the role of a “higher authority” which
coordinates interactions between the clients. In mobile networks a connection
to such a “higher authority” is not always available. Every device should be
able to act as an autonomous computing unit.

Natural Concurrency. In theory, distribution and concurrency are two differ-
ent phenomena. For instance in a client-server setup, a client device might
explicitly wait for the results of a request to a serving device. But since wait-
ing undermines the autonomy of a device, we conclude that concurrency is
a natural phenomenon in software running on mobile networks.

2.2 Distributed Languages

To the best of our knowledge no distributed language has been designed that
deals with all the characteristics of mobile hardware just described. Languages
like Emerald [19] and Obliq [6] are based on synchronous communication which
is irreconcilable with the autonomy and the connection volatility characteristics.
Languages like ABCL/f [31] and Argus [23] that promote a scheme based on
futures [14] partially solve this but their objects block when accessing unresolved
futures. Other languages based on the actor model, such as Janus [20], Salsa [35]
and E [27] use pure asynchronous communication. However, these languages offer
no support to discover ambient resources or to coordinate interactions among
autonomous computing units in the face of volatile connections.

2.3 Distributed Middleware

An alternative to distributed languages is middleware. Over the past few years
a lot of research has been invested in middleware for mobile networks [25]. It
can be categorised in several groups.

4

RPC-based Middleware like Alice [13] and DOLMEN [29] are attempts that
focus mainly on making ORBs suitable for lightweight devices and on im-
proving the resilience of the CORBA IIOP protocol against volatile connec-
tions. Others deal with such connections by supporting temporary queuing
of RPCs [18] or by rebinding [30]. However, these approaches remain vari-
ations of synchronous communication and are thus irreconcilable with the
autonomy and connection volatility phenomena.

Data Sharing-oriented Middleware tries to maximize the autonomy of tem-
porarily disconnected mobile devices using weak replica management (cf.
Bayou [32], Rover [18] and XMiddle [40]). However, since replicas are not al-
ways synchronisable upon reconnection, potential conflicts must be resolved
at the application level. In spite of the fact that these approaches foster
fruitful ideas to deal with the autonomy characteristic, to the best of our
knowledge, they do not address the ambient resources phenomenon.

Publish-subscribe Middleware adapts the publish-subscribe paradigm [10]
to cope with the characteristics of mobile computing [7, 5]. Such middleware
allows asynchronous communication, but has the disadvantage of requiring
manual callbacks to handle communication results, which severely clutters
object-oriented code.

Tuple Space based Middleware [28, 24] for mobile computing has been pro-
posed more recently. A tuple space [11] is a shared data structure in which
processes can asynchronously publish and query tuples. Most research on
tuple spaces for mobile computing attempts to distribute a tuple space over
a set of devices. Tuple spaces are an interesting communication paradigm for
mobile computing. Unfortunately, they do not integrate well with the object-
oriented paradigm because communication is achieved by placing data in a
tuple space as opposed to sending messages to objects.

2.4 Problem Statement

Neither existing distributed programming languages nor existing middleware
solutions deal with all hardware phenomena listed above. Some middleware
proposals offer partial solutions, but do not fit the object-oriented paradigm.
However, the object-oriented paradigm has proven its merit w.r.t. dealing with
distribution (and its induced concurrency) because it successfully aligns encap-
sulated objects with concurrently running distributed software entities [3]. We
claim that these observations motivate the need for an Ambient-Oriented Pro-
gramming paradigm which consists of concurrent distributed object-oriented
programming languages offering well-integrated facilities to deal with all the
hardware phenomena engendered by mobile networks.

3 Ambient-Oriented Programming

In the same way that referential transparency can be regarded as a defining prop-
erty for pure functional programming, this section presents a collection of lan-
guage design characteristics that discriminate the AmOP paradigm from classic

5

concurrent distributed object-oriented programming. These characteristics have
been described earlier [8] and are repeated in the following four sections.

3.1 Classless Object Models

As a consequence of argument passing in the context of remote messages, objects
are copied back and forth between remote hosts. Since an object in a class-based
programming language cannot exist without its class, this copying of objects im-
plies that classes have to be copied as well. However, a class is – by definition – an
entity that is conceptually shared by all its instances. From a conceptual point
of view there is only one single version of the class on the network, containing
the shared class variables and method implementations. Because objects resid-
ing on different machines can autonomously update a class variable of “their”
copy of the class or because a device might upgrade to a new version of a class
thereby “updating” its methods, a classic distributed state consistency problem
among replicated classes arises. Independent updates on the replicated class –
performed by autonomous devices – can cause two instances of the “same” class
to unexpectedly exhibit different behaviour. Allowing programmers to manually
deal with this phenomenon requires a full reification of classes and the instance-
of relation. However, this is easier said than done. Even in the absence of wireless
distribution, languages like Smalltalk and CLOS already illustrate that a serious
reification of classes and their relation to objects results in extremely complex
meta machinery.

A much simpler solution consists of favouring entirely self-sufficient objects
over classes and the sharing relation they impose on objects. This is the paradigm
defined by prototype-based languages like Self [34]. In these languages objects
are conceptually entirely idiosyncratic such that the above problems do not arise.
Sharing relations between different prototypes can still be established (such as
e.g. traits [33]) but the point is that these have to be explicitly encoded by the
programmer at all times1. For these reasons, we have decided to select prototype-
based object models for AmOP. Notice that this confirms the design of existing
distributed programming languages such as Emerald, Obliq, dSelf and E which
are all classless.

3.2 Non-Blocking Communication Primitives

Autonomous devices communicating over volatile connections necessitate non-
blocking communication primitives since blocking communication would harm
the autonomy of mobile devices. First, blocking communication is a known source
of (distributed) deadlocks [36] which are extremely hard to resolve in mobile net-
works since not all parties are necessarily available for communication. Second,
blocking communication primitives would cause a program or device to block
1 Surely, a runtime environment can optimise things by sharing properties between

different objects. But such a sharing is not part of the language definition and can
never be detected by objects.

6

long-lasting upon encountering volatile connections or temporary unavailability
of another device [25, 28]. As such, the availability of resources and the respon-
siveness of applications would be seriously diminished.

Non-blocking communication is often confused with asynchronous sending,
but this neglects the (possibly implicit) corresponding ‘receive’ operation. Non-
blocking reception gives rise to event-driven applications, responsive to the stream
of events generated by spontaneously interacting autonomous devices. We thus
conclude that an AmOP language needs a concurrency model without blocking
communication primitives.

3.3 Reified Communication Traces

Non-blocking communication implies that devices are no longer implicitly syn-
chronised while communicating. However, in the context of autonomously col-
laborating devices, synchronisation is necessary to prevent the communicating
parties from ending up in an inconsistent state. Whenever such an inconsistency
is detected, the parties must be able to restore their state to whatever previous
consistent state they were in, such that they can synchronise anew based on that
final consistent state. Examples of the latter could be to overrule one of the two
states or deciding together on a new state with which both parties can resume
their computation. Therefore, a programming language in the AmOP paradigm
has to provide programmers with an explicit representation (i.e. a reification) of
the communication details that led to the inconsistent state. Having an explicit
reified representation of whatever communication that happened, allows a device
to properly recover from an inconsistency by reversing (part of) its computation.

Apart from supporting synchronisation in the context of non-blocking com-
munciation, reified communication traces are also needed to be able to implement
different message delivery policies. A broad spectrum of such policies exists. For
example, in the M2MI library [21], messages are asynchronously broadcasted
without guarantees of being received by any listening party. In the actor model
on the other hand, all asynchronous messages must eventually be received by
their destination actor [1]. This shows that there is no single “right” message
delivery policy because the desired delivery guarantee depends on the seman-
tics of the application. Reifying outgoing communication traces allow one to
make a tradeoff between different delivery guarantees. Programming languages
belonging to the AmOP paradigm should make this possible.

3.4 Ambient Acquaintance Management

The combination of autonomous devices and ambient resources which are dy-
namically detected as devices are roaming implies that devices do not necessarily
rely on a third party to interact with each other. This is in contrast to client-
server communication models where clients interact through the mediation of a
server (e.g. chat servers or white boards). The fact that communicating parties
do not need an explicit reference to each other beforehand (whether directly or
indirectly through a server) is known as distributed naming [11]. Distributed

7

naming provides a mechanism to communicate without knowing the address of
an ambient resource. For example, in tuple space based middleware this prop-
erty is achieved, because a process can publish data in a tuple space, which can
then be consulted by the other processes based on a pattern matching basis.
Another example is M2MI [21], where messages can be broadcast to all objects
implementing a certain interface.

We are not arguing that all AmOP applications must necessarily be based
on distributed naming. It is perfectly possible to set up a server for the purposes
of a particular application. However, an AmOP language should allow an object
to spontaneously get acquainted with a previously unknown object based on an
intensional description of that object rather than via a fixed URL. Incorporating
such an acquaintance discovery mechanism, along with a mechanism to detect
and deal with the loss of acquaintances, should therefore be part of an AmOP
language. We will refer to the combination of these mechanisms as ambient
acauqintance management.

3.5 Discussion

Having analysed the implications of the hardware phenomena on the design of
programming languages, we have distilled the above four characteristics. We will
henceforth refer to programming languages that adhere to them as Ambient-
oriented Programming Languages. Surely, it is impossible to prove that these
are strictly necessary characteristics for writing the applications we target. Af-
ter all, AmOP does not transcend Turing equivalence. However, we do claim
that an AmOP language will greatly enhance the construction of such appli-
cations because its distribution characteristics are designed with respect to the
hardware phenomena presented in section 2.1. AmOP languages incorporate
transient disconnections and evolving acquaintance relationships in the heart of
their computational model.

4 The AmbientTalk Kernel

Having defined the AmOP paradigm, we now present AmbientTalk, a language
that was explicitly designed to satisfy its characteristics. As explained in the
introduction, AmbientTalk is a reflectively extensible kernel that can be used as
a language laboratory to experiment with AmOP language features. First, the
essential characteristics of its object model are explained.

4.1 A Double-layered Object Model

AmbientTalk has a concurrent object model that is based on the model of
ABCL/1 [39]. This model features active objects which consist of a perpetually
running thread, updateable state, methods and a message queue. These concur-
rently running active objects communicate by asynchronous message passing.
Upon reception, messages are scheduled in the active object’s message queue

8

and are processed one by one by the active object’s thread. By excluding simul-
taneous message processing, race conditions on the updateable state are avoided.
The merit of the model is that it unifies imperative object-oriented programming
and concurrent programming without suffering from omnipresent race condi-
tions. We will henceforth use the term ‘active object’ or ‘actor’ interchangeably
for ABCL/1-like active objects.

To avoid having every single object to be equipped with heavyweight con-
currency machinery and having every single message to be thought of as a con-
current one, an object model that distinguishes between active and passive (i.e.
ordinary) objects is adopted. This allows programmers to deal with concur-
rency only when strictly necessary (i.e. when considering semantically concur-
rent and/or distributed tasks). Since passive objects are not equipped with an
execution thread, the “current thread” runs from the sender into the receiver,
thereby implementing synchronous message passing. However, it is important to
ensure that a passive object is never shared by two different active ones because
this easily leads to race conditions. AmbientTalk’s object model avoids this by
obeying the following rules:

– Containment Every passive object is contained within exactly one active
object. Therefore, a passive object is never shared by two active ones. The
only thread that can enter the passive object is the thread of its active
container.

– Argument Passing Rules When an asynchronous message is sent to an active
object, objects may be sent along as arguments. In order not to violate
the containment principle, a passive object that is about to leave its active
container this way, is passed by copy. This means that the passive object
is deep-copied up to the level of references to active objects. Active objects
process messages one by one and can therefore be safely shared by two
different active objects. Hence, they are passed by reference.

This pragmatic marriage between the functional actor model, the imperative
thread model and the prototype-based object model was chosen as the basis
for AmbientTalk’s distribution model. Active objects are defined to be Ambi-
entTalk’s unit of distribution and are the only ones allowed to be referred to
across device boundaries. Therefore, AmbientTalk applications are conceived as
suites of active objects deployed on autonomous devices. Several active objects
can run on a device and every active object contains a graph of passive objects.
Objects in this graph can refer to active objects that may reside on any device.
In other words, AmbientTalk’s remote object references are always references to
active objects. The rationale of this design is that synchronous messages (as sent
to passive objects) cannot be reconciled with the non-blocking communication
characteristic presented in section 3.2.

AmbientTalk does not know the concept of proxies on the programming lan-
guage level. An active object a1 can ‘simply’ refer to another active object a2

that resides on a different machine. If both machines move out of one another’s
communication range and the connection is (temporarily) lost, a1 conceptually

9

remains referring to a2 and can keep on sending messages as if nothing went
wrong. Such messages are accumulated in a1 and will be transparently delivered
after the connection has been re-established. Hence, AmbientTalk’s default de-
livery policy strives for eventual delivery of messages. The mechanism that takes
care of this transparency is explained in section 4.4. First we discuss both layers
of AmbientTalk’s object model in technical detail.

4.2 The Passive Object Layer

Following the prototype-based tradition, AmbientTalk passive objects are con-
ceived as collections of slots mapping names to objects and/or methods. The
code below shows an implementation for stacks in AmbientTalk:

makeStack(size)::object({

els:makeVector(size);

top:0;

isEmpty()::{ size=0 };

isFull()::{ size=top };

push(item)::{

if(this.isFull(),

{ error("Stack Overflow") },

{ top:=top+1;

els.set(top,item) })

};

pop()::{

if(this.isEmpty(),

{ error("Stack Underflow") },

{ val: els.get(top);

top:=top-1;

val })

}})

Objects are created using the object(...) form2. It creates an object by execut-
ing its argument expression, typically a block of code (delimited by curly braces)
containing a number of slot declarations. Slots can be mutable (declared with
:) or immutable (declared with ::). Mutable slots are always private and im-
mutable slots are always public (for the rationale of this design decision we refer
to [9]). Both method invocation and public slot selection use the classic dot no-
tation. Objects are lexically scoped such that names from the surrounding scope
can be used in the object(...) form. As illustrated by makeStack(size), the
form can be used in the body of a function in order to generate objects. Such a
function will be referred to as a constructor function and is AmbientTalk’s idiom
to replace the object instantiation role of classes. Objects can also be created
by extending existing ones: the extend(p,...) form creates an object whose
parent is p and whose additional slots are listed in a block of code, analogous

2 A ‘form’ is a Scheme-like special form, i.e., a built-in ‘function’ whose parameters
are treated in an ad hoc way. if(test,exp1,exp2) is another example of a form.

10

to the object(...) form. Messages not understood by the newly created object
are automatically delegated to the parent. Furthermore, a Java-like super key-
word can be used to manually delegate messages to the parent object. Following
the standard delegation semantics proposed by Lieberman [22] and Ungar [34],
references to this in the parent object denote the newly created child object.

Apart from objects, AmbientTalk features built-in numbers, strings, a null
value void and functions. However, these ‘functions’ are actually nothing but
methods in AmbientTalk. For example, the makeStack constructor function
is actually a method of the root object which is the global environment of
the AmbientTalk interpreter. Methods can be selected from an object (e.g.
myPush:aStack.push). Upon selection, a first-class closure object is created
which encapsulates the receiver (aStack) and which can be called using canoni-
cal syntax, e.g., myPush(element). Closure objects are actually passive objects
with a single apply method. Finally, a syntactic sugar coating allows anony-
mous closures to be created given a list of formal parameters and a body, e.g.,
lambda(x,y) -> {x+y}. When bound to a name (e.g., as the value of a slot f or
when bound to a formal parameter f), a closure is called using canonical syntax,
e.g., f(1,2).

4.3 The Active Object Layer

As explained in section 4.1, AmbientTalk actors have their own message queues
and computational thread which processes incoming messages one by one by
executing their corresponding method. Therefore, an actor is entirely single-
threaded such that state changes using the classic assignment operator := cannot
cause race conditions. Messages sent to the passive objects it contains (using the
dot notation) are handled synchronously. Actors are created using the actor(o)
form where o must be a passive object that specifies the behaviour of the actor.
In order to respect the containment principle, a copy of o is made before it is used
by the actor form because o would otherwise be shared by the creating and the
created actor. A newly created actor is immediately sent the init() message
and thisActor denotes the current actor. These concepts are exemplified by
the following code excerpt which shows the implementation of a friend finder
actor running on a cellular phone. When two friend finders discover one another
(which is explained later on) they send each other the match message passing
along an info passive object that contains objects representing the age (with an
isInRangeOf method) and hobbies (containing a method that checks whether
two hobby lists have anything in common).

makeFriendFinder(age,hobbies)::actor(object({

init()::{ display("Friend Finder initialized!") };

beep()::{ display("Match Found - BEEP!") };

match(info)::{

if(and(age.isInRangeOf(info.age),

hobbies.intersectsWith(info.hobbies)),

{ thisActor#beep() })

}}))

11

Actors can be sent asynchronous messages using the # primitive which plays
the same role for actors as the dot notation for passive objects. E.g., if ff is a
friend finder (possibly residing on another cellular phone), then ff#match(myInfo)
asynchronously sends the match message to ff. The return value of an asyn-
chronous message is void and the sender never waits for an answer. Using the #
operator without actual arguments (e.g., ff#match) yields a first-class message
object that encapsulates the sending actor (thisActor), the destination actor
(ff) and the name of the message. First-class messages are further explained in
section 4.5 that describes AmbientTalk’s meta-level facilities. Finally, using the
dot notation for actors (resp. # for passive objects) is considered to be an error.

When passing along arguments with (both synchronous and asynchronous)
message sends, caution is required in order not to breach the containment prin-
ciple. In the case of synchronous messages of the form po.m(arg1,...argn)
between two objects that are contained in the same actor, the arguments do
not “leave” the actor and can therefore be safely passed by reference. In the
case of asynchronous messages of the form ao#m(arg1,...argn), the arguments
“leave” the actor from which the message is sent. In order to respect the contain-
ment principle, this requires the arguments to be passed by copy as explained in
section 4.1. In the friend finder example, the info object is thus passed by copy.

4.4 First-class Mailboxes

AmbientTalk’s concurrent object model presented above is classless and supports
non-blocking communication. This already covers two of the four characteristics
of AmOP as presented in section 3. However, with respect to the other two, the
model presented so far still has some limitations which it directly inherits from
the original actor model [15, 2]:

– The model does not support the ambient acquaintance management charac-
teristic of the AmOP paradigm because traditionally, actors can only gain
acquaintances through other actors. Extensions of the actor model that ad-
dress this problem (e.g., ActorSpaces [4]) use a centralized authority which
is not reconcilable with the hardware phenomena listed in section 2.1.

– Actor formalisms do not support the reified communication traces we argued
for in section 3.

To enable these two properties, AmbientTalk replaces the single message
queue of the original actor model by a system of eight first-class mailboxes which
is described below.

When scrutinising the communication of a typical actor, four types of mes-
sages are distinguished: messages that have been sent by the actor (but not yet
received by the other party), outgoing messages that have been acknowledged to
be received, incoming messages that have been received (but not yet processed)
and messages that have been processed. The AmbientTalk interpreter stores
each type in a dedicated mailbox associated with the actor. An actor has access
to its mailboxes through the names outbox, sentbox, inbox and rcvbox. The

12

combined behaviour of the inbox and outbox mailboxes was already implicitly
present in the original actor model in the form of a single message queue. As we
will show in the remainder of the paper, AmbientTalk’s mailboxes are the funda-
mental semantic buidling blocks for implementing advanced language constructs
on top of the non-blocking communication primitives. Indeed, conceptually, the
mailboxes rcvbox and sentbox allow one to peek in the communication history
of an actor. Likewise, the mailboxes inbox and outbox represent an actor’s con-
tinuation, because they contain the messages the actor will process and deliver
in the future. Together, the four explicit mailboxes cover the need for reified
communication traces that have been prescribed by the AmOP paradigm.

In order to cover the ambient acquaintance management requirement of
AmOP, AmbientTalk actors have four additional predefined mailboxes called
joinedbox, disjoinedbox, requiredbox and providedbox. An actor that wants
to make itself available for collaboration on the network can broadcast this fact
by adding one or more descriptive tags (e.g. strings) in its providedbox mailbox
(using the add operation described below). Conversely, an actor that needs other
actors for collaboration can listen for actors broadcasting particular descriptive
tags by adding these tags to its requiredbox mailbox. If two or more actors join
by entering one another’s communication range while having an identical descrip-
tive tag in their mailboxes, the mailbox joinedbox of the actor that required the
collaboration is updated with a resolution object containing the corresponding
descriptive tag and a (remote) reference to the actor that provided that tag. Con-
versely, when two previously joined actors move out of communication range, the
resolution is moved from the joinedbox mailbox to the disjoinedbox mailbox.
This mechanism allows an actor not only to detect new acquaintances in its
ambient, but also to detect when they have disappeared from the ambient. It
is AmbientTalk’s technical realisation of the ambient acquaintance management
characteristic discussed in section 3.4.

Mailboxes are first-class passive objects contained in the actor. Due to the
containment principle for passive objects, mailboxes can never be shared among
multiple actors. However, mailboxes are necessarily shared between the actor
and the AmbientTalk interpreter because this interpreter puts messages into the
mailboxes (e.g. upon reception of a message or upon joining with another actor).
To avoid race conditions on mailboxes, the interpreter is not given access while
the actor manipulates its own built-in mailboxes3. Mailboxes provide operators
to add and delete elements (such as messages, descriptive tags and resolutions): if
b is a mailbox, then b.add(elt) adds an element to b. Similarly, b.delete(elt)
deletes an element from a mailbox. b.iterate(f) applies the closure f to all
elements that reside in the mailbox b. Moreover, the changes in a mailbox can be
monitored by registering observers with a mailbox: b.uponAdditionDo(f)(resp.
b.uponDeletionDo(f)) installs a closure f as a listener that will be triggered
whenever an element is added to (resp. deleted from) the mailbox b. The element
is passed as an argument to f.

3 Apart from the eight built-in mailboxes, actors can create their own custom mail-
boxes which might be used by reflective extensions to temporarily store messages.

13

The following code excerpt exemplifies these concepts by extending the friend
finder example of the previous section with ambient acquaintance management in
order for two friend finders to discover each other. The initialisation code shows
that the actor advertises itself as a friend finder and that it requires communi-
cation with another friend finder. When two friend finders meet, a resolution is
added to their joinedbox, which will trigger the method onFriendFinderFound
that was installed as an observer on that mailbox. This resolution contains a
tag slot (in this case "<FriendFinder>") and a provider slot corresponding to
the providing actor. The latter is sent the match message (as described in the
previous section).

makeFriendFinder(age,hobbies)::actor(object({

...as above...

onFriendFinderFound(aResolution)::{

aResolution.provider#match(makeInfo(age, hobbies))

};

init()::{

provided.add("<FriendFinder>");

required.add("<FriendFinder>");

joinedbox.uponAdditionDo(this.onFriendFinderFound)

}}))

4.5 AmbientTalk as a Reflective Kernel

This section explains how to reflectively extend AmbientTalk’s kernel which
consists of the double-layered object model along with the system of eight
built-in mailboxes. The built-in mailboxes and their observers (installed with
uponAdditionDo and uponDeletionDo as described above) can already be re-
garded as part of AmbientTalk’s metaobject protocol (MOP) since they partially
reify the state of the interpreter. Indeed, they constantly reflect the past and fu-
ture of the communication state between actors as well as the evolving state of
the ambient. Additionally, the MOP allows a programmer to override the default
message sending and reception mechanisms. Just like ABCL/R [37, 26], Ambi-
entTalk has a MOP for a concurrent active object model (hence what follows
is only applicable to active objects, there is no MOP for passive objects). The
operations of the MOP presented in this section by default reside in any actor
and can be redefined by overriding them in any idiosyncratic actor. This mecha-
nism is at the heart of AmbientTalk’s ability to act as a programming language
laboratory for AmOP. The remainder of this section describes the different MOP
operations.

In order to explain the MOP, it is crucial to understand how asynchronous
messages are sent between two actors (that might reside on different machines).
When an actor a1 sends a message of the form a2#m(...), the interpreter of
a1 creates a first-class message object and places it in the outbox of a1. After
having successfully transmitted that message between the interpreter of a1 and
the interpreter of a2, the interpreter of a2 stores it in the inbox of a2. Upon

14

receiving a notification of reception, the interpreter of a1 moves the message from
the outbox of a1 to the sentbox of a1. a2 processes the messages in its inbox
one by one and stores the processed messages in the rcvbox of a2. Each stage
in this interplay (namely message creation, sending, reception and processing)
between the two interpreters is reified in the MOP.

Message creation is reified in the MOP with the constructor function
createMessage(sender, dest, name, args) which generates first-class mes-
sages. A message is a passive object which has four slots: the sending actor
sender, the destination actor dest, the name of the message name and a vec-
tor object args containing the actual arguments. Remember from section 4.3
that a first-class message is also created upon field selection with an expression
of the form anActor#msgName which results in a first-class message with sender
thisActor, destination anActor, name msgName and an empty argument vector.

Message sending is reified in the MOP by adding messages to the outbox
which is accomplished by the MOP’s message sending operation send. In other
words, an expression of the form anActor#msg(arg1, ..., argn) is base-level
terminology for an equivalent call to the meta-level method send, passing along
a newly created first-class message object. The default behaviour of send is:
send(msg)::{outbox.add(msg) }. It is possible to override this behaviour by
redefining the method send. The example below illustrates how send can be
overridden for logging purposes.

send(msg)::{

display("sending..."+msg.getName());

super.send(msg)

}

Every actor has a perpetually running thread that receives incoming messages
in the inbox and transfers them to the rcvbox after processing them. Message
reception is reified in the MOP by adding messages to an actor’s inbox which
can be intercepted by adding an observer to that mailbox. Message processing
is reified in the MOP by invoking the parameterless process method on that
message (which will execute the recipient’s method corresponding to the message
name) and by subsequently placing that message in the rcvbox. The latter event
can be trapped by installing an observer on that mailbox.

4.6 Summary: AmbientTalk and AmOP

In summary, AmbientTalk features a classless double-layered object model. Ac-
tors are visible in mobile networks and communicate with each other in a non-
blocking way. Internally, they contain a graph of passive objects. Actors have four
mailboxes which reify their communication traces and four mailboxes which are
causally connected to the outside world to reflect the evolution of acquaintances
in the ambient. These properties turn AmbientTalk into an AmOP language
as discussed in section 3. AmbientTalk’s fundamental semantic building blocks
can be used along with the MOP’s reflective facilities to experiment with new

15

AmOP language constructs and their interactions. This is extensively shown in
the following section.

5 AmbientTalk at Work: AmbientChat

In order to validate AmbientTalk’s concepts, we have implemented an instant
messenger application that epitomises all the difficulties of mobile network ap-
plications in which multiple parties dynamically join and disjoin and collaborate
without presuming a centralised server. The instant messenger runs on a mo-
bile device and spontaneously discovers chat buddies appearing in its proximity.
Conceived as an actor, the messenger’s functionality suggests the following con-
ceptual constructions which are non-existent in the AmbientTalk kernel. Their
reflective implementation is the topic of this section:

Ambient References can be thought of as active object references which “sniff
the ambient” given a textual description (e.g. a nickname). Ambient refer-
ences discover actors fitting that description and are resilient to the effects
of volatile connections: upon disconnection ambient references try to rebind
to a (potentially different) actor in the ambient fitting the description.

Futures [14, 23] are a classic technique to reconcile return values of meth-
ods with asynchronous message sends without resorting to manual callback
methods or continuation actors. A future is a placeholder that is immediatly
returned from an asynchronous send and that is eventually resolved with
the expected result. Computations that access an unresolved future block
until it is resolved. However, this contradicts the non-blocking communica-
tion characteristic of AmOP. AmbientTalk’s futures avoid this problem by
adopting the technique that was recently proposed in E [27]. It allows for
a transparent forwarding of messages sent to a future to its resolution and
features a when(aFuture, closure) construct to register a closure that is
to be applied upon resolving the future.

Due-blocks are similar to try-catch blocks. They consist of a block of code,
a handler and a deadline that is imposed on the transmission of all asyn-
chronous messages sent during the execution of the block. The handler is
invoked should the deadline expire. This mechanism is used by the messen-
ger to visualize undelivered messages by greying them out in the GUI.

These language constructs are implemented by using and overriding the MOP
operations described in the previous section. We use a mixin-based technique to
implement them in a modular way: an AmbientTalk construct and its support-
ing MOP operations are grouped in what we call a language mixin; a function
that returns an extension of its argument with new meta-level behaviour (i.e.
it overrides send, createmessage, process and/or installs observers on mail-
boxes). The idea is to apply such a language mixin to a passive object before
that passive object is used to create an actor. This way, a newly created actor
will exhibit the required behaviour.

16

Given these language abstractions, the code for the instant messenger fol-
lows. An instant messenger in AmbientTalk is conceived as an actor created by
the constructor function makeInstantMessenger given a nickname, a guiActor
(representing the application’s graphical user interface) and a maxTimeOut value
that indicates how resilient the messenger will be w.r.t. volatile connections.
The actor’s MOP is extended with the three language constructs by applying
the DueMixin, the FuturesMixin and the AmbientRefMixin to the passive ob-
ject representing its behaviour. The usage of the language constructs is indicated
in comments.

makeInstantMessenger(nickname, guiActor, maxTimeOut)::

actor(AmbientRefMixin(FuturesMixin(DueMixin(object({

buddies : makeHashmap();

statusLine: "Available";

getStatusLine() :: { statusLine };

setStatusLine(newStatus) :: { statusLine := newStatus };

buddyAppears(buddyNick) :: {

when(buddies.get(buddyNick)#getStatusLine(), // FUTURES

lambda(status) -> { guiActor#onlineColor(buddyNick,status) })

};

buddyDisappears(buddyNick) :: {

guiActor#offlineColor(buddyNick)

};

addBuddy(buddyNick) :: {

bAmsg:thisActor#buddyAppears; bDmsg:thisActor#buddyDisappears;

bAmsg.getArgs().set(1,buddyNick); bDmsg.getArgs().set(1,buddyNick);

buddies.put(buddyNick,

makeAmbientRef("<Messenger id="+buddyNick+">", bAmsg, bDmsg))

}; // AMBIENT REFERENCES

receiveText(from, text) :: {

guiActor#showText(from,text)

};

failedDelivery(msg) :: {

text: msg.getArgs().get(2);

guiActor#unableToSend(text)

};

talkTo(buddyNick,text) :: {

due(maxTimeOut, lambda() -> { // DUE BLOCKS

buddies.get(buddyNick)#receiveText(identity,text)

}, thisActor#failedDelivery)

};

init() :: {

guiActor#register(thisActor);

broadcast("<Messenger id="+nickname+">")

}})))));

An instant messenger actor has a slot statusLine and a slot buddies map-
ping nicknames to ambient references that represent instant messengers on other

17

mobile devices. Upon creation, its init method registers the messenger with the
GUI and broadcasts its presence in the ambient. The latter is accomplished by
the broadcast function which is merely a thin veneer of abstraction to hide
the fact that a descriptive tag is added to the providedbox of the actor (i.e.
broadcast(tag)::{providedbox.add(tag)}). Instant messenger actors have
three methods (addBuddy, setStatusLine and talkTo) that are called from the
GUI when the user adds a buddy (given a nickname), changes his status line or
sends a text message to one of his buddies. Two other methods (getStatusLine
and receiveText) are invoked by other instant messengers to retrieve a buddy’s
status line and to send a message to a buddy.

Upon adding a buddy, addBuddy creates an ambient reference (which searches
for a messenger) based on the nickname and a couple of first-class callback mes-
sages (bAmsg and bDmsg) which are to be invoked by the ambient reference when-
ever that buddy appears or disappears in the ambient. The first-class callback
message bAmsg (resp. bDmsg) is created by the expression thisActor#buddyAppears
(resp. thisActor#buddyDisappears) and given the buddy’s nickname as its first
and only argument. Whenever an actor fitting the ambient reference’s tag ap-
pears (resp. disappears) buddyAppears (resp. buddyDisappears) will thus be
invoked. buddyAppears subsequently asks for the status line of its communica-
tion partner. This yields a future, that will trigger the when language construct
upon resolution. In the closure that is passed to the when construct, the re-
solved future can be accessed as a parameter (e.g. status). Finally, whenever
the GUI invokes talkTo to communicate with a buddy, receiveText is sent
to the ambient reference representing that buddy. It is the ambient reference’s
task to forward that message to the actual messenger it denotes. The send of
receiveText occurs in a due block which tries to send it within the prescribed
time period. Should the message expire, failedDelivery is invoked which in
turn informs the GUI about this event.

This AmbientTalk application illustrates that it is relatively straightforward
to build an AmOP application, given the futures, ambient references and due-
block language extensions. The remainder of this section presents their imple-
mentation one by one.

5.1 Ambient References

As explained above, ambient references are active object references – “point-
ing into the ambient” – that constantly represent a remote actor fitting some
textual description. The following language mixin contains the makeAmbientRef
constructor function to create an ambient reference actor given a textual descrip-
tion tag and two first-class messages uponJoinMsg and uponDisjoinMsg that
need to be sent upon establishing or losing a connection with an actor fitting
the description.

AmbientRefMixin(actorBehaviour)::extend(actorBehaviour, {

makeAmbientRef(tag, uponJoinMsg, uponDisjoinMsg)::actor(object({

principal : void;

18

forwardMsg(msg) :: {

if(not(is_void(principal)), {

outbox.add(msg.setDestination(principal));

inbox.delete(msg)

})

};

handleActorJoined(resolution) :: {

if(is_void(principal), {

principal := resolution.provider;

send(uponJoinMsg);

inbox.iterate(this.forwardMsg)

})

};

handleActorDisjoined(resolution) :: {

if(resolution.provider.equals(principal), {

principal := void;

send(uponDisjoinMsg);

outbox.iterate(lambda(msg) -> {

outbox.delete(msg);

inbox.add(msg)

})

});

disjoined.delete(resolution)

};

init() :: {

requiredbox.add(tag);

inbox.uponAdditionDo(this.forwardMsg);

joinedbox.uponAdditionDo(this.handleActorJoined);

disjoinedbox.uponAdditionDo(this.handleActorDisjoined)

}}))})

The ambient reference is initialised by adding the tag to the requiredbox
making it listen for actors broadcasting this tag, and by installing three mailbox
observers to be triggered when messages arrive in the inbox and when resolutions
appear in the joinedbox or disjoinedbox. An ambient reference has a private
slot principal, the value of which is toggled between an actor broadcasting the
tag, and void when no such actors are currently available in the ambient. This
toggling is accomplished by the joinedbox observer handleActorJoined (called
whenever an actor was discovered) and the disjoinedbox observer handleActorDisjoined
(that voids the principal when it has moved out of communication range). When
a message is sent to the ambient reference, the inbox observer forwardMsg is
called since it is the ambient reference’s task to forward messages to the ac-
tor it represents. This is implemented by changing the destination actor of the
message from the ambient reference to the principal and by moving it from
the inbox of the ambient reference to its outbox. The AmbientTalk interpreter
will henceforth handle the delivery of the message as explained in section 4.5.
Messages may be accumulated in the inbox of the ambient reference while its

19

principal is void4. Therefore, handleActorJoined flushes all unsent messages
in the inbox by forwarding them to the newly discovered actor. Similarly the
handleActorDisjoined method will ensure that messages that were not deliv-
ered yet and were accumulated in the outbox are transferred to the inbox of the
reference in order to make sure they will be resent upon rebinding to another
principal.

5.2 Non-blocking Futures

As explained above, AmbientTalk’s implementation of futures is based on E. The
main difference with existing proposals for futures is the fact that futures are
non-blocking. Futures are represented as AmbientTalk actors and messages sent
to them are transparently forwarded to the future’s value. The when construct
is used to register a block of code that will be triggered upon resolution of the
future. The first part of the language mixin implementing futures is shown below:

FuturesMixin(actorBehaviour)::extend(actorBehaviour, {

makeFuture() :: actor(object({

value: void;

whenObservers: makeList();

forward(msg) :: {

if(not(has_slot(this, msg.getName())),

if(is_actor(value),

{ inbox.delete(msg);

outbox.add(msg.setDestination(value)) }))

};

register(aWhenObserver) :: {

if(is_void(value),

{ whenObservers.add(aWhenObserver) },

{ aWhenObserver.notify(value) })

};

resolve(computedValue) :: {

value:=computedValue;

whenObservers.iterate(lambda(observer) -> { observer.notify(value) });

inbox.iterate(this.forward)

};

init() :: { inbox.uponAdditionDo(this.forward) }

})); // CONTINUED

The language mixin introduces the makeFuture constructor function which
generates new futures. Futures contain a method forward to forward messages to
the actor it resolved to, except for messages for which the future actor itself has
a method slot (such as register and resolve). Every usage of when(aFuture,
closure) gives rise to the registration of a ‘when-observer object’ with the

4 If an actor has no method to process an incoming message, the default behaviour is
to leave it waiting in the inbox.

20

future using register. Upon resolution, the future notifies all its registered
when-observers and forwards all previously accumulated messages.

To introduce futures in the MOP of actors, createMessage is overridden
such that asynchronous messages are intercepted to be extended with a future
slot. Furthermore, the message’s process method (which will be invoked by the
destination actor) is refined in order to resolve the message’s future with the
computed value. The overridden send first performs a super-send to delegate
message sending to the default implementation. However, instead of returning
void, the new implementation returns the future contained in the extended
message.

// FuturesMixin, CONTINUED

createMessage(sender,dest,name,args)::{

extend(super.createMessage(sender,dest,name,args), {

future :: makeFuture();

process()::{

computedValue: super.process();

future#resolve(computedValue);

computedValue

};

})

};

send(message)::{

super.send(message);

message.future

};

whenBlocks: makeHashmap();

whenIdCtr : 1;

invokeWhen(whenBlockID, computedValue)::{

whenBlocks.get(whenBlockID)(computedValue); //curried call

whenBlocks.delete(whenBlockID)

};

makeWhenObserver(callBackActor, whenBlockID): object({

notify(computedValue):: {

callBackActor#invokeWhen(whenBlockID, computedValue) }

});

when(aFuture, whenBlock)::{

whenBlocks.put(whenIdCtr, whenBlock);

aFuture#register(makeWhenObserver(thisActor, whenIdCtr));

whenIdCtr := whenIdCtr + 1

}})

The when(aFuture, closure) language extension registers a closure that
is applied when the future gets resolved. Caution is required since a closure is
a passive object and passing it to the future actor would cause it to be copied
as a consequence of the containment principle. As this implies deep-copying the
entire closure, side effects in the lexical scope would go by unnoticed. Hence,

21

passing closures to another actor must be avoided. This is achieved by creating
an observer object (created with the makeWhenObserver constructor function)
which encapsulates an actor and an ID that identifies a local closure in the
whenBlocks vector of that actor. It is this observer that is registered with the
future. Whenever the future gets resolved, all observers are sent notify which in
turn ask their encapsulating actor (through invokeWhen) to invoke the closure
registered on the future by passing along the closure’s ID and the result value.

5.3 Due: Handling Failures

As explained in section 4.1, AmbientTalk’s default delivery policy guarantees
eventual delivery of messages. Messages are stored indefinitely in the outbox of
an actor until they can be delivered. The due language construct alters this policy
by putting an expiration deadline on outgoing messages. A due-block consists
of a timeout value (relative to the time at which a message is sent), a ‘body’
closure and a handler message to be sent upon expiration. When a message sent
during the execution of the body expires, it is removed from the actor’s outbox
and the handler message is sent with the expired message as argument. The
implementation of the due language construct consists of two separate language
mixins:

– The DueMixin defines due which stamps all asynchronous messages sent
while executing its body with an expiration deadline and a handler message
to be sent upon expiration.

– The ExpiryCheckMixin makes an actor regularly check its outbox in order
to remove expired messages and to send their corresponding handler message.

The reason for separating the DueMixin and the ExpiryCheckMixin is that
messages often get forwarded through different actors before reaching their des-
tination. A typical example thereof is when actors are referred to indirectly via
an ambient reference as explained in section 5.1: a message may expire in the
outbox of the intermediary ambient reference rather than in the outbox of the
actor which originally sent the message. Such intermediary actors must therefore
be able to detect expired messages even though they do not use the due con-
struct. Hence, the ExpiryCheckMixin has to be applied to ambient references.
This was omitted in section 5.1 for didactic purposes.

The language mixin DueMixin is defined as follows:

DueMixin(actorBehaviour) :: extend(actorBehaviour, {

dueTimeout: void;

dueHandlerMsg: void;

due(deadline, body, handlerMsg) :: {

tmpTimeout: dueTimeout;

tmpHandler: dueHandlerMsg;

dueTimeout := deadline;

dueHandlerMsg := handlerMsg;

value: body();

22

dueTimeout := tmpTimeout;

dueHandlerMsg := tmpHandler;

value

};

createMessage(sender,dest,name,args) :: {

msg: super.createMessage(sender,dest,name,args);

if(!is_void(dueTimeout),

{ extend(msg, {

deadline :: time() + dueTimeout;

handlerActor :: dueHandlerMsg.getSender();

handlerName :: dueHandlerMsg.getName()

}) },

msg)}})

The DueMixin installs the due construct in an actor and overrides the way
its outgoing messages are created in order to stamp those messages by ex-
tending them with a deadline slot and a ‘complaint address’ in the form of
a handlerActor and a handlerName slot which will determine how to react
when the deadline expires. The overridden createMessage method first creates
a message object msg by delegating to the default implementation. Subsequently,
msg is extended with the slots provided that it was invoked in the dynamic con-
text of a due-block (i.e. if dueTimeout contains a meaningful value rather than
void). At any particular time on the execution path of an actor, one active due-
block exists (cf. try-catch). Its timeout value and its handler are stored in the
slots dueTimeout and dueHandlerMsg. To allow dynamic nesting of due-blocks,
the current values of dueTimeout and dueHandlerMsg are saved in temporary
variables and are restored upon returning from the due body closure.

What remains to be explained is the ExpiryCheckMixin that registers a
first-class message notify with a local clock actor which periodically sends this
message. Upon notification, the actor examines outgoing messages stamped with
a deadline to check whether they have expired. Expired messages are deleted
from the outbox and their handler message is sent to the appropriate actor.

ExpiryCheckMixin(actorBehaviour) :: extend(actorBehaviour,{

pollInterval:1000; // in milliseconds

init() :: {

super.init();

root.clockActor#register(thisActor#notify, pollInterval)

};

notify() :: {

outbox.iterate(lambda(msg) -> {

if(has_slot(msg, "deadline"), {

if(time() > msg.deadline, {

outbox.delete(msg);

send(createMessage(

thisActor, msg.handlerActor,

msg.handlerName, makeVector(1).set(1,msg)))

})})})}})

23

5.4 Evaluation

This section has presented three tentative high-level AmOP language features:
ambient references, due-blocks and non-blocking futures. We have adhered to the
(functional programming) tradition of modular interpreters to formulate these
features as modular semantic building blocks — called language mixins — that
enhance AmbientTalk’s kernel. AmbientTalk’s basic semantic building blocks
(consisting of the eight first-class mailboxes, its mailbox observers and its reflec-
tive facilities) have been shown to be sufficient to implement these abstractions.
The abstractions have been validated in the context of the instant messenger ap-
plication. Indeed, the essence of communication between two messengers consists
of making the corresponding actors get acquainted and in handling the delivery,
processing and result propagation of asynchronously sent messages between two
autonomous actors that are separated by a volatile connection. To support these
different aspects of communication,

Ambient References establish and maintain a meaningful connection between
two actors on top of a volatile connection. The implementation of ambient
references heavily relies on AmbientTalk’s ambient acquaintance manage-
ment facilities (in order to manage the appearance and disappearance of
communication partners) as well as its reified communication traces (to flush
messages accumulated during disconnection).

Non-blocking Futures in combination with the when construct allow one to
link an asynchronous message send to the code that is to be executed upon
result propagation. The when construct thus bridges the computational con-
text in which the message was sent and the one in which its result is han-
dled. Furthermore, AmbientTalk’s non-blocking futures delay the delivery of
received messages until the expected result is ready to receive them. As men-
tioned in section 3.3, this shows that reified communication traces are at the
heart of realigning synchronisation with communication while strictly rely-
ing on non-blocking communication primitives as prescribed by the AmOP
paradigm.

Due-blocks allow the sender to define, detect and deal with permanent discon-
nections. The due language construct shows that although AmbientTalk’s
default message delivery policy (discussed in section 4.1) implements a re-
sumable communication model (where disconnections are not aligned with
failures), one can still cope with permanent failures by reflecting upon an
actor’s communication traces: by having access to an actor’s outgoing mes-
sage queue which reifies its outgoing messages yet to be delivered, expired
messages can be cancelled.

Surely, it is impossible to prove that AmbientTalk’s building blocks are neces-
sary and sufficient to cover all future AmOP features. Nevertheless, our analysis
in section 3 strongly argues for their necessity and the expressiveness of our
reflective extensions detailed in section 5 forms compelling evidence for their
sufficiency. Thanks to the abstraction barriers offered by these reusable lan-
guage constructs, our prototypical messenger application counts merely 35 lines

24

of AmbientTalk code. A chat application with similar goals – called BlueChat
[16] – implemented in Java using Bluetooth counts no less than 545 lines of
code. BlueChat allows for ambient acquaintance discovery but has no provisions
whatsoever to deal with temporarily lost connections.

Currently, a prototype AmbientTalk interpreter was implemented in Java on
top of J2ME. It is written in continuation passing style and relies on sockets
for inter-device communication over WLAN. Efficiency was not our primary
concern in conceiving the implementation. The messenger experiment has been
conducted on QTek 9090 cellular phones.

6 Conclusion and Future Work

As explained in the introduction, the goal of our research is to a) obtain a better
understanding of the structure of future AmOP applications, b) invent expressive
programming language abstractions that facilitate their construction and c) get
insight in the semantic building blocks lying behind these abstractions in the
same vein continuations are the foundations of control flow and environments
are at the heart of scoping mechanisms.

Since the conception of AmOP applications is currently still in its infancy,
it is hard to come up with good software-engineering criteria for future AmOP
language features. That is why our research methology has been based on an un-
raveling of the hardware characteristics that fundamentally discriminate mobile
devices (connected by mobile networks) from classic desktop machines (con-
nected by stationary networks). We have defined the AmOP paradigm as a set
of characteristics for programming languages that directly deal with these hard-
ware phenomena in the very heart of their basic computational abstractions.

Instead of merely proposing a number of arbitrarily chosen language features,
we have used our analysis of the hardware phenomena to conceive an extensible
kernel that comprises a set of fundamental semantic building blocks to implement
future AmOP language features. The essence of the semantic experimentarium
consists of a double-layered object model, the active objects of which form the
basis for concurrency and distribution. Active objects are further equipped with a
MOP and a system of eight mailboxes that constantly reflect their computational
history as well as the state of the hardware surrounding them. Although it is
impossible to prove that these provisions are both necessary and sufficient, we
feel that AmbientTalk provides a good basis for further experiments in language
design and that the language features proposed here merely scratch the surface of
an interesting new branch in distributed computing research. E.g., it remains an
open question of how transaction management in classic distributed systems can
be transposed to the AmOP setting in which devices holding a lock may leave and
never return. Reified communication traces may once again prove useful here, as
already exemplified by optimistic process collaboration approaches such as the
Time Warp mechanism [17]. Additionally, more insight is required on how to map
AmOP features on efficient implementation technology. E.g., new distributed

25

memory management techniques are required because existing techniques are
not intended for use in mobile networks.

References

1. G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. G. Agha and C. Hewitt. Concurrent programming using actors. Object-oriented
concurrent programming, pages 37–53, 1987.

3. J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in object-
oriented programming. ACM Computing Surveys, 30(3):291–329, 1998.

4. C. J. Callsen and G. Agha. Open heterogeneous computing in ActorSpace. Journal
of Parallel and Distributed Computing, 21(3):289–300, 1994.

5. M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. IEEE Transactions on
Software Engineering, 29(12):1059–1071, December 2003.

6. L. Cardelli. A Language with Distributed Scope. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
286–297. ACM Press, 1995.

7. G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware for mobile
systems. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):25–33, 2002.

8. J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter.
Ambient-Oriented Programming. In OOPSLA ’05: Companion of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. ACM Press, 2005.

9. T. D’Hondt and W. De Meuter. Of first-class methods and dynamic scope. RSTI
- L’objet no. 9/ 2003. LMO 2003, pages 137–149, 2003.

10. P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

11. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan 1985.

12. IST Advisory Group. Ambient intelligence: from vision to reality, September 2003.

13. M. Haahr, R. Cunningham, and V. Cahill. Supporting corba applications in a
mobile environment. In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pages 36–47, New
York, NY, USA, 1999. ACM Press.

14. R. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985.

15. C. Hewitt. Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8:323–364, 1977.

16. B. Hui. Go wild wirelessly with bluetooth and java. Java Developer’s Journal,
9(2), February 2004.

17. D. R. Jefferson. Virtual time. ACM TOPLAS, 7(3):404–425, 1985.

18. A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile computing with the rover
toolkit. IEEE Transactions on Computers, 46(3):337–352, 1997.

19. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

26

20. K. Kahn and Vijay A. Saraswat. Actors as a special case of concurrent constraint
(logic) programming. In OOPSLA/ECOOP ’90: Proceedings of the European con-
ference on object-oriented programming on Object-oriented programming systems,
languages, and applications, pages 57–66, New York, NY, USA, 1990. ACM Press.

21. A. Kaminsky and H.-P. Bischof. Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In OOPSLA ’02: Companion of the
17th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 72–73, New York, NY, USA, 2002. ACM Press.

22. H. Lieberman. Using prototypical objects to implement shared behavior in object-
oriented systems. In Conference proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, pages 214–223. ACM Press, 1986.

23. B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation, pages 260–267.
ACM Press, 1988.

24. M. Mamei and F. Zambonelli. Programming pervasive and mobile computing
applications with the TOTA middleware. In PERCOM ’04: Proceedings of the
Second IEEE International Conference on Pervasive Computing and Communica-
tions, page 263, Washington, DC, USA, 2004. IEEE Computer Society.

25. C. Mascolo, L. Capra, and W. Emmerich. Mobile Computing Middleware. In
Advanced lectures on networking, pages 20–58. Springer-Verlag, 2002.

26. H. Masuhara, S. Matsuoka, and A. Yonezawa. Implementing parallel language
constructs using a reflective object-oriented language. In Proceedings of Reflection
Symposium ’96, pages 79–91, April 1996.

27. M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Program-
ming in E as plan coordination. In Symposium on Trustworthy Global Computing,
volume 3705 of LNCS, pages 195–229. Springer, 2005.

28. A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In Proceedings of the The 21st International Conference on Dis-
tributed Computing Systems, pages 524–536. IEEE Computer Society, 2001.

29. P. Reynolds and R. Brangeon. DOLMEN - service machine development for an
open long-term mobile and fixed network environment. 1996.

30. A. Schill, B. Bellmann, W. Bohmak, and S. Kummel. Infrastructure support for
cooperative mobile environments. Proceedings of the Fourth Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. WET ICE ’95, pages
171–178, 1995.

31. K. Taura, S. Matsuoka, and A. Yonezawa. Abcl/f: A future-based polymorphic
typed concurrent object-oriented language - its design and implementation. In
Proceedings of the DIMACS workshop on Specification of Parallel Algorithms, num-
ber 18 in Dimacs Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 275–292, 1994.

32. D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer. The case for non-
transparent replication: Examples from Bayou. IEEE Data Engineering Bulletin,
21(4):12–20, december 1998.

33. D. Ungar, C. Chambers, B.-W. Chang, and U. Hölzle. Organizing programs with-
out classes. Lisp Symbolic Computing, 4(3):223–242, 1991.

34. D. Ungar and R. Smith. Self: The power of simplicity. In Conference proceedings
on Object-oriented Programming Systems, Languages and Applications, pages 227–
242. ACM Press, 1987.

35. C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with salsa. SIGPLAN Not., 36(12):20–34, 2001.

27

36. C. Varela and G. Agha. What after java? from objects to actors. In WWW7:
Proceedings of the seventh international conference on World Wide Web 7, pages
573–577, Amsterdam, The Netherlands, The Netherlands, 1998. Elsevier Science
Publishers B. V.

37. T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent lan-
guage. In Conference proceedings on Object-oriented programming systems, lan-
guages and applications, pages 306–315. ACM Press, 1988.

38. M. Weiser. The computer for the twenty-first century. Scientific American, pages
94–100, september 1991.

39. A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent pro-
gramming in ABCL/1. In Conference proceedings on Object-oriented programming
systems, languages and applications, pages 258–268. ACM Press, 1986.

40. S. Zachariadis, L. Capra, C. Mascolo, and W. Emmerich. Xmiddle: information
sharing middleware for a mobile environment. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages 712–712, New York, NY,
USA, 2002. ACM Press.

