
Combining Fuzzy Logic and Behavioral Similarity
for Non-Strict Program Validation

Coen De Roover ∗

Programming Technology Lab
Vrije Universiteit Brussel

cderoove@vub.ac.be

Johan Brichau
Laboratoire d’Informatique

Fondamentale
Université de Lille

johan.brichau@lifl.fr

Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
tjdhondt@vub.ac.be

Abstract
The quality of an application’s implementation can be assured by
validating the presence or absence of a set of user-prescribed soft-
ware patterns such as software engineering best practices, program-
ming conventions and indications of poor programming. Most of
the existing pattern detection techniques, however, interpret pattern
descriptions in an inflexible manner, leaving the quality assurance
tool to approve only the most strictly adhering pattern implemen-
tations. In order to detect various concrete pattern implementations
using a single pattern description, we have combined logic meta
programming —wherein patterns can be expressed as constraints
over facts representing a program’s source code—, fuzzy logic and
static program analysis in a way that is completely transparent to
the end-user. We have achieved this by having the conditions in
a logic rule interpreted as constraints over the run-time behavior
source code constructs give rise to instead of as constraints over
the literal source code constructs themselves. This way, a pattern’s
abstract description often suffices to recognize various concrete im-
plementation variants with an indication of the similarity between
the recognized implementation and the abstract pattern description.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.1 [Programming
Techniques]: Logic Programming

General Terms Design, Languages, Algorithms, Verification

Keywords Fuzzy Logic Programming, Logic Meta Programming,
Program Validation, Quality Assurance of Object-Oriented Pro-
grams, Points-to Analysis, Program Analysis

1. Introduction
The quality of an application’s implementation can be assured
by validating the presence or absence of user-prescribed software
patterns in its source code. Such patterns typically express either
software engineering best practices [3], the programming style and

∗ Ph.D. scholarship funded by the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

conventions developers have agreed upon, or indications of bad
design [7] suggesting the need for a thorough refactoring of an
application’s internals.

Software patterns are in essence abstractions of often recurring
concrete sequences of programming constructs. As is common to
all abstractions, details are omitted from pattern descriptions until
only the essence of the software pattern is left. In practice, con-
crete pattern implementations often deviate from the prototypical
implementation of the abstracted pattern description. These devi-
ations can range from minor differences in naming conventions,
over differences in the employed datastructures, to the combination
of multiple patterns in one implementation unit.

Most of the existing pattern detection tools interpret machine-
readable transcriptions of abstracted pattern descriptions however
in a strict all-or-nothing manner 1, leaving them to detect only the
most literal pattern implementations successfully. There is little
room for partial adherence of concrete source code to a given
abstract pattern description as the employed techniques are unable
to overcome any discrepancies between the evidence necessary to
prove the presence of a pattern and the evidence from the source
code at hand.

To work around the limited support of existing pattern detection
techniques for dealing with these discrepancies, developers typi-
cally have to resort to describing every possible concrete imple-
mentation variant of an abstract pattern description. This is not only
a far from elegant, but also an inadequate solution to the problem:
in general, it is impossible to predict every conceivable implemen-
tation variant of a pattern while transcribing its abstract description
to a format understood by the pattern detection tool.

We therefore desire the machine-readable transcription of a
software pattern’s description to be:

• As close as possible to the abstract description of the pattern and
as far as possible from concrete source code implementation
variants.

• Interpreted by the pattern detection tool in a non-strict manner
such that the abstract description of the pattern suffices to detect
most concrete implementation variants with an indication of
the degree of adherence of the implementation to the pattern
description.

1.1 Outline of the paper
We will start our discussion in Section 2.1 with a concrete exam-
ple of the aforementioned problem. Subsequently, we will present a
high-level overview of our solution to this problem in Section 2.2.
Section 3 will detail the implementation of the fuzzy logic meta

1 Notable exceptions will be reviewed in the Related Work section.

© ACM, 2006. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
PUBLICATION, {VOL#, ISS#, (DATE)} http://doi.acm.org/10.1145/nnnnnn.nnnnnn

class Y {
private X var;
public X getVar { return var; }
public void setVar(X val) { var = val; }

}

Figure 1. Prototypical getter and setter method best practice pat-
tern implementations in Java.

programming platform supporting our approach. Its subsections de-
tail and motivate each cornerstone of the platform. Section 3.1, for
instance, describes the typical logic meta programming setup. Sec-
tion 3.2 outlines the theory and practice behind fuzzy logic pro-
gramming, while Section 3.3 describes how the platform incorpo-
rates information about a program’s possible run-time behavior into
its reasoning process. Section 4 will evaluate the effectiveness of
the resulting fuzzy logic meta programming platform in checking
a program’s adherence to some well-known object-oriented best
practice patterns. Related work will be reviewed in Section 5 and
we will conclude with a discussion of our approach in Section 6.

2. Problem Discussion
Before presenting our solution to the pattern detection problem
identified in the introduction, we will illustrate its importance for
quality assurance by means of a concrete motivating example.

2.1 A Motivating Example
Consider detecting violations of the “no direct instance variable
accesses outside getter and setter methods” principle as an exam-
ple motivating the need for a more flexible detection of software
patterns for quality assurance. The getter and setter method best
practice patterns [3] advocate indirect access to instance variables
through calls to getter and setter methods which respectively return
and set the value of the variable they are protecting. The purpose of
these methods is to ease evolving classes as they allow the internals
of a class to be changed without having to modify all uses of this
class throughout the application.

Methods getVar() and setVar(X), shown in Figure 1, cor-
respond to the prototypical Java implementations of the getter and
setter method best practice patterns for the instance variable var.

Given a machine-readable transcription of the getter and setter
method patterns’ descriptions, one can employ a pattern detection
tool to enforce the consistent use of these methods throughout an
application. In a quality assurance setting, one can for instance re-
quire that the only methods allowed to access an instance variable
directly, are methods that were recognized by the pattern detec-
tion tool as implementing the getter or setter method best prac-
tice pattern. Methods not adhering to this best practice can be con-
sidered indications of a suboptimal implementation which renders
their identification worthwhile to ensure an application’s quality.

Most pattern detection tools interpret machine-readable tran-
scriptions of a pattern’s description in a strict all-or-nothing man-
ner, leaving them to detect only the implementations that strictly
adhere to the pattern’s prototypical implementation. However, in
practice, pattern implementations often deviate from this proto-
typical implementation. Consider for instance the Person class de-
picted in Figure 2. While the getAge() and setBirthday(newDay)
methods semantically adhere to the description of the getter and
setter method best practice patterns, their source code deviates
from the prototypical implementation. The age instance variable
depends on the birthday instance variable and thus has to be re-
calculated when the latter changes, but this recalculation is only
performed —out of performance considerations— when a client

class Person {
private Date birthday;
private int age;
private boolean ageDirty;
public Date getBirthday() {

return birthday;
}
public void setBirthday(Date newDay) {

ageDirty = false; birthday = newDay;
}
public int getAge() {

if(ageDirty) age = ...;
return age;

}
}

Figure 2. Deviating getter and setter method best practice pattern
implementations in Java.

accesses the person’s age and this calculation hasn’t been per-
formed yet.

Although the aforementioned methods semantically adhere to
the getter and setter method best practice pattern descriptions, they
can not be detected as such by detection techniques relying on their
prototypical implementation. A quality assurance tool would thus
wrongly flag them as violating the “no direct instance variable
accesses outside getter and setter methods” principle. We would
therefore like the employed pattern detection technique to recog-
nize multiple concrete implementations deviating from the proto-
typical pattern implementation.

2.2 Overview of our solution
We employ a logic programming language as the meta language
to reason about object-oriented programs. In such a logic meta
programming approach, descriptions of software patterns are ex-
pressed in a machine-readable format as logic rules over logic facts
representing source code constructs. Detecting the presence of a
pattern in the source code therefore amounts to finding all solutions
to a logic query.

A logic meta programming approach is however not exempt
from the problems common to most pattern detection techniques.
The problems identified in the previous section manifest them-
selves in the following ways:

• Logic rules express constraints over concrete source code con-
structs and are thus by nature closer to one of the prototypical
implementations of a software pattern than to its general ab-
stract description. Multiple rules are therefore needed to detect
different implementation variants of the same pattern.

• The resolution procedure used to find solutions to a logic query
can only end with either complete success or failure. It is there-
fore inadequate to find instances of a software pattern which de-
viate from the prototypical implementation described by a logic
rule.

To overcome these problems, our solution comprises two com-
plementary extensions to the typical logic meta programming
setup: we extend the resolution procedure to handle partial truths
and we extend the unification procedure to take information about
a program’s possible run-time behavior into account.

Fuzzy Logic Programming
The first cornerstone of our solution to the above problems com-
prises the use of a fuzzy logic programming language which al-
lows vague concepts and partial truths to be modeled explicitly and

which is able to draw sensible conclusions from premises that are
only partially true.

A set’s characteristic function, indicating whether an element
belongs to a set or not, is generalised to support gradual set mem-
bership in fuzzy set theory [27]. Translated to logic meta program-
ming, this concept allows facts and rules to be annotated with par-
tial truth degrees. If they wish to do so, users can still write a sep-
arate logic rule for each pattern implementation variant, but will
now also be able to express their confidence in each rule by a truth
degree representative for the amount of false positives that is to be
expected from the heuristics employed in its body.

In addition, a fuzzified resolution procedure is able to draw
conclusions with a varying degree of truth from rules whose body is
only partially satisfied. The rules themselves, however, still express
constraints over source code elements which renders the rules by
nature closer to a concrete pattern implementation variant than to
the general abstracted pattern description.

Information about a Program’s Run-time Behavior
The second cornerstone of our solution to the above problems
comprises incorporating information about a program’s run-time
behavior into the reasoning process. We do this in an end-user
transparent way by extending the unification procedure to succeed
even on syntactically different source code expressions whenever
they might evaluate to overlapping sets of objects at run-time. As
the object-oriented programming paradigm centers around objects
communicating through messages, knowledge about the objects an
expression evaluates to is crucial behavioral program information.
However, without executing the program, such information can
only approximate a program’s actual run-time behavior. We will
therefore introduce the notion of a fuzzy unification procedure. In
the remainder of this section, we will discuss the motivation behind
this choice in more detail.

As logic rules express constraints over a program’s source code,
they can easily become closely connected to a concrete implemen-
tation variant of the software pattern. In order to detect multiple pat-
tern implementation variants using only one logic rule, we would
rather have this rule referring to information about the pattern’s
run-time behavior instead of one of the concrete source code im-
plementation variants giving rise to this behavior.

While information about a program’s run-time behavior can be
obtained through a dynamic analysis, it requires the program’s exe-
cution to be monitored rendering the obtained information valid for
only one out of many possible program executions. We therefore
prefer to obtain information about a program’s run-time behavior
through a static analysis. The thus obtained information is valid for
all possible program executions, but might only be approximating
the application’s actual behavior in order to achieve this generality.

As static analyses have been traditionally applied in program
optimisation and verification settings, many developers are unac-
quainted with the way these analyses represent behavioral informa-
tion and don’t always know how to interpret the analysis results cor-
rectly. We would rather incorporate this information in a way that is
completely transparent to the user. Conditions in a user’s logic rule
can therefore be interpreted as constraints over the run-time behav-
ior source code constructs give rise to instead of as constraints over
the literal source code constructs themselves. This way, users can
keep on expressing patterns as logic rules the way they were used
to, but will now also be able to detect other pattern implementation
variants giving rise to the same run-time behavior.

We achieve this more semantic interpretation of logic rules by
extending the unification procedure to take behavioral informa-
tion into account. The extended unification procedure will unify
two syntactically different source code expressions whenever they
might evaluate to overlapping sets of objects at run-time.

Since we are obtaining behavioral information through a static
analysis which can only approximate a program’s actual run-time
behavior, the extended unification procedure can however not al-
ways succeed with a total truth degree. Whenever source code ex-
pressions are syntactically equivalent, their unification will succeed
completely as usual. If the static analysis driving the extended uni-
fication procedure has however determined that two syntactically
different expressions may point to overlapping sets of objects at
run-time, the expressions can be unified only with a partial degree
of truth. If the static analysis however derived that two expressions
can never alias, the unification procedure fails. We therefore need
the approximate reasoning capabilities offered by a fuzzy logic pro-
gramming language.

3. Fuzzy Logic Meta Programming
In this section, we will detail the implementation of our fuzzy
logic meta programming platform. First of all, we will describe
how logic programming can be employed to reason about object-
oriented programs. We will continue with a short introduction to
fuzzy logic and describe how we applied this theory to alter the
platform’s resolution procedure in order to handle partial truths.
Finally, we will outline how we altered the platform’s unification
procedure to take information about a program’s possible behavior
into account.

3.1 Logic Meta Programming Setup
We employ a logic programming language as the meta language
to reason about object-oriented programs. Over the years, this ap-
proach has been applied to a variety of problems in object-oriented
software engineering. Some examples include: reasoning about
object-oriented design [26], checking and enforcing programming
patterns [19], supporting the evolution of software applications [20]
and identifying software refactoring opportunities [25]. While these
researchers have employed the SOUL logic meta programming sys-
tem to reason about Smalltalk programs, we will use a variant [6]
of the system for the Java programming language in this paper.

The advantages of a logic programming language for meta pro-
gramming purposes are already well-known [26]. First of all, pred-
icates in logic programming languages describe relations between
their arguments in a declarative instead of an operational manner.
Logic programming languages are, furthermore, extremely suited
to reasoning about source code thanks to their advanced pattern
matching abilities, built-in backtracking and support for powerful
programming concepts such as recursion.

To allow the use of logic queries to reason about an object-
oriented program, a logic meta programming approach represents
the base program as logic facts according to a meta model. In a
structural meta model, these facts state the classes and methods
present in the program. Figure 3 depicts most of the functors we
will encounter in the logic representation of the statements and
expressions in a method’s body, while Figure 4 shows an example
of such a reified method body. Every Java expression in the parse
tree is typed, in contrast to statements which do not return a value.

The nodes of a method’s parse tree are reified as special logic
terms for which unification with ordinary logic functors still suc-
ceeds. However, they contain additional information, such as the
parent of the node they are representing or its defining method. As
is demonstrated in Figure 5, this enables us to query the node for its
parent in the parse tree without having to perform an explicit parse
tree walk. The ?s variable2 is for instance bound to a parse tree

2 The syntax of the SOUL logic meta programming platform is slightly
different from the prototypical Prolog one. Logic variables start with a
question mark, standalone question marks denote anonymous variables,
while lists are denoted as: <1,?number,?,2>.

send(?type, ?receiver, ?message ?argumentList)
assign(?type, ?operator, ?lhs, ?rhs)
variable(?type,?identifier)
literal(?type,?value)
binaryExp(?type, ?operator, ?lOperand, ?rOperand)
new(?type, ?class, ?argumentList)
return(?expression)
ifte(?condition, ?trueBlock, ?falseBlock)
for(?init, ?expression, ?update, ?body)
...

Figure 3. Extract of the logic meta model according to which
method parse trees are reified.

class Bar {
float x;
public void foo() {

x = 42 + 3.14d;
}

}

methodStatements(?m,?s),
?s = statements(<assign(’float’, ’=’,

variable(’float’, ’x’),
binaryExp(’double’,’+’,

literal(’int’, ’42’),
literal(’double’, ’3.14d’)))>)

Figure 4. A method’s reified body.

class Foo {
public Integer getSum() {

return sum;
}

}

if statementInMethod(?s, ?),
?s = return(variable(?type, ’sum’)),
surroundingMethodName(?s, ?methodName).

Solutions: ?methodName -> ’getSum’
?type -> ’java.lang.Integer’

Figure 5. A Java method, a logic query, and the corresponding
solutions.

node logic term and unifies with a return(variable(?type,
’sum’)) functor, while we can still query the return statement for
the name of its surrounding method.

Starting from the basic structural facts, more complex relation-
ships can be derived by defining the appropriate logic rules. The
following rules, for instance, express what it means for one class to
be an (in)direct subclass of another:

isInHierarchyOf(?directSubclass, ?root) if
isSubClassOf(?directSubclass, ?root).

isInHierarchyOf(?indirectSubclass, ?root) if
isSubClassOf(?indirectSubclass, ?parent),
isInHierarchyOf(?parent, ?root)

The first rule expresses that one class is in the class hierarchy
of another class when it is the subclass of that class. The second

rule expresses that subclasses of a class which is in the hierarchy of
some class are also in the hierarchy of that same class.

One can use the isInHierarchyOf/2 predicate in logic queries
both to verify whether there is a hierarchy relationship between two
classes and to detect the classes another class has in its hierarchy.
By binding both variables in the isInHierarchyOf/2 predicate,
we can for instance verify whether the testapp.SumComponent-
Visitor class is a subclass of java.lang.Object. By only
binding the ?root variable, we can find all subclasses of the
java.lang.Object class.

As we will demonstrate in Section 4, the multi-directional na-
ture of logic programming languages is especially useful for quality
assurance where logic rules describe user-prescibed software pat-
terns a program should adhere to. A single rule can be used to verify
whether source code adheres to the constraints imposed by a pat-
tern, to find source code adhering to or violating the pattern, to find
all occurrences of patterns in a particular piece of the source code,
or to find all occurrences of patterns in the entire application.

3.2 Fuzzy Logic Programming
Should the logic meta programming setup described above employ
a strict all-or-nothing resolution procedure, it would be unable to
find pattern implementation variants that do not completely adhere
to all constraints over parse tree nodes expressed in a rule’s body.
As we already explained in Section 2.2, our meta programming
platform therefore employs a fuzzy logic programming language
which allows partial truths to be modeled explicitly and can draw
sensible conclusions from rules whose bodies are only partially
satisfied.

3.2.1 Fuzzy Logic
Analogous to the partial set membership degrees which can be
assigned to the elements of a fuzzy set [27], fuzzy logics [11]
assign a degree of truth to logic propositions. One proposition may
be absolutely true, while another may evaluate to a truth degree
between absolute truth and absolute falsity. In sharp contrast to
probabilistic logics, fuzzy logics are truth-functional: the truth of
a formula is determined by the truth of its constituents. As different
semantics can however be given to the logical connectives ∧, ∨ and
¬, there exist many different kinds of fuzzy logic. As a notion of
proof, these logics use modus ponens.

In fuzzy logic programming, a resolution procedure is used as
the notion of proof. Lee [16] was the first to extend the classical
resolution procedure to handle partial truths, initiating a plethora
of “Fuzzy Prolog” systems. These all differ in the way they model
the logical connectives as well as in whether or not they allow fuzzy
facts, fuzzy rules or fuzzy constants. A detailed historical overview
of the resulting programming languages can be found in Alsinet’s
dissertation [1].

3.2.2 Syntax and Semantics
Our logic meta programming platform employs a fuzzy logic pro-
gramming language which allows facts and rules to be annotated by
partial truth values. It is close to the f-Prolog system [18] in that it
uses a similar fuzzy resolution procedure. Our current implementa-
tion however only supports real-valued partial truths in the interval
0, 1, while the f-Prolog system in addition supports fuzzy numbers.
A detailed overview of our implementation can be found in [5].

The fuzzy resolution procedure only differs from the crisp reso-
lution procedure in the quantification of the deduced answer sets for
a goal. We can therefore summarize it briefly by describing how the
truth degree associated with an answer set is calculated. Weighted
logic rules are of the form:

q c if q1, . . . , qn . where c ∈0, 1

The truth degree of the conclusion q can be computed as the prod-
uct of c and the minimum of the truth degrees of the subgoals
q1 . . . qn . Conjunction, disjunction and implication are thus mod-
eled as minimum, maximum and product respectively. We will in-
terpret c as the confidence we have in the conclusion q given the
absolute truth of its subgoals q1 . . . qn .

3.2.3 Fuzzy Logic Programming in Practice
Consider, as an introductory example, the fuzzy logic program
shown below. It models the vague concept of a grocery item’s
popularity: any product of which more than 10 items have been
sold must definitely be a popular product, while other products
will most likely become popular given an attractive packaging
and good advertising. Its background information states that 15
flowers have already been sold, while the product chips has a
fairly attractive packaging and has been reasonably well advertised.

sold(flowers, 15).
attractive_packaging(chips) : 0.9.
well_advertised(chips) : 0.6.

popular_product(?product) if
sold(?product, ?amount),
?amount > 10.

popular_product(?product) : 0.8 if
attractive_packaging(?product),
well_advertised(?product).

For this program, we can derive that the product chips must
be fairly popular, as we find it as a solution to the query if
popular product(?product) with a reasonably large partial
truth degree of min(0.9, 0.6) · 0.8 = 0.48. We can, on the other
hand, be absolutely certain about flowers being a popular prod-
uct.

In our experiments, we found that it is sometimes useful to ex-
plicitly assign a truth value to the body of a rule. It could for in-
stance be argued that the average of the truth degrees of the sub-
goals attractive packaging and well advertised is a more
balanced measure for the popularity of a product than the default
semantics of minimum for conjunction. We can express this as fol-
lows:

popular_product(?product) : 0.9 if
nicely_packed(?product) : ?c1,
well_advertised(?product) : ?c2,
(?c1 + ?c2) / 2.

The truth degree of each subgoal is 1 except for the last
one, which will be the average of the partial truth degrees of
attractive packaging and well advertised. Using this rule,
we obtain a truth of 0.9 · min(1, 1, 0.9+0.6

2) = 0.675 for the popu-
larity of the chips product.

3.3 Incorporating Information about Possible Run-time
Behavior

In order to detect multiple pattern implementation variants using a
single logic rule, we let our fuzzy logic meta programming platform
interpret conditions in a rule as constraints over the run-time be-
havior source code constructs give rise to instead of as constraints
over the literal source code constructs themselves. We implemented
this more semantic interpretation of logic rules by extending the
unification procedure to take behavioral information into account,
which is the topic of this section.

3.3.1 Information about Run-time Behavior
As the behavior of an object-oriented program is governed by
the interactions between the run-time entities it is composed of,
knowledge about the objects a reference might point to is crucial
to any form of reasoning about the behavior of the program. This
information can be derived through a points-to analysis [23] on
the object-oriented program’s source code. Such a static analysis
computes at compile-time the set of all heap objects a reference
might point to at run-time during an execution of the program.

We obtain this vital kind of information through the Spark [17]
toolkit of the Soot Java Optimization Framework. It implements a
conservative flow-insensitive, context-insensitive points-to analysis
for Java. Informally, a flow-insensitive analysis disregards the order
of statements in a method and is thus unable to take strong updates
to variables into account (e.g. an assignment overriding a previous
variable assignment). A context-insensitive analysis on the other
hand, doesn’t perform a separate analysis for the different calling
contexts of a method. Although flow-insensitiveness and context-
insensitiveness are one of the major sources of imprecision in
the analysis of object-oriented programs, they also guarantee a
reasonably efficient computation [12] —while the precision of the
analysis results suffices for our purposes. Indeed, we will explicitly
embrace the idea that we are only handling information about a
program’s possible run-time behavior by attaching a lower degree
of truth to solutions of logic queries which were found solely thanks
to this information.

3.3.2 Similarity-Based Unification
In Section 3.2.2, we described a generalisation of the crisp resolu-
tion procedure that is able to draw sensible conclusions from rules
whose body is only partially satisfied. An analogous extension of
the crisp unification algorithm allows for two incompatible logic
terms to be unified in case they can be considered semantically or
syntactically similar up to a certain degree. The similarity degree
associated with the most general unifier calculated by this algo-
rithm can be used further on in a “Fuzzy Prolog” system supporting
partial truths.

Sessa’s weak unification algorithm [24], for instance, relies on
a user-provided similarity relation between function and predicate
symbols to overcome syntactical failures of the refutation process
in case the symbols under investigation are deemed similar up to a
certain degree.

3.3.3 Behavioral Similarity for Fuzzy Logic Meta
Programming

Our fuzzy logic meta programming platform utilizes an extended
variant of the weak unification algorithm described above. Its
similarity-based unification procedure will unify two syntactically
different source code expressions in case they might evaluate to
overlapping sets of objects at run-time.

Whenever two parse tree node logic terms need to be unified,
we query the points-to analysis results for their respective points-to
sets. Our unification procedure succeeds when these points-to sets
have a non-empty intersection. Hence, we use a may-alias relation
to gauge the similarity between parse tree node logic terms 3.

In order to identify the references in the analysis results cor-
responding to each parse tree node logic term unambiguously, we
need some additional contextual information. As we explained in

3 Our prototype implementation currently only computes aliasing informa-
tion between this references; the value returned by return statements; ref-
erences to field, static, local variables and arguments; array references; and
receivers and results of message sends. While this already suffices for the
use cases described in Section 4, we need to generalise the computation to
other parse tree nodes in future work.

Section 3.1, these terms can be queried for additional information
about the parse tree node they represent without having to perform
an explicit parse tree walk. Among others, we use this information
to get a node’s defining method and class.

Since we are obtaining behavioral information through a points-
to analysis which approximates a program’s actual run-time behav-
ior conservatively, the extended unification procedure can however
not always succeed with a total unification degree. Whenever parse
tree node logic terms are syntactically equivalent, unification will
succeed on their functor-representation just as it would under the
classical crisp unification algorithm. In case the classical unifica-
tion algorithm failed, but if we were able to determine through the
points-to analysis that the parse tree nodes might actually evaluate
to overlapping sets of objects at run-time, we let their unification
succeed with a partial unification degree of 0.5 without unifying
any of the variables in their functor representations. If the analysis
however determined that this can never be the case, the unification
procedure fails after all. As partial unification degrees are prop-
agated by the fuzzy resolution procedure, they will influence the
truth degrees associated with each of a query’s solutions.

As a result, our fuzzy logic meta programming platform inter-
prets the conditions in a rule as constraints over the run-time be-
havior source code constructs give rise to instead of as constraints
over the literal source code constructs themselves. As an illustra-
tion, consider the following logic query:

if methodInClass(?method, ?class),
statementInMethod(?statement, ?method),
instanceVariableInClass(?instvar, ?class),
statementReturns(?statement, ?instvar).

This query will identify all methods ?method in a class ?class
that return an instance variable ?instvar from that class. Its last
condition demands that a return statement in the method’s parse
tree has the instance variable as its argument. Upon evaluation of
the query, the ?instvar logic variable —bound to a Java instance
variable parse tree node logic term—, will be unified against the
parse tree node corresponding to the argument expression of the re-
turn statement. Whenever both parse tree node logic terms are syn-
tactically equivalent, the plain unification algorithm will succeed
on their functor-representation. The query’s last condition is thus
interpreted as a constraint on the method’s actual parse tree nodes.
Under similarity-based unification, the unification algorithm will
succeed also when there is a syntactic difference between the parse
tree nodes as long as these parse tree nodes might actually evaluate
to overlapping sets of objects at run-time. The return statement’s
argument expression is, in other words, allowed to be any com-
plicated expression as long as it possibly evaluates at run-time to
the instance variable. The query’s last condition will thus be inter-
preted as a constraint on the possible values returned by the return
statement.

As the unification procedure is intrinsic to the refutation pro-
cess, users can continue expressing their software patterns as logic
rules the way they were used. Their rules are, in fact, merely in-
terpreted in a more flexible manner by taking a program’s possible
run-time behavior into account. Through this end-user transparent
combination of logic meta programming, fuzzy logic and a heavy-
weight program analysis, our platform is able to detect multiple
concrete pattern implementations using a single abstract pattern de-
scription. We will demonstrate this property through the use cases
in the next section.

4. Expressing Software Patterns as Logic Rules
Our fuzzy logic meta programming platform can be applied to
problems in most of the domains logic meta programming has been
applied to before. In this paper, we will however only evaluate the

getterMethod(?class, ?method, ?instvar) if
methodInClass(?method, ?class),
instanceVariableInClassChain(?instvar, ?class),
variableName(?instvar, ?vname),
methodStatements(?method, ?s),
?s = <return(variable(?vtype, ?vname))>).

getterMethod(?class, ?method, ?instvar) : 0.9 if
methodInClass(?method, ?class),
instanceVariableInClassChain(?instvar, ?class),
statementInMethod(?statement, ?method),
statementReturns(?statement, ?instvar).

Figure 6. Logic rules for getter methods.

effectiveness of our prototype in a quality assurance setting where
its ability to approve source code that deviates from the prototyp-
ical implementation of a software pattern with an indication of its
degree of adherence is especially well appreciated.

Our prototype implementation comes with a library of prede-
fined logic rules corresponding to well-known object-oriented soft-
ware patterns [3, 7, 8], but can be extended by a user’s own defini-
tions in a straightforward manner. While assessing an application’s
adherence to this set of rules, multiple source code units adher-
ing to a rule’s conditions will be found with a varying degree of
truth. Users can initially choose to consider only solutions that are
absolutely true, ignoring the platform’s ability to interpret the con-
ditions in their logic rules more liberally. By lowering the truth de-
gree threshold above which solutions are reported, users will also
find implementations that meet a rule’s conditions only partially.

The use cases described in this section primarily consist of
best practice software patterns [3] including the getter method,
setter method and double dispatching best practice patterns. For
each pattern, we will demonstrate how its abstract description and
prototypical implementation can be captured conveniently by a
logic rule. In addition, we will demonstrate our platform’s ability
to detect different pattern implementations giving rise to similar
run-time behavior by detecting these pattern instances in a Java
application of which source code extracts are depicted in Figures
11, 12 and 13.

4.1 Getter Methods
Our first use case consists of detecting and enforcing a consistent
use of the Getter Method [3] best practice pattern. As we have seen
in Section 2.1, it advocates indirect access to instance variables
through calls to getter methods which simply return the value of
the variable they are protecting. The Java naming convention for
these methods is to prefix the capitalized variable name with “get”.

4.1.1 Logic Rule for Prototypical Implementation
The logic rules shown in Figure 6 express what it means for

a method ?method to be a getter method for an instance variable
?instvar in class ?class. As mentioned in Section 3.1, the multi-
directional nature of the getterMethod/3 logic predicate allows it
to be used in queries verifying whether a method is a getter method
as well as in queries finding all getter methods in the application, a
specific class or for a specific instance variable.

The topmost rule in Figure 6 corresponds to the prototypical
implementation of a getter method for an instance variable in a
class:

class Y {
private X var;
public X getVar { return var; }

}

if getterMethod(?class, ?method, ?var) : ?c
?class ?var ?method ?c

SumCmpntVisitor sum getSum() 1
SumCmpntVisitor sum getSum() 0.9
SumCmpntVisitor sum getSum() 0.45
SumCmpntVisitor sum returnSum() 0.45
SumCmpntVisitor sum retrieveSum() 0.45
SumCmpntVisitor sum retrieveSum() 0.45

Table 1. Detected getter method instances.

The first two lines of the rule state that a getter method ?method
needs to be part of a class ?class in whose hierarchy ?instvar is
an instance variable. In addition, the method’s parse tree is required
to unify exactly with the parse tree of the prototypical getter method
implementation shown above. The getSum() method in Figure 11
is an example of a getter method that can be successfully detected
using this rule since it adheres faithfully to the prototypical getter
method implementation.

We can use the getterMethod/3 predicate in queries to en-
force the consistent use of getter methods throughout an application
by requiring that the only methods allowed to access an instance
variable directly, are methods that were recognized by the platform
as a getter method. However, imagine a getter method that logs a
message to a file before returning the instance variable it is protect-
ing. Such a method cannot be detected as a getter method by the
above logic rule and would thus be flagged by the quality assur-
ance tool as violating the the “no direct instance variable accesses
outside getter methods” principle.

4.1.2 Fuzzy Logic Rule for Alternative Implementations
To increase the likelihood of a method being recognized as an al-
ternative getter method implementation, we can resort to a heuristic
such as the one expressed in the rule near the bottom of Figure 6.
This rule does not require a method’s parse tree to match the parse
tree of the prototypical getter method’s implementation, but merely
requires that the method contains a return statement with the in-
stance variable as its argument. To indicate that getter method im-
plementations detected by this rule do not follow the prototypical
implementation, we have annotated the rule with a truth degree of
0.9 which expresses our trust in the heuristic it employs.

The SumCmpntVisitor class depicted in Figure 11 does, how-
ever, contain three –somewhat convoluted– alternative implemen-
tations of the getter method best practice pattern which cannot be
detected when the conditions in the above rule’s body are inter-
preted in a strict syntactical manner. The returnSum() method,
for instance, can be classified semantically as a getter method as it
indirectly returns the sum instance variable by invoking a recursive
method which returns its first argument after the amount of recur-
sive calls indicated by its second argument has been performed.

Thanks to the similarity-based unification described in Section
3.3, our fuzzy logic meta programming platform is however able
to interpret the conditions in a rule as constraints over the run-
time behavior source code constructs give rise to instead of as
constraints over the literal source code constructs themselves. The
rule’s final condition will thus be interpreted as a constraint on the
possible values returned by the return statement. The unification
of the ?instvar instance variable parse tree node logic term and
the parse tree node corresponding to the argument expression of
the return statement will succeed with a unification degree of 0.5 if
the points-to analysis has determined that both nodes might alias at
run-time.

Table 1 contains an overview of the getter method implemen-
tation variants recognized by our fuzzy logic meta programming
platform. The getSum() method is detected once with a total truth

correctlyNamedGetterMethod(?c, ?m, ?var) if
getterMethod(?c, ?m, ?var) : ?c1,
selectorOfMethod(?selector, ?m),
instanceVariableName(?var, ?varname),
capitalized(?varname, ?cvarname),
concat(’get’, ?cvarname, ?sel),
similar(?sel, ?selector) : ?c2,
?c1 * ?c2.

Figure 7. Logic rule for named getter methods.

if correctlyNamedGetterMethod(?c, ?m, ?var) : ?t
?c ?var ?m ?t

SumCmpntVisitor sum getSum() 1
SumCmpntVisitor sum getSum() 0.9
SumCmpntVisitor sum getSum() 0.45
SumCmpntVisitor sum returnSum() 0.25
SumCmpntVisitor sum retrieveSum() 0.20
SumCmpntVisitor sum retrieveSum() 0.20

Table 2. Correctly named getter method instances.

degree originating from the topmost logic rule in Figure 6. It is also
detected once by the logic rule near the bottom with a truth degree
of 0.9 using plain unification. Finally, it is detected a third time with
a truth degree of 0.45 = 0.9 ·min(1, 1, 1, 0.5), originating from the
second logic rule in combination with similarity-based unification.
The retrieveSum() method is recognized twice with a truth de-
gree of 0.45 due to the detected possible aliasing between sum and
value on line 29 and the detected possible aliasing between sum
and the getSum() call on line 30.

4.1.3 Fuzzy Logic Rule for Naming Convention
As we mentioned in the beginning of this section, the Java nam-
ing convention for getter methods is the capitalized name of the
protected instance variable prefixed by “get”. The logic rule for
the correctlyNamedGetterMethod(?c, ?m, ?var) predicate,
shown in Figure 7, will find getter methods in an application’s
source code with an associated truth degree that is representative
for the degree to which each pattern instance is well-named.

It relies on the fuzzy predicate similar(?s1,?s2) which suc-
ceeds with a truth value of:

1 −
e(?s1, ?s2)

max(|?s1|, |?s2|)

where e is the Levensthein edit distance which, informally, calcu-
lates for two strings the amount of add, replace or delete operations
necessary to transform one string into the other. Table 2 lists the
degree to which each of the getter methods that were previously
found is named well.

4.2 Setter Methods
Our second use case consists of detecting and enforcing the consis-
tent use of the Setter Method [3] best practice pattern. Analogous to
the Getter Method best practice pattern, it advocates indirect access
to instance variables through calls to setter methods which simply
assign their argument to the instance variable they are protecting.

4.2.1 Logic Rule for Prototypical Implementation
The logic rules shown in Figure 8 express what it means for

a method ?method to be a setter method for an instance variable
?instvar in class ?class. The topmost rule corresponds to the
prototypical implementation of a setter method:

setterMethod(?class, ?method, ?instvar) if
methodInClass(?method, ?class),
argumentOfMethod(?argument, ?method),
instanceVariableInClassChain(?instvar, ?class),
variableName(?instvar, ?ivarname),
variableName(?argument, ?argname),
methodStatements(?method, ?s)
?s = <assign(?atype, ?aoperator,

variable(?lhstype, ?ivarname),
variable(?rhstype, ?argname))>).

setterMethod(?class, ?method, ?instvar, ?c) : 0.9 if
methodInClass(?method, ?class),
instanceVariableInClassChain(?instvar, ?class),
argumentOfMethod(?argument, ?method),
expressionInMethod(?expression, ?method),
isAssignment(?expression, ?instvar, ?argument).

Figure 8. Logic rules for setter methods.

class Y {
private X var;
public void setVar(X val) { var = val; }

}

The first three lines of the rule state that a setter method ?method
has at least one argument ?argument and needs to be part of a
class ?class in whose hierarchy ?instvar is an instance variable.
In addition, the method’s parse tree is required to match the parse
tree of the prototypical setter method implementation shown above.
The setSum(newValue) method on lines 6–8 in Figure 11 is an
example of a setter method that can be successfully detected using
this rule since it adheres faithfully to the prototypical setter method
implementation.

4.2.2 Fuzzy Logic Rule for Alternative Implementations
To increase the chance of a method being recognized as an alter-
native setter method implementation, we can once again resort to a
heuristic such as the one expressed in the rule near the bottom of
Figure 8. This rule does not require a method’s parse tree to match
the parse tree of the prototypical setter method’s implementation,
but merely requires that the method contains an assignment expres-
sion with the instance variable as its left-hand side and the argument
of the method as its right-hand side. To indicate that setter method
implementations detected by this rule do not follow the prototypi-
cal implementation, we have again annotated the rule with a truth
degree of 0.9.

Under similarity-based unification, the rule’s final condition
will be interpreted as a constraint on the possible values assigned by
the assignment statement. The unification of the method’s argument
?argument parse tree node logic term and the parse tree node cor-
responding to the right-hand side of the assignment expression will
succeed with a unification degree of 0.5 if the points-to analysis has
determined that both nodes might evaluate to an overlapping set of
objects at run-time. Note however that, under similarity-based uni-
fication, the left-hand side of the assignment expression might also
unify with references aliasing the protected instance variable, pos-
sibly introducing false positives.

Table 3 lists the setter method implementations recognized by
our fuzzy logic meta programming platform. The setSum(newValue)
method is detected once with a total truth degree originating from
the topmost logic rule in Figure 8. It is also detected once by the
logic rule near the bottom with a truth degree of 0.9 using plain
unification. Finally, it is detected a third time with a truth degree
of 0.45 = 0.9 · min(1, 1, 1, 1, 0.5), originating from the second

if setterMethod(?class, ?method, ?var) : ?c
?class ?var ?method ?c

SumCmpntVisitor sum setSum(newValue) 1
SumCmpntVisitor sum setSum(newValue) 0.9
SumCmpntVisitor sum setSum(newValue) 0.45
SumCmpntVisitor sum updateSum(newValue) 0.45

FooClass f setF(val) 0.45

Table 3. Detected setter method instances.

correctlyNamedSetterMethod(?c, ?m, ?var) if
setterMethod(?c, ?m, ?var) : ?c1,
instanceVariableName(?var, ?varname),
capitalized(?varname, ?cvarname),
concat(’set’, ?cvarname, ?correctSelector),
selectorOfMethod(?selector, ?m),
similar(?correctSelector, ?selector) : ?c2,
?c1 * ?c2.

Figure 9. Logic rule for named setter methods.

if correctlyNamedSetterMethod(?c, ?m, ?var) : ?t
?c ?var ?m ?t

SumCmpntVisitor sum setSum(newValue) 1
SumCmpntVisitor sum setSum(newValue) 0.9
SumCmpntVisitor sum setSum(newValue) 0.45
SumCmpntVisitor sum updateSum(newValue) 0.2

FooClass f setF(val) 0.45

Table 4. Correctly named setter method instances.

logic rule in combination with similarity-based unification. The in-
teresting updateSum(newValue) method, shown on lines 9–17 of
Figure 11, is detected with a truth degree of 0.45 originating from
the second logic rule under similarity-based unification. The uni-
fication procedure was able to determine that the array indexation
expression arrayOfInts[i] being assigned to the instance vari-
able sum, might alias with the method’s argument newValue. The
setF() method depicted in Figure 12, can also be classified se-
mantically as a setter method since it assigns the instance variable
f the value of its argument val.

4.2.3 Fuzzy Logic Rule for Naming Convention
The Java naming convention for setter methods is the capitalized
name of the protected instance variable prefixed by “set”. The logic
rule for the correctlyNamedSetterMethod/3 predicate, shown
in Figure 9, will find setter methods in an application’s source code
with an associated truth degree representative for the degree to
which each detected pattern instance is well-named. These degrees
are listed in Table 4.

4.3 Double Dispatching Methods
Our final use case comprises the detection of the Double Dis-
patch [3] best practice pattern. The identity of an invoked method
depends, in single-dispatching object-oriented languages such as
Java, solely on the class of the receiver of a message send. The Dou-
ble Dispatch best practice pattern is therefore used in cases where
application logic not only depends on the class of the receiving ob-
ject, but also on the class of one of the arguments of the message
send. This best practice pattern is, for instance, used in the Visitor
Design Pattern [8]. A double dispatching method typically sends a
single message to one of its arguments, passing a reference to the
current object along.

doubleDispatch(?class, ?method, ?message) if
methodInClass(?method, ?class),
argumentOfMethod(?argument, ?method),
variableName(?argument, ?argname),
methodStatements(?method, ?s)
?s = <send(?stype,

variable(?rtype, ?argname),
?message,
<variable(?vtype, ’this’)>)>).

doubleDispatch(?class, ?method, ?message) : 0.9 if
methodInClass(?method, ?class),
argumentOfMethod(?argument, ?method),
expressionInMethod(?exp, ?method),
isMessageSend(?exp, ?rcvr, ?msg, ?params),
member(?parameter, ?params),
thisReference(?method, ?this),
?this = ?parameter,
?receiver = ?argument.

Figure 10. Logic rules for double dispatching.

4.3.1 Logic Rule for Prototypical Implementation
The logic rules shown in Figure 10 capture what it means for
a method ?method to be a double dispatching method in class
?class, sending a self-reference along using the message named
?message. The topmost rule corresponds to the prototypical im-
plementation of a double dispatching method shown below:

class Foo {
public void method(Bar arg) {
arg.methodFoo(this);

}
}

The first two lines of the rule state that a double dispatching
method ?method is a method in class ?class and has at least one
argument ?argument. In addition, the method’s parse tree is re-
quired to match the parse tree of the prototypical double dispatch-
ing method implementation shown above. The aceptVisitor(v)
method in Figure 13 is an example of a double dispatching method
that can be successfully detected using this rule.

4.3.2 Fuzzy Logic Rule for Alternative Implementations
In order to recognize alternative double dispatch implementations,
we resort a last time to a heuristic such as the one expressed
in the second rule of Figure 10. This rule does not require a
method’s parse tree to match the parse tree of the prototypical
double dispatching method’s implementation, but simply requires
that the method contains a message send expression that has a
self-reference as one of the parameters and one of the method’s ar-
guments as the receiver. To indicate that double dispatching method
implementations detected by this rule do not follow the prototypi-
cal implementation, we have again annotated the rule with a truth
degree of 0.9.

Under similarity-based unification, the unification of the method’s
argument ?argument parse tree node and the message ?receiver
parse tree node will succeed with a unification degree of 0.5 in
case the points-to analysis has determined that both nodes might
evaluate to an overlapping set of objects at run-time. Similarly, the
condition ?this = ?parameter will succeed if the current object
of the double dispatching method might alias at run-time with the
message ?parameter.

Table 5 summarizes the double dispatching method implemen-
tations recognized by our fuzzy logic meta programming plat-

if doubleDispatch(?class, ?method, ?message) : ?c
?class ?method ?message ?c
Leaf2 aceptVisitor(v) ’visitLeaf2’ 1
Leaf2 aceptVisitor(v) ’visitLeaf2’ 0.9
Leaf2 aceptVisitor(v) ’visitLeaf2’ 0.45
Leaf1 aceptVisitor(v) ’visitLeaf1’ 0.45

Table 5. Detected double dispatching instances.

form. The aceptVisitor(v) method of class Leaf2 is detected
once with a total truth degree originating from the topmost logic
rule in Figure 10. It is also detected once by the second logic
rule with a truth degree of 0.9 using plain unification. Finally,
it is detected a third time with a truth degree of 0.45 = 0.9 ·

min(1, 1, 1, 1, 1, 1, 0.5, 0.5), originating from the second rule un-
der similarity-based unification. The aceptVisitor(v)method of
class Leaf1 is also recognized as a double dispatching method al-
though it deviates from the prototypical double dispatch best prac-
tice pattern implementation.

5. Related Work
As our work is an extension of the existing SOUL logic meta pro-
gramming platform, it is by origin closely related to most of the
work SOUL has previously been applied to and which is summa-
rized in Section 3.1. The primary contribution of our extension lies
in the end-user transparent way we have incorporated results from
advanced static analysis techniques, thus enabling the detection of
deviating pattern implementations together with an indication of
the platform’s confidence in each detected pattern instance. Sec-
tions 3.2 and 3.3 contain references to comprehensive introduc-
tions to our platform’s supporting technologies; being fuzzy logic
programming on the one hand and points-to analysis on the other
hand.

There is of course a large body of other pre-existing work rely-
ing on logic programming for software pattern detection. The PAT
[15] system, for instance, extracts the structural relations among
classes and methods from C++ header files and stores them as logic
facts over which Prolog queries can be launched to find instances of
design patterns. It offers, however, no support for reasoning about a
method’s parse trees, while its reasoning process does not support
partial pattern matches nor does it incorporate behavioral informa-
tion. ASTLOG [4], on the other hand, is a Prolog variant that is par-
ticularly well-suited to examining C abstract syntax trees. It avoids
the overhead of translating source code into facts by extending the
Prolog model such that a goal is always evaluated in the context
of a current parse tree node. ASTLOG can be used as an advanced
tree walker to locate often recurring bugs using source code tem-
plates. It has no support for partial matches nor does it incorporate
information about a program’s possible run-time behavior.

There is only few existing work incorporating some kind of
approximate reasoning in order to detect deviating pattern imple-
mentations. Guéhéneuc et al. [10, 9] approach the pattern detection
problem from an interesting angle. A constraint satisfaction prob-
lem is formulated whose domain covers the application’s imple-
mentation and whose constraints correspond to the software enti-
ties in a pattern’s description and the relations between them. The
solution to this problem is generated by an explanation-based con-
straint solver which indicates the constraints that needed to be re-
laxed in order for a distorted pattern instance to be found, thus iden-
tifying shortcomings in the implementation. There are however no
approximate inferences as only entire constraints can be dropped
from the satisfaction problem. An individual constraint is either
completely satisfied or completely dissatisfied. In our approach,
each condition in a logic rule can be met with a partial degree of

1 public class SumCmpntVisitor extends CmpntVisitor {
2 private Integer sum;
3 public SumCmpntVisitorVisitor() { .. }
4 public void visitLeaf1(Component c1) { .. }
5 public void visitLeaf2(Component c2) { .. }

6 public void setSum(Integer newValue) {
7 sum = newValue;
8 }

9 public void updateSum(Integer newValue) {
10 Integer int1 = new Integer(1);
11 Integer int2 = new Integer(2);
12 Integer[] arrayOfInts = { int1, int2, int1};
13 arrayOfInts[2] = newValue;
14 for (int i = 0; i < arrayOfInts.length; i++) {
15 sum = arrayOfInts[i];
16 }
17 }

18 public Integer getSum() {
19 return sum;
20 }

21 public Integer returnSum() {
22 Integer val = (Integer) indirectReturn(sum, 10);
23 return val;
24 }

25 public Integer retrieveSum() {
26 Object retrieved = returnSum();
27 if(retrieved instanceof Integer) {
28 Integer value = (Integer) retrieved;
29 return value;
30 } else return getSum();
31 }

32 public Object indirectReturn(Object o, int delay) {
33 if(delay == 0)
34 return o;
35 else
36 return indirectReturn(o, delay - 1);
37 }
38 }

Figure 11. Java extract: accessor methods.

1 public class FooClass {
2 public Integer f;
3 public FooClass(Integer val) { ... }
4 public void setF(Integer val) {
5 Object temp = (Object) val;
6 CmpntVisitor v = new SumCmpntVisitor();
7 Integer z = (Integer) ((SumCmpntVisitor) v).in-
8 directReturn((Integer) temp, 15);
9 f = z;

10 }
11 }

Figure 12. Java extract: a setter method.

1 public class Leaf2 extends Component {
2 public int value;
3 public Leaf2() { ... }

4 public void aceptVisitor(CmpntVisitor v) {
5 v.visitLeaf2(this);
6 }
7 }

8 public class Leaf1 extends Component {
9 public int value;

10 public Leaf1() { ... }

11 public void aceptVisitor(CmpntVisitor v) {
12 System.out.println("Leaf1 accepting visitor.");
13 CmpntVisitor tempVisitor = v;
14 Leaf1 tempSelf = this;
15 tempVisitor.visitLeaf1(tempSelf);
16 }
17 }

Figure 13. Java extract: double dispatching methods.

truth which will influence the truth degree of the corresponding
solution. This degree of truth is computed according to the laws
of fuzzy logic. In Guéhéneuc’s approach, weights can be assigned
to individual constraints. This gives rise to a preference hierarchy
amongst constraints which determines the order in which a prob-
lem’s constraints are relaxed in order to find imperfect solutions. A
metric is derived from these weights measuring the quality of each
imperfect solution. Another difference with our approach lies in its
inferencing process. It does not incorporate static analysis results
about a program’s possible run-time behavior. Our ability to detect
imperfect pattern implementations does not stem from an automatic
relaxation of a rule’s conditions, but from a more semantic inter-
pretation of these conditions. By incorporating a similarity-based
unification algorithm like the one in LikeLog [2], we could how-
ever also present our users an indication of the parse tree nodes that
were expected to alias at run-time in order to satisfy the conditions
in our logic rules.

Niere et al. [22, 21] propose the use of fuzzy graph rewrite
rules for software pattern detection. As having a graph rewrite rule
for every pattern implementation variant introduces a large search
space, they propose to keep only the commonalities between these
graph rewrite rules. Since this introduces false positives and unan-
ticipated correct matches, a weight is added to the resulting rule
which represents the anticipated percentage of correct matches. Our
fuzzy logic meta programming approach is more flexible as we do
not only allow weights to be added to rules, but also incorporate a
form of similarity-based unification which results in a more flexi-
ble interpretation of the conditions in pattern description rules. Our
pattern detection platform depends both on similarity-based unifi-
cation and on a fuzzified resolution procedure. This way, we can
overcome failures in the refutation process caused by a syntactic
difference between parse tree nodes which might actually evaluate
to overlapping sets of objects at run-time and we are also able to
evaluate the confidence our platform has in the discovered software
pattern instances.

Jahnke et al. [14, 13] have identified the reverse engineering
process as an “imperfect process, driven by imperfect knowledge”
given there is a large amount of human involvement required. They
therefore advocate that reverse engineering tools should explicitly
offer support for modeling uncertainty and contradicting knowl-

edge and have applied possibilistic logic in the reverse engineering
of relational database schema.

6. Conclusions
In this paper, we have applied logic meta programming to the vali-
dation of an object-oriented program’s implementation by ensuring
the programs’ adherence to a set of user-prescribed software pat-
terns.

In order to detect multiple concrete pattern instances using a sin-
gle abstract pattern description, we have combined logic meta pro-
gramming, fuzzy logic and heavy-weight program analysis tech-
niques in a way that is completely transparent to end-users un-
acquainted with the way static analysis techniques approximate a
program’s actual run-time behavior.

More concretely, we have modified the resolution procedure to
draw sensible conclusions from rules whose conditions are only
partially satisfied, while we have altered the unification procedure
to take information about a program’s possible run-time behavior
into account. As a result, our platform is able to interpret condi-
tions in a logic rule as constraints over the run-time behavior source
code constructs give rise to instead of as constraints over the literal
source code constructs themselves — which is to our best knowl-
edge quite unique.

Our experiments have shown that our prototype implementation
is able to recognize, given a software pattern’s description as a logic
rule, multiple pattern implementation variants giving rise to simi-
lar run-time behavior. While the initial experiments described in
this paper primarily consist of enforcing software engineering best
practices, we are confident that our prototype can be equally ap-
plied to some of the more complex logic meta programming appli-
cations. In short-term future work, we will for instance investigate
its applicability to supporting the co-evolution of an application’s
design and implementation. On the longer term, we will investigate
the use of fuzzy numbers as truth values as well as incorporate other
static analyses for which a points-to analysis is a prerequisite.

Acknowledgments
This research was partially funded by the EU-funded network of
excellence AOSD-Europe.

References
[1] T. Alsinet. Logic Programming with Fuzzy Unificiation and Imprecise

Constants: Possibilistic Semantics and Automated Deduction. Spain,
Universitat Politécnica De Catalunya, May 2001.

[2] F. Arcelli and F. Formato. Likelog: a logic programming language for
flexible data retrieval. In Proceedings of the 1999 ACM Symposium
on Applied Computing (SAC99), pages 260–267, New York, NY,
USA, 1999. ACM Press.

[3] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[4] R. F. Crew. ASTLOG: A language for examining abstract syntax
trees. In Proceedings of the 1997 USENIX Conference on Domain-
Specific Languages (DSL’97), pages 229–242, 1997.

[5] C. De Roover. Incorporating dynamic analysis and approximate
reasoning in declarative meta-programming to support software re-
engineering. Master’s thesis, Vrije Universiteit Brussel, 2004.

[6] J. Fabry and T. Mens. Language-independent detection of object-
oriented design patterns. Elsevier International Journal on Computer
Languages, Systems & Structures - Proceedings of the ESUG 2004
Conference., 30(1-2):21–33, 2004.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: improving the design of existing code. Object Technology Series.
Addison-Wesley, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley,
Massachusetts, 1994.

[9] Y.-G. Guéhéneuc. Un cadre pour la tracabilite des motifs de
conception. PhD thesis, Ecole des Mines de Nantes, June 2003.

[10] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and
constraints to automate the detection and correction of inter-class
design defects. In Q. Li, R. Riehle, G. Pour, and B. Meyer, editors,
Proceedings of the 39th Conference on the Technology of Object-
Oriented Languages and Systems, pages 296–305. IEEE Computer
Society Press, July 2001.

[11] P. Hájek. Deductive systems of fuzzy logic (a tutorial). Tutorial,
1998.

[12] M. Hind. Pointer analysis: haven’t we solved this problem yet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE01),
pages 54–61, New York, NY, USA, 2001. ACM Press.

[13] J. H. Jahnke. Cognitive support in software reengineering based on
generic fuzzy reasoning nets. Fuzzy Sets and Systems, 145(1):3–27,
2004.

[14] J. H. Jahnke and A. Walenstein. Reverse engineering tools as media
for imperfect knowledge. In WCRE ’00: Proceedings of the Seventh
Working Conference on Reverse Engineering (WCRE’00), pages 22–
31, Brisbane, Australia, November 2000. IEEE Computer Society.

[15] C. Krämer and L. Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Proceedings
of the 3rd Working Conference on Reverse Engineering (WCRE ’96),
page 208, Washington, DC, USA, 1996. IEEE Computer Society.

[16] R. C. T. Lee. Fuzzy logic and the resolution principle. Journal of the
ACM, 19(1):109–119, 1972.

[17] O. Lhoták. Spark: A flexible points-to analysis framework for java.
Master’s thesis, McGill University, December 2002.

[18] D. Li and D. Liu. A fuzzy Prolog database system. John Wiley &
Sons, Inc., New York, 1990.

[19] K. Mens, I. Michiels, and R. Wuyts. Supporting software devel-
opment through declaratively codified programming patterns. In
Proceedings of the 13th International Software Engineering and
Knowledge Engineering Conference (SEKE01), 2001.

[20] T. Mens and T. Tourwé. A declarative evolution framework for
object-oriented design patterns. In Proceedings of the International
Conference on Software Maintenance (ICSM01), pages 570–579,
2001.

[21] J. Niere. Fuzzy logic based interactive recovery of software design.
In ICSE ’02: Proceedings of the 24th International Conference on
Software Engineering, pages 727–728, New York, NY, USA, 2002.
ACM Press.

[22] J. Niere, J. P. Wadsack, and L. Wendehals. Handling large search
space in pattern-based reverse engineering. In IWPC, pages 274–,
2003.

[23] B. G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In G. Hedin, editor, Proceedings
of the 12th International Conference on Compiler Construction
(CC2003), volume 2622, pages 126–137, April 2003.

[24] M. I. Sessa. Approximate reasoning by similarity-based sld
resolution. Theoretical Computer Science, 275(1-2):389–426, 2002.

[25] T. Tourwé and T. Mens. Identifying refactoring opportunities using
logic meta programming. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering (CSMR03),
pages 91–100. IEEE Computer Society, 2003.

[26] R. Wuyts. A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation. PhD
thesis, Vrije Universiteit Brussel, Belgium, January 2001.

[27] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

