
Semi-Automatic Garbage Collection for Mobile Networks

Elisa Gonzalez Boix, Tom Van Cutsem†, Stijn Mostinckx∗,
Jessie Dedecker†, Wolfgang De Meuter, and Theo D’Hondt

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussels - Belgium

{egonzale,tvcutsem,smostinc,jededeck,wdmeuter,tjdhondt}@vub.ac.be

ABSTRACT
Mobile networks pose new issues in the field of distributed garbage
collection. Garbage collection must deal with volatile connections
that may break remote object references unexpectedly for an un-
predictable amount of time. As a result, no automatic distributed
garbage collection satisfies the new hardware phenomena. A seman-
tic-based approach called semi-automatic garbage collection is pro-
posed as a new strategy for distributed garbage collection where the
collector will be steered by the developer to decide whether remote
objects can be reclaimed. We investigate how to transmit the needs
of the application to the garbage collection process.

1. INTRODUCTION
In recent years remarkable progress has been made in the fields
of mobile hardware and wireless network technologies. The wide-
spread adoption of small and multi-purpose devices such as Smart-
Phones or GPS systems has provided users with mobile devices
equipped with wireless connection media - e.g. Bluetooth or WIFI.
Devices communicate by means of such wireless infrastructure with
other devices in their environment in ad hoc way spontaneously
creating networks. These mobile networks make applications de-
ployed on the devices become smart applications which interact
with their environment. However, developing applications for such
devices is very complex due to the lack of support in current pro-
gramming languages to deal with the specific properties that dis-
tinguish mobile networks from the traditional distributed systems.
Our research is focused on providing programming language sup-
port to alleviate the complexity encountered when developing such
applications. In previous work, we have identified the following
phenomena intrinsic to mobile networks [4]:

Connection Volatility. Devices typically interact with their envi-
ronment by means of wireless technology. Due to the lim-

∗Funded by a doctoral scholarship of the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen), Belgium.
†Research Assistant of the Fund for Scientific Research Flanders,
Belgium (F.W.O.)

ited communication range of these technologies combined
with the fact that devices roam with their users, devices can
move out of range unexpectedly. Although devices cannot
assume reliable connections, applications should accomplish
their tasks in presence of frequent disconnections.

Ambient Resources. As the user moves about, services offered
by proximate devices may become available. At a software
level, it is impractical to encode beforehand which services
will be available on a certain location. On the contrary, a
discovery mechanism is required to dynamically locate re-
sources in the environment.

Autonomy. Devices must be able to provide services to devices in
the environment. Every mobile device should act as an au-
tonomous computing unit that cooperates with other devices
without relying on a predetermined infastructure - i.e a fixed
server - which may not be available when two devices meet
in an ad hoc network.

The repercussions of these hardware phenomena on the design of
programming languages have also been examined in previous work
[4]. The Ambient-Oriented Programming paradigm was postulated
as a new computing paradigm which incorporates these hardware
phenomena at the heart of its programming model in order to ease
the development of applications for mobile networks. In this paper
we discuss the issues of distributed garbage collection for mobile
networks and subsequently introduce a new family of distributed
garbage collection mechanisms to cope with them.

2. GARBAGE COLLECTION IN MOBILE
NETWORKS

This section illustrates the repercussions of the above hardware
phenomena on the process of distributed garbage collection. In
order to discuss the need for a novel distributed garbage collec-
tion approach, we first introduce an overview of existing distributed
garbage collection techniques along with some necessary termino-
logy.

2.1 Distributed Garbage Collection
The aim of garbage collection is to automatically reclaim objects
in memory which will be no longer used. This problem has al-
ready been successfully tackled for centralized systems [7, 15] -
this paper assumes some familiarity with it. Objects are considered
garbage if they are not referenced directly or indirectly from a root
object -i.e. a set of objects that are always considered non-garbage.
Therefore, the problem of garbage collection comes down to iden-
tify and remove objects which are proved not to be reachable from

the root set - i.e. garbage objects. In a distributed system, objects
can also reference objects residing on other machines via remote
object references. In such context, the object graph spans different
machines and communication between them is necessary to decide
when an object is unreachable.

Much research has been carried out on distributed garbage collec-
tion (DGC) [2, 11]. Most of the DGC algorithms can be classified
in one of the two well-known families derived from centralized sys-
tems, namely tracing and reference counting. Tracing-based algo-
rithms perform different passes to examine the whole object graph
and identify garbage objects. In a distributed setting, these algo-
rithms consider memory as being logically shared although it is
physically distributed across different machines. Garbage collec-
tion runs in parallel in all the machines, but global synchroniza-
tion is required at certain points. This assumption proves to be the
weakness of such algorithms for mobile networks since it requires
every device to be accessible to complete garbage collection which
can no longer be assumed due to the volatile connections.

Distributed reference counting is also an extension to the central-
ized algorithm where every object tracks how many references are
pointing to it by objects on other machines. Once the object is no
externally referenced, it can be reclaimed by the local garbage col-
lector. These approaches improve scalability since not all devices
must cooperate to reclaim objects. In the past years much research
has been focused to make these algorithms scalable [1, 10, 5, 3,
14] and complete [8, 6]. However, communication is still required
between several devices to determine if a remote object can be re-
claimed.

2.2 Terminology
We conceive mobile applications as suites of active objects de-
ployed on autonomous devices. Each device is said to host a set
of active objects which communicate with each other by means
of asynchronous message passing. Two active objects can get ac-
quainted via a built-in service discovery mechanism. This mech-
anism allows objects residing on different devices to get to know
each other through an external description which denotes a service.
These active objects can provide services - e.g. a printer offering
a printing service to the proximity - or request services - e.g. a
PDA text editor that needs to print a file. We call the active ob-
jects which provide a service to the environment service providers,
and the ones which request a service clients of a service provider.
Note that an active object can be both service provider and client of
another service at once. Imagine the case of an instant messenger
running on a mobile device that spontaneously discovers other ”in-
stant messenger” services appearing in its proximity to exchange
text messages or files. Upon creation, each messenger will broad-
cast its presence in the environment by providing an instant mes-
senger service whose description is based on a tag that identifies
the user -e.g. their nickname. When the application establishes a
conversation with another discovered ”buddy”, it also becomes a
client of the buddy instant messenger service.

Once two objects get to know each other through the service dis-
covery mechanism, a remote reference is allocated and they can
transparently communicate with each other. Figure 1 illustrates a
graphical representation of an allocated remote reference. Concep-
tually, an active object a can ’directly’ refer to another active object
b that resides on a different machine via a remote reference. This
is represented via a dotted line in the figure 1. A remote reference
is a unidirectional reference from a client, namely the source of the

reference, to a remote service provider known as the target of the
reference.

device Bdevice A

reference

object a object b
ref a ref bs

ref bt

wireless communication range

Figure 1: A remote reference

From an implementation point of view, a remote reference consists
of an ensemble of object references as figure 1 also shows. First,
on the client side, a remote reference actually points to a refer-
ence object which is the local representative of a remote service
provider. The reference object acts as a communication channel
between client and service provider which delivers messages sent
to the service provider. When the application establishes a remote
reference, the system will create a reference object and allocate the
reference refa from the object a -i.e. the actual client of the ser-
vice provider - to the reference object. The reference object is then
responsible to discover the service requested by the client. Upon
discovery of a suitable service, the reference object will then be
bound to the remote service provider via the reference refbs. To
the client object, the reference object is thus nothing but a proxy
object to the service provider. Note that the application does not
know the concept of proxies at the programming language level.
Secondly, on the service side, object b will be pointed to by a num-
ber of references refbt which represent the clients referencing it.
A reference refbt can be considered as the target of refbs.

2.3 Problem Statement
Current DGC mechanisms determine the reachability of the remote
objects using communication between the nodes involved in the in-
teraction. Although latency may be indeterministic in a distributed
system, some DGC approaches alleviate the problem by reducing
communication overhead and coping with the partial order of the
messages received [10, 5, 3, 14]. However, they still depend on
network connectivity of the nodes to detect garbage objects. In
mobile networks, the object graph is distributed across several de-
vices which can be temporarily unavailable. Due to the volatile
connection, it is not possible to foresee when a device will be in-
accessible. Moreover, devices roam disappearing and joining again
the network at different locations. A direct consequence is that
remote object references will be frequently broken becoming in-
accessible object references as shown in figure 2. Consider then
figure 1 again where device A holds a remote reference to device
B. When communication between the two devices breaks because
they move out of communication range, device B no longer knows
whether object b can be reclaimed. Note that the reclamation of the
source of the remote reference - i.e. the reference refbs - does not
pose new problems since the reference object in the device A can
be reclaimed by the local collector once it is no longer referenced
by object a. On the contrary, the disconnection of two devices will
keep the reference refbt dangling while it should at some point in

time be collected. To this end, device B requires communication
with device A to find out if the reference is still in use. However,
the system cannot determine if an inaccessible object reference is
only temporarily lost and will become accessible again by a re-
paired connection - e.g. a buddy of a instant message application
may disappear during a few seconds because they moved out of the
WIFI earshot - or if it will no longer be accessible because the two
devices never encounter again.

In short, the problem comes down to knowing when the communi-
cation will be restored in order to ascertain if the reference refbt

is still accessible. However, this is an application-dependent issue
since applications can react differently to disconnections. In con-
trast to traditional distributed systems where node or network fail-
ures are considered as errors which break the remote references,
inaccessible references should not immediately be considered as
permanently broken. An application may wait for the connection
to be repaired to resume its task. Other applications may continue
their task with a substitute service available in the proximity. For
example, a user that wants to print one of their PDA files will search
the printing service in the proximity. Once a printing service is
discovered, their PDA will establish a remote object reference to
the service provider. Considering that the interaction occurs at the
user’s home, the PDA application could keep the remote reference
to the service provider after the disconnection of the devices since
there is a high chance that the user will come back eventually and
request a printing service again. Considering the same type of inter-
action between a user attending a conference and a printer located
at the conference building, the remote reference could be reclaimed
after the termination of the conference once the user has left. These
examples illustrates that there is information in the context - i.e. the
semantics of the application and the role of the object reference in
the network - necessary to decide whether an inaccessible object
reference can be cleared. Therefore, the garbage collection process
depends not only on the object graph but also on the context in
which these objects are themselves.

As a result, DGC approaches based on tracing are no longer ap-
plicable for mobile networks since all the devices may not be con-
nected to cooperate in the collection. However, distributed refer-
ence counting approaches no longer satisfy the new hardware phe-
nomena because there is application-dependent information neces-
sary to ascertain whether a remote object can be cleared. Our po-
sition statement is that automatic transparent distributed garbage
collection is irreconcilable with the hardware phenomena of mo-
bile networks. On the other hand, manual reclamation is not a
desirable solution; it has proven to be complex and error-prone
since it is difficult to keep track of how many references have been
handed out to clients. However, an unbounded amount of inacces-
sible object references will be accumulated as the devices move
about and they may be kept indefinitely because devices may never
meet again. Despite being inaccessible, some references are con-
ceptually garbage since they are of no concern to the application
so that the remote object they point to could be reclaimed. Thus,
the responsibility of garbage collection must be shared between the
collector and the developer which has a semantic knowledge of the
object graph and the way references are used. Developers should be
able to install different garbage collection strategies on the remote
references in order to help the collector to determine the reacha-
bility of the remote objects they point to. To this end, we pro-
pose a novel family of distributed garbage collection mechanisms
called semi-automatic garbage collection based on the collabora-
tion between the developer and the garbage collector which will be

guided by the developer to ascertain whether remote objects can be
reclaimed.

3. SEMI-AUTOMATIC GARBAGE COLLEC-
TION

Semi-automatic garbage collection is a hybrid approach which re-
lies on an underlying local garbage collector and proposes a non-
transparent distributed garbage collection based on a reference count-
ing scheme augmented with additional semantic information. The
rationale behind this approach is to provide the developer with sup-
port to steer the garbage collection process and accommodate the
requirements of the application. Annotations to the code could be
used to describe garbage collection strategies based on the needs of
the application and the contexts where references are used. There-
fore, the annotation system is in essence a meta object protocol to
express semantic information and give hints to the collector.

3.1 Remote object references as a two-party
contract

In current distributed applications, the developer still has the re-
sponsibility of defining which objects are relevant to the applica-
tion. Typically, this information is hand encoded as part of the
application by means of maintaining a collection of useful objects
from which the no longer relevant ones can be removed. When the
removal is not conscientiously done, it is possible that conceptually
useless objects cannot be reclaimed [9]. Hand encoding such deci-
sions is no longer possible within the context of mobile networks
because the information may not reach all parties due to the limited
connectivity as a consequence of the volatile connections. In such
a setting, when a remote reference is first allocated, both devices
ought to establish a contract which describes under which circum-
stances the reference is meaningful in order to help the collector
to ascertain if the remote object pointed to by the reference can be
reclaimed (since devices may at some time not be able to commu-
nicate anymore). Since the application has a knowledge of both
parties in the interaction and which behaviour it can expect of the
other party, references could be annotated with this additional in-
formation and hence transmitted to the device of the object pointed
to. Therefore, if one device becomes inaccessible due to a broken
connection, the other device is aware of the conditions in which the
inaccessible object references are still valuable.

As explained in section 2.2, remote references are unidirectional
and hence service providers are unaware of the clients pointing to
it and have no direct way to contact them. However, clients cannot
unilaterally decide the circumstances which determine the impor-
tance of the remote reference. Instead, services providers should
be able to reply to the intentionality of the client since there will be
cases where the demand cannot be fulfilled. Reconsider the exam-
ple of a printing service, although the user may be willing to use
a printing service during two hours to print numerous documents,
the printing service may be only available for a shorter time slot.
The service should then be able to answer the client intention of
establishing a two-hour reference with the actual time that the ser-
vice will be available. If the conditions do not live up to the client’s
expectations, the client could search for a more suitable printing
service. This example demonstrates that it does not suffice that
one side of the interaction transmit its intention, garbage collection
requires also service providers to know their clients in order to ne-
gotiate a collection policy for each remote reference pointed to it.
Therefore, we talk about remote object references as a two-party
contract between both objects involved in the interaction.

Since the contract must be acknowledged by both parties, a hand-
shake is hence necessary during the binding process of a reference
to properly determine the validity of the reference. In practice that
means clients will exchange control messages with the device host-
ing the service to transmit the semantic information of the reference
and eventually agree on a contract defining the garbage collection
strategy applicable to the reference. Once the contract is signed,
both devices are aware of the strategy to check in order to reclaim
objects without requiring later communication with the other de-
vice.

A first analysis of the field reveals that two-party contracts already
exist at the moment. A known example is leased references such
as the ones provided in Jini [13] and Java RMI [12]. In such ap-
proaches, an object can obtain a lease on another object, known
as lease holder and grantor respectively, for a certain period of
time that is negotiated by the two objects when the access to the
grantor object is first requested. Once the lease expires, the ref-
erence becomes invalid unless it was swiftly renewed by the lease
holder. Although, both partners know indeed what they can expect
of each other, these forms of leasing are insufficiently powerful
for mobile networks. Rather than solving the problem, the devel-
oper still has to specify which time stamp is effectively necessary
for an object or in other words, under which conditions the object
can be cleared. This certainly implies that the code responsible for
renewing the lease is interwoven with the functional part of the ap-
plication. However, as applications employed on mobile networks
become more complex, describing when a object can be reclaimed
cannot continue being resolved in ad hoc way. Instead, more struc-
tured control over the garbage collection process should be pro-
vided to developers. To this end, leasing should be integrated at
the language level. Note that in contrast to traditional leasing tech-
niques, leased references that we are proposing never break when
there is a connection between devices since the system is responsi-
ble for the renewal of the lease transparently to the client.

3.2 Referencing strategies
Since devices may not be able to communicate with each other at
some point in time, we have argued that a two-party contract should
be established to describe under which circumstances a reference is
useful to the application. At programming language level, this im-
plies that remote references should be tangible in order to allow the
developer to change their behaviour in terms of garbage collection.
We propose referencing strategies as the support given at language
level to the developer to apply a collection strategy to the remote
reference. A referencing strategy expresses thus the collection pol-
icy that will be applied to both source and target of the reference
upon a disconnection once the remote reference becomes inacces-
sible. The grayish surface shown in figure 2 illustrates the graphical
representation where referencing strategies are applied. To be pre-
cise, referencing strategies specify the contract that applies to both
reference refbs and refbt which corresponds to the source and
target of the conceptual remote reference, respectively. Based on
the analysis of the referencing strategies of the remote references
pointing to a service provider, the DGC will be able to ascertain
the reachability of the remote object and thus decide under which
conditions it can be collected.

We consider the support provided by referencing strategies for DGC
in mobile networks to be analogous to what weak pointers provide
at local garbage collection level. Weak pointers denote a reference
to an object which cannot prevent the object referenced from be-
ing garbage collected. This means that if an object is only pointed

device Bdevice A

reference

object a object b
ref a ref bs

ref bt

Figure 2: An inaccessible reference

by weak references then the garbage collector can actually reclaim
it. Similarly to our referencing strategies, weak pointers provide a
means to express the disposability of a reference to the local col-
lector. However, while weak pointers apply a strict sense of the
disposability (since the semantics transmitted to the collector refers
only to a ’can-be-collected’ property), we envisage different types
of referencing strategies.

3.3 A tentative classification of referencing
strategies

In order to come up with different types of referencing strategies
that the annotation system should provide, we investigate the dis-
posability of the remote references. The disposability of a refer-
ence is the condition that must be satisfied in order for the collector
to clear the reference. We have considered the following aspects
of the disposability of the remote references: how they react to dis-
connections and the kind of semantic information that they express.

Temporal Disposability
As already mentioned, devices interact with their surroundings to
discover available services and if a suitable one is detected, a re-
mote reference is installed to it. Applications can react differently
whenever the device hosting the objects pointed to by the refer-
ence moves out of communication range. Temporal disposability
is reminiscent of the leasing techniques since the disposability of
the remote references after a disconnection is expressed based on a
time period.

Weak References. Some applications are only interested in a par-
ticular service as long as the service is in the close proxim-
ity. This means that the reference will be rebound in case
of disconnection and thus, the service provider pointed to by
the reference can change over the time. At garbage collec-
tion level this implies that both source and target of the re-
mote reference can be discarded after a disconnection since
the reference is conceptually useless to the application and
the target of the reference will be rebound to a new service
provider. For example, imagine a futuristic application that
interacts with devices embedded in the physical environment
to visualize the map of a building as the user moves about to a
certain place. The application will request the information to
the nearest device to the user location providing the service.
As the user moves physically to other buildings, the refer-
ence will be broken and the application will search another
suitable information service to rebind the reference. To sum
up, weak references are said to be disposable once a discon-
nection between the client and service provider is detected.

Temporal References. The disposability of these references is based
on a time interval that specifies how long the reference will
last upon a disconnection. After the time interval, the col-
lector can reclaim the reference since it is no longer rele-
vant to the application. Unlike the weak reference strategy,
a temporal reference is disposable only if the disconnection
outlasts the time interval. For instance consider another fu-
turistic scenario where the attenders to a conference receive
several electronic meal tickets which will be used by their
PDAs to pay the included meals. Typically, these electronic
meal tickets can be used only one day and thus, they are use-
less once the day has passed.

Strong References. This strategy denotes the references which are
never disposable. This category is comparable to the tradi-
tional definition of a remote object reference and the only
way to reclaim them will involve further communication be-
tween the devices. Upon a disconnection, they keep on re-
ferring to a service provider indefinitely unless both parties
are connected and there is an explicit intervention to change
the strategy or delete them. As a concrete example, recall the
printing service again. Imagine that the client would like to
send several documents to his home printer. Since it is de-
sirable that all documents are printed by the same printer, a
strong reference as follows expresses the application inten-
tionality (presuming that Printer denotes the description
of the service requested).

// client strategy for outbound references
aPrinter = discover PrinterBlaBla with strategy {strong};
foreach document in batch {

aPrinter<-print(document);
}

The printing service will expect that the user will send more
documents to print in the future. Therefore, strong references
also express the default behaviour expected by the printer
about the references to its printing service. Consider that a
declaration of a service named Printer implies the broad-
cast of the availability of this service in the environment au-
tomatically.

// server strategy for incoming references
service Printer strategy {strong}{

queue: new Queue();
method print(doc) {
(...)
queue.add(doc);

}
}

Domain-specific Disposability
The temporal disposability classification corresponds to the inte-
gration of leasing techniques into our collection strategies. Notice
that leasing techniques are entirely based on a certain time inter-
val: weak, temporal and strong references conceptually express a
zero, a certain time and an infinite lease, respectively. However,
in mobile networks part of the intention of the application depends
on the context where objects are. Sometimes the developer would
need to transmit the state of the environment to the collector since
the geographic location of the devices may be relevant to reclaim
certain remote objects. Recall the example of the printing service
requested when the user was at home and at a conference. Depend-
ing on the physical environment where devices are themselves, dif-
ferent collection strategies may be agreed - i.e. a strong reference
if the user is at home and a temporal one if the interaction hap-
pens at a conference. Furthermore, the state of the application can

also determine different collection techniques. That is the case of
transactional-oriented and event-based applications. As an exam-
ple, consider a ubiquitous shopping application where products are
tagged with information which can be accessible by customer de-
vices. At some point in time, a customer device will establish a
reference to an electronic payment service to pay the products in
their shopping basket. Whether this remote reference can be re-
moved depends on the sequence of messages exchanged between
the devices rather than a concrete time interval. In the presence of
a disconnection, the reference should be kept only if that happens
at the precise moment in time when the order was being sent to the
bank. Otherwise, the reference is disposable to the collector - e.g
the disconnection of devices is detected while exchanging the user
data or the sum to be paid. The pseudo-code below shows the im-
plementation of this example. For simplicity, we assume that the
client is interested in discovering an available payment service to
pay for the products, but the kind of remote reference that is es-
tablished is irrelevant to them. A server strategy as follows ex-
presses the willingness of the client to accept whatever referencing
strategy that the service provider offers.

aCashier = discover Payment with strategy {server};
aCashier<-processPayment(customerId);

The payment service uses a conditional disposable strategy to ex-
press that the reference can be cleared unless it has placed a bank
order for the customer bill -i.e. state of the application is Transmit-
Order. A conditional disposable strategy models the disposabil-
ity of a reference with a boolean condition to express the circum-
stances under which the reference can be cleared. Consider that
the when construct allows one to specify what code should be ex-
ecuted upon reception of the result of an asynchronous message
without blocking the computation of the service provider.

service Payment strategy {
disposable if(not(state.Equals("TransmitOrder")))}{
state: new State("Ready");
method processPayment(customerId){

(...)
state.set("PrepareCheckOut");
// compute the customer bill
when(customer<-getAccountInfo(), {
state.set("TransmitOrder");
this.transmitBankOrder(clientAccount);

});
}

}

These examples illustrate that referencing strategies require more
expressiveness than numerical timeouts. In short, strategies based
on domain-specific information, such as the geographical location
of the device or the state of a transaction, expresses the disposabil-
ity of certain references where this intention cannot be captured
with a time-based strategy such as leasing.

The disposability aspects identified have resulted in different classes
of collection strategies which should be provided by the annota-
tion system to transmit the needs of the application to the collector.
These garbage collection strategies have been exhibit from our rel-
atively restricted expertise in writing applications for mobile net-
works and the analysis of the hardware phenomena. One important
goal of our research is to develop concrete examples using the se-
mantic annotation system to assist DGC. We believe that the study

of these examples will allow the identification of more garbage col-
lection strategies and come up with a definition of the required lan-
guage concepts to support them.

4. OPEN ISSUES AND FUTURE WORK
So far we have focused on the motivation and rationale behind
semi-automatic garbage collection. What follows now is the dis-
cussion of a number of open issues which are not properly ad-
dressed yet by our approach.

• Since an object can be pointed to by different clients, the
contract agreed for each object reference may be different.
From the service provider point of view, this means that dif-
ferent kinds of strategies should be considered to conclude
if a remote object reference can be cleared. A default strat-
egy should be determined to resolve conflicts between the
different kinds of collection strategies. For the moment we
consider that the service provider has priority over the client
during the reconciliation of a referencing strategy since its
resources are the ones which have to be reclaimed.

• Renewal of policies must be carefully designed. In some
cases it may be useful that the parties will be able to renegoti-
ate the garbage collection strategy applied to a remote refer-
ence. Due to the connection volatility, extra attention should
be paid to design a handshake protocol which ensures that
the renewal information reaches both sides in the communi-
cation in order to avoid unsound practices such as reclaiming
an object which is still in use.

• There are different restrictions to be considered to imple-
ment domain-specific strategies. Firstly, it is not the aim of
a system which assists the garbage collection to be recur-
sive; this would lead to allocate an unbounded quantity of
memory. The quantity of domain-specific information spec-
ified should be thus limited so that it will always remain lo-
cally calculable. However, developers do not need to have a
knowledge of the internal functioning of the garbage collec-
tor to express their custom strategies. Moreover, the annota-
tion system must be also sufficiently expressive so that group
of objects could be annotated at the same time and allow to
make group annotations which are dependent of each other-
i.e. the meaning of an annotation may also depend on the
’annotation context’ in which the annotation is itself.

5. CONCLUSION
In this paper we have investigated how the hardware phenomena of
mobile networks affect the distributed garbage collection process.
Current DGC mechanisms implicitly assume network connectivity
of nodes to determine the reachability of objects. We have argued
that this assumption is no longer held in mobile networks since de-
vices may not be able to cooperate at a certain moment in time to
collect garbage due to the limited connectivity. Moreover, there
is application-dependent information necessary to ascertain if a re-
mote object can be reclaimed. We have claimed that automatic dis-
tributed garbage collection is incompatible with the characteristics
of mobile networks. Mobile networks thus require a new genera-
tion of DGC schemes where the semantics of the application are
considered so as to ascertain whether a remote object can be re-
moved. We have subsequently proposed semi-automatic garbage
collection where the collector is assisted by the developer who has
semantic knowledge of the object graph. Devices will first nego-
tiate and agree on a collection strategy for a remote reference in

order to help the collector to ascertain whether a remote object can
be recaimed. We have also identified different kinds of collection
strategies that should be integrated to help the developer to transmit
the needs of the application to the collector.

6. REFERENCES
[1] A. BIRELL, D. EVERS, G. N. S. O., AND WOBBER, E.

Distributed garbage collection for network objects. Tech.
Rep. 116, Digital Equipment Corp. Research Center, 1993.

[2] ABDULLAHI, S. E., AND RINGWOOD, G. A. Garbage
collecting the internet: A survey of distributed garbage
collection. In ACM Computing Surveys (1998), vol. 30,
pp. 330–373.

[3] BEVAN, D. I. Distributed garbage collection using reference
counting. In Parlallel Architectures and Languages Europe
(1987), Springer-Verlag, pp. 176–187.

[4] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S.,
D’HONDT, T., AND DE MEUTER, W. Ambient-oriented
Programming in Ambienttalk. In Proceedings of the 20th
European Conference on Object-oriented Programming
(ECOOP) (2006), LNCS, Springer. To Appear.

[5] GOLDBERG, B. Generational reference counting: A reduced
communication distributed storage reclamation scheme. In
Programming Languages Design and Implementation
(1989), A. SIGPLAN, Ed., vol. 24, pp. 313–321.

[6] JONES, R., AND LINS, R. Cyclic weighted reference
counting without delay. In Proceedings of Parlallel
Architectures and Languages Europe (1993),
Springer-Verlang, pp. 712–715.

[7] JONES, R., AND LINS, R. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, 1996.

[8] MAHESHWARI, U., AND LISKOV, B. Collecting cyclic
distributed garbage by controlled migration. In Proceedings
of PODC’95 Principles of Distributed Computing (1995).

[9] NYLUND, J. Memory leaks in java programs. Tech. Rep. 11,
Java Report, 1999.

[10] PIQUER, J. M. Indirect reference counting: A distributed
garbage collection algorithm. In Proceedings of the
Conference on Parallel Architectures and Languages Europe
(1991), vol. 505 of LNCS, Springer-Verlag.

[11] PLAINFOSSÉ, D., AND SHAPIRO, M. A survey of
distributed garbage collection techniques. In Proceedings of
International Workshop on Memory Management (1995).

[12] SUN MICROSYSTEMS. Java RMI specification, 1998.
http://java.sun.com/j2se/1.4.2/docs/
guide/rmi/spec/rmiTOC.html.

[13] WALDO, J. The Jini Architecture for Network-centric
Computing. Commun. ACM 42, 7 (1999), 76–82.

[14] WATSON, P., AND I.WATSON. An efficient garbage
collection scheme for parallel computer architecture. In
Parlallel Architectures and Languages Europe (1987),
Springer-Verlang, pp. 432–443.

[15] WILSON, P. R. Uniprocessor garbage collection techniques.
In Proc. Int. Workshop on Memory Management (Saint-Malo
(France), 1992), no. 637, Springer-Verlag.

