
An alternative to Quiescence: Tranquility

Yves Vandewoude∗ , Yolande Berbers
Department of Computer Science

KULeuven
Celestijnenlaan 200A

B-3001 Heverlee, Belgium
{yvesv, yolande}@cs.kuleuven.ac.be

Peter Ebraert∗, Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium
{pebraert, tjdhondt}@vub.ac.be

Abstract

This paper revisits a problem that was identified by
Kramer and Magee: placing a system in a consistent state
before and after runtime changes [16]. We show that their
notion of quiescence as a necessary and sufficient condi-
tion for safe runtime changes is too strict and violates the
black-box design principle. We introduce a weaker condi-
tion, tranquility; easier to obtain, less disruptive for the sys-
tem and still sufficient to ensure application consistency. We
also present an implementation of this concept in a compo-
nent middleware platform.

1 Introduction

An intrinsic property of a successful software application
is its need to evolve. In order to keep an existing applica-
tion up to date, we continuously need to adapt it. Usually,
evolving such an application requires it to be shut down,
because updating it at runtime is generally not possible. In
some cases, this is not acceptable. The unavailability of
critical systems, such as web services, telecommunication
switches, banking systems, etc. could have unacceptable
consequences for the companies and their position in the
market.

A solution for this problem lies in the dynamic adapta-
tion of the software system, in which a part of the system
is updated while it is active. To do so, however, the system
must reside in a consistent state before the change is per-
formed [16]. A consistent state is a state from which the
system will be able to terminate correctly.

A system is viewed as moving from one consistent state
to the next, as the processing of transactions continues. Dur-
ing their execution, however, the state of these transactions

∗Authors funded by a doctoral scholarship of the “Institute for the Pro-
motion of Innovation through Science and Technology in Flanders (IWT
Vlaanderen)”

is distributed in the system and may temporarily leave dif-
ferent nodes in a mutually inconsistent state. Therefore,
nodes can not always be updated during the execution of
a transaction without breaking application consistency.

2 The concept of quiescence

The topic of when a piece of software is in the appro-
priate status for undergoing an update (further referred to
as updatability) has been the focus of much research in the
past. Very influential in this regard was the work of Kramer
and Magee [16]. In their model, a system is seen as a di-
rected graph whosenodesare system entities and whose
arcsare connections between those entities. Nodes can only
affect each others states viatransactions, which consist of a
sequence of messages that must be executed atomically (i.e.
either all messages are executed, or none of them are). The
node that starts the transaction is referred to as theinitiator
of the transaction. The model of [16] assumes that trans-
actions complete in bounded time and that the initiator of a
transaction is aware of its completion.

Kramer and Magee abstract the status1 of an application
into a set of different configuration statuses for each node
and consider two main statuses for each node: active and
passive, whose definitions are as follows:

Definition 1 (Active Status) A node in the active status
can initiate, accept and service transactions.

Definition 2 (Passive Status)A node in the passive status
must continue to accept and service transactions, but:

(i) it is not currently engaged in a transaction that it initi-
ated

(ii) it will not initiate new transactions

1Kramer and Magee used the termstate instead. In this paper, we
choose to distinguish between the internalstateof a node, and thestatus
which describes its condition in relation to the evolution process.

1

They identify a passive status as a necessary, but insuf-
ficient condition for updatability, as a node may still be
processing transactions that were initiated by other nodes.
Therefore, they introduce a stronger concept:

Definition 3 (Quiescence)A node is a quiescent status if:

(i) it is not currently engaged in a transaction that it initi-
ated

(ii) it will not initiate new transactions

(iii) it is not currently engaged in servicing a transaction

(iv) no transactions have been or will be initiated by other
nodes which require service from this node

Although quiescence is a sufficient condition for updata-
bility, it has the problem that enforcing quiescence causes
serious disruption to a system for even the smallest update.
Not only must the node which is to be updated be put in a
passive status, but this is also the case for every node that
is directly or indirectly capable of initiating transactions on
this node. This brings along a serious drawback with re-
spect to change impact [4].

Furthermore, the approach by Kramer and Magee as-
sumes that all parties involved in the transaction are aware
of their involvement in a transaction. This implies that each
node is not only aware of the services that it provides, but
also about the party that requests this service. This clearly
increases the coupling between the involved parties, and
hinders reusability [19].

It are those problems that we address by introducing the
concept of tranquility.

3 The concept of tranquility

A good approach for enhancing reusability and decou-
pling the system parts, lies in a black-box design of system
nodes. This implies that nodes may require services from
other nodes they are connected to, but may never rely upon
their implementation. If all nodes are black-box by design,
all participants of a transaction are either the initiator of the
transaction or directly connected (adjacent) with the initia-
tor. Nodes that are indirectly connected with the initiator
can by definition not participate in a transaction driven by
the initiator, since their existence is unknown to the initiator.
Note that any participant of the transaction can in turn initi-
ate new transactions in response to a message they process.
Thesesub-transactions, however, are not known to the orig-
inal initiator.

This black-box property is exploited by the concept of
tranquility, which we introduce as an appropriate status for
updatability:

Definition 4 (Tranquility) A node is in a tranquil status if:

(i) it is not currently engaged in a transaction that it initi-
ated

(ii) it will not initiate new transactions

(iii) it is not actively processing a request

(iv) none of its adjacent nodes are engaged in a transaction
in which this node has already participated and might
still participate in the future

Quiescence is a stronger concept than tranquility in the
sense that quiescence implies tranquility but not vice versa.
Condition (iii) of quiescence implies that the node is neither
actively processing a request nor waiting for a new request
in an already active transaction. This trivially implies the
condition (iii) of tranquility. Condition (iv) of quiescence
states that none of the adjacent nodes have initiated or will
initiate a transaction in whichN participates. Hence, no
such transaction is active, trivially implying condition (iv)
of tranquility. Tranquility does not imply quiescence how-
ever, since it does not require that nodes connected withN
may not initiate new transactions that involveN . For tran-
quility, nodes directly connected toN must not achieve a
passive status.

The tranquility condition has the distinct advantage that
nodes can participate in transactions without being aware
that their actions are part of this transaction. In addition,
tranquility is much less disruptive than quiescence since
only the affected nodeN must be passivated. Although the
third condition of tranquility requires some adjacent nodes
to finish a certain transaction, these nodes must not be com-
pletely passivated for the tranquility condition to uphold.

4 Tranquility as a sufficient condition for up-
datability

Although a weaker condition than quiescence, tranquil-
ity is nevertheless a sufficient condition for updatability
when two basic assumptions associated with an application
are valid. Firstly, we assume that both the original and the
resulting configuration of nodes are correct (incorporating
a consistent application state). Secondly, since each node
should be reusable, it should only rely on external function-
ality if this functionality is declared to be public. This can
only be achieved if the communications between nodes is
made explicit.

A node in the tranquil status is by definition not exe-
cuting code. In addition, although a transaction in which
it is involved may still be ongoing, its participation is ei-
ther (1) finished, (2) not yet begun, or (3) part of a sub-
transaction. In the first case, the update is clearly valid. In

2

(a) Original Configuration (b) Resulting Configuration

Figure 1. An example component configuration before and after an update.

the two latter cases, the validity of the update follows from
the assumptions of a valid resulting configuration: transac-
tions that have not yet begun may be executed by the new
version.

For clarity, we illustrate this principle with two exam-
ples:

4.1 First example

Consider the component-oriented system from Figure 1.
Assume that one wishes to replace componentY with a new
versionW . Furthermore, in the compositions shown in Fig-
ure 1, componentX can execute a task for which it requires
the assistance of its adjacent components. The transaction
that realizes the execution of this task is shown in Figure 2.
In Figure 2(a), the transaction is shown as it is executed in
the current component configuration, whereas Figure 2(b)
shows the same transaction from the point of view ofX ’s
implementation. Note that the subtransaction initiated byZ
is unknown byX.

Assuming there are no other transactions specified by ei-
therX or Z (Y ’s adjacent components), the only times that
Y can be safely replaced are identified on Figure 2 by the
numbers 1 and 7. The periods identified by numbers 2 and
6 are characterized by execution inY itself, and are there-
fore not suitable for replacement. Periods 3, 4 and 5 are
entirely equivalent fromY ’s perspective:Y is an inactive
but unknowing participant of a transaction initiated byX.

The replacement ofY will not change the transaction it-
self, since the transaction is entirely specified inX. Based
on the validity of both the original and the resulting com-
ponent configuration, this transaction will lead to a valid
result with eitherY or W (Y ’s replacement) as the adjacent
component connected toX. However, a valid result is not
guaranteed if the transaction starts with the old version of
Y and finishes with the new version. This inconsistency oc-
curs whenY supports two symmetrical operations, which
are orthogonal to the working ofX, but are nevertheless in-
terrelated. For example, supposeY is a (de)compression
component, which offers two methods:compress and

decompress that return a (de)compressed version of the
data supplied by the sender of the message. ComponentX
may wish to compress input data at the beginning of its task
and decompress it again when it is done. Although it does
not matter which compression algorithm is used (indeed,
the transaction is valid with both the old and new version),
correct functionality is not guaranteed ifY is replaced by
another component in the middle of the transaction. Note
that this is the case whether or notY is a stateless or state-
ful component.

In this transaction, both the condition of quiescence and
tranquility forbid replacement at the times 2-6. However,
the tranquility condition allows replacement ofY at the be-
ginning or the end of the transaction (times 1 and 7). This
is not the case for quiescence, as quiescence also requires
thatno transactions have been or will be initiated by other
nodes which require service from this node, which requires
X (andZ for that matter) to be passivated completely. Ex-
ploiting the validity of the resulting composition, the tran-
quility requirement allows much quicker replacement while
still ensuring consistency.

4.2 Second example

A slightly more complex scenario is shown in Figure 3.
This scenario assumes the same initial and resulting com-
ponent configuration, but assumes a different active trans-
action. Looking at Figure 3(a), one might be inclined to
think that there is a fundamental difference with the previ-
ous example. At time 4,Y may be replaced according to
our tranquility definition, sinceY is currently not involved
in a transaction that it initiated, the transaction byZ has not
started yet, and further execution of the transaction byX
no longer directly involvesY from X ’s point of view. As it
turns out, it is indeed correct thatY can be replaced at this
point. This is shown in Figure 3(b). The transaction initi-
ated byZ is independent from the transaction initiated by
X. Since both the initial and resulting configuration are cor-
rect, the transaction ofZ leads to correct results using either
Y or W as its participant. The ongoing transaction initiated

3

Trans[X]

7

6

5

4

3

Trans[Z]

:U:Z:Y:X

2

1

(a) Transaction as Executed

Trans[X]

7

5

4

6

3

:X2:X1:X

2

1

(b) Transaction as perceived byX

Figure 2. A transaction in which Y participates, prevents Y from being updated

Trans[Z]

:Z:Y:X

7

6

5

4

3

2

1Trans[X]

(a) Transaction as Executed

Trans[X]

Trans[Z]

:Z2:Z:X2:X1:X

5

4

7

6

3

2

1

(b) Transaction as perceived byX andZ

Figure 3. Y is used in a transactions from X and in a subtransaction initiated by Z

4

Trans[Z]

Trans[Z]

Trans[X]

Trans[X]

:Z:Y :Other2:Other:X

Figure 4. A scenario in which component Y will never reach tranquility.

by X is unaware of the transaction initiated byZ. Due to
their independence, it is perfectly possible that the transac-
tion shown in Figure 3 starts withY and finishes with the
new versionW . A replacement ofY at time 4 is not permit-
ted using quiescence as a condition, since quiescence does
not take into account the independence of both transactions.

5 Reachability of the tranquility condition

Although tranquility is a sufficient condition in order to
guarantee application consistency during an update, there
is one important disadvantage: it is not guaranteed that the
component which is to be updated will ever reach this sta-
tus. This is the case when the component is used in an in-
finite sequence of interleaving transactions. An example of
such case is shown in Figure 4. The Figure shows two in-
terleaving transactions that are infinitely repeated (only the
first and the beginning of the second iteration are shown).
BecauseY is always active in a transaction in which it still
needs to participate, it can never reach tranquility without
directingX andZ to a passive status (which would imply
quiescence).

Therefore, any system that implements dynamic updates
using the tranquility condition must implement a fallback
mechanism for when this condition is never reached. It
should be noted that these situations are rather rare in prac-
tice ([10] pages 428-429) and that in most cases the tran-
quility condition occurs within a short period of time.

6 Implementation on component middleware

A prototype implementation was developed as an ex-
tension to a general purpose component middleware plat-
form: DRACO. The implementation allows the middleware
to drive active components to a tranquil status upon demand.
When this status can not be reached, it transparently falls
back to the quiescence requirement. We begin this section
with the introduction of the main concepts supported by the
DRACO methodology. A full description of either the com-
ponent model, the language or its toolchain, is outside the
scope of this paper and we restrict ourselves to the core con-
cepts of the methodology and how these concepts map to
the model by Kramer and Magee. Relevant implementa-
tion aspects of the component middleware environment are
discussed in section 6.2. Finally, we present a detailed de-
scription of how the Live Update Extension Module (LUM)
realizes updatability using the tranquility condition.

6.1 TheDRACO component methodology

In DRACO , componentsare units of functionality which
are implemented as a highly cohesive group of Java classes.
Once instantiated, they represent a tightly coupled group of
objects. Interconnection between components is achieved
by means ofconnectors. According to [1], a connector is
a reusable design element that supports a particular style
of component interactions. DRACO assumes the interaction
style that was defined in the SEESCOA project [2, 20]. In
this model, components communicate by asynchronously

5

sending messages through external interfaces that are for-
mally specified usingports. Connectors attach to these ports
and implement a pipe-like construct, which makes relaying
or intercepting communication easy to achieve. The condi-
tions of explicit communication that were assumed in sec-
tion 4 are therefore clearly met in the DRACO component
model.

In order to map our component model onto the model
assumed by Kramer and Magee, it suffices to consider our
components to be the nodes and our connectors to be the
arcs of their directed graph. The bidirectional nature of
connectors can easily be modeled using two directed arcs
with opposite direction. Furthermore, in the DRACO com-
ponent model, the state of components can only be changed
by message interaction with other components, and all mes-
sage sequences complete in bounded time.

6.2 An extensible middleware platform

The DRACO middleware platform was designed with ex-
tensibility in mind and offers an extensive API which can
be used by extension modules to change the behavior of the
core system. Its architecture consists of 5 core modules: (i)
the component manager, responsible for loading and instan-
tiating component instances; (ii) the message manager, re-
sponsible for the message delivery process; (iii) the sched-
uler, responsible for scheduling messages that have been
sent and that are awaiting execution; (iv) the connector man-
ager, responsible for (dis)connecting ports; and (v) the mod-
ule manager, responsible for adding extension modules to
the core system at runtime.

Message delivery is achieved in three stages. The first
stage is the transmission of the message by the originating
component. In this stage, the message passes through a se-
quence of message handlers (who can transform messages
that pass through it) until it is handed over to the scheduler.
This first stage is executed by the thread currently active
in the originating component. Because interaction with the
scheduler is non-blocking, message sending is asynchro-
nous. In the second stage, the message awaits its execu-
tion inside a messagequeue from the scheduler. Finally, in
the third stage, the scheduler’sworker-threadscontinuously
fetch messages, pass these messages through a similar han-
dler chain and finally deliver them to the receiving compo-
nent. The scheduler guarantees that the order of messages
over a given connector is preserved and that messages are
delivered sequentially.

The message handler mechanism opens up the delivery
process as extension modules can insert or remove custom
handlers that change the default behavior. DRACO also
makes extensive use of the observer pattern, and allows for
extension modules to subscribe themselves to a large num-
ber of events that are triggered before and after all important

actions, such as component (un)loading, (dis)connecting
and message sending.

6.3 Live update extension module

The Live Update Extension module (LUM) is an exten-
sion to the core DRACO system that allows components to
be replaced by a new version at runtime. After the appli-
cation maintainer has specified that a certain componentC
needs to be replaced, the LUM places that component in a
tranquil status. The module then transfers the state from
the old to the new version, rewires the connectors and ac-
tivates the new version. This paper is only concerned with
the first step and the following sections describe how the
tranquil status is reached, and how the module falls back to
quiescence if tranquility is not attainable.

6.3.1 Enforcing passivity

Since tranquility encompasses all requirements of passivity,
the LUM will first direct C to a passive status before it en-
forces the other tranquility conditions. This passive status
is attained by ensuring that:

(i) The component is not actively executing a message

(ii) The inflow of new messages to the component is re-
stricted

If no messages are executing, the first passivity require-
ment is trivially fulfilled. In addition, no new transactions
can be initiated byC, because messages can only be sent
out by a component as part of code execution which in it-
self is triggered by a message.

The LUM achieves passivity by restricting all incoming
traffic to C. It does so by replacing the standard delivery
message handler on the receiving message chain of each
port ofC by a custom delivery message handler (see Figure
5). Although Figure 5 only shows one connected port on
C, the situation is analogous for all other connected ports.
To guarantee that all interactions withC are controlled, the
LUM registers itself with the connector manager to tem-
porarily prevent changes to the connections ofC ’s ports.
The LUM then sends aFreeze message to a random con-
nected port ofC.

As illustrated in Figure 5, any number of messages with
componentC as their destination can be present in the
scheduler queue at the time theFreeze message is sent
out by the LUM. Since the custom delivery message han-
dlers are only inserted in the chains associated with ports
of componentC, messages that are intended for other com-
ponents are unaffected by the replacements in the delivery
message chains, which reduces unnecessary overhead.

6

Figure 5. Situation after initiation of the up-
date of C.

The custom handler introduced by the LUM initially
mimics the behavior of the original delivery handler: it ex-
ecutes the method associated with the message on the com-
ponent and then terminates (thus returning control through
the delivery chain all the way back to the scheduler). This
behavior changes after it encounters theFreeze message.
At that time, the message is executed if it is supported by
the component (allowing the designer of the component to
specify custom cleanup code) or ignored otherwise. After-
wards, however, control is no longer returned to the sched-
uler. In addition, other custom delivery handlers associated
with a port ofC halt before executing the message, effec-
tively terminating all communication withC.

Although no new messages can reachC, the passivity
requirements have not been fulfilled so far:

First, the component may still be executing code in a
dedicated thread. For brevity, we did not include a full de-
scription of how such threads are handled by the component
system. For this paper, it suffices to say that the scheduler
of DRACO is aware of such threads and that it can safely
preempt the majority of such threads without leaving the
component in an inconsistent state. Whether or not DRACO

was able to preempt the thread, the LUM delays the update
of the component until its execution has terminated. We
refer the reader to [21] for more details.

Second, a transaction initiated byC can still be active.
For example, at time 3 on Figure 2(a), componentX is in-
active and awaiting a response fromZ. This leads us to
the problem that the LUM must be able to determine when
a component is actively engaged in a transaction it initi-
ated. When a transaction consists of asynchronous mes-
sages (which is the case in DRACO), this can not be deter-
mined automatically unless the component that drives the
transaction provides this information. Our implementation
assumes that each component implements a method that re-
turns whether or not the component is active in a transac-
tion it initiated. The LUM queries this information and re-
sumes message delivery on a message-per-message basis as
long asC is in such a transaction. After each message, the
expression embedded inC is reevaluated until the compo-
nent has terminated its transaction. At this moment,C has

achieved passivity, and will maintain this status since no
further messages are allowed intoC.

6.3.2 Ensuring the additional tranquility constraints

Before the passivated componentC may be replaced, the
additional conditions of tranquility must be met. The LUM

does this by querying all adjacent components ofC and de-
termining whether these components are involved in a trans-
action they initiated. If so, the LUM requests from each of
these components a list of all ports that have participated in
their transaction, and a list of those ports that are still re-
quired to finish the transaction2. If a port ofC is attached to
a port present in both lists, the requirements of tranquility
are not fulfilled.

The LUM then starts to monitor all messages entering the
adjacent components ofC by replacing their message de-
livery handlers. Whenever a message is delivered to these
components, the transaction requirement is reevaluated. As
the completion of the transaction requires the participation
of C, it is necessary thatC accepts messages involving the
transaction. The custom delivery message handlers associ-
ated with ports ofC will therefore resume message delivery,
again on a message-per-message basis. After each message
delivery, both toC and its adjacent components, the condi-
tions are rechecked. In the majority of cases, complex sys-
tems of interleaved transactions or transactions with circu-
lar dependencies are not an issue ([10] pages 428-429) and
a tranquil point is reached forC in a relatively short period
of time. Once this tranquil point is reached, all messages to
C are prevented and the tranquility condition is preserved
for the duration of the update.

6.3.3 Fallback to quiescence

Because reaching tranquility in bounded time can not be
ensured in general (section 5), the LUM also keeps an in-
ternal timer. If after a predetermined timeframe, tranquility
was not reached forC, the system falls back to the more
stringent and invasive requirement of quiescence which was
proved to be reachable by Kramer and Magee in [16]. Their
model assumes that a node has knowledge of whether its ac-
tions are part of a transaction initiated by another node. As
this assumption is not valid in the our component model, en-
suring the reachability of quiescence in bounded time needs
to be examined further.

The problem is caused by dependent transactions, which
Kramer and Magee define as follows:

2While it may seem a large overhead to generate this data, the informa-
tion can be automatically generated from a state machine that describes the
transaction. This state machine can be automatically derived from message
sequence charts such as those used in the figures of this paper.

7

Figure 6. A system with cyclic dependencies

Definition 5 (Dependent Transaction) A dependent
transaction is a two-party transaction whose comple-
tion may depend on the completion of other consequent
transactions.

In other words,ti is a dependent transaction if there
exists a chain of transactionsti, tj , . . . , ts in which each,
with the exception ofts, may depend for completion on the
completion of its (consequent) successor transaction. De-
pendent transactions and their potential consequent(s) are
denoted as dependent/consequent(s). Cycles are not for-
bidden, but the model by Kramer and Magee does assume
that the transactions still complete in bounded time and that
deadlocks are avoided. It is also required that the initiator
of a dependent transaction is informed of the completion
of consequent transactions because otherwise a component
can not determine when transactions it initiated have com-
pleted and hence when it reaches passive status. Each of
these assumptions are reasonable and also valid in our own
component model.

The problem with dependent transactions is that the pas-
sive status may not be reachable for nodes utilizing depen-
dent transactions. Assume the three nodes in Figure 6 which
was taken from [16]. Suppose that nodeN3 is in a passive
status andN1 has initiated transactiona. In this situation,
transactiona can not complete, becauseb can not complete,
becausec may not be initiated byN3 as it is in a passive
status. Consequently, neitherN1 or N2 can move into the
passive status in bounded time.

The solution proposed by Kramer and Magee is to gen-
eralize the definition of passive status to include the means
for dependent transactions to complete:

Definition 6 (Generalized Passive Status)A node in the
generalized passive status must accept and service trans-
actions andinitiate consequent transactions, but:

(i) it is not currently engaged in a (non-consequent) trans-
action that it initiated

(ii) it will not initiate new (non-consequent) transactions

We adopt this solution, but have to cope with an extra
problem because in our model, components are not aware
of their participation in transactions they did not initiate. It
is therefore not possible for a component to identify those
transactions that are consequent, and those that are not.
Adding this information to the component code is unaccept-
able however, as this would increase implicit coupling be-
tween components and strongly hinder reuse. In DRACO ,

this problem is solved by performing additional bookkeep-
ing when messages are send or received [17]. Whenever a
component sends out messages in the context of a transac-
tion it initiates, it tags these messages. The DRACO message
delivery system recognizes these tags and transparently for-
wards the tag to all messages send out as part of that trans-
action.

As a first step to place a componentC in a quiescent sta-
tus, the LUMconveniently makes use of this feature when it
composes a set of ongoing transactions that must finish be-
fore quiescence can be achieved. To do so, the LUM queries
all the adjacent components ofC, checks which ongoing
transactions involveC as a participant, and stores them in
theInitial List .

Algorithm 1 Receive(m)
if tag(m) part of InitialList then

messageThread← current thread
outId← 0
struct← <messageThread, C, tag(m), outId>
Execute(m)
Rebuild InitialList
if InitialList is emptythen

Quiescence Reached
end if

else//Not part of an ongoing transaction
Queue(m) at the deliveryMessageHandler

end if

Whenever a message is received byC or by one of its
adjacent components, their message handler intercepts that
message and checks wether the message is a part of a trans-
action of theInitial List . If so, the message handler
stores a tuple containing the ID of the current thread, the ID
of the current component, the tag of the received message
and a new tag for the outgoing message. Afterwards it exe-
cutes the message, and checks wether theInitial List
is empty, which would mean quiescence is reached forC.
If the message is not part of a transaction in theInitial
List , it is queued, as its execution is not necessary to reach
quiescence forC.

Algorithm 2 Send(m)
sendThread← current thread
struct← LUM.get(sendThread)
if exists(struct) then

S.outId++
tag(m)← S.tag + ”.” + S.N + S.outId

end if
messageHandler.deliver(m)

When a message is sent byC or one of its adjacent
components, their message handler intercepts that message,

8

2

1

ID2
ID2

ID2

 ID2

 ID2

 ID2

 ID2

ID2
ID1

ID1

:U:Z:X :Y

Figure 7. 2-phase optimization for achieving
quiescence.

looks for the tuple that corresponds with the current thread
ID and uses this information as a base for a new tag that
correctly identifies the message as part of the transaction.

As soon as all transactions in the initial list have ended,
only tagged messages are delivered to the component. Since
all transactions are assumed to be bound in time, this mo-
ment is certain to occur in bounded time. In the example
on Figure 7, this moment is identified by label 2. Because
all other messages are queued by the delivery message han-
dlers, ongoing transactions can complete, but no new trans-
actions can be initiated.

The above implementation assumes that all messages
belonging to a transaction are tagged so that when the
InitialList is constructed, the tags of active transac-
tions can be retrieved. It is possible to relax that requirement
to minimize overhead during normal application execution.
If components are still aware of transactions they initiated,
but the messages that belong to these transaction and re-
sulting dependent transactions are not tagged, the LUMcan
still achieve quiescence, albeit using a slightly more com-
plex algorithm consisting of two phases (Figure 7). In the
first phase, all messages are delivered to their destination
because it is not known to which transaction each message
belongs. In addition, the LUMstarts tagging all newly ini-
tiated transactions that involveC. The second phase starts
as soon as theInitialList is empty. At this moment,
identified by label 2, we have the situation assumed in the
basic algorithm described above since all ongoing transac-
tions involvingC are now tagged.

7 Related work

While we are weakening the notion of quiescence, there
have been others that implemented the notion of quiescence
as presented in [16]. [5] shows an implementation of the
quiescence model for distributed component systems. [8]
presents resource aware components; components that are
aware of their environment, and can react upon changes
in that environment. Taking this a further brings us to
the world of ambient software, where components adapt
their behavior using information from the outer world [22].
Those approaches however, consistently break the black-
box design principle, lowering reusability.

The notion of tranquility is not only applicable in com-
ponent systems [19, 18], but also in all other paradigms
that allow modularization and explicit interaction. We have
found applications of the notion of quiescence in procedural
programming, service-oriented programming and in object-
oriented systems. In all these approaches, the notion of tran-
quility could be introduced for enhancing the dynamic up-
datability.

As early as 1976, Fabry presented a system allowing for
dynamic changes of abstract data types written in proce-
dural languages [6]. Other systems in this area were de-
veloped by Gupta [11], Hicks [13] and Hoffmeister. The
latter even stated in [14] that the notion of quiescence is too
strong and that entities can be safe without enforcing qui-
escence. Her approach still does not offer support for black
box entities however.

Service-oriented systems [3] are decomposed into dif-
ferent entities which are providing and requesting services.
Two entities are connected by service contracts [7]. This
explicit linking of entities enhances the decoupling. This
explains why [15] introduces the notion of quiescence for
service-oriented system.

Our approach is also applicable to ordinary object-
oriented systems. The Dynamically Alterable System
(DAS) [9] is an operating system from the late seventies. It
supports the replacement of an object by another one with
the same interface. In the DAS system, the in- and out- op-
erations on objects are first class, ensuring less coupling be-
tween the objects and allowing data-restructuring. In [12],
Gupta et al show how object-oriented systems should be
updated dynamically. They also claim that the programs
should be in a quiescent status before the updates should be
carried out.

8 Conclusion

This paper addresses the problem of state consistency be-
fore and after a dynamic change. The problem was orig-
inally identified by Kramer and Magee [16], who intro-
duced the notion of quiescence as a sufficient and neces-

9

sary condition to ensure state consistency. Although they
have proved that quiescence is reachable and sufficient for
ensuring state consistency, their approach suffers from two
major drawbacks. Firstly, quiescence causes serious dis-
ruption in the application which is updated due to the large
number of nodes that need to be passivated. Secondly, their
approach breaks the principle of black-box design because
their nodes must not only be aware of the services that they
are providing, but also about the nodes that are requesting
a service. This clearly increases the coupling between the
involved components, and hinders reusability.

In this paper, we have overcome these two drawbacks
by using the notion of tranquility. Although not guaranteed
to be reachable, tranquility can be achieved quickly in the
majority of cases. We have shown that tranquility – when
reached – is a sufficient condition for ensuring state consis-
tency. In the few cases that tranquility can not be reached
in bounded time, a fallback mechanism to quiescence can
easily be implemented.

The advantages of tranquility over quiescence are three-
fold. First, tranquility has a much smaller change impact
than quiescence, since a node in a tranquil status does not
require all of its adjacent nodes to be in a passive status.
Second, tranquility exploits properties of the black-box de-
sign of system nodes, since dependent transactions are con-
sidered to be independent from each other. Third, tranquil-
ity allows the replacement of nodes at times when it is se-
mantically correct to do so, but when the quiescence condi-
tion does not hold.

We have shown that tranquility is easy to implement
without breaking the black-box design of each of the sys-
tem nodes. All necessary information can be retrieved from
a detailed specification of the transaction supplied by the
initiator. When fallback to quiescence is required, transpar-
ent message tagging can be used in order to avoid breaking
the black-box nature of nodes.

References

[1] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Lan-
guage support for connector abstractions.Lecture Notes in
Computer Science: ECOOP 2003 - Object Oriented Pro-
gramming, 2743:74–102, 2003.

[2] Y. Berbers, P. Rigole, Y. Vandewoude, and S. V. Baelen.
Components and contracts in software development for em-
bedded systems. InProceedings of the first European Con-
ference on the Use of Modern Information and Communica-
tion Technologies, pages 219–226, 2004.

[3] G. Bieber and J. Carpenter. Introduction to service-oriented
programming. www.openwings.org/download/
specs/ServiceOrientedIntroduction.pdf ,
September 2001.

[4] S. Bohner and R. Arnold. An introduction to software
change impact analysis.IEEE Computer Society Press,
pages 1–26, 1996.

[5] A. L. de Moura, C. Ururahy, R. Cerque, and N. Rodriguez.
Dynamic support for distributed auto-adaptive applications.
In M. Akşit and Z. Choukair, editors,Proc. 2nd Int’l Work-
shop on Aspect Oriented Programming for Distributed Com-
puting Systems (ICDCS-2002), Vol. 2, 2002.

[6] R. S. Fabry. How to design a system in which modules can
be changed on the fly. InProceedings of the 2nd ICSE, pages
470–476, San Francisco, CA, USA, 1976.

[7] P. Gahide, N. Bouraqadi, and L. Duchien. Promoting com-
ponent reuse by integrating aspects and contracts in an archi-
tecture model. InFirst AOSD Workshop on Aspects, Com-
ponents, and Patterns for Infrastructure Software (AOSD-
2002), 2002.

[8] J. Gerlach and S. V. Baelen. Run-time evolution and dy-
namic (re)configuration of components: Model, notation,
process and system support. Technical report, Katholieke
Universiteit Leuven, 2003.

[9] H. Goullon, R. Isle, and K.-P. LShr. Dynamic restructuring
in an experimental operating system. InInternational Con-
ference on Software Engineering, 1978.

[10] J. Gray and A. Reuter.Transaction Processing: concepts
and techniques. Morgan Kauffman, 1993.

[11] D. Gupta. On-line Software Version Change.PhD thesis,
Department of Computer Science and Engineering, Indian
Institute of Technology, Kanpur, Nobember 1994.

[12] D. Gupta, P. Jalote, and G. Barua. A formal framework for
online software version change. InIEEE Transactions on
Software Engineering, pages 120–131, February 1996.

[13] M. Hicks. Dynamic Software Updating. PhD thesis, Univer-
sity of Pennsylvania, 2001.

[14] C. R. Hofmeister. Dynamic reconfiguration of distributed
applications. PhD thesis, University of Maryland, College
Park, MD 20742, 1993.

[15] A. Ketfi and N. Belkhatir. Dynamic interface adaptability
in service oriented software. InWorkshop on Component-
Oriented Programming, 2003.

[16] J. Kramer and J. Magee. The evolving philosophers prob-
lem: Dynamic change management.IEEE Transactions on
Software Engineering, 16(11):1293–1306, November 1990.

[17] B. Liskov and L. Shrira. Promises: linguistic support for ef-
ficient asynchronous procedure calls in distributed systems.
In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 con-
ference on Programming Language design and Implemen-
tation, pages 260–267, New York, NY, USA, 1988. ACM
Press.

[18] A. Rausch. Software evolution in componentware - a practi-
cal approach. InProc. of the Australian Software Engineer-
ing Conference, 2000.

[19] C. Szyperski. Component Software : Beyond Object-
Oriented Programming. Addison-Wesley, January 1998.

[20] D. Urting, S. V. Baelen, T. Holvoet, P. Rigole, Y. Vande-
woude, and Y. Berbers. A tool for component based design
of embedded software. InProceedings of Tools Pacific 2002,
Februari 2002.

[21] Y. Vandewoude and Y. Berbers. Semantically sane compo-
nent preemption. InProceedings of ERCIM06, April 2006.

[22] A. Wils, P. Rigole, Y. Berbers, and K. D. Vlaminck. Ambi-
ent computing using component resource contracts. InAd-
vances in Computer Science and Technology, 2004.

10

