
Dynamic Refactorings: improving the program structure at runtime

Peter Ebraert∗, Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium
{pebraert, tjdhondt}@vub.ac.be

Abstract

Many software systems must always stay operational,
and cannot be shutdown in order to adapt them to new re-
quirements. For such systems, dynamic software evolution
techniques are needed. In this paper, we show how a re-
structuring technique – called refactoring – can be applied
on running systems in order to facilitate future evolutions.
We extend the pre- and post-conditions of the basic refactor-
ings in order to ensure application consistency before and
after the restructuring takes place.

1 Introduction

People always say that you should never change a system
that is working fine. However, even if a software system
seems to work properly from a user’s point of view, it may
be difficult to maintain or adapt from a developer’s point of
view. As such, it may be very cumbersome to evolve the
system by adding a new feature, fixing a bug or porting the
system to a new environment.

In all these situations where a software system is not
flexible enough to allow a certain change, the technique
of software refactoring can be used. According to Fowler
[1], a refactoring is “a change made to the internal structure
of software to make it easier to understand and cheaper to
modify without changing its observable behaviour”. Refac-
torings can be used to simplify the structure of a software
system in order to prepare it for a certain evolution step.

Now suppose we have a running system, and we would
like to evolve it without shutting it down. This is a much
bigger challenge since there are considerably more con-
straints on the running system. Refactoring techniques

∗Authors funded by a doctoral scholarship of the “Institute for the Pro-
motion of Innovation through Science and Technology in Flanders (IWT
Vlaanderen)”

would be very useful here too. For example, by reducing
the coupling between objects in a running system, we could
at the same time increase the system performance (from a
user point of view) and its understandibility and evolvability
(from a developer point of view).

Until now, refactorings have only been investigated in
the context of source code restructuring. The main contri-
bution of this paper is to show the use and feasibility of ap-
plying dynamic refactorings, i.e., refactorings that modify a
running system.

2 Atomic Change Sequence

Refactoring object-oriented programs typically replaces
a set of classes C1, C2, C3, ... by their new versions C ′

1,
C ′

2, C ′
3,... We use the notation ∆Ci to denote the difference

between Ci and C ′
i. In this section, we first define a set

of atomic changes that can be used as the building blocks
for specifying the atomic change sequence – the ∆C that
must be applied in an atomic way in order to apply the cor-
responding refactoring.

Most of the differences we want to express can be repre-
sented by methods and instance variables. This is why our
meta-object protocol currently implements the set of atomic
change transactions that is shown in table 1. In the future
we intend to extend this set to cover a more realistic set of
applications.

Scope Atomic Change Explanation
Class AC Add an empty Class.

DC Delete an empty Class.
CC Changes a Class name.

Variable AV Adds an instance variable to a class.
DV Remove an instance variable from a class.

Method AM Adds a method to a class.
DM Deletes a method from a class.
CM Changes the implementation of a method.
ML Change the Method Lookup.

Table 1. Atomic Changes

1



The most simple atomic changes incorporate the ones on
the scope of classes: adding empty classes (AC), deleting
empty classes (DC), and changing a class name (CC) have
a small impact on the system and can be performed with-
out too many constraints. The only pre-requisit of the AC
and CC is that name-clashes should be avoided, and only be
tolerated only when intended (in case of polymorphism).

The changes on the scope of instance variables are a bit
harder. As a result of an added variable (AV), all objects
that are instance of this class have a new variable they can
use to store values. By default, the value will be set to nil.
A deleted variable (DV), deletes the variable in all the in-
stances of the class. This is a dangerous operation as it
could lead to runtime exceptions, if the variable is still used
somewhere. That is why this atomic change has a prerequi-
site which states that the variable is not used throughout the
system. Note that there is no operation of modifying a vari-
able, as that can easily be modeled by deleting and adding
the variable.

Finally, there are the changes that affect the methods. As
a result of an added method (AM), all objects that are in-
stance of this class will automatically understand this new
method thanks to the languages method lookup mechanism.
When a delete method (DM) is applied, all instances of this
class may no longer understand this method. Hence, one
should be very careful with this operation as it can give
rise to runtime exceptions. The same counts for a changed
method (CM), as this also has an impact on all objects that
are instance of this class or one of its subclasses. This is
why a CM and a DM have the prerequisites that the method
is either still visible (somewhere up the inheritance chain),
or either not called anywhere in the system.

3 Proposed solution

The following section describes the extension we want to
make to the already known refactorings so that they can be
safely applied to running systems. We start by explaining
two basic refactorings and show how they are characterized
in [1]. We show that the mechanics of applying the refactor-
ings – as they are presented by Fowler – are not sufficient for
applying the refactorings in a safe way on a running system.
We then introduce extra prerequisites which ensure safety,
and exemplify them by means of the corresponding two dy-
namic refactorings. We conclude the section by showing
how the dynamic refactorings can be carried out on a run-
ning system.

3.1 Static Refactorings

In [1], Fowler presents a catalog of frequent refactorings.
Every refactoring consists of a name, a motivation and the
mechanics for applying the refactoring. We chose to explain

Figure 1. Pull Up Method.

Figure 2. Push Down Method.

our approach on 2 refactorings: “Pull Up Method” ([1] page
322) and “Push Down Method” ([1] page 328).

3.1.1 Pull Up Method

Fowler introduced this refactoring for getting rid of un-
needed code duplication. Its idea is to lift the common be-
havior of some classes to a common superclass as shown
in figure 1. In table 2 we show the mechanics of the refac-
toring (represented as an atomic change sequence). As the
pulled up method remains visible for all the subclasses and
may even become visible for more classes, there can only
be an addition of behavior. Every step has its pre- and post-
conditions which must hold, for the refactoring to be valid.
We can see that an AM leads to the visibility of that method
in the class and its subclasses. We also see that before a
DM, we must assure that the method is either not called
anymore, or either visible in one of the superclasses. Those
requirements are captured in the pre- and post-conditions of
the atomic changes.

3.1.2 Push Down Method

Fowler introduced this refactoring for making the system
behave in a more logical way, by specifying the behavior in
the place where it makes more sense. Figure 2 shows that
the refactoring is used for moving some behavior from a
super class to a subclass. In table 3 we show the mechanics
(represented as an atomic change sequence). Pushing down
a method can be seen as a removal of behavior for all the
classes in which the method is not visible anymore.

2



Place Pre Change Parameters Post
Employee AM ”getName” visible
Salesmen no callers or still visible DM ”getName”
Engineer no callers or still visible DM ”getName”

Table 2. The atomic change set for the Pull Up Method

Place Pre Change Parameters Post
Salesmen AM ”getName” visible
Engineer AM ”getName” visible
Employee no callers or still visible DM ”getName”
Engineer no callers or still visible DM ”getName”

Table 3. The atomic change set for the Push Down Method

3.2 Extra needs for dynamicity

The difference between stopped and running systems lies
in the system state, which is only incorporated in the latter.
In fact, a running system can be seen as moving from one
consistent state to another while the processing of transac-
tions goes on. A consistent state is a state from which the
application can continue processing normally, without pro-
cessing to an error state. When applying refactorings at run-
time, we should always make sure that the application state
remains consistent before and after the application of the
update.

For ensuring state consistency before the application, we
must make sure that the affected classes are in a quiescent
status. An object in a quiescent status was proven to re-
main in a consistent state [2]. An object is in a quiescent
status if: (i) it is not currently engaged in a transaction that
it initiated, (ii) it will not initiate new transactions, (iii) it is
not currently engaged in servicing a transaction, and (iv) no
transactions have been or will be initiated by other objects
which require service from this objects [2]. Theoretically,
quiescence is achieved by adding extra preconditions which
must hold before a refactoring can be applied. Practically,
those preconditions are met by deactivating all objects that
are affected by the refactoring. The deactivation and acti-
vation itself are added to the atomic change sequence of the
refactoring. The post-condition of a deactivation is that the
object is in a quiescent status Q(O). The post-condition of
an activation is that the object is in an active status A(O).

Ensuring state consistency after the update clearly de-
pends on the update itself. In our case, the updates only
consist of refactorings. Since Fowler defined a refactoring
as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify with-
out changing its observable behaviour”, we are by definition
only making structural changes. If we make those changes

in a correct way, state consistency can be easily assured.

3.3 Dynamic Refactorings

Extending the atomic change sequence of a refactoring
is a process that can be automated. We need to add pre-
conditions, postconditions, and actions that make sure that
those pre- and post-conditions are eventually met. In gen-
eral, we first establish the set of all classes that are affected
by the refactoring, and for each of them, we add a quies-
cence pre-condition. In practice, however, this process can
be optimized, since quiescence is not needed for certain
classes that are involved in the refactoring. For example
adding a method to a class can never lead to run-time er-
rors. We now exemplify the extension of the atomic change
sequences by showing the two refactorings that were pre-
sented before.

3.3.1 Dynamic Pull Up Method

In table 4 we show the mechanics of the dynamic refactor-
ing (represented as an atomic change sequence). We can see
that the actual refactoring is performed when the affected
classes reside in a quiescent status and that it is surrounded
by actions that ensure quiescence.

3.3.2 Dynamic Push Down Method

In table 5 we show the mechanics of the dynamic refactor-
ing (represented as an atomic change sequence). Again, we
can see that the actual refactoring is performed when the
affected classes reside in a quiescent status and that it is
surrounded by actions that ensure quiescence.

3



Place Pre Atomic change Parameters Post
Salesmen A(Salesmen) Deactivate Q(Salesmen)
Employee A(Employee) Deactivate Q(Employee)
Engineer A(Engineer) Deactivate Q(Engineer)
Employee AM ”getName” visible
Salesmen Q(Salesmen), no callers or still visible DM ”getName”
Engineer Q(Engineer), no callers or still visible DM ”getName”
Salesmen Q(Salesmen) Activate A(Salesmen)
Employee Q(Employee) Activate A(Employee)
Engineer Q(Engineer) Activate A(Engineer)

Table 4. The atomic change set for the Dynamic Pull Up Method

Place Pre Atomic change Parameters Post
Salesmen A(Salesmen) Deactivate Q(Salesmen)
Employee A(Employee) Deactivate Q(Employee)
Engineer A(Engineer) Deactivate Q(Engineer)
Salesmen AM ”getName” visible
Engineer AM ”getName” visible
Employee Q(Employee), no callers or still visible DM ”getName”
Engineer Q(Engineer), no callers or still visible DM ”getName”
Salesmen Q(Salesmen) Activate A(Salesmen)
Employee Q(Employee) Activate A(Employee)
Engineer Q(Engineer) Activate A(Engineer)

Table 5. The atomic change set for the Dynamic Push Down Method

3.4 Carrying out the refactoring

From the moment we have the change transaction se-
quence that corresponds to a certain refactoring, we can
start carrying out these changes on the running system. The
changes are applied one by one on the running system, but
in an atomic way (or all changes are applied, or none of
them is applied). While most of the changes can be done
transparently, some may require the programmer’s interfer-
ence. This is the case when there is a state involved, that
needs to be preserved. Concretely, when an instance vari-
able is deleted or modified, the question arises what has to
happen with the value of that instance variable. Either the
value can be ignored, or its is needed later in a new instance
variable that will be added. Consequently, when an instance
variable is added, the programmer is also requested to in-
terfere, and to tell wether the variable should be initialized
with a certain value. For example, using Euros instead of
Belgian Francs in our bank accounts requires us to use the
following formula: ’take the old value and multiply it by
40,3399, and use it as the new value’. For methods in class-
based systems, things are much simpler. Because methods
are only referenced through the class itself, adapting them
on the class level does the job. Making these changes is
done in practice by using interceptive techniques [3], which

incorporate all the atomic changes that are specified in the
meta-object protocol.

Ensuring quiescence is the hardest part, and consists of
two phases. First, we need to find all the affected objects.
In a class-based language, the set of affected objects of a
change on class C consists of the class itself, its subclasses
and all instances of those classes. Practically, this set can
be assembled by using introspective techniques [3], which
allow us to query a class for all its subclasses and instances.

In the second phase we have to ensure for each of the
affected objects, that: (i) it is not currently engaged in a
transaction that it initiated, (ii) it will not initiate new trans-
actions, (iii) it is not currently engaged in servicing a trans-
action, and (iv) no transactions have been or will be initiated
by other objects which require service from this objects. In
class-based programming languages, (i) and (iii) can be as-
sured by making sure that the object is not on the runtime
stack. (ii) and (iv) can be assured by making sure that no
messages will be send to the affected object.

4 Experimental Setup

Because the focus of this paper is on refactorings, we
restrict ourselves to class-based object-oriented languages.

4



Object-oriented languages like Java are excluded because of
the limitations of their reflective capabilities. Smalltalk, on
the other hand, is fully reflective: everything is an object,
and can thus be taken apart, queried for information and
possibly be modified. Even messages are objects, and can
thus be monitored and modified when they are sent or re-
ceived [4]. This is why we chose Smalltalk as the language
in which we plan to conduct the experiments.

The Smalltalk development environment is very dy-
namic, in the sense that developing smalltalk code hap-
pens in an incremental way, by inspecting the newly created
classes and objects. This is why developing Smalltalk pro-
grams actually happens at runtime. The Smalltalk Refac-
toring Browser provides support for static refactorings. But
because it does not check for the extra requirements that we
have presented in this paper, it sometimes fails to ensure
consistency. That is why we plan to extend the Smalltalk
Refactoring Browser with the support for dynamic refac-
torings. We will make sure that, before a refactoring is
performed, the refactoring browser will check for the ad-
ditional requirements, making sure that the system remains
in a consistent state.

5 Evaluation

The main benefit of applying refactorings at runtime is
the preservation of the state and object identity, as we will
keep on working on the same (already existing) class C.
Replacing a class C would involve the creation of C ′, the
swapping of all relations from C to C ′, the deletion of C
and the mapping of the state from C to C ′. Evolving the
existing C component to C ′ only involves the creation of
C ′ and the propagation of the changes on C. This implies
that there will be no more relation swapping problems and
less state mapping problems.

While it is clear that this approach is impossible without
reflection, reflection itself also hinders the approach. En-
suring consistency on a program that uses reflection is a lot
harder then on a program that does not allow reflection. So
in a sense reflection can be seen as both our best friend, and
our enemy.

In this position paper, we presented two static refactor-
ings and their dynamic equivalents. It is our goal to present
a dynamic equivalent for all of the refactorings that were
identified in [1]. For doing so, we will have to extend
our metaobject protocol and maybe introduce new prereq-
uisites. This, however, is subject for further investigation.

6 Conclusion

In some cases, software systems can not be turned off
for carrying out an evolution. This triggers the need for

supporting dynamic evolution. We suggested to apply dy-
namic refactorings to improve the runtime component struc-
ture of object-oriented software systems for easing future
evolution. The approach relies on the reflective properties
of the underlying programming language in order to modify
the application’s behavior.

We start from the static refactorings that were presented
by Fowler in [1], and extend their mechanics in such a way
that they can be applied on a running system without brak-
ing consistency. For doing that, we use the quiescence prop-
erty, that was introduced in [2] as a sufficient condition
for consistency. We add quiescence as a prerequisite for
the refactorings and show how this can be implemented in
a class-based environment that has full reflective capabili-
ties. We envision the extension of the Smalltalk Refactoring
Browser for experimenting with the dynamic refactorings.

References

[1] Fowler, M.: Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley (1999)

[2] Kramer, J., Magee, J.: The evolving philosophers prob-
lem: Dynamic change management. IEEE Transactions
on Software Engineering 16 (1990) 1293–1306

[3] Maes, P.: Computational Reflection. PhD thesis, Artifi-
cial Intelligence Laboratory, Vrije Universiteit Brussel
(1987)

[4] Messick, S.L., Beck, K.L.: Active variables in
smalltalk-80. In: Technical Report CR-85-09, Com-
puter Research Lab, Tektronix (1985)

5


