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Abstract

As size and complexity of software systems increase, pre-
serving the design and specification of their implementation
structure gains importance in order to maintain the evolv-
ability of the system. However, due to constant changes, the
implementation structure and its documentation tend to di-
lute over time. To address this problem, we developed Inten-
siVE: a toolsuite for documenting and checking structural
source-code regularities. Building on the underlying mod-
els of intensional views and relations, the toolsuite helps a
developer in documenting structural source-code regulari-
ties, verifying them and offering fine-grained feedback when
the source-code does not satisfy those regularities. By illus-
trating our tools on a Smalltalk application, we show that
violations of the source code against the structural regular-
ities can be detected easily and that our toolsuite provides
useful feedback for a developer to refine the regularities or
to fix the code so that it does satisfy the regularities.

1 Introduction

Due to changing requirements, bugfixes or the adoption
of new technology, software systems constantly evolve. The
ever increasing size and complexity of software renders the
task of evolving a software system a non-trivial one, making
it imperative for the design documentation and implemen-
tation structure of the system to be up to date and explicitly
known to developers and maintainers. Unfortunately, the
quality of the structure and documentation of the system
tend to decrease over time, thus having a negative impact
on the overall maintainability of the system. To alleviate
this problem, we developed the IntensiVE toolsuite based
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on the underlying model of intensional views [11] extended
with a model of intensional relations. It allows for the docu-
mentation of structural source-code regularities like naming
conventions, programming conventions and structural de-
pendencies, that are shared by multiple source-code entities
(classes, methods, packages) spread throughout a program.
More importantly, the toolsuite offers support to verify con-
formance of that documentation to the implementation and
to provide fine-grained feedback when inconsistencies be-
tween documentation and implementation are discovered.
This paper provides the following contributions:

• The definition of intensional relations, an extension to
the model of intensional views;

• An overview of some tools of the IntensiVE toolsuite;
• The description of a step-wise methodology, bearing re-

semblance with eXtreme Programming testing, on the
usage of our toolsuite to support documentation and
conformance checking of structural source-code regu-
larities;

• An illustration of how the feedback provided by Inten-
siVE can be used to diminish the drift between design
documentation and implementation.

The remainder of this paper is structured as follows. In Sec-
tion 2 we repeat the model of intensional views and extend
it with intensional relations. Our IntensiVE toolsuite for
documenting and checking structural source-code regulari-
ties is explained in Section 3. Section 4 validates the tools
by documenting and checking the structure of the DelfSTof
application (For a larger case study on the SmallWiki ap-
plication, we refer to [9]). Section 5 discusses the results
of this validation and proposes avenues for future research.
We conclude the paper after having presented related work
in Section 6.



2 Intensional Views and Relations

We introduce the models of intensional views and inten-
sional relations, which underly our IntensiVE toolsuite,
using the running example of the Visitor design pattern [5].

2.1 Intensional Views

The Visitor (Fig. 1) is an object-oriented design pattern
that is used to implement a variety of different operations
on a hierarchy of elements, while keeping the operations’
implementation independent of the element hierarchy. The
pattern is implemented by providing, on all classes of the
element hierarchy, an accept method which takes as argu-
ment an instance of a visitor class (representing the oper-
ation to be carried out on the elements) and which calls a
corresponding visit method defined on the visitor class,
using a so-called “double-dispatch” protocol. [5]

AbstractVisitor
visitElementA: anA 
visitElementB: aB

Visitor 1
visitElementA: anA 
visitElementB: aB

Visitor 2
visitElementA: anA 
visitElementB: aB

AbstractElement
accept: aVisitor

Element A
accept: aVisitor

Element B
accept: aVisitor

^ aVisitor 
       visitElementA: self

Figure 1. The Visitor Design Pattern

An intensional source-code view, or intensional view for
short, is a set of source-code entities (e.g. classes, meth-
ods, . . . ) that share an arbitrary, but well-defined struc-
tural property. Instead of defining such a set by explicitly
enumerating all of its elements, it is defined by specifying
an intension: an executable description which codifies the
commonalities of all entities belonging to the view. Eval-
uating a view’s intension produces its extension: the set of
entities that currently satisfy the description. Fig. 2 shows
the extension of two simple intensional views on the Visitor
example: the Accept Methods view which groups all ‘ac-
cept’ methods and the Visit Methods view which groups all
methods whose name start with ‘visit’ and which are imple-
mented on a subclass of AbstractVisitor.

The intension of a view is described either in Smalltalk,
or in Soul [10], a dedicated logic programming language
that can query and reason about object-oriented (Smalltalk)

ElementA.accept:
ElementB.accept:

Accept Methods (alternative)

Visitor1.visitElementA:
Visitor2.visitElementA:
Visitor1.visitElementB:
Visitor2.visitElementB:

Visit Methods

AbstractElement.accept:
ElementA.accept:
ElementB.accept:

Accept Methods (default)

Figure 2. Two views on the Visitor

code. The model of intensional views also supports the def-
inition of multiple, alternative intensions for the same view,
one of which is called the default alternative. We can think
of two different intensions for the Accept Methods view:

1. All methods named ‘accept’ taking a single parameter;

2. All methods implemented on a subclass of Abstract-
Element which perform a double dispatch.

When specifying multiple alternatives for a view we re-
quire them to be extensionally consistent: upon evaluation
of its intension, each alternative should yield the same ex-
tension. Verifying extensional consistency thus straight-
forwardly amounts to computing the solution sets of the
queries corresponding to each of the alternatives and then
checking equality of these sets.

Notice that the two alternatives above are not extension-
ally consistent. Fig. 2 shows the extensions of both alter-
natives of the Accept Methods view. Alternative 1 is more
general: it includes an abstract accept method which does
not satisfy alternative 2, since the abstract method has no
implementation and thus not perform the double dispatch.
To deal with conflicting cases like these, our model sup-
ports the annotation of each alternative with an inclusion
and exclusion set which allow users to declare explicitly
what deviating entities need to be included, respectively
excluded, from the extension produced by that alternative.
For example, to make the two alternatives above extension-
ally consistent, we exclude the conflicting abstract method
from alternative 1. We depicted this in Fig. 2 by barring
that method. We will see later how the requirement of ex-
tensional consistency allows us to express some interesting
structural source-code regularities, and how the inclusion
and exclusion sets allow us to document explicitly what
source-code entities do not satisfy such a regularity.



2.2 Intensional Relations

Intensional relations are binary relations between inten-
sional views of the canonical form:

Q1 x ∈ V1 : Q2 y ∈ V2 : x R y

where Q1 and Q2 are logic quantifiers ∀, ∃, ∃! or @; V1 and
V2 are intensional views and R is a binary relation over
the source-code entities (denoted by x and y) contained
in those views. For example, in the Visitor pattern an
important intensional relation holds between the Accept
Methods view and the Visit Methods: every accept method
calls a corresponding visit method. Formally, we have:

∀x ∈ Accept Methods :
∃!y ∈ Visit Methods : (1)

x methodDoesSend y

where x methodDoesSend y is a binary relation over
source-code entities that holds when x and y are methods
and x sends a message to y. Verifying such an intensional
relation against the source code amounts to evaluating the
corresponding expression, where the intensional views
have been substituted by their extension.

What actual source-code relations R are supported and
how they are implemented depends on the chosen query lan-
guage. In our logic meta-programming language Soul , we
can use as relation R any binary predicate provided by Soul
[10]. For practical purposes, we restricted ourselves to 15
predicates which reify static source-code dependencies like
method implementation and overriding, message sending,
return statements, inheritance and class referencing.

3 Using IntensiVE to document and check
structural source-code regularities

Using a concrete instantiation of the Visitor design pat-
tern as an example, we now explain the IntensiVE tool-
suite1, implemented in Visualworks Smalltalk, and how it
supports carrying out three main activities:

1. Documenting the structural regularities in a program
by a developer or encoding of initial hypotheses about
the program structure during software comprehension.

2. Checking conformance of the source code to the in-
tended structure or documented initial hypotheses.

3. Co-evolution of source code and structural regularities
when either of them evolve, by providing fine-grained
feedback on what parts of the source code invalidate
the structural regularities.

1The most recent version of our IntensiVE toolsuite is available for
download at www.intensional.be.

Although we explain each of these activities separately
below, we do not regard them as separate activities that
should be performed sequentially. Rather, we see them as
part of an incremental and iterative process where docu-
mentation, conformance checking and co-evolution of the
structural regularities are strongly intertwined.

3.1 Documenting structural regularities

When coding, a software developer often takes impor-
tant decisions about the program structure. When trying to
understand a program a software engineer makes a mental
picture of the program’s structure. In either case, there is a
need to store this knowledge explicitly, so that the knowl-
edge does not get lost, so that it can be communicated to
others, and so that it can be checked whether the code con-
forms to that knowledge, or found out where it does not.

The IntensiVE toolsuite enables a software developer to
explicitly and incrementally document the structural regu-
larities in a program. Whenever a developer discovers a
structurally relevant group of source-code entities or a struc-
tural relationship between such groups, he can try to codify
it as an intensional view or intensional relation, respectively.
E.g., in the Visitor pattern, knowing that all Accept Methods
are structurally similar, we group all these methods in an in-
tensional view.

Fig. 3 shows the Intensional View Editor tool opened
on the default intension of the Accept Methods view. This
tool supports the definition, evaluation, inspection and con-
formance checking of intensional views. The selected query
language is the logic meta-programming language Soul.
The following Soul query describes the default intension of
the Accept Methods view:

classInHierarchyOf(?c,[AbstractTerm]),
methodWithNameInClass(?entity,[#accept:],?c)

This logic query declares that a source-code ?entity is
part of the view if it is a method named accept: imple-
mented on a class in the AbstractTerm class hierarchy
(the element hierarchy of the Visitor pattern).

Having defined this intensional view, we inspect it in
more detail by evaluating and exploring its extension, and
discover that, with the notable exception of the abstract
accept: method defined on AbstractTerm, all methods
in this view have exactly the same format:

accept: aVisitor
ˆaVisit visit<name>: self

where <name> is the name of the class implementing the
method. Since this “double dispatch” protocol is an impor-
tant coding convention we encode it as follows:

1. We explicitly exclude the accept: method on
AbstractTerm from the default intension, as it has no
concrete implementation. See Excludes pane in Fig. 3.
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Figure 3. The Intensional View Editor opened on the Accept Methods view

2. We define an alternative intension specifying that all
methods in the view have the above format.

3. We define a new intensional view Visit Methods that
groups all the visit methods.

4. We explicitly codify the intensional relation (1) which
states that every accept method calls a visit method.
Fig. 4 shows our Relation Browser tool, in which re-
lation (1) is encoded.

3.2 Check conformance

Whenever we have documented structural source-code
regularities, we can use our toolsuite to check whether the
source-code actually conforms to those regularities. The
two main mechanisms for doing so are: (a) defining mul-
tiple alternative intensions of a view and verifying exten-
sional consistency among those alternatives, and (b) defin-
ing and verifying intensional relations between views.

If the conformance check succeeds, we know that we
have correctly documented a structural regularity. If the
check fails, fine-grained information about what went
wrong will be provided, as we will see in Subsection 3.3.
In that case, there are basically three ways in which a soft-
ware developer can solve the problem:

1. When the codified regularities were not entirely cor-
rect or not sufficiently precise, he can refine the inten-
sional views and relations that codify these structural
regularities;

2. When the codified regularities were conceptually cor-
rect but the source code does not consistently satisfy

these regularities, the developer may restructure the
source code so that it does. After having modified the
code, the regularity can be rechecked;

3. When the developer lacks sufficient knowledge to
modify the code immediately, he can explicitly anno-
tate the inconsistencies as ‘known deviations’.

We experienced that in practice strategy 3 is often useful
as a temporary fix when we get in trouble with strategy 1
or 2. Of course one should return to those strategies later to
get to the heart of the problem and remove the documented
deviations.

In Fig. 3 we used the ‘Excludes’ pane to explicitly ex-
clude the accept: method on class AbstractTerm. Sim-
ilar functionality is offered by the Relation Browser (Fig. 4)
which offers the possibility to explicitly exclude or include
relation tuples, or single entities from either the source or
target of a relation.

3.3 Co-evolution of source code and structure

In order for a software developer to modify the source
code or the declared structural regularities in such a way
that both become or remain consistent, it is imperative that
he receives fine-grained feedback on where the source code
violates the regularities. Our toolsuite contains two dedi-
cated tools that provide such fine-grained feedback.

The View Inspector (Fig. 5) is launched whenever
checking extensional consistency of a view fails. The first
column lists all source-code entities that satisfy the default
intension of the view. The other columns show the delta
between the default intension and each of the alternative in-
tensions. (In Fig. 5 there are only 2 columns but in general
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Figure 5. View Inspector on Accept Methods

there are as many columns as there are alternative views.)
When applied to the Accept Methods view, we discover
a method named accept: on class MultiPartFunctor
which satisfied the default intension but not the alternative
one. We discuss later how we solved this inconsistency.

The Relation Inspector (Fig. 6) is launched whenever
an intensional relation is checked. In addition to indicating
whether the relation succeeds, it shows all tuples of source-
code entities for which the relation predicate, in terms of
which the relation is defined, holds. Those entities in either
the source or target view which do not appear in any tuple
are indicated in the bottom two panes. The amount and per-
centage of entities in both the source and target view that
participate in the relation are also shown.

When applying the Relation Editor on the ‘call’ relation
(1) between Accept Methods and View Methods (Fig. 6),
we see that the relation fails because the method accept:,
implemented by the MultiPartFunctor does not call a
visit method. This is the same method that causes the ex-

Tuples in 
relation

Entities not in 
relation

Statistics 
about check

Result of 
check

Figure 6. Relation Inspector applied to ‘call’
relation from Accept Methods to Visit Methods

tensional consistency of the Accept Methods to fail. When
inspecting the code of that method we see that it is in fact
an abstract method. We therefore decide to explicitly ex-
clude it from the default alternative of the Accept Methods
view, just like we did with the abstract accept: method on
AbstractTerm, thus resolving both inconsistencies.

3.4 Methodological aspects

We purposefully designed IntensiVE as a non-coercive
set of tools in a software developer’s toolbox. It is the de-
veloper who decides whether, when and how to use them.
Based on our experience with IntensiVE we advocate an
incremental and iterative methodology which bears some
similarity with XP testing2 [2]:

2We have recently extended IntensiVE with the ability to export all
intensional views and relations to be verified against the code, to a unit test



• Intensional views and relations document important
structural constraints and dependencies in the source
code. The developer documents, checks and refines
these structural regularities by need, whenever he feels
there is a need to do so.

• The documented regularities are relatively isolated: ev-
ery intensional view can be checked independently for
extensional consistency, and every intensional relation
can be verified independently of any other. Modifying
a view, however, may invalidate some of the intensional
relations in which it participates directly.

• Documenting and checking the structural regularities
helps us in better understanding the source-code struc-
ture and at a same time give us confidence that the soft-
ware is structured as desired.

• Even though it may require some insight to correctly de-
fine an intensional view or relation, our IntensiVE tool-
suite has been designed as a lightweight set of tools that
are seamlessly integrated with the development environ-
ment and that incite developers to document structural
regularities and check them frequently.

4 Experiment: documenting and
checking the structure of delfstof

In this paper, we validate our approach by documenting,
verifying and evolving the structural regularities of Delf-
STof , an application written in VisualWorks Smalltalk. In
another paper we report on a case study where we applied
IntensiVE to document and understand the evolution of the
SmallWiki application [9].

4.1 The DelfSTof case

DelfSTof started out as a research prototype for exper-
imenting with the technique of formal concept analysis to
mine programs for recurring patterns [12]. Later, it was ex-
tended to accommodate for other code mining experiments.

These extensions led to a proliferation of classes (186
in the latest version) since for every new experiment we
needed to define objects and attributes to be used for the
concept analysis, filters that remove irrelevant concepts af-
ter the analysis, and analyzers that present the concepts in a
format understandable to the end-user.

Because of this proliferation of classes and because
symptoms of code decay started to show up, we decided to
restructure the code. Before restructuring, however, we de-
cided to document DelfSTof ’s structural source-code regu-
larities first.

Our main motivations for doing so were that having doc-
umented the structural regularities explicitly would help us

suite.

to restructure the code, verify the impact of the restructuring
on those regularities and respect the regularities in future
versions of the application.

The remainder of this section illustrates by means of se-
lective examples how we used IntensiVE to document the
structural code regularities of DelfSTof , check them against
the source code and keep new versions of the application
conform to these regularities. Before doing so, the next sub-
section sketches the structure of the part of DelfSTof from
which most examples in this section were selected.

4.2 The structure of DelfSTof

Fig. 7 sketches the static structure of the part of DelfSTof
that allows it to be extended with new objects and attributes
to be used by the concept analysis algorithm. Such an exten-
sion requires creating new subclasses of ObjectCreator
and AttributeCreator. These classes implement the
necessary methods that return a collection of objects and,
respectively, a collection of attributes. To inform the con-
cept analysis algorithm on how to use these new classes, one
also needs to provide a new subclass of ContextCreator.
This class consists of a number of factory methods which
indicate the proper object creators, attribute creators, fil-
ters and analyzers to be used by the algorithm. E.g., the
method attributeCreatorClass of this context creator
class needs to be overridden so that it returns the newly cre-
ated subclass of AttributeCreator.

DelfSTof thus imposes a number of constraints upon its
possible extensions: it does not suffice to specialize the cor-
rect classes and methods, there are other structural relations
between its source-code entities that need to be respected.
Apart from the ones mentioned above, Fig. 7 summarizes
some more of these relations that document important struc-
tural constraints for the customizers to respect.

4.3 Documenting the source-code regularities

We started out by documenting the source-code reg-
ularities of DelfSTof , based on our knowledge of the
application, using 34 intensional views and 30 intensional
relations. Instead of listing all, we limit ourselves to
providing the reader with a number of interesting views
and relations. For instance, we created an intensional view
Predefined Context Creators that groups all predefined
context creator classes of DelfSTof , which play a cru-
cial role in the application. Running a specific concept
analysis experiment requires creating a specific context
first. Having an intensional view which contains all known
classes capable of creating such a context is useful for
customizers of DelfSTof who need to decide whether
to use a predefined context creator class or rather to
implement a new variant. The intensional view Predefined



Figure 7. Static structure of part of the DelfSTof application

Context Creators was defined by means of the logic query:
classInHierarchyOf(?entity,[ContextCreator])

As mentioned in subsection 4.2, every concrete context
creator class should have a method named attribute-

CreatorClass that returns a specific attribute creator
class. Taking abstraction of the actual name of this method,
we codified this structural regularity to be respected by
customizers, by means of the intensional relation:

∀x ∈ PredefinedContextCreators :
∃!y ∈ AttributeCreatorClasses : (2)

x classReturnsClass y

where the view Attribute Creator Classes is defined analo-
gously to the view Predefined Context Creators and where
x classReturnsClass y verifies if a method in class x or
one of its superclasses returns class y.

Whereas the previous example codifies an obligation
for application customizers, an interesting example of a
prohibition is the intensional relation

∀x ∈ BasicAnalyserMethods :
@y ∈ DefaultAnalysersAndFilters : (3)

x methodReferencesClass y

This relation expresses that no methods of basic analyser
classes are allowed to reference any of the ‘default’ analy-
sers and filters, which represent the default behaviour of an
instance of the ‘Chain of Responsibility’ design pattern [5].
If one of the BasicAnalyserMethods would reference one
of these classes, this would break an important structural
constraint, as we will explain in more detail in section 4.5.

4.4 Checking and refining source-code regulari-
ties

Having codified a number of source-code regularities,
we need to verify them against the actual source code
and correct or refine any discovered inconsistencies of the

source code to these regularities. Two kinds of inconsis-
tencies can be distinguished: either our hypothesis about a
structural regularity was conceptually correct but the source
code did not consistently respect it, or our supposed regu-
larity was incorrect or incomplete in which case the corre-
sponding views or relations need to be refined.

To illustrate these two types of inconsistencies in the
DelfSTof case we revisit intensional relation (2). When
we checked its validity for the first time using the Relation
Browser, it failed. By analysing the feedback we received
from the Relation Inspector, we discovered two reasons why
this relation failed and gained insights into how to solve the
inconsistencies:

1. The view Predefined Context Creators, which groups
the concrete context creator classes, was defined as all
classes in the hierarchy with root ContextCreator,
including the root class itself. However, Context-
Creator was an abstract class and did not return any
of the Attribute Creator Classes, as the relation re-
quired. To solve the problem we redefined the view in
terms of the logic predicate classBelow rather than
classInHierarchyOf, which excludes the root of
the class hierarchy.

2. The view Predefined Context Creators contained a
class SoulContextCreator. This class implements
an extension to DelfSTof to provide an alternative way
of creating contexts for the concept analysis algorithm,
by using logic queries instead of factory methods. Be-
cause of this varying implementation, it did not re-
spect the relation (2). The documented structural reg-
ularity was conceptually correct, but we discovered an
inconsistency between the source code and the regu-
larity. Instead of having been implemented as a sub-
class of ContextCreator, SoulContextCreator

should have been implemented at the same level in the
class hierarchy. Refactoring DelfSTof by introducing
a common superclass for SoulContextCreator and
ContextCreator solved this problem.



Another example of an inconsistency occurred when
verifying the following intensional relation:

∀x ∈ AttributeCreatorClasses :
∃y ∈ PredefinedContextCreators : (4)

x returnedBy y

We discovered that this relation failed because the class
AttributeCreator was not returned by any of the pre-
defined context creator classes. The relation encoded our
hypothesis that every specific attribute creator class in Delf-
STof would be used in at least one concept analysis ex-
periment (recall that every predefined context creator class
is responsible for some concept analysis experiment). We
wanted to enforce this completeness constraint to avoid hav-
ing too many ‘retired’ classes around that were no longer
being used, so that the application would not get cluttered
with irrelevant code. This relation however need not hold
for the root class AttributeCreator: although it imple-
ments a default way of creating attributes and may be used
as such by some experiments, there is no reason to impose
that it ‘must’ be used in at least one experiment. By ex-
cluding the AttributeCreator from the source view of
the relation, and thus explicitly marking it as a deviation,
we were able to resolve this “violation” of the documented
regularity.

4.5 Keeping source code and regularities synchro-
nized

After having documented and verified a number of regu-
larities in DelfSTof , our goal was to keep these documented
regularities synchronized with the source code. In order to
validate the effectiveness of our approach, we reverified the
regularities with a newer version of DelfSTof in which, next
to a number of structural changes, also a couple of cus-
tomizations were added by a student who used the appli-
cation.

One example of a source-code regularity that was vio-
lated in this version of delfstof was Intensional relation (2)
between Predefined Context Creators and Attribute Cre-
ator Classes. When checking this relation, it failed because
the application had been refactored with the introduction
of two intermediate abstract classes MiningMethods and
MiningClassesAndMethods below the abstract class
ContextCreator. As such, they belonged to the view
Predefined Context Creators. However, since they did
not implement any behavior, but were introduced only as
a way to regroup different kinds of context creators, they
did not, and should not, satisfy relation (2). The solu-
tion we chose to bring the structural regularity up-to-date
was to redefine the Predefined Context Creators view as
the set of non-abstract classes in the hierarchy with root

ContextCreator.
Another example is intensional relation (3) as described

in subsection 4.3. As a result of new customizations which
were added to the application, this relation failed as well.
The analysers and filters used in DelfSTof are implemented
using the Chain of Responsibility pattern [5]. The first ele-
ment of the chain is asked to analyse/filter a concept. If this
element cannot handle that concept, the concept is passed
to the next element of the chain. At the end of the chain
a DefaultAnalyser or DefaultFilter is placed to halt
it. DelfSTof offers its customizers an easy interface which,
when offered a sequence of analysers/filters, automatically
configures the chain with that sequence and puts the default
analyser/filter at the end of the chain. The failure of rela-
tion (3) was caused by the student who implemented the
customization but was not very acquainted with DelfSTof .
Instead of using the proper interface, he decided to construct
the chain of analysers manually. To terminate his chain he
referred to the default analyser and filter classes directly,
which conflicted with relation (3) requiring that those de-
fault classes should never be referred to directly by a cus-
tomizer’s own analyser methods. We fixed the problem by
making the customization use the proper interface provided
by the application to create the chain of responsibility.

5 Discussion and future work

This case study, as well as the case study reported in [9],
exemplify the usage of the IntensiVE toolsuite to document
a program’s structural regularities, to check conformance of
its source code to those regularities and to offer fine-grained
feedback to resolve inconsistencies when the source code
does not satisfy the documented regularities. Next to having
created explicit documentation of the important structural
regularities in DelfSTof , we experienced that:
• in a number of situations, verifying conformance indi-

cated that the structural documentation was not precise
enough yet and thus needed further refinement;

• we were able to detect a number of occurrences where
the application developers did not follow the coding and
structuring conventions consistently or where the source
code was ill-designed and prone to restructuring;

• the feedback provided by IntensiVE helped us under-
stand how we could improve the documentation or the
code when conflicts were detected;

• we were able to bring the documented regularities and
the source code back in sync after important structural
changes were made to the code and new customizations
were added.

Although we were able to document the structural reg-
ularities in DelfSTof manually, having automated sup-
port for for reverse engineering structural regularities from



source code can be useful when considering large case stud-
ies of which the structure is not well-known. We are in-
vestigating several promising techniques to automate this
activity, including formal concept analysis [12], clustering
analysis, and inductive logic programming [21]. Comple-
mentary, a number of useful features to be integrated with
our toolsuite are:

• support for assessing the impact of modifying the
source code on the declared structural regularities.

• support for other languages, whether it be the language
of the program of which we want to document the
structure, or the query language we are using to do so.
Thanks to the language independence of the underlying
model, this is merely an issue of extending or reimple-
menting our tools for those languages. An early proto-
type of the Intensional View Editor for Java with sup-
port for various query languages (TyRuBa, XQuery and
XPath ) has already been developed [15], and a port of
the current version of IntensiVE to Eclipse / Java is cur-
rently underway.

• A tool to visualise the documented views and relations
and their conformance to the code has already been in-
corporated in the most recent version of IntensiVE, but
was not yet used in the experiment reported on in this
paper.

• support for documenting the dynamic structure of a pro-
gram. As the model of intensional views and relations
is essentially independent of the type of entities con-
sidered, what is needed to support reasoning about the
dynamic structure of a program is an appropriate query
language that can reason about the run-time structure of
the program.

6 Related Work

In the software architecture community, a number of ar-
chitecture conformance checking approaches exist that do
focus on checking whether a program’s source code con-
forms to the structure imposed by the intended architec-
ture. Reflexion Models [14], the SAR method [7] and the
NIMETA process [17] all focus on architecture reconstruc-
tion, but also support checking conformance of the source
code against the intended architecture. The Software Book-
shelf [4] is a collection of tools for generating software ar-
chitectures from program sources and keeping this architec-
tural documentation up to date.

Perhaps the most distinguishing feature of our approach
with these approaches is that we regard the activities of doc-
umenting and checking structural source code regularities
as activities that are seamlessly integrated with the devel-
opment process and environment and that are carried out
by the software developers themselves. The software archi-

tecture community distinguishes different kinds of architec-
tural views such as Kruchten’s 4+1 views [8]. Our approach
focuses mainly on the logical and development views, which
are rather implementation-oriented. It does not really sup-
port the process view, which captures the concurrency and
synchronization aspects of the design, nor the the physical
view, which describes the mapping of the software onto the
hardware. Therefore, it would make sense to complement
our approach with other approaches, like NIMETA [17],
which specifically aim at modeling other architectural views
too.

There exists also some research related to the model of
intensional views. Most closely related are probably the
models of conceptual modules [1], law-governed architec-
ture [13] and virtual categories [19]. Conceptual modules
are sets of lines of source code (from multiple parts of the
system) that are defined intensionally by means of a regular
expression and that are treated as a logic unit. Our approach
however seems finer grained and more expressive as inten-
sional views are not limited to lines of code but can contain
any kind of source-code entity. Law-governed architecture
supports the declaration and enforcement of global proper-
ties of the program that may cut across the source code. As
in our approach, these so-called ‘law-governed regularities’
are declared in, and verified with, a Prolog-like meta lan-
guage. Virtual categories are intensionally defined sets of
methods that provide support for incremental programming,
by giving the developer an overview of what still remains to
be done and where possible problems lie (e.g., methods that
still need to be implemented and overriden methods).

In our case study, as query language to define our in-
tensional views, as well as the binary relation predicates
in terms of which our intensional relations are defined,
we used the logic meta-programming language Soul . The
model of intensional views and relations itself, however, is
largely independent of the actual query language used. Us-
ing a logic meta-language has the advantage that it allows
us to express powerful queries over the source code. In
practice however, this expressiveness is not always needed
and some queries can be rather inefficient to evaluate. Re-
lated work shows that simpler regular expression or pattern-
matching languages [1, 6] may still be sufficiently powerful,
yet more efficient. In fact, for most examples encountered
in our case study a simpler language would have sufficed.
For this reason, we are currently experimenting with other
query languages like XPath, XQuery [15], regular expres-
sions and description logics.

Finally, there exist, in the aspect-oriented software com-
munity, several tools and approaches that support reverse
engineering, modelling and/or manipulation of aspects and
crosscutting concerns [3, 6, 16, 18, 20]. These approaches
have many similarities with ours, since intensional views
too may cut across the source code, just like an aspect.



Conclusion

The main contribution of this paper is the presentation
and validation of our IntensiVE toolsuite for document-
ing, checking and refining structural source-code regular-
ities. It builds on the model of intensional views, ex-
tended in this paper with the model of intensional rela-
tions. Whereas intensional views group source-code enti-
ties that share some structural property, intensional relation-
ships document important structural dependencies among
the elements of those views. In addition to supporting con-
formance checking of the documented regularities to the
source-code, the tools offer fine-grained feedback when the
source code does not satisfy those regularities. Alongside
with the toolsuite, we introduced a step-based, incremental
methodology, bearing strong resemblance with XP testing.
Our approach advocates the documentation and checking of
structural regularities on a ‘by need’ basis, in order to keep
the code conform to the documentation (and vice versa) as
the program evolves.

Although the approach and underlying formalism are es-
sentially language-independent, the toolsuite has been im-
plemented in Smalltalk and reasons about Smallltalk pro-
grams using the logic meta-programming language SOUL
as query language. To enable easy adoption of the tool-
suite, it is relatively lightweight and has been seamlessly
integrated with the VisualWorks development environment.

We validated the approach and tool suite on DelfSTof ,
an application implemented in VisualWorks Smalltalk. The
results from this case study and another case study we have
conducted convinced us that our framework is sufficiently
expressive and mature to document, check and maintain the
structural regularities of a program throughout its evolution.
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