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AmbientTalk:
Language Support for Mobile Computing

Jessie Dedecker Tom Van Cutsem Stijn Mostinckx Wolfgang De Meuter Theo D’Hondt

Abstract—An important aspect of system support for mo-
bile computing involves alleviating the issues related to pro-
gramming the underlying distributed system. Our approach
to dealing with these issues is by means of programming lan-
guage support. To this end, we have designed a high-level,
distributed object-oriented programming language – called
AmbientTalk – which has been designed specifically for mo-
bile networks. We motivate the need for such dedicated lan-
guage support based on the fundamental characteristics of
mobile distributed systems. Subsequently, we describe the
salient features of AmbientTalk with respect to distributed
programming by means of an exemplar mobile computing
application.

Index Terms—ubiquitous computing, mobile computing,
ambient-oriented programming, distributed programming
languages, event-driven programming

I. Introduction

THE past couple of years, pervasive and ubiquitous
computing have received more and more attention

from academia and industry alike. Wireless communica-
tion technology and mobile computing technology have
reached a sufficient level of sophistication to support the
development of a new breed of applications. Mobile com-
puting enables applications running on mobile devices to
spontaneously interact with devices in their proximity.
Hence, realizing the vision of ubiquitous computing entails
the construction of an open distributed system.

At the software-engineering level, we observe that, al-
though there has been a lot of active research with respect
to mobile computing middleware [1], we see little innova-
tion in the field of programming language research. Al-
though distributed programming languages are rare, they
form a suitable development tool for encapsulating many of
the complex issues engendered by distribution [2], [3]. The
distributed programming languages developed to date have
either been designed for high-performance computing (e.g.
X10 [4]), for reliable distributed computing (e.g. Argus [5])
or for general-purpose distributed computing in fixed, sta-
tionary networks (e.g. Emerald [6], Obliq [7], E [8]). None
of these languages has been explicitly designed for mobile
networks. They lack the language support necessary to
deal with the radically different network topology.

We take the position that a new breed of programming
languages is needed to deal with and manage the com-
plexity that arises from the novel hardware constellation
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used to realize the vision of ubiquitous computing. In
previous work, we investigated the desirable properties of
such novel programming languages based on four impor-
tant hardware phenomena inherent to mobile networks [9].
Subsequently we designed one such language, named Am-
bientTalk, whose language features were specifically de-
signed to aid the developer in dealing with the hardware
phenomena of mobile networks [10]. Whereas previous
work specifically targeted language designers by focusing
on the implementation of novel language constructs, this
paper covers AmbientTalk’s novel distribution-related lan-
guage features from an application developer point of view
by demonstrating their concrete use in a small mobile com-
puting application. Before introducing the example appli-
cation and AmbientTalk’s language constructs, we reca-
pitulate the hardware phenomena of mobile networks and
give a brief introduction to AmbientTalk.

II. Motivation

In this section, we will motivate our claim that high-level
yet general-purpose distributed programming languages
are required which are specifically designed for developing
software for mobile computing. We start this motivation
by observing a number of phenomena which are derived
from the characteristics inherent to mobile networks. Sub-
sequently, we briefly discuss why existing approaches are
insufficient to cope with these hardware phenomena.

A. Hardware Phenomena

Based on the fundamental characteristics of mobile hard-
ware, we distill a number of phenomena which mobile net-
works exhibit. There are two discriminating properties of
mobile networks: applications are deployed on mobile de-
vices which are connected by wireless communication links
with a limited communication range. The type of device
and the type of wireless communication medium can vary,
leading to a diverse set of envisaged applications. Devices
might be as small as coins, embedded in material objects
such as wrist watches, door handles, lamp posts, cars, etc.
They may even be as lightweight as sensor nodes or they
may be material objects “digitized” via an RFID tag1. De-
vices may also be as “heavyweight” as a cellular phone, a
PDA or a car’s on-board computer. All of these devices
can in turn be interconnected by a diverse range of wireless
networking technology, with ranges as wide as WiFi or as
limited as IrDA.

Mobile networks composed of mobile devices and wire-
less communication links exhibit a number of phenomena

1 Such tags can be regarded as tiny “computers” with an extremely
small memory, able to respond to read and write requests.
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which are rare in their fixed counterparts. In previous
work, we have remarked that mobile networks exhibit the
following phenomena [10]:

Volatile Connections. Mobile devices equipped with
wireless communication media possess only a limited
communication range, such that two communicating
devices may move out of earshot unannounced. The
resulting disconnections are not always permanent:
the two devices may meet again, requiring their con-
nection to be re-established. Quite often, such tran-
sient disconnections should not affect an application,
allowing both parties to continue with their conversa-
tion where they left off. These volatile disconnections
do expose applications to a much higher rate of partial
failure than that which most distributed languages or
middleware have been designed for.

Ambient Resources. In a mobile network, devices spon-
taneously join with and disjoin from the network. The
same holds for the services or resources which they
host. As a result, in contrast to stationary networks
where applications usually know where to find their
resources via URLs or similar designators, applica-
tions in mobile networks have to find their required
resources dynamically in the environment. Moreover,
applications have to face the fact that they may be
deprived of the necessary resources or services for an
extended period of time. In short, we say that re-
sources are ambient : they have to be discovered on
proximate devices.

Autonomous Devices. In mobile wireless networks, de-
vices may encounter one another in locations where
there is no access whatsoever to a shared infrastruc-
ture (such as a name server). Even in such circum-
stances, it is imperative that the two devices can dis-
cover one another in order to start a useful collabo-
ration. Relying on a mobile device to act as infras-
tructure (e.g. as a name server) is undesirable as this
device may move out of range without warning [11].
These observations lead to a setup where each device
acts as an autonomous computing unit: a device must
be capable of providing its own services to proximate
devices. Devices should not be forced to resort to a
priori known, centralized servers.

Natural Concurrency. Due to their close coupling to the
physical world, most pervasive applications are also
inherently event-driven. Writing correct event-based
programs is far from trivial. There is the issue of
concurrency control which is innate in such systems.
Furthermore, from a software design point of view,
event-based programs have very intricate, confusing
control flow as they lack the structure provided by a
call-return stack.

As the complexity of applications deployed on mobile
networks increases, the above unavoidable phenomena can-
not keep on being remedied using ad hoc solutions. In-
stead, they require more principled software development
tools specifically designed to deal with the above phenom-
ena. For some classes of applications – such as wireless sen-

sor networks – such domain-specific development tools are
emerging, as can be witnessed from the success of TinyOS
[12] and its accompanying programming language nesC
[13]. It is our conjecture that mobile computing applica-
tions would benefit similarly from a programming language
designed to tackle the difficult distribution issues in their
domain.

B. Evaluation

Before introducing the AmbientTalk programming lan-
guage, we first evaluate related work with respect to its
ability to deal with the hardware phenomena described
above. We categorize related work into two categories:
distributed programming languages and middleware.

B.1 Distributed Languages

To the best of our knowledge no distributed language
has been designed that deals with all of the characteristics
of the mobile hardware described above. The suitability
of a distributed language for mobile computing largely de-
pends on the nature of its remote communication mech-
anism. Languages that use synchronous communication
such as Emerald [6] and Obliq [7] are the least suitable
because synchronous message passing does not scale when
performed over wireless, volatile connections. We elabo-
rate upon the mismatch between synchronous communica-
tion and volatile connections in section IV. Languages like
ABCL/f [14] and Argus [15] promote asynchronous send
operations that return futures [16] (which are discussed in
more detail below), but require processes to block upon ac-
cessing unresolved futures, which re-introduces the draw-
backs of synchronous message passing. Languages based
on the actor model, such as Janus [17], Salsa [18] and E
[8] use pure asynchronous communication. However, these
languages offer no support to discover ambient resources or
to coordinate interactions among autonomous computing
units in the face of volatile connections.

B.2 Distributed Middleware

An alternative to distributed languages is middleware.
Over the past few years a lot of research has been invested
in middleware for mobile networks [1], which can be cate-
gorized as follows:

RPC-based Middleware like Alice [19] and DOLMEN
[20] are attempts that focus mainly on making ORBs
suitable for lightweight devices and on improving
the resilience of the CORBA IIOP protocol against
volatile connections. Others deal with such connec-
tions by supporting temporary queuing of RPCs [21]
or by rebinding [22]. However, these approaches re-
main variations of synchronous communication and
are thus irreconcilable with the autonomy and con-
nection volatility phenomena.

Data Sharing-oriented Middleware tries to maximize
the autonomy of temporarily disconnected mobile de-
vices using weak replica management (cf. Bayou [23],
Rover [21] and XMiddle [24]). However, since repli-
cas are not always synchronisable upon reconnection,
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potential conflicts must be resolved at the application
level. In spite of the fact that these approaches fos-
ter fruitful ideas to maximize the autonomy of mobile
devices, to the best of our knowledge, they do not
address the discovery of ambient resources.

Publish-subscribe Middleware adapts the publish-
subscribe paradigm [25] to cope with the characteris-
tics of mobile computing [26], [27]. Such middleware
allows asynchronous communication, but has the
disadvantage of requiring a program to be structured
using callbacks to handle published events, which
severely obfuscates the control flow of the code and
requires careful concurrency control.

Tuple Space based Middleware [28], [29] for mobile com-
puting has been proposed more recently. A tuple space
[30] is a shared data structure in which processes can
asynchronously publish and query tuples. Most re-
search on tuple spaces for mobile computing attempts
to distribute a tuple space over a set of devices. Tuple
spaces are an interesting communication paradigm for
mobile computing. Unfortunately, because communi-
cation is achieved by placing data in a tuple space as
opposed to sending messages to objects, it does not
integrate well with the object-oriented paradigm.

In this section, we have motivated the need for a dis-
tributed language designed for mobile computing. We have
described four hardware phenomena which unavoidably
have to be dealt with when developing mobile computing
applications. Distributed programming languages that are
not designed for mobile computing lack essential features
to deal with the phenomena. On the other hand, mobile
computing middleware approaches address some phenom-
ena, but fail to offer an integrated solution that helps the
programmer develop his software expressively.

III. An Exemplar Mobile Computing Application

In order to get a feel for the kind of mobile computing
applications we envisage, this section describes a small ap-
plication which we will use as a running example through-
out the paper baptised mobiTunes. The application is de-
signed to run on PDAs or smartphones communicating via
wireless technology such as WiFi or Bluetooth. The appli-
cation presumes no communication infrastructure whatso-
ever (i.e. the PDAs spontaneously form ad hoc networks).
The mobiTunes application allows users to share their mu-
sic database with one another. More specifically, when two
mobiTunes peers encounter one another, they exchange
their music database (henceforth called their library). The
mobiTunes application compares the incoming music li-
brary with the owner’s library in terms of “similar music
taste” (e.g. by searching for similar artists). This match-
ing of libraries is used to implement mobiTunes’ two main
features.

First, when a user encounters a peer with a similar taste
in music, mobiTunes can derive from that peer’s library the
songs which are not yet in the user’s own library. In this
way, mobiTunes can e.g. keep a record of “recommended
albums” which can help the user when he next goes shop-

ping. In other words, mobiTunes is used to “discover new
music”. Secondly, mobiTunes optionally acts as a “social
match maker”. When a user has enabled this feature, mo-
biTunes notifies him or her whenever another user with
a similar taste in music (and which also has enabled this
feature) is discovered in the proximity.

Applications like mobiTunes, which are deployed on mo-
bile devices collaborating via ad hoc networks, are obliged
to take the hardware phenomena described in the previous
section into account. We describe how these phenomena
influence the behaviour of mobiTunes:

Volatile Connections. Because of the mobility of users
and the limited communication range of the ad hoc
network, the connection between two mobiTunes peers
is volatile. This has its repercussions on e.g. the ex-
change of the music libraries. If this exchange is done
incrementally, rather than by sending the library in
one piece, it will be much more resilient to intermit-
tent disconnections.

Ambient Resources. A mobiTunes application requires
other mobiTunes peers in order to provide useful func-
tionality. These peers have to be discovered dynam-
ically in the (nearby) environment. It is this ability
that allows for the “social match maker” functional-
ity, as this feature depends on two users being in one
another’s vicinity.

Autonomous Devices. There is no reliance on a central
server to pair two mobiTunes peers. Although this
makes discovery more expensive, the fact that no con-
nection to a central server needs to be made increases
availability (avoidance of a single point of failure) and
involves no communication cost (ad hoc wireless com-
munication is free of charge).

Natural Concurrency. mobiTunes peers clearly require
proper concurrency control: multiple users can meet
and exchange libraries simultaneously. Furthermore,
mobiTunes peers should remain responsive to their en-
vironment even while engaged in communication with
a particular peer.

In the following section, we introduce AmbientTalk, a
high-level programming language designed specifically to
develop applications such as the one described here. We
focus on the language’s support for distributed communi-
cation and discovery and describe how it aids the developer
in dealing with the aforementioned hardware phenomena.

IV. AmbientTalk: an Ambient-Oriented
Programming Language

AmbientTalk is a high-level object-oriented distributed
programming language based on the ambient-oriented pro-
gramming paradigm [9]. This paradigm has been specifi-
cally designed to deal with the hardware phenomena de-
scribed above. In the following section we describe the
language and describe how an ambient-oriented language
like AmbientTalk differs from a standard object-oriented
language. We introduce the features of the language by
describing the implementation of the mobiTunes applica-
tion piece by piece.
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A. AmbientTalk in a Nutshell

AmbientTalk distinguishes between passive and active
objects. Passive objects behave like typical objects in stan-
dard object-oriented languages and are used to express lo-
cal, sequential computations. The following code snippet
shows how one could represent mobiTunes song objects in
AmbientTalk:

Song : object({
artist : "Elvis Presley";
title : "Just Because";
album : "Sunrise";

new(anArtist, aTitle, anAlbum) :: copy({
artist := anArtist;
title := aTitle;
album := anAlbum;

});
getArtist() :: { artist };
getTitle() :: { title };
getAlbum() :: { album };
equals(aSong) :: {

(getArtist() = aSong.getArtist()) &
(getTitle() = aSong.getTitle()) &
(getAlbum() = aSong.getAlbum())

};
toString() :: { artist + "-" + name + "["+ album +"]" }

});

AmbientTalk’s object model is based on prototypes [31]
rather than on classes. This means that, instead of creat-
ing classes which are instantiated at runtime into objects,
the developer immediately creates objects. In the exam-
ple above, the variable Song is bound to a prototypical
song object using the object form. A song object con-
tains the fields artist, title and album, defined using
:. Furthermore, the song object defines methods (such
as new, getArtist, ...) using ::. For example, invoking
s.getArtist() on a song s returns the song’s artist. Next
to creating objects “from scratch”, objects can also be cre-
ated by cloning existing objects. This is illustrated by the
new method that returns a copy of the existing object. The
copy form takes an expression as its argument that allows
one to define how the clone should differ from the original
object.

Passive objects are used for local, sequential computa-
tions only. Active objects, on the other hand, are the unit
of concurrency and distribution. Active objects are based
on an extension of the well-known actor model for dis-
tributed systems [32]. We will henceforth refer to active
objects as actors. Each actor is associated with exactly
one thread of execution and sequentially processes incom-
ing messages that have been delivered to its inbox (its
incoming message queue). An actor responds to messages
according to a behaviour, which is a passive object that
implements the methods corresponding to the incoming
messages. Passive objects are never shared between actors
such that no race conditions on the internal state of a pas-
sive object can exist. When passive objects are passed as
arguments in messages to other actors, they are copied to
preserve this sharing restriction.

All actors communicate exclusively via asynchronous
message passing. AmbientTalk allows one to abstract
over the volatile connections hardware phenomenon by
buffering messages sent to actors currently unavailable for

communication. The buffered messages are automatically
transmitted whenever the connection is restored. The
asynchronous message passing scheme is further detailed
in section B.

As actors are the only objects capable of concurrent and
distributed computation, the mobiTunes application is rep-
resented by an actor. The definition of the actor represent-
ing a mobiTunes peer is shown below:

MobiTunesActor :: actor(object({
myLibrary: void;
sessions : void;
notificationsEnabled : false;
recommendedMusic : void;

new(enableNotification) :: copy({ ... });
init() :: { ... };

isNotificationEnabled() :: { ... };
addSong(song) :: { ... };
showRecommendedSongs() :: { ... };

requestLibraryExchange(senderPeer) :: { ... };
sendSong(receiverPeer, idx) :: { ... };
receiveSong(senderPeer, song) :: { ... };
signalEndOfExchange(senderPeer) :: { ... };

}));

An active object is created using the actor form. This
form takes a passive object as its argument that de-
fines the behaviour of the actor. The init method is
automatically invoked upon creation of an actor and is
used to initialize it. The field myLibrary contains the
owner’s music library, the hashmap sessions maps con-
nected mobiTunes peers to their exchanged music library,
notificationEnabled holds a boolean value that indi-
cates whether the owner is interested in being notified
when another person with a similar taste in music is in
the vicinity, recommendedMusic contains the list of songs
suggested based on the matched libraries. The meth-
ods requestLibraryExchange, sendSong, receiveSong
and signalEndOfExchange are part of the music library
matching protocol and are further discussed in the follow-
ing sections.

B. Non-blocking Communication

This section describes the design of the distributed com-
munication facilities of AmbientTalk. We first motivate
the need for non-blocking communication primitives in a
distributed system designed for mobile computing and sub-
sequently describe how these features are realised by means
of asynchronous message passing between actors in Ambi-
entTalk.

B.1 Motivation

Autonomous devices communicating over volatile con-
nections necessitate non-blocking communication primi-
tives. Blocking communication, in the guise of synchronous
method invocations or blocking receive statements severly
harm the autonomy of mobile devices. First, blocking com-
munication is a known source of (distributed) deadlocks
[33] which are extremely hard to resolve in mobile networks
since not all parties are necessarily available for communi-
cation. Second, blocking communication primitives would
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cause a program or device to block for a substantial amount
of time when a communication partner is temporarily un-
available [1], [28]. As such, the availability of resources
and the responsiveness of applications would be seriously
diminished.

B.2 Realisation

AmbientTalk actors communicate with one another via
asynchronous message passing. Actors do not wait for mes-
sages to be transmitted to the recipient actor. The follow-
ing code snippet shows how one mobiTunes actor transmits
its library to another mobiTunes actor stored in the vari-
able receiverPeer. Note that the library is transmitted
incrementally, song by song, such that an actor does not
need to resend the complete library in case of a discon-
nection. After all songs have been transmitted, a message
is sent to the receiverPeer to signal the end of the ex-
change.

sendSong(receiverPeer, idx) :: {
if(myLibrary.numSongs() >= idx, {
...
receiverPeer#receiveSong(thisActor, currentSong)
...

}, {
receiverPeer#signalEndOfExchange(thisActor)

}) };

Asynchronous message sends are denoted using a # in-
stead of a dot. Also note that the variable thisActor
refers to the current actor, similar to how this represents
the current passive object. Asynchronous message sends
are not easily reconcilable with return values. It requires
the use of either “callback” methods or a program writ-
ten in continuation-passing style in order to process re-
sults. Such programming idioms clutter the code which is
why AmbientTalk adopts the use of futures or promises,
a frequently recurring abstraction in concurrent and dis-
tributed languages (e.g. in Multilisp [16], ABCL [34] and
Argus [15]). An asynchronous message send always imme-
diately returns a future object, which is a placeholder for
the real return value. Once the real value is computed,
it “replaces” the future object; the future is said to be
resolved with the value.

Most languages, including the ones listed above, make
a process block on an unresolved promise or future (either
implicitly by using its value in an expression or explic-
itly via e.g. a touch or claim operator). One notable
exception is the language E [8], which disallows waiting
for a promise to be resolved. Instead, E provides a when-
construct which registers a closure, parameterized with the
determined value, with the promise. The promise sched-
ules this closure for execution when it has been resolved
with a value. AmbientTalk adopts this when-construct
from the language E.

The code excerpt below illustrates the use of futures and
the when-construct in the mobiTunes example application.
Recall from the description of the application above that
a user may optionally specify that he wants to be noti-
fied by the application whenever another user with similar
taste in music has been detected in the environment. This

notification should only trigger when that user has also
enabled the notification function. Hence, after exchang-
ing libraries, the remote peer is queried for its notification
setting before the user can be notified:

signalEndOfExchange(senderPeer) :: {
senderLibrary: sessions.get(senderPeer);
matchPercentage: compare(myLibrary, senderLibrary);
if(matchPercentage >= THRESHOLD, {
recommendedMusic.union(senderLibrary.difference(myLibrary));
when(senderPeer#isNotificationEnabled(),

lambda(notificationForPeer) -> {
if(notificationsEnabled & notificationForPeer, {
notifyUser(senderPeer, matchPercentage)

})
})

}) };

The lambda keyword denotes the construction of
a lexically scoped closure whose body is executed
asynchronously at a later point in time. When
the future returned by the asynchronous invocation
isNotificationEnabled() is resolved with a value, the
deferred when code block is scheduled for execution with
that value bound to notificationForPeer. The block will
eventually be executed by the actor’s single thread when it
is not processing messages. This is important to guarantee
that the code block executes atomically without interfer-
ing with other message processing code in the same actor.
The when code block enables the processing of return val-
ues in the same scope of the original message send without
having to resort to callbacks.

Message reception is implicit in AmbientTalk. Received
messages are buffered in an actor’s inbox and processed
sequentially. Processing a message entails invoking its cor-
responding method. Hence, message reception is aligned
with method invocation. The example below shows how a
mobiTunes actor can receive the isNotificationEnabled
message by implementing a method with the same name:

isNotificationEnabled() :: { notificationsEnabled }

The return value of the method is the value used to
resolve the future associated with the message that gave
rise to the method invocation.

C. Peer-to-Peer Service Discovery

Mobile computing applications require a service discov-
ery mechanism to detect useful software services available
in the (wireless) network. For example, in the mobiTunes
application, peers must discover one another in the nearby
environment in order to synchronize their music library.
In this section, we motivate why AmbientTalk has built-
in support for service discovery at the language level, and
subsequently demonstrate how that support is realised.

C.1 Motivation

In section II, it was observed that (ad hoc) mobile net-
works consist of autonomous devices where resources are
“ambient”: they have to be discovered in the nearby envi-
ronment as devices are roaming. This hardware topology
implies that devices do not necessarily rely on a third party
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to start an interaction with each other. This is in con-
trast to client-server communication models where clients
interact through the mediation of a well-known server (e.g.
chat servers or white boards). In mobile networks, a device
cannot acquire an explicit reference to a remote service be-
forehand as the address of the device hosting the service is
unknown. This address can only be discovered at runtime,
as devices spontaneously encounter one another. What
is needed is an extension to the object-oriented paradigm
that allows objects to create references to remote objects,
not on the basis of that object’s address (or similarly based
on static URLs), but on the basis of an intensional descrip-
tion of the object’s provided services.

C.2 Realisation

AmbientTalk achieves peer-to-peer service discovery by
the introduction of ambient references. An ambient refer-
ence is a local actor that represents a remote service (i.e.
it is a proxy to a remote actor). Unlike traditional proxies,
which are acquired via a name server or created via a URL,
ambient references describe the actors they denote using an
intensional description of the services they provide. This
description takes the form of a service type. Such a service
type describes the services to which the ambient reference
can bind. For example, in the mobiTunes application, ev-
ery mobiTunes actor identifies itself by declaring that it
provides the MobiTunesPeer service type, as follows:

serviceType(MobiTunesPeer); // declare new service type
MobiTunesActor :: actor(object({
init() :: { provide(MobiTunesPeer); ... };
...

}))

A mobiTunes actor engages in service discovery during
initialization by declaring an ambient reference to other
mobiTunes peers in the environment:

init() :: {
provide(MobiTunesPeer);
sensor : ambient(MobiTunesPeer);
...

};

The variable sensor is an ambient reference that refers
to any actor providing the MobiTunesPeer service type.
Once an ambient reference has been declared, code blocks
may be attached to it which will be executed whenever a
new peer is discovered in the environment. When a mo-
biTunes peer wants to start an interaction with a newly
discovered peer, it can do so by registering a block of code
with the ambient reference, which is triggered whenever a
new peer is discovered:

when_found(sensor, lambda(remotePeer) -> {
sessions.put(remotePeer, MusicLibrary.new());
remotePeer#requestLibraryExchange(thisActor)

});

The when found language construct executes the given
closure whenever a new peer is discovered (e.g. when an-
other user’s PDA joins the ad hoc network). A reference
to the newly discovered peer is passed as an argument to
that closure. When a peer is discovered, a new library is

created to store its songs during the exchange of the music
library. After this library is created, the discovered peer is
asked to transmit its music library to the discovering peer.

D. Failure Handling in the face of Volatile Connections

We have shown in the preceding sections that the asyn-
chrony of remote communication between actors in combi-
nation with the buffering of messages sent to disconnected
actors allows the programmer to abstract over network dis-
connections. This is a good property when such failures are
only transient, caused by intermittent network disconnec-
tions or by people moving temporarily out of one another’s
communication range. However, it is clear that not all net-
work failures can be masked in this way. Some broken con-
nections will never be restored and require proper failure
handling.

D.1 Motivation

When designing a failure handling mechanism for an
ambient-oriented programming language, it is important
not to lose the property of being able to abstract over tem-
porary network disconnections. After all, the paradigm
prescribes that network disconnections are omnipresent
and mostly caused by the volatility of wireless connections.
That is why failure handling in AmbientTalk is based on
timeouts: actors are signalled as being “unavailable” only
when they have been disconnected for longer than a given
timeout period. This timeout period effectively allows the
programmer to define which network failures the applica-
tion should regard as transient (and can be disregarded)
and which failures must be treated as fatal (and should be
acted upon).

D.2 Realisation

AmbientTalk allows programmers to deal with unavail-
able actors via ambient references. Just like it is possible
to trigger code whenever a new actor is discovered, it is
possible to trigger code whenever a discovered actor is un-
available for longer than a given timeout period.

In the mobiTunes application, two peers may encounter
and start exchanging their music library, but can discon-
nect before the exchange is complete and never encounter
one another again. Any resources held due to this par-
tial exchange should eventually be freed. When a peer
has been disconnected for longer than five minutes, any re-
sources held by the current exchange session are discarded.
These resources include the partially exchanged library of
the unavailable peer and – less obviously – all messages
sent to the unavailable peer which are still buffered for
transmission. The following code snippet shows the failure
handling source code:

TIMEOUT_PERIOD :: 5*60*1000; // 5 minutes
init() :: {
provide(MobiTunesPeer);
sensor : ambient(TIMEOUT_PERIOD, MobiTunesPeer);
when_found(sensor, lambda(remotePeer) -> { ... });
when_lost(sensor, lambda(remotePeer) -> {
sessions.delete(remotePeer);
discardMessagesSentTo(remotePeer)

}) }
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First, the ambient reference described previously is an-
notated with the timeout period to discriminate between
transient and fatal disconnections. Second, just like one
can use when found to trigger code when a peer is discov-
ered, one can use when lost to react to lost peers. As
shown in the code, the partial library is removed from
the sessions map and all messages destined for the lost
peer are simply discarded. For the purposes of this pa-
per, discardMessagesSentTo may be regarded as a prim-
itive method. In the actual implementation, however, this
method is implemented in AmbientTalk itself because an
actor can access and modify its own outbox which stores its
outgoing buffered messages. The details of such reflective
code are outside the scope of this paper but can be found
in previous work [10].

E. Summary

This section has given an overview of AmbientTalk’s
most important language constructs to aid the program-
mer in dealing with the complexities of software develop-
ment for mobile computing. We have introduced these
constructs by means of a simple yet typical mobile com-
puting application. It is important to note that the code
snippets shown throughout the paper represent nearly all
of the essential code that an application programmer needs
to write in order to develop a running mobiTunes applica-
tion. Much of the difficulties related to distribution are ei-
ther tackled by the language runtime or by reflective code
which is reusable by a large number of programs in the
form of language constructs.

V. Validation

In this section, we take a step back and reconsider how
AmbientTalk’s language constructs aid the programmer in
dealing with the hardware phenomena described in section
II:

Volatile Connections. Because messages are sent asyn-
chronously and because they are automatically
buffered when sent to a disconnected recipient, Am-
bientTalk’s message passing scheme is inherently suit-
able for communicating over the volatile connections
induced by wireless communication media. Further-
more, the use of futures and the when-construct enable
the expression of asynchronous reply processing with-
out fragmenting the source code. Finally, because all
send and receive abstractions in the language are non-
blocking, actors remain responsive to incoming events
even while communicating with disconnected parties.

Ambient Resources. Ambient references are used to dis-
cover nearby actors based on the services those actors
provide. The when found and when lost language
constructs enable the programmer to intervene when
actors become available or unavailable.

Autonomous Devices. Ambient references discover ac-
tors based on a broadcasting protocol. No shared in-
frastructure is required to support the discovery. Ref-
erences to other actors are created based on service

types describing those actors, rather than based on
fixed addresses or URLs.

Natural Concurrency. The concurrent nature of the
physical world is controlled thanks to an actor’s prop-
erty of sequential message processing. Concurrency
within a single application is still possible by cre-
ating multiple actors. Within a single actor, how-
ever, method bodies and closures deferred using when,
when found and when lost run atomically and are
free of race conditions. Race conditions may of course
still exist at the message-passing level and require ad-
ditional concurrency control which we will not further
describe here.

An interpreter for the AmbientTalk language has been
implemented in Java. Two or more AmbientTalk inter-
preters communicate via sockets over WiFi. An inter-
preter has been implemented for resource-constrained de-
vices on top of J2ME. Currently, only CDC (Connected
Device Configuration) is supported, allowing AmbientTalk
to be run on PDAs and smartphones. We are planning on
porting AmbientTalk to CLDC (Connected Limited Device
Configuration) for embedded devices in the near future.

VI. Conclusion

The last couple of years, a lot of research effort has been
invested in middleware and libraries to aid developers in
writing software to be deployed on mobile networks. In the
programming language community, however, no program-
ming language has been designed that specifically targets
the development of mobile computing applications. Our
position statement is that programming languages are a
good medium to abstract much of the difficulties associated
with software development for mobile computing. It is not
our goal to paper over difficult distribution issues by hiding
them in a language. Rather, we want to make the essential
issues related to distribution explicit but more manageable
in the form of dedicated programming language constructs.

This paper has introduced the programming language
AmbientTalk, a high-level object-oriented distributed pro-
gramming language which has been designed specifically
for writing mobile computing applications. AmbientTalk
has been designed bottom up, taking into account the un-
escapable hardware phenomena engendered by the wire-
lessly communicating mobile hardware. At its core, Ambi-
entTalk is based on the actor model. The asynchrony of the
communication between actors closely matches the event-
driven nature of mobile computing systems. AmbientTalk
elaborates on the actor model by providing more high-level
support for e.g. dealing with return values and by intro-
ducing a built-in peer discovery mechanism through special
actors known as ambient references.
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