
Ambient-Oriented Exception Handling
(DRAFT)?

Stijn Mostinckx??, Jessie Dedecker? ? ?,
Elisa Gonzalez Boix, Tom Van Cutsem??, and Wolfgang De Meuter

smostinc | jededeck | egonzale | tvcutsem | wdmeuter@vub.ac.be

Programming Technology Laboratory
Vrije Universiteit Brussel, Belgium

Abstract. Writing ambient-oriented software for mobile devices con-
nected through wireless network connections provides a new challenge
in the field of exception handling. It involves dealing with issues such
as asynchronous communication, moving hardware and software, only
to name a few. Building on an analysis of the fundamental differences
between mobile networks and their stationary counterparts, this paper
establishes a set of criteria for an ambient-oriented exception handling
mechanism. We subsequently present ambient conversations, a novel dis-
tributed exception handling mechanism that adheres to the prescribed
criteria, and describe its realisation in the ambient-oriented programming
language AmbientTalk.

1 Introduction

Recently, mobile hardware has evolved to become ever cheaper, smaller and
yet more powerful. The current crop of mobile devices have wireless network
provisions (such as Bluetooth and WiFi) that allow them to collaborate with one
another in open, mobile and highly dynamic networks. Such networks of mobile
devices are crucial to achieve Weiser’s vision of ubiquitous computing [24], where
computers are seamlessly integrated in the fabric of everyday life. Similarly, the
spontaneous interaction between both mobile and embedded devices plays an
important role in the various Ambient Intelligence (AmI) scenarios proposed by
the IST Advisory Group of the European Union [7].

At present, little experience exists in developing applications that fully ex-
ploit the potential of mobile networks of wirelessly connected devices. A signifi-
cant obstacle impeding the construction of such applications is the fact that con-
temporary programming languages lack proper support to deal with the specific
? This paper is a draft as submitted for review. The final version was published in

Advanced Topics in Exception Handling Techniques, eds. C. Dony, J. L. Knudsen,
A. Romanovsky, A. Tripathi, Springer-Verlag as part of the Lect. Not. Comp. Sci.
series, no. 4119 (2006)

?? Funded by a doctoral scholarship of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen), Belgium.

? ? ? Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.)

2

properties that distinguish mobile networks from their stationary counterparts.
The most important of these properties are that disconnection is the rule rather
than the exception (because the communication range of wireless technology is
limited) and that the network is open (because devices can appear and disappear
unheraldedly).

The goal of our work is to uncover the necessary language abstractions and
implementation techniques that ease the development of applications which are
based on spontaneous interaction between different mobile devices. Since little
software engineering experience exists in developing such systems, our research
is based on a thorough analysis of the hardware phenomena that fundamentally
distinguish mobile from stationary networks. In previous work, this analysis led
us to propose a number of fundamental programming language characteristics
that define a novel ambient-oriented programming (AmOP) paradigm [5]. This
paradigm – based on asynchronously communicating actors provided with in-
nate mechanisms for discovering services in the ambient (i.e. its immediate en-
vironment) as well as reversible computing – was embodied in the AmbientTalk
language [4].

This paper focusses on the issue of handling exceptions which occur during
such spontaneous interactions of mobile devices. The next section establishes
the essential differences between mobile and stationary networks and illustrates
how they affect an exemplar collaborative editing application deployed on mobile
hardware. Subsequently, we derive a set of criteria for future ambient-oriented
exception handling mechanisms and relate them to the example application (sec-
tion 3). Section 4, provides an overview of existing distributed exception handling
techniques and evaluates them with respect to the proposed criteria. Based on
this analysis of the (shortcomings of) existing approaches, section 5 proposes
ambient conversations as a first tentative ambient-oriented exception handling
mechanism.

2 Motivation

As mentioned in the introduction, our goal is to cater for spontaneous inter-
action between different mobile devices. The hardware properties of these mo-
bile devices engender a number of phenomena that need to be dealt with when
writing ambient-oriented software. These phenomena have led us to propose a
novel ambient-oriented programming paradigm tailored toward prescribing such
spontaneous interactions of mobile devices [5]. This section recapitulates the
hardware phenomena that lie at the basis of the ambient-oriented programming
paradigm and illustrates the repercussions of the various hardware phenomena
on an exemplar collaborative editing application.

2.1 Hardware Phenomena

With the current state of commercial technology, mobile devices are often char-
acterised as having scarcer resources (such as lower CPU speed, less memory and

3

limited battery life) than traditional hardware. However, in the last couple of
years, mobile devices and full-fledged computers like laptops are blending more
and more. That is why we do not consider such restrictions as fundamental as
the following phenomena which are inherent to networks of mobile devices:

Connection Volatility. Collaborating devices cannot assume a stable connec-
tion due to the limited communication range of the wireless technology com-
bined with the fact that users can move out of range. Therefore, disconnec-
tion of a device should not necessarily be interpreted as a failure. Often, the
task is expected to resume when the disconnected party returns within a
reasonable amount of time. An alternative might be to continue the inter-
action with a replacement service. These examples merely serve to illustrate
that ambient-oriented software is typically expected to perform its task in
the presence of volatile connections.

Ambient Resources. When developing software for mobile devices, it is im-
portant to realise that, as the device roams, new resources will become dy-
namically (un)available in its ambient. It is therefore unrealistic to encode
knowledge about the availability of a service explicitly (e.g. storing a server
address). Instead a mechanism is needed to dynamically manage the set of
ambient resources.

Autonomy. Mobile devices should be able to act as autonomous computing
devices. First of all, this implies that it should be possible for a device to
collaborate with other devices, without requiring to be connected to infras-
tructure (e.g. a server) to either discover other participants or to coordinate
the interaction. Similarly, the device must be able to recover when one of its
communication partners disconnects, such that the device does not remain
blocked until that communication partner returns.

Natural Concurrency. The autonomy phenomenon clearly stimulates differ-
ent devices to collaborate in an entirely concurrent fashion. Typically these
concurrent devices communicate using asynchronous communication since
waiting for the result of synchronous invocations undermines the autonomy
of the waiting device. When specifying collaborations between different mo-
bile devices, it is necessary to orchestrate the naturally concurrent devices.

In previous work, the implications of these hardware phenomena on the design of
programming languages have been thoroughly analysed [5]. To enhance the con-
struction of applications for networks of mobile devices, the Ambient-Oriented
Programming paradigm was established. Languages adhering to this paradigm
have distribution characteristics which are designed with respect to the hard-
ware phenomena summarised above. First of all, ambient-oriented programming
languages break with the tradition of structuring programs using classes which
are instantiated at run-time into objects. Rather, the these languages are object-
based: code and data are packed together directly in an object, rather than stor-
ing the code separately in a class. When distributing objects across a network,
this has proven to be a more flexible approach and forgoes much of the problems
related to class versioning [23]. Secondly, ambient-oriented programming lan-
guages must safeguard the autonomy of all concurrent processes. That is to say

4

that no process should be blocked when one of its communication partners goes
out of earshot. This property can be achieved when the language’s concurrency
model relies solely on non-blocking communication primitives. Thirdly, ambient-
oriented programming languages facilitate collaborating processes to continue
working to preserve their autonomy. This may yield inconsistencies between the
different processes. To resolve these inconsistencies, processes store an explicit
representation (i.e. a reification) of their communication details. Such reified
communication state allows a process to properly recover from an inconsistency
by reversing (part of) its computation. Finally, ambient-oriented programming
languages need to provide support for distributed naming [6], to dynamically
discover ambient resources without knowing their address beforehand.

This paper provides a similar analysis of the implications of the hardware
phenomena on the design of an exception handling mechanism. Whereas an
ambient-oriented programming language will provide some rudimentary excep-
tion handling support by means of its reified communication traces, an additional
mechanism is clearly needed to be able to handle both functional exceptions
(which are raised explicitly) as well as non-functional ones (e.g. long-lasting dis-
connections). To ground the discussion, the remainder of this section describes
an illustrative example application which highlights the effects of the hardware
phenomena on both the application logic and on how one expects exceptions to
be raised, propagated and handled in the system.

2.2 A Sample Application: Collaborative Editing

When developing ambient-oriented applications, the effect of hardware phenom-
ena described above permeates the entire application. This is illustrated in this
section using a classic distributed application, namely a collaborative editor.
The application consists of participant editors which are distributed over vari-
ous mobile devices. Each participant has its own copy of a document which is
synchronised regularly with the versions of the other editors. To create a col-
laborative editing session, a single editor may publish a document, and specify
which users may join to edit the document. These users will receive an invitation
containing a copy of the document. The way the hardware phenomena influence
the construction of such an editor is discussed next.

Connection Volatility Editors should not be excluded from the collaboration
when they go out of communication range. Despite being disconnected, the
editor may continue making local changes. When reconnecting within a rea-
sonable amount of time, the changes made locally are synchronised and the
editor is once again working on the same document as the other participants.

Ambient Resources In networks of mobile and frequently disconnecting de-
vices, invitations are preferably issued based on high-level information such
as e.g. the user’s name rather than low-level network addresses. This makes
it possible to invite users whose devices are currently not reachable or whose
device’s address is not known (the address of a mobile device may change

5

frequently). The ambient resource management is responsible for sponta-
neously discovering devices based on such high-level information. Once such
a device is found, it can be provided with an initial version of the document.

Autonomy The autonomy of the device implies that it can function, even when
it is no longer connected with any other participant. Concretely, this implies
that the collaboration is not aborted when the device is temporarily discon-
nected. Instead it can continue making local changes and rest assured that
these changes will percolate to the other participants upon reconnecting.

Natural Concurrency Since participants concurrently edit the joint docu-
ment without necessarily being able to synchronise, different versions of
the document may be in circulation. When the different versions are to
be merged during synchronisation, editing conflicts may arise. For instance,
if the collaborative editor is line-based, conflicts arise when one participant
edits a line which the other participant had either edited or deleted. These
application-specific conflicts will be signalled using the exception handling
mechanism.

We consider the collaborative editor presented in this section to be an illustrative
example which epitomises a class of ambient-oriented applications where state
is replicated across different collaborating devices which are entitled to make in-
dependent updates. When these independent updates prove to be incompatible,
an exception is raised. The next section outlines a set of criteria for an exception
handling mechanism which can be applied in an ambient-oriented setting.

3 Ambient-Oriented Exception Handling

This section presents a collection of criteria that need to be exhibited by an
ambient-oriented exception handling mechanism. Whereas some of the criteria
described below can be observed in various distributed exception handling mech-
anisms, no single exception handling mechanism exhibits all of them.

Asynchronous Exception propagation Exception handling mechanisms de-
fine a context in which dynamically raised exceptions are to be handled. For
instance, when an editor detects merge conflicts while it was asked to syn-
chronise, the editor that requested the synchronisation needs to be brought
back into the correct context for handling these conflicts. In an ambient-
oriented setting, such contexts cannot be described using classic try-catch

blocks since the processes making up an ambient-oriented application com-
municate using non-blocking communication primitives. This implies that
the calling process may have left the context of its try block before the excep-
tion was propagated by the invoked process. The most basic criterion for an
ambient-oriented exception handling mechanism is therefore that it provides
an adequate mechanism for ensuring that exceptions raised by a concurrent
process are caught in the correct context.

Concerted Exceptions Exception handling mechanisms typically allow spec-
ifying a single context for exception handling for an entire block of code

6

consisting of several instructions. The combination of non-blocking commu-
nication primitives with block-level handling implies that all processes in-
voked by the block may concurrently raise exceptions. In the collaborative
editor example, this situation may occur during the synchronisation which
basically consists of broadcasting local changes to the other editors. Each
editor may independently raise exceptions, which might have to be handled
jointly. An ambient-oriented exception handling mechanism should there-
fore allow the programmer to examine all concurrently raised exceptions
(e.g. to evaluate whether they are symptoms of a common problem) and to
subsequently propagate a concerted exception [12] which best captures the
particular combination of raised exceptions.

Collaborative Exception Handling Ambient-oriented programs are conceived
as a collaboration of processes which should be able to continue working in
the face of volatile connections. Therefore, the individual processes typically
make optimistic assumptions while performing their tasks. As a consequence,
an exception raised by one process may violate these assumptions and there-
fore requires to be handled by all participating processes. The synchronisa-
tion in the collaborative editor application is an excellent example of this
optimism. When synchronising, each editor will merge in all changes that do
produce local conflicts. The design choice not to wait for confirmation from
all participants, improves the resilience of the application to disconnection,
but also implies that conflict handling is a collaborative activity, not only
involving the editors which signalled a conflict, but also those who already
performed the merge.

Loosely-coupled Exception Handling An ambient-oriented exception han-
dling mechanism should guarantee the autonomy of the processes for which
it handles exceptions. This implies that it may not rely on a centralised
node to coordinate the exception handling. Furthermore, it needs to provide
a mechanism to discover long-lasting disconnection, in order to prevent pro-
cesses from waiting indefinitely for an unreachable communication partner.
Long-lasting disconnection is signalled using an exception, albeit one raised
by the environment rather than by the program.

4 Related Work

A diverse spectrum of approaches exists to handle exceptions in a distributed or
concurrent setting. This section groups these existing approaches according to
the level of granularity at which they operate and evaluates them with respect
to the criteria for ambient-oriented exception handling mechanisms outlined in
the previous section.

4.1 Message-level Handling

A single asynchronous message send is the finest level of granularity at which
a distributed exception handling mechanism can operate. The flavour of an ex-
ception handling mechanism at this level depends largely on the underlying

7

mechanism for communication. The non-blocking communication prescribed by
the ambient-oriented programming paradigm can be achieved using two different
communication mechanisms. Processes may communicate in a non-blocking way
with one another directly using asynchronous messages or indirectly by reading
and writing tuples in a shared distributed tuple space [19].

Asynchronous Messages Exception handling can be aligned with asynchronous
message sending by passing a complaint address along with every message
[10]. When an exception occurs, a predefined message (e.g. handle) is sent
to the object denoted by that address, passing the exception object as a
parameter. When futures are used to represent the results of asynchronous
invocations, these futures need to be integrated into the exception handling
mechanism. An example of such an integration is witnessed in the E lan-
guage which provides a when-catch construct to specify how to handle results
as well as exceptions raised from a particular asynchronous invocation [16].

Tuple Spaces Serugendo and Romanovsky [21] argue that exception propaga-
tion for distributed systems communication using tuple spaces is best han-
dled using an external mechanism to ensure that each exception is correctly
handled, rather than depending on the fact that the appropriate process will
read the exception tuple and handle it. The CAMA system [11] therefore
requires every tuple to be equipped with a reference to a tuple space trap
to which exceptions are signalled. Such tuple space traps can transform the
received exception and choose to propagate it to the “caller”, a dedicated
handler agent or an ensemble of (affected) agents.

Whereas these exception handling mechanisms may provide a fertile basis to
develop an ambient-oriented exception handling mechanism, they lack support
for funnelling concurrently raised to a single concerted exception, since they
consider only one message send and thus one exception at a time.

4.2 Block-level Handling

Various distributed exception handling mechanisms offer a variation of the well-
known try-catch construct, to bind a single exception handler to a sequence of
asynchronous message sends. As we have indicated in section 3, the fact that the
messages are sent asynchronously implies that different exceptions may be raised
concurrently. Different mechanisms exist to reduce these concurrent exceptions
to a single concerted exception :

ProActive aims to hide the induced concurrency and therefore only handles the
first exception to be raised inside the try block [3]. The underlying assumption
is that all asynchronous invocations are closely related (e.g. they depend on
one another’s results) such that the first exception is a good representative
of the underlying error.

SaGE deals with exceptions raised from asynchronous invocations in a multi-
agent system [22]. It requires handlers to provide a concert method that is

8

invoked for every exception raised. Based on the current exception and the
log of previous exceptions it can choose to either log the exception for future
reference or to immediately propagate a concerted exception.

Arche aggregates all concurrently raised exceptions and feeds them to a reso-
lution function that in its turn raises the concerted exception [12, 13]. The
major difference with the SaGE approach is that by blocking until all calls
have returned, the concerted exceptions cannot be raised prematurely, thus
giving the resolution function more complete information.

DOOCE [9] varies on the semantics of the try-catch-finally construct by allowing
all exceptions raised by asynchronous invocations in a particular try block to
be handled by the associated catch blocks. Exceptions that cannot be handled
by these most closely nested catch blocks are aggregated and passed to the
finally block after all asynchronous calls have returned.

Despite their provisions for producing concerted exceptions, these mechanisms
do not qualify as an ambient-oriented exception handling mechanism, since they
require the concerted exception to be handled solely by the sender of the mes-
sages. In other words, the mechanisms discussed above offer no provisions for
collaborative exception handling, as prescribed in section 3. This implies that the
techniques described above are only applicable when the different processes make
no optimistic assumptions. In an ambient-oriented setting however, optimistic
assumptions are often required to cope with the effects of volatile connections.

4.3 Collaboration-level Handling

Finally, some exception handling mechanisms allow structuring an application
in a complex interplay of different processes. In addition to the mechanisms
they provide for structuring such interactions, they also provide mechanisms for
handling exceptions that may be raised concurrently by those processes.

Open Multi-treaded Transactions (OMT transactions) structure a group
of collaborating threads within the boundaries of a transaction [14]. The
threads communicate using shared objects which maintain their own con-
sistency to ensure that exceptions caused by one thread cannot influence
any other thread. This form of communication is opted for to allow each
thread to handle exceptions locally. This design decision implies that OMT
transactions provide no support for collaborative exception handling.

Coordinated Atomic Actions (CA actions) are a well-established technique
for describing a collaboration between different processes. The exception
handling mechanism produces concerted exceptions using an exception graph
[25], and raises this concerted exception in all participating processes. Whereas
a lot of experience exists on how to distributed CA actions [20, 26], the model
proves to be too rigid for our purposes since it requires every participant to
exit the CA action with the same result. This implies that once a participant
disconnects, the entire collaboration must be aborted.

9

The Guardian Model shuns the use of transaction-like mechanisms to struc-
ture applications for exception handling. Instead a process can explicitly ma-
nipulate its own context by pushing symbolic names on the context stack.
Similarly, when raising an exception, the exception needs to be tagged with
a handling context. All processes which are currently in this context will col-
laborate to handle this exception. However, since each process may change
its context independently, the model needs to contact all processes whenever
exceptions are raised. In order to ensure a timely response to exceptions, the
guardian model relies on being able to contact all processes in a bounded
time [17]. This requirement implies that the exception handling mechanism
depends on the presence of all processes, which clearly conflicts with the
loosely-coupled exception handling characteristic.

This section has provided a general overview of the different approaches to han-
dle exceptions that were raised within the context of a collaboration of various
processes : OMT transactions opt for a particular communication scheme that
minimises the effect of a single exception, so that it may always be handled
locally. CA actions on the other hand implement transaction-like guarantees to
ensure that the effect of errors can be adequately handled collaboratively by its
participants. Unfortunately this semantics is hard to reconcile with the charac-
teristics of an ambient-oriented setting. Finally, the guardian model offers col-
laborative handling without imposing the use of a transaction-like structure, yet
it proves to be impracticable precisely because of this lack of imposed structure.

4.4 Conclusion

Our overview of the existing distributed exception handling mechanisms has
failed to identify a single exception handling approach that adheres to all of the
criteria for an ambient-oriented exception handling mechanism. This shortcom-
ing forms the main motivation for our work. On the other hand, the approaches
discussed in this section provide a solid basis on which to base our own ap-
proach. For example, we have opted to employ an E-like mechanism to allow
exceptions to be propagated from one actor to another one. This model was
then extended with a language construct to protect a block of asynchronous
invocations, whose exceptions are fed to an Arche-like resolution function. Fi-
nally, we have constructed a distributed mechanism for structuring collaborating
actors, in a manner that is reminiscent of CA actions.

5 Ambient Conversations

This section describes ambient conversations, a first exception handling mech-
anism for ambient-oriented software. The ambient conversation model consists
of an ensemble of four language constructs which directly correspond to the
four criteria described in section 3. First of all, the when-catch construct allows
asynchronous exception propagation at the granularity of a single asynchronous

10

invocation. Secondly, exceptions raised in a sequence of several asynchronous
invocations may be dealt with using a single exception handler by wrapping
this sequence in a group-resolve construct. This construct allows treating such a
sequence as a single asynchronous invocation, funnelling all concurrently raised
exceptions into a single concerted exception. Thirdly, collaborative exception han-
dling is achieved using the conversation language construct. This construct specifies
a set of participants and will ensure that exceptions raised by a single participant
will be handled by all available participants. Finally, the ambient conversation
model provides for loosely-coupled exception handling through the introduction
of the due construct.

5.1 Ambient-Oriented Programming in AmbientTalk

The ambient conversation model was realised as a reflective extension of the
AmbientTalk language kernel, which was designed as a language laboratory to
uncover new features for ambient-oriented programming languages. An in-depth
description of the language is outside the scope of this paper, and can be found
elsewhere [4]. For the sake of comprehending the exception handling mechanism
explained below it suffices to know that AmbientTalk’s concurrency model is
based on actors [1] which communicate with one another using asynchronous
message passing. Asynchronous messages are processed one by one by an actor’s
thread. This serial treatment of messages precludes actors from suffering from
race conditions. AmbientTalk’s actors are also the unit for distribution. Hence,
an ambient-oriented application in AmbientTalk consists of a suite of actors that
are possibly located on different devices and that send asynchronous messages
to one another. Notice that AmbientTalk does not contain a notion of proxies.
Once two AmbientTalk objects get to know each other through AmbientTalk’s
service discovery mechanism (which is outside the scope of this paper), they can
transparently communicate with each other over a volatile connection. When
connections are temporarily broken, messages sent are accumulated with the
sender and are automatically flushed upon re-establishing that connection. Am-
bientTalk’s asynchronous messages are denoted with the # operator. In what fol-
lows, we use a pseudo-syntax in order to avoid having to explain AmbientTalk’s
technical details. The low-level technical details of the reflective implementation
of the constructs described in this paper can be found in a companion technical
report [18].

By default, AmbientTalk’s asynchronous messages do not return a result
since such results would cause the sender to wait for them and this would be a
source for blocking. Another problem with asynchronous message sends in the
face of return values is how to deal with return values (and exceptions) in the
proper calling context. Indeed, that context typically no longer exists when the
result is returned because the sender of the message immediately proceeds af-
ter having sent the message. An existing solution for these problems is to deal
with asynchronous return values using futures (or promises) [8, 15, 2]. The idea
is that an asynchronous message send immediately returns a future; a place-
holder for the return value which will be replaced by the real return value once

11

it is computed. The future is then said to be resolved with the value. In [4] it
is shown how AmbientTalk’s default behaviour is reflectively extended for asyn-
chronous messages to return such futures. This paper relies on this extension.
Existing proposals for futures differ depending on how they solve the problem
of messages being sent to futures which have not been resolved yet. The most
common semantics employed is to block the sender of these messages until the
future has been resolved. However, this violates the non-blocking and autonomy
characteristics of ambient-oriented programming as explained in section 2.1. The
paradigm dictates non-blocking send and receive operations, whereas waiting for
the resolution of a future is clearly a blocking receive operation. Therefore, Am-
bientTalk adopts the non-blocking futures as proposed in the language E [16].
The idea is to return a new future when sending a message to an unresolved
future. When the latter future is eventually resolved to a value, then the mes-
sage is sent to that value and its result will resolve the new future. This is called
future-pipelining and was independently termed promise-pipelining in E. Future
pipelining allows one to “chain” asynchronous message sends, even though the
intermediate results are not yet computed.

Very often, synchronisation is needed between the sender of an asynchronous
message and the future pipelining. This occurs when the application logic dic-
tates that a certain action is to be undertaken upon resolving a future. Surely,
that action can be put as a method in the value that will resolve the future. How-
ever, this would clutter up the code significatly. Therefore, AmbientTalk and E
feature a when language construct that takes three parameters: a future, a formal
parameter name for the resolved value, and a code block. The idea is that the
code block is registered with the future. Calling the when language construct itself
will not block but return a future in its turn. That future is resolved with the
value resulting from executing the code block that was registered with it. This
is accomplished by binding the formal parameter name to the value to which
the future was resolved. The point is to execute this block when the future that
corresponds to its first argument has been resolved. As such, when allows one to
send an asychronous message resulting in a future (i.e. the first argument) and
to specify what should be done upon getting a result (i.e. the second argument),
without resorting to blocking and without having to manually establish a con-
nection between the time of sending the message and the time of receiving a
result. Notice that several uses of when can register a code block with the future.
All these blocks will be executed upon resolution of the future.

The when construct is exemplified with the following code excerpt which shows
how a future resulting from an asynchronous message send can be used to register
two different when constructs. Executing this code excerpt will immediately dis-
play “first” on the screen. When the future itself is eventually resolved, “second”
and “third” will be displayed along with the computed result.

{ fut = actor # compute();
when(fut) becomes(result) {

display(”second”, result)})
when(fut) becomes(result) {

12

display(”third”, result)}))
display(”first”)

}

5.2 Supporting Asynchronous Exception Propagation

Exceptions in AmbientTalk are represented as objects1 that understand the match

message which takes one argument. The argument is expected to be just another
exception object. The message is used by the exception handling mechanisms
to determine whether a raised exception matches an exception object specified
by handlers as explained below. Programmers can make their own variants of
exceptions as long as these implement that method.

An exception is raised by the raise(e) primitive, where e is expected to be
an exception object. When this happens inside a method body, the method is
said to propagate an exception instead of returning a value. The future that is
‘waiting’ for the result of that method is then said to be ruined by the exception.
The fact that futures can be ruined by exceptions changes the future pipeling
semantics described above. As explained, when a message m is sent to a future
f1, a new future f2 is returned that will be resolved by the result of sending m to
the resolution of f1. However, when f1 is eventually ruined, f2 will be ruined by
the same exception. A similar phenomenon exists in the E language where it is
called broken promise contagion [16].

The future for a method depends only on the value of the last expression in
the method’s body. This implies that the method may return a value, irrespective
of the fact that the futures of some of the asynchronous messages it sent may be
ruined eventually. Section 5.3 presents an exception accumulation mechanism,
which gathers all exceptions prior to resolving the future of a method. Before
doing so, we first turn our attention to the way exceptions are caught along the
future ruining pipeline.

Similar to the when construct described above, AmbientTalk features a when-

catch construct that allows a programmer to react to ruined futures in an appro-
priate way. The when-catch construct requires three constituents: a future, a block
of code to be executed when the future gets resolved with a value, and a block of
code that might be executed when the future gets ruined by an exception. The
construct looks as follows.

when(f) becomes(val) {
when-block

} catch(Exception1) {
catch-block1

} catch(Exception2) {
catch-block2
...

}
1 Apart from actors, AmbientTalk also features ‘normal’ objects that do not have any

concurrency provisions. For the details we refer to [4].

13

The idea is that several when-catch constructs can register themselves with a
future f and that every when-catch construct can list several catch clauses. Every
k’th when-catch registered with a future f denotes a future f’k in its turn. If f

gets resolved with a value, all registered when-blocks will be executed. If f is
ruined by an exception, all registered catch clauses are notified of the exception,
such that they can determine whether one of their branches matches the raised
exception (using the match message described above). When this is the case, the
corresponding branch is executed. Both cases (i.e. executing the when-block or
executing the catch-block) can result in a value being returned or an exception
being raised in its turn. In the former case, the value is used to resolve f’k. In
the latter case, the exception is used to ruin f’k.

5.3 Supporting Concerted Exceptions

By default, the result of a block of code is aligned with the value of the last
expression in that block. Similarly, exceptions propagated from different asyn-
chronous invocations in a block are ignored unless they ruin the future of the
last expression (using the propagation rules explained above). This default se-
mantics is however not always desirable. In the collaborative editor example,
editors regularly broadcast their local changes, to synchronise with the other
participants of the editing session. This synchronisation consists of sending in-
dependent merge messages to all editors participating in the writing session. In
this case, the synchronisation is only to be considered successful if none of these
participants has propagated an exception. It is precisely in such cases that a
mechanism is required to funnel all possible concurrent exceptions and produce
a single concerted exception.

AmbientTalk’s exception handling mechanism provides the group-resolve con-
struct as an alternative mechanism to group the exception handling of multiple
asynchronous invocations. Unlike an ordinary code block, the group clause does
not immediately return the value of its last expression. Instead a future is re-
turned, the value of which will be only determined after all futures created within
the group clause either have been resolved with a return value or ruined by an
exception. When none of the futures was ruined, the result of the group-resolve

construct is equivalent to that of an ordinary code block, namely the value of
the last expression. However, if exceptions were propagated, the resolve clause
will be triggered with an array of concurrently raised exceptions. The resolve

clause may either return a value (if the reported exceptions can be tolerated) or
raise a concerted exception. Using the group-resolve construct, the synchronisation
between different editors can be written as follows:

method synchroniseDocument(document) {
group {

for editorActor in editorActors {
editorActor#merge(document);

}
} resolve(concurrentExceptions) {

14

// compute and raise a concerted exception based on concurrentExceptions
}}

Needless to say, when using a when-catch construct inside a group clause, excep-
tions that have ruined a future but were subsequently handled by that nested
when-catch should not be considered any more by the group-resolve construct.

5.4 Supporting Collaborative Exception Handling

The criteria for an ambient-oriented exception handling mechanism defined in
section 3 stipulate that a mechanism is needed to inform a set of collaborat-
ing actors when one of them has propagated an exception. Such an exception
might invalidate the optimistic assumptions the actors have to make to achieve
a loosely-coupled exception handling mechanism. The synchroniseDocument method
described in the previous section, contains an example of such an optimistic op-
eration in the collaborative editor example. The merge method which is invoked
on all collaborating editors, allows each editor to merge the changes under the
assumption that none of the other participants will have encountered conflicts.
This assumption allows editors to autonomously merge changes without commu-
nicating with the other participants, thereby tolerating the temporary discon-
nection of some of the collaborating editors. However, when one of the editors
does propagate back an exception, all editors need to be notified of this event,
and be able to collaboratively handle the exception.

Our ambient conversation model achieves collaborative exception handling
through the introduction of a conversation abstraction. The conversation’s task
is to provide a mechanism to propagate exceptions to all participants of the
collaboration it embodies. Conversations are represented as actors and are au-
tomatically created by the conversation construct shown below.

conversation(participants) {
// Additional behaviour for the conversation

}

When creating a conversation the actors that will participate in the conversa-
tion are passed along in an array. The conversation actor itself offers a propagate

method which, when passed an exception object, broadcasts this exception to
all participants such that it can be handled collaboratively. The participants
are notified of such broadcasted exceptions by installing when-catch observers on
the conversation actor. A conversation can thus be thought of as a special kind of
future which can be ‘ruined multiple times’. In addition to providing the propa-

gate method, the conversation also has access to the participants, and it can be
provided with additional behaviour that is to be specified in the body of the
conversation construct.

Although a conversation is conceptually thought of a single actor, the loosely-
coupled exception handling criterion clearly prohibits an ambient-oriented excep-
tion handling mechanism to introduce dependencies on a single “leader” device
(i.e. the device hosting the conversation). Such dependencies are avoided by

15

providing each participant of the conversation with its own local replica of that
conversation actor. Each participant is given a reference to its local replica us-
ing the startConversation method. A participant can broadcast an exception to all
other participants in the conversation by invoking the propagate method on its
local replica. Section 6 illustrates how conversations are used in the editor case
in order to broadcast a merge exception to all participating editors.

5.5 Supporting Loosely-coupled Exception Handling

An exception handling mechanism can only be considered to be ambient-oriented,
if it is a loosely-coupled exception handling mechanism. Concretely, the excep-
tion handling mechanism should not impose the use of any structure that may
potentially harm the autonomy of a device, or make it vulnerable to the effects
of volatile connections. As we have already discussed in the previous section, the
conversation is replicated on each device hosting one of its participants precisely
to avoid harming the autonomy of the participants in any way.

Although the group-resolve and when-catch constructs will never make an ac-
tor block, they cannot ensure that their futures will eventually be resolved or
ruined. This may happen when the futures they observe are associated with mes-
sages sent to actors which have become permanently unreachable. As such these
futures will never be resolved or ruined, and no registered when-block would
ever trigger. Hence, support is needed to differentiate between temporary and
long-lasting (presumably permanent) disconnections. When the disconnection
lasts longer than a predefined timeout, the future ought to be ruined with an
exception signalling the disappearance of the lost actor.

In previous work, we have already proposed the due language construct which
solves the above problem by putting an expiration deadline (in milliseconds) on
outgoing messages [4]. In this paper we provide a slightly modified due construct
which employs futures and is integrated with the exception handling mechanism.
The modified due construct consists of a timeout value (relative to the time at
which a message is sent) and a code block which may contain multiple asyn-
chronous message sends. The idea is to let the due denote a future which is to
be resolved by the value of its code block. When these messages have not been
delivered to their destination actor within the prescribed interval, the delivery
of this message is cancelled, and its future is ruined by a TimedOutMessage excep-
tion. In the editor example of the following section, the due construct is used
to exclude editors from the collaborative editing session after they have been
disconnected for too long a period.

due(maxTimeOut) {
when(editorActor#merge(document)) becomes(result) {
// merge performed successfully

} catch (TimedOutMessage) {
// remove editor from the collaborative editing session

}
}

16

6 Implementation of the collaborative editor

This section illustrates how the ambient conversation model presented in the
previous section can be used to realise the collaborative editor described in
section 2.2. Such a collaborative editor can be embodied in the ambient-oriented
programming paradigm as a suite of collaborating editor actors. Each editor
is provided with its own copy of the document which it may edit locally. For
simplicity, we assume the collaborative editor to be line-based with a public
interface consisting of an insert, a delete and a replace method. These methods
allow the editor to make local changes on its copy of the document. At regular
intervals, the editor will synchronise its local document, with the version of its
collaborators.

The synchronisation of one editor with its collaborators is achieved by sending
each editor a merge message with its own document. The merge operation can
encounter two kinds of conflicts while combining the changes in two documents:
either one editor has replaced a line that was deleted by another participant or
both of them have replaced the same line. These conflicts are reported by raising
the DeleteException and EditException exceptions respectively.

In order for editors to collaborate, they need to establish a conversation
listing all participants invited to join the editing process. This is performed by
the publish method listed below, who receives an array of the editor participants
and creates a conversation grouping them.

method publish(editorActors) {
conversation(editorActors) {

method synchroniseDocument(){
group{

for editorActor in editorActors {
editorActor#merge(document);

}
} resolve(concurrentExceptions) {

//manage conflicts received from all the participant
//and construct a concerted merge exception

thisActor#propagate(aMergeException);
}}

}
}

As explained in section 5.4, the conversation actor sends a startConversation

message to each participant passing along a replica of itself. The body of the
conversation defines the protocol for broadcasting their changes to the differ-
ent participant editor actors. Since the merge phase may report overlapping
conflicts, the group-resolve construct is used here to handle and resolve them in a
single concerted conflict. Note that while the synchroniseDocument method is clearly
application-dependent, the propagation of exceptions to the participants will be
triggered by the default propagate method implicitly defined by the conversation
actor.

17

Each editor must also implement the startConversation method with the code
that follows. As mentioned, upon reception of a startConversation message, all the
participants will receive a replicated actor representing the collaborative editing
session. Editors can then register a when-catch block on their local conversation
replica to handle the exceptions raised during the synchronisation phase. If the
synchronisation concludes successfully, the editor checkpoints its document.

method startConversation(conversationActor) {
when(conversationActor) becomes(val) {

//code to update the checkpoint
} catch(DeleteConflict){ // application-dependent code to manage the conflict
} catch(EditConflict){ // application-dependent code to manage the conflict

}}

The due construct can be used in the context of the collaborative editor exam-
ple in order to detect long-lasting disconnection of participants and force them
to leave the conversation. The code below shows how the due contstruct can be
added to the publish method explained above. In the updated version, the due con-
struct is used to stamp the merge messages sent to all the participant editors with
a timeout value of maxTimeOut milliseconds. Each merge message is then wrapped
in a when-catch block to handle the TimedOutMessage exception raised if the message
is not delivered within maxTimeOut milliseconds. If a TimedOutMessage exception is
signalled, the participant to which the timed out message was sent is removed
from the conversation. Note that other exceptions raised by the merge method
will be handled in the resolve block. Thus, handling the TimedOutMessage exception
does not interfere with other raised exceptions in a group-resolve construct.

method publish(editorActors) {
conversation(editorActors) {

synchroniseDocument(document){
group{

for editorActor in editorActors {
due(maxTimeOut){

when(editorActor#merge(document)) becomes (val) { ...
} catch(TimedOutMessage){

// the participant is removed from the conversation
}

}
}

} resolve(concurrentExceptions) {
//manage conflicts received from all the participants
thisActor#propagate(aMergeException);

}}
}
}

The implementation of the collaborative editor application validates the lan-
guage constructs designed for the ambient-oriented exception handling mech-
anism. Furthermore, the implementation also illustrates that it is relatively

18

straightforward to combine the different constructs to build an ambient-oriented
application which is resilient to both deliberately raised exceptions as well as
exceptions raised due to lost participants.

7 Conclusion

This paper has focussed on the integration of exception handling into an ambient-
oriented language called AmbientTalk. Having unravelled the hardware charac-
teristics that fundamentally discriminate mobile networks from their stationary
counterparts, we have identified four criteria for novel ambient-oriented excep-
tion handling mechanisms. We have then proposed the ambient conversation
exception handling model as a suite of exception handling language features in
which each language feature addresses one of the criteria. The essence of the
ambient conversations exception handling model consists of the when-catch lan-
guage construct which correctly propagates and handles exceptions resulting
from an asynchronous message send between several actors that are possibly
located on different devices linked by a volatile connection. Based on this lan-
guage construct, the group-resolve mechanism was proposed to group several such
asynchronous message sends when these occur in a block of code. Their concur-
rently raised exceptions can then be funneled into a single concerted exception.
Third, the conversation exception broadcasting construct was described that al-
lows one to specify that different actors are collaborating and to ensure that
all available participants are involved in the exception handling process. Finally,
the distribution properties of the proposed constructs were evaluated in the face
of non-temporary disconnections. An additional fourth due mechanism was de-
scribed to deal with this. The four constructs were validated by using them in
the design of an ambient-oriented collaborative editor that allows several editors
deployed on autonomous hardware to participate in a shared writing session.
The exception handling constructs were used to make this editor resilient to
distributed merge conflicts without relying on a shared infrastructure.

References

1. Gul Agha. Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. D. Caromel and M. Rebuffel. Object based concurrency: Ten language features to
achieve reuse. In R. Ege, M. Singh, and B. Meyer, editors, Proceedings of TOOLS-
USA’93, Santa Barbara, (CA), USA, pages 205–214. Prentice-Hall, Englewood
Cliffs (NJ), USA, 1993.

3. Denis Caromel and Guillaume Chazarain. Robust exception handling in an
asynchronous environment. In ECOOP Workshop on Exception Handling in
Object-Oriented Systems: Developing Systems that Handle Exceptions, number 05-
050 in Technical Reports - Laboratoire d’Informatique, de Robotique et Micro-
Electronique de Montpellier, 2005.

4. Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Wolfgang De Meuter, and
Theo D’Hondt. Ambient-oriented programming in AmbientTalk. Submitted to

19

the 20th 6th European Conference on Object-Oriented Programming (ECOOP
2006), 2006.

5. Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolfgang
De Meuter. Ambient-Oriented Programming. In OOPSLA ’05: Companion of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. ACM Press, 2005.

6. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan 1985.

7. IST Advisory Group. Ambient intelligence: from vision to reality, September 2003.
8. Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.
9. Shin ichi Tazuneki and Takaichi Yoshida. Concurrent exception handling in a dis-

tributed object-oriented computing environment. In Seventh International Con-
ference on Parallel and Distributed Systems Workshops (ICPADS’00 Workshops),
2000.

10. Yuuji Ichisugi and Akinori Yonezawa. Exception handling and real time features in
an object-oriented concurrent language. In Proceedings of the UK/Japan workshop
on Concurrency : theory, language, and architecture, pages 92–109, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

11. A. Iliasov and A. Romanovsky. Exception handling in coordination-based mobile
environments. In Proceedings of the 29th Annual International Computer Software
and Applications Conference (COMPSAC 2005), pages 341–350. IEEE Computer
Society Press, 2005.

12. Valérie Issarny. An exception handling mechanism for parallel object-oriented
programming: toward reusable, robust distributed software. Journal of Object-
Oriented Programming, 6(6):29–40, 1993.

13. Valérie Issarny. Concurrent exception handling. In Advances in Exception Handling
Techniques (Lecture Notes in Computer Science), volume 2022, pages 111–127.
Springer-Verlag, 2000.

14. Jörg Kienzle, Alfred Ströhmeier, and Alexander Romanovsky. Open multithreaded
transactions: Keeping threads and exceptions under control. In Sixth International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’01), page
pp. 197, 2001.

15. B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation, pages 260–267.
ACM Press, 1988.

16. M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Program-
ming in E as plan coordination. In R. De Nicola and D. Sangiorgi, editors, Sym-
posium on Trustworthy Global Computing, volume 3705 of LNCS, pages 195–229.
Springer, April 2005.

17. Robert Miller and Anand Tripathi. The guardian model and primitives for excep-
tion handling in distributed systems. IEEE Trans. Software Eng., 30(12):1008–
1022, 2004.

18. Stijn Mostinckx, Jessie Dedecker, Elisa Gonzalez Boix, Tom Van Cutsem, and Wolf-
gang De Meuter. Ambient-oriented exception handling in ambienttalk. Technical
report, Vrije Universiteit Brussel, 2006.

19. A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In Proceedings of the The 21st International Conference on Dis-
tributed Computing Systems, pages 524–536. IEEE Computer Society, 2001.

20

20. A. Romanovsky and A. F. Zorzo. On distribution of coordinated atomic actions.
SIGOPS Oper. Syst. Rev., 31(4):63–71, 1997.

21. Giovanna Di Marzo Serugendo and Alexander Romanovsky. Using exception han-
dling for fault-tolerance in mobile coordination-based environments. In ECOOP
Workshop on Exception Handling in Object Oriented Systems: towards Emerging
Application Areas and New Programming Paradigms, 2003.

22. F. Souchon, C. Dony, C. Urtado, and S. Vauttier. Improving exception handling
in multi-agent systems. In Advances in Software Engineering for Multi-Agent Sys-
tems. Springer-Verlag, 2003.

23. Robert Tolksdorf and Kai Knubben. Programming Distributed Systems with the
Delegation-based Object-oriented Language dSelf. In Proceedings of the 2002 ACM
Symposium on Applied Computing, pages 927–931. ACM Press, 2002.

24. M. Weiser. The computer for the twenty-first century. Scientific American, pages
94–100, september 1991.

25. Jie Xu, Alexander B. Romanovsky, and Brian Randell. Coordinated exception
handling in distributed object systems: From model to system implementation. In
International Conference on Distributed Computing Systems, pages 12–21, 1998.

26. A. F. Zorzo and R. J. Stroud. A distributed object-oriented framework for de-
pendable multiparty interactions. In OOPSLA ’99: Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 435–446, New York, NY, USA, 1999. ACM Press.

