
A Survey of Automated Code-Level
Aspect Mining Techniques

Andy Kellens1?, Kim Mens2, and Paolo Tonella3

1 Programming Technology Lab, Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels, Belgium

akellens@vub.ac.be
2 Département d’Ingénierie Informatique

Université catholique de Louvain
Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium

kim.mens@uclouvain.be
3 ITC-irst, Centro per la Ricerca Scientifica e Tecnologica

Via Sommarive 18, 38050 Trento, Italy
tonella@itc.it

Abstract. This paper offers a first, in-breadth survey and comparison
of current aspect mining tools and techniques. It focuses mainly on au-
tomated techniques that mine a program’s static or dynamic structure
for candidate aspects. We present an initial comparative framework for
distinguishing aspect mining techniques, and assess known techniques
against this framework. The results of this assessment may serve as a
roadmap to potential users of aspect mining techniques, to help them
in selecting an appropriate technique. It also helps aspect mining re-
searchers to identify remaining open research questions, possible avenues
for future research, and interesting combinations of existing techniques.

1 Introduction

Aspect-oriented software development (AOSD) tries to solve the problem
of separating the core functionality of a software system from concerns
that have a more system-wide behaviour and that cut across the primary
decomposition of the software system. This problem is sometimes referred
to as the “tyranny of the dominant decomposition” [1]. To overcome this
prevalent decomposition [2], the AOSD paradigm provides new language
constructs, like advices and pointcuts [3], which allow cross-cutting con-
cerns to be written down in a new kind of module named aspect.

Almost ten years after its initial conception, this technology has left the
research lab and is starting to be adopted by industry, which poses new
interesting research problems. Just like the industrial adoption of the
object-oriented paradigm in the early nineties led to a need for migrat-
ing legacy software systems to an object-oriented solution — triggering

? Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).



a boost of research on software reverse engineering, reengineering, re-
structuring and refactoring — the same is currently happening to the
aspect-oriented paradigm.
The reasons for wanting to migrate a legacy system to an aspect-oriented
solution are multiple. Due to the presence of crosscutting concerns, legacy
systems tend to contain many symptoms of duplicated code, scattering
of concerns throughout the entire system and tangling of concern-specific
code with that of other concerns. Using aspect-oriented technology, these
cross-cutting concerns can be cleanly separated from the base code, which
becomes oblivious of them. This is supposed to make the system easier
to understand, maintain and evolve.
However, manually applying aspect-oriented techniques to a legacy sys-
tem is a difficult and error-prone process. Due to the large size of such
systems, the complexity of the implementation, the lack of documen-
tation and knowledge about the system, there is a need for tools and
techniques that can help software engineers in locating or document-
ing the cross-cutting concerns in legacy systems or for more automated
tools to discover such concerns, as well as for tools and methodologies to
refactor the discovered cross-cutting concerns into aspects.
The study and development of such approaches is the objective of the
emerging research domains of aspect mining and aspect refactoring. Whe-
reas aspect mining is the activity of discovering cross-cutting concerns
that potentially could be turned into aspects, refactoring to aspects is the
activity of actually transforming these potential aspects into real aspects
in the software system. (See Figure 1.)

LEGACY system LEGACY system BASE system

Aspect Aspect Aspect

Aspect
Mining

Refactoring
to Aspects

Fig. 1. Migrating a legacy system to an aspect-oriented system

This paper focusses on the activity of aspect mining and conducts a sur-
vey of existing code-level techniques, tools and methodologies that have
been designed to aid a software engineer in discovering aspect candidates
in a legacy system. A multitude of such techniques have recently been
proposed, making it hard for potential users to decide which technique
is most appropriate for their needs. This survey may serve as a roadmap
to them by providing a taxonomy and comparison of currently exist-
ing aspect mining techniques, as well as some of their limitations and
underlying assumptions.
The survey is also expected to be useful to the aspect mining research
community. Although still in its infancy, this research area has recently
seen a proliferation of approaches and techniques, inspired by several
different research domains. Future research efforts will necessarily be
devoted to comparing and combining the alternative approaches. This
survey can be seen as a first step in that direction. It provides guidance in



determining groups of similar techniques and highlighting their different
underlying preconditions and properties.
To the authors’ knowledge, this paper is the first published survey of
existing aspect mining techniques. Its main contributions to the state of
the art are:

– the definition of a set of criteria of comparison;
– the derivation of a taxonomy for the classification of techniques;
– the discussion of the properties of the existing techniques, according

to the classification framework;
– the identification of future research directions in the area.

The paper is organized as follows: Section 2 defines aspect mining and
positions it with respect to other aspect discovery approaches. Section 3
gives an overview of existing aspect mining techniques. The classifica-
tion criteria are introduced in Section 4 and applied to the surveyed
techniques in Section 5. The outcome of the classification is discussed
in Section 6. Before concluding the paper in Section 8, a description of
related research areas is given in Section 7.

2 Aspect Discovery

As mentioned above, the process of migrating a legacy system into a
system using aspects consists of two steps: the discovery of aspect can-
didates and the refactoring of (some of) these candidates into aspects.
In this survey we investigate techniques and tools that aid a developer
in discovering possible aspects. This is not a trivial task, due to the size
and complexity of current-day software systems and the lack of explicit
documentation on the cross-cutting concerns present in those systems.
Three major kinds of aspect discovery approaches can be distinguished :

Early aspect discovery techniques. Traditionally, AOSD has focus-
sed mostly on the software life-cycle’s implementation phase. Re-
search on ‘early aspects’ tries to discover aspects in earlier phases of
the software life-cycle [4], such as requirements and domain analy-
sis [5–7] or architecture design [8]. Identifying and managing early
aspects not only helps to improve modularity in requirements and
architectural design, but many early aspects eventually find their
way into the code as implementation aspects.
In the context of legacy systems, where requirements and architec-
ture documents are often outdated, obsolete or no longer available,
early aspect discovery techniques cannot be applied and approaches
that focus on source code are thus potentially more promising.

Dedicated browsers. A second class of approaches are the advanced
special-purpose code browsers that aid a developer in manually navi-
gating the source code of a system to explore cross-cutting concerns.
Although the primary goal of these approaches is not to explicitly
mine for aspects, but rather to document and localise cross-cutting
concerns in order to maintain and evolve a system, these dedicated
browsers can be used to identify aspects in a system as well.
Typically, a user of such a browsing approach starts out with a ‘seed’
of a concern, a starting point in the code, and uses the browser to



further explore this concern. To do so the browser may propose other
hotspots in the code which are related to the concern or provide
the user with a query language to manually traverse the concern.
Examples of such approaches are Concern Graphs [9], Intensional
Views [10], Aspect Browser [11], (Extended) Aspect Mining Tool [2,
12] and Prism [13].

Aspect mining techniques automate the process of aspect discovery
and propose their user one or more aspect candidates. To this end,
they reason about the source code of the system or about data that
is acquired by executing or manipulating the code. All techniques
seem to have at least in common that they search for symptoms
of cross-cutting concerns, using either techniques from data mining
and data analysis like formal concept analysis and cluster analysis,
or more classic code analysis techniques like program slicing, soft-
ware metrics and heuristics, clone detection and pattern matching
techniques, dynamic analysis, and so on.

In this survey we focus only on this third category of automated code-
level tools and techniques that assist a developer in the activity of mining
for cross-cutting concerns in an existing system. We define aspect mining
as follows:

Aspect mining is the activity of discovering those cross-cutting con-
cerns that potentially could be turned into aspects, from the source
code and/or run-time behaviour of a software system. We refer to
such concerns as ‘aspect candidates’.

3 Overview of Aspect Mining Techniques

This section offers a detailed overview of the different automated code-
level aspect mining approaches that have been proposed over the last
few years.

3.1 Analysing recurring patterns of execution traces

Breu and Krinke propose an aspect mining technique named DynAMiT
(Dynamic Aspect Mining Tool) [14], which analyses program traces re-
flecting the run-time behaviour of a system in search of recurring execu-
tion patterns. To do so, they introduce the notion of execution relations
between method invocations. Consider the following example of an event
trace, where the capitals represent method names:

B() {

C() {

G() {}

H() {}

}

}

A() {}



Breu and Krinke distinguish between four different execution relations:
outside-before (e.g., B is called before A), outside-after (e.g. A is called
after B), inside-first (e.g., G is the first call in C) and inside-last (e.g., H
is the last call in C). Using these execution relations, their mining algo-
rithm discovers aspect candidates based on recurring patterns of method
invocations. If an execution relation occurs more than once, and recurs
uniformly (for instance, every invocation of method B is followed by an
invocation of method A), it is considered to be an aspect candidate. To
ensure that the aspect candidates are sufficiently cross-cutting, there is
an extra requirement that the recurring relations should appear in dif-
ferent ‘calling contexts’. Although this approach is inherently dynamic,
the authors have repeated the experiment using control-flow-graphs [15]
to calculate the call relations statically. Breu also reports on a hybrid ap-
proach [16] where the dynamic information is complemented with static
type information in order to remove ambiguities and improve on the
results of the technique.

3.2 Formal concept analysis

Formal concept analysis (FCA) [17] is a branch of lattice theory which,
given a set of objects and attributes describing those objects, creates
concepts, i.e., maximal groups of objects that have common attributes.
These concepts are organised into a lattice, according to the partial order
associated with attribute (or equivalently object) set inclusion.

Formal concept analysis of execution traces Tonella and Cec-
cato [18] developed Dynamo, an aspect mining tool which applies FCA to
execution traces in order to discover possible aspects. When analysing
a system using Dynamo, an instrumented version of the system is ex-
ecuted on a number of use cases, manually derived from the software
documentation and/or from a high level description of the main func-
tionalities. The output of this execution is a number of execution traces.
These traces are then analysed using FCA: the use cases are the objects
of the FCA algorithm, while the methods which get invoked during the
execution of a use case are the attributes. In the resulting lattice, all
concepts are selected which contain traces from exactly one use-case.
These are regarded as aspect candidates if the following (automatically
verified) conditions hold:

– Scattering: The specific attributes (methods) of the concept belong
to more than one class.

– Tangling: Different methods from the same class are specific to more
than one use-case specific concept.

Formal concept analysis of identifiers Tourwé and Mens [19]
propose an alternative aspect mining technique which relies on FCA.
Unlike the Dynamo tool discussed above, Tourwé and Mens’s DelfSTof
tool analyses the source code of a system (experiments have been con-
ducted on Smalltalk code [19] and on Java code [20]). Their approach



performs an identifier analysis using the FCA algorithm. The assumption
behind this approach is that interesting concerns in the source code are
reflected by the use of naming conventions in the classes and methods of
the system. As input to the FCA algorithm, the classes and methods in
the system are used as objects. As attributes, the FCA algorithm uses
substrings generated from the classes and methods’ names. For instance,
a class named QuotedCodeConstant is split into the strings ‘Quoted’,
‘Code’ and ‘Constant’. Substrings with little meaning, like ‘a’, ‘with’,
. . . are discarded from the results. The resulting concepts consist out
of maximal groups of classes and methods which share a maximal num-
ber of substrings. After having filtered out many unimportant concepts
automatically, a significant number of concepts remain which need to
be inspected manually. Apart from being able to detect a number of
programming idioms, design patterns and certain refactoring opportuni-
ties [21], the same approach can be used for aspect mining purposes [19]
by restricting the concepts to those that are crosscutting (i.e. the involved
methods and classes belong to at least two different class hierarchies).

3.3 Natural language processing on source code

Similar to the previous approach, Shepherd et al. [22] propose a technique
that is based on the assumption that cross-cutting concerns are often im-
plemented by the rigorous use of naming and coding conventions. Their
approach uses natural language processing (NLP) information as an in-
dicator for possible aspect candidates. They report on an experiment in
which they use an NLP technique called lexical chaining [23] in order to
find groups of related source-code entities which represent a cross-cutting
concern. Lexical chaining will output, given a collection of words as in-
put, chains of words which are semantically strongly related. In order to
create the chains, the algorithm requires a semantical distance measure
between each combination of words. To this end, Shepherd et al. used
the WordNet [24] database, in combination with information about the
parts of speech of each word, to calculate the semantical path between
two words. In order to mine for cross-cutting concerns, they apply the
chaining algorithm to the comments, method names, field names and
class names of the system they are analysing. A user of their approach
needs to manually inspect the resulting chains in order to select likely
aspect candidates.

3.4 Detecting unique methods

Gybels and Kellens [25, 26] propose the use of heuristics to mine for cross-
cutting concerns. They observe that, in pre-AOP days, cross-cutting con-
cerns were often implemented in an idiomatic way. Certain of these id-
ioms can be regarded as “symptoms” of aspect candidates. An example
of such an idiom is the implementation of a cross-cutting concern by
means of a single entity in the system which is called from numerous
places in the code (for instance, a ‘logging’ entity which is called from
throughout the code). To detect instances of this pattern, Gybels and
Kellens propose the “Unique Methods” heuristic which is defined as:



“A method without a return value which implements a message
implemented by no other method.”

After calculating all unique methods in a system, sorting them according
to the number of times a method is called, and filtering out irrelevant
methods (like for instance accessor and mutator methods), the user has
to manually inspect the resulting methods in order to find suitable aspect
candidates. Regardless of the simplicity of this approach, the authors
demonstrated the applicability of their technique by detecting typical
aspects like tracing, update notification and memory management in the
context of a Smalltalk image.

3.5 Clustering of related methods

Hierarchical clustering of similar method names Shepherd
and Pollock [27] report on an experiment in which they used agglomera-
tive hierarchical clustering [28] to group related methods. This technique
starts by putting each method in a separate cluster and then recursively
merges clusters for which the distance between the methods is smaller
than a certain threshold. They implemented this technique as part of an
aspect-oriented IDE named AMAV (Aspect Miner and Viewer), which
allows for easy adaptation of the distance measure used by the algorithm.
For an initial experiment they used a simple distance measure opposite
proportional to the common substring length of the names of the meth-
ods. This mining algorithm is used in combination with the viewing tool
of the IDE which not only lists all the clusters which were found, but also
consists out of a cross-cutting pane which displays the methods related
to a cluster as well as an editor pane, in which the class context of a
particular method is displayed.

Clustering based on method invocations He and Bai [29] pro-
pose another aspect mining technique based on cluster analysis. They
start from the assumption that if the same methods are called frequently
from within different modules, this may be a good indication that a hid-
den cross-cutting concern is present. As input for the clustering algo-
rithm, a set of methods is given along with a distance measure based on
the Static Direct Invocation Relationship (SDIR) between the methods.
This distance measure varies between 0 and 1 and represents the dissim-
ilarity of the methods. Methods which are closely related (i.e. which get
called frequently together) will have distance approximating 0, while the
distance between methods which are never or seldom called together will
be close to 1.

3.6 Fan-in analysis

Marin et al. [30] noticed that many of the well-known cross-cutting con-
cerns exhibit a high fan-in. They propose using a fan-in metric in order
to discover cross-cutting concerns in source code. They define the fan-in
of a method m as the number of distinct method bodies which can in-
voke m. Because of polymorphism, a call to a method m contributes to



the fan-in of all methods refining m, as well as method m itself. Their
mining algorithm comprises out of the following steps:

– Calculating the fan-in metric for all methods in the system.

– Filtering the results: next to filtering accessor and mutator methods,
as well as utility methods like for instance toString(), the number of
considered methods is also limited by only considering the methods
with a fan-in value higher than a certain threshold.

– Manually analysing the remaining methods.

The authors present an experiment in which cross-cutting concerns were
mined with a high precision: one third of all methods with high fan-in
were seeds leading to an aspect. Moreover, 60% of the remaining two
thirds were removed automatically.

3.7 Clone detection

The symptom of ‘code duplication’ may be a good indicator of cross-
cutting concerns in the source code of a system: because the cross-cutting
concerns could not be cleanly modularised, certain parts of the imple-
mentation show high levels of duplicated code. Two techniques rely on
this observation to mine for aspect candidates.

Detecting aspects using PDG-based clone detection A first
technique, presented by Shepherd et al. [31] and implemented as a tool
they call Ophir, makes use of program dependence graphs (PDG) to de-
tect possible aspects. In a PDG, each statement in the code is represented
by a node; the edges of the graph consist of control or data dependence
relations between the statements. By comparing PDGs [32, 33], this tech-
nique is able to recognise code duplication in the beginning of a method
(i.e. aspect candidates for a ‘before’ advice). After filtering and coalescing
the resulting PDGs, a number of possible aspect candidates remain.

Using AST- and token-based clone detection Bruntink et al.
also make use of clone detection techniques to mine for aspects. In [34,
35], they compare token-based [36] clone detection, which is based on a
lexical analysis of the source code, with AST-based [37] clone detection,
which takes the parse tree of the source code into account. Both tech-
niques output a number of clone classes, i.e. groups of code fragments
which are considered to be clones of each other. They applied the clone
detection techniques to a large C program in which the different cross-
cutting concerns were annotated by a developer. In order to measure
the effectiveness of the techniques, Bruntink et al. empirically compare
the resulting clone classes with the manual documentation of the cross-
cutting concerns. Bruntink reports on a refinement of this work [38], in
which a number of metrics for the clone classes are described which can
be used to filter the results of the clone detection techniques.



4 Criteria of Comparison

We now present a set of criteria that will allow us, in Section 5, to com-
pare the aspect mining techniques listed in Section 3. We compiled this
set by focussing on the variabilities of the different techniques. As such
we intended to obtain a taxonomy that supports potential users of as-
pect mining techniques to select an adequate technique, and that helps
aspect mining researchers to understand the differences between their
own and existing techniques. The taxonomy contrasts the different re-
strictions each technique imposes on the input data, the kinds of analysis
which are used, the degree of automation and the scalability of each tech-
nique. These criteria form an initial comparative framework that may
still evolve, following new developments in the field of aspect mining.
Static versus dynamic data What kind of data does the technique

analyse? Does it analyse input data which can be obtained by stat-
ically analysing the code, or dynamic information which is obtained
by executing the program, or both?

Token-based versus structural/behavioural analysis Which kind
of analysis does the technique perform? We distinguish between:
Token-based Lightweight lexical analysis of the program: sequences

of characters, regular expressions, etc.
Structural/Behavioural Structural and behavioural analysis of

the program: parse trees, type information, message sends, etc.
Granularity What is the level of granularity of the mined aspect candi-

dates? While some techniques discover aspects at the level of meth-
ods, others work more fine-grained by considering individual state-
ments or code fragments as part of the aspect candidates.

Tangling and Scattering What symptoms of aspects does the aspect
mining technique look for? Does it explicitly look for symptoms
of scattering, tangling, or both? Cross-cutting concerns are char-
acterised by high tangling and scattering.

User involvement What kind of user involvement is required in order
to mine for aspects? What effort does the technique require from its
user? Does the user have to manually browse through all results of
the technique in order to indicate viable aspect candidates? Is there
additional input required from the user during the mining process?

Largest system On what size of system has the technique been ap-
plied? Even though a technique might behave well and exhibit in-
teresting properties when applied to small examples, this does not
imply that the same holds when the technique is tried on larger
software systems. Problems may arise from the computational com-
plexity, the need for user involvement, degradation of accuracy with
size, etc. Thus, validation on large software systems may be used as
an indicator of scalability.

Empirical Validation To what degree have existing techniques been
validated quantitatively on real-life cases? For the validations done,
has it been reported how many of the known aspects were found and
how many of those reported were false positives?

Preconditions What (explicit or implicit) conditions must be satisfied
by the concerns in the program under investigation in order for a
particular mining technique to find suitable aspect candidates?



5 Assessment

Based on the criteria introduced in Section 4, we compare the different
aspect mining techniques summarised in Section 3. To gain space, we
abbreviate the names of the techniques used , as shown in Table 1.

Abbreviated name Short description of the technique Section

Execution patterns Analysing recurring patterns of execution traces 3.1
Dynamic analysis Formal concept analysis of execution traces 3.2
Identifier analysis Formal concept analysis of identifiers 3.2
Language clues Natural language processing on source code 3.3
Unique methods Detecting unique methods 3.4
Method clustering Hierarchical clustering of similar method names 3.5
Call clustering Clustering based on method invocations 3.5
Fan-in analysis Fan-in analysis 3.6
Clone Detection Detecting aspects using PDG-based 3.7
(PDG-based) clone detection
Clone Detection Detecting aspects using AST-based and 3.7
(AST/token-based) token-based clone detection

Table 1. List of techniques that were compared

For each of the studied techniques, Table 2 shows the kind of data (static
or dynamic) analysed by that technique, as well as the kind of analysis
performed (token-based or structural/behavioural).

Kind of input data Kind of analysis
static dynamic token-based structural/behavioural

Execution patterns X X - X
Dynamic analysis - X - X
Identifier analysis X - X -
Language clues X - X -
Unique methods X - - X

Method clustering X - X -
Call clustering X - - X
Fan-in analysis X - - X

Clone detection (PDG) X - - X
Clone detection (token) X - X -
Clone detection (AST) X - - X

Table 2. Kind of input data and kind of analysis of each technique

Most techniques work on statically available data. ‘Dynamic analysis’
reasons about execution traces and thus requires executability of the
code under analysis. Only ‘Execution patterns’ works with both kinds
of input, since both a static version which uses control-flow graphs, and
a dynamic version which uses execution traces, exist. As for the kind
of reasoning, four techniques perform a token-based analysis of the in-
put data. ‘Identifier Analysis’ and ‘Method Clustering’ reason about the
names of the methods in a system only. The ‘Language Clues’ approach
is token-based because it reasons about individual words which appear
in the program’s source code. The four token-based techniques all rely on
the assumption that cross-cutting concerns are often implemented by the
rigorous use of naming conventions. The seven other techniques reason
about the input at a structural or behavioural level.



Granularity Symptoms
method code fragment scattering tangling

Execution patterns X - X -
Dynamic analysis X - X X
Identifier analysis X - X -
Language clues X - X -
Unique methods X - X -

Method clustering X - X -
Call clustering X - X -
Fan-in analysis X - X -
Clone detection - X X -

Table 3. Granularity of and symptoms looked for by each technique

Table 3 summarises the finest level of granularity (methods or code frag-
ments) of the different techniques, and whether they look for symptoms
of scattering and/or tangling. With a few exceptions, the typical gran-
ularity of the techniques surveyed is at method level. Therefore, most
techniques output several sets of methods, each representing a potential
aspect seed. Only the three ‘Clone detection’ techniques detect aspect
code at the level of code fragments and can therefore provide more fine-
grained feedback on the code that needs to be put into the advice of the
refactored aspect. All techniques use scattering as the basic indicator of
the presence of a cross-cutting concern. Only ‘Dynamic analysis’ takes
both scattering and tangling into account, by requiring that the methods
which occur in a single use-case scenario are implemented in multiple
classes (scattering), but also that these methods occur in multiple use-
cases and thus are tangled with other concerns of the system.

Technique Largest case Size case Empirically
validated

Execution patterns Graffiti 3100 methods/82KLOC -
Dynamic analysis JHotDraw 2800 methods/18KLOC -
Identifier analysis JHotDraw 2800 methods/18KLOC -
Language clues PetStore 10KLOC -
Unique methods Smalltalk image 3400 classes/66000 methods -

Method clustering JHotDraw 2800 methods/18KLOC -
Call clustering Banking example 12 methods -
Fan-in analysis JHotDraw 2800 methods/18KLOC -

TomCat 5.5 API 172KLOC -
Clone detection (PDG) TomCat 38KLOC -

Clone detection (AST/token) ASML C-Code 20KLOC X

Table 4. An assessment of the validation of each technique

To provide more insights into the validation of the techniques, Table 4
mentions the largest case on which each technique has been validated,
together with the size of that case, and whether the results have been
evaluated quantitatively (for example, how many known aspects were
actually reported, how many false positives and negatives were reported,
and so on). While the size of the largest analysed system is significant for
most of the studied techniques (only ‘Call Clustering’ was applied to a
toy example only), empirical validation of the results was almost always



neglected. It is also worth noting that 4 out of 9 techniques have been
validated on the same case: JHotDraw.

One important criterion to help selecting an appropriate technique to
mine a given system for aspects is what implicit or explicit assumptions
that technique makes about how the crosscutting concerns are imple-
mented. Table 5 summarises these assumptions in terms of preconditions
that a system has to satisfy in order to find suitable aspect candidates
with a given technique.

Technique Preconditions on crosscutting concerns in the analysed program
Execution patterns Order of calls in context of crosscutting concern is always the same.
Dynamic analysis At least one use case exists that exposes the crosscutting concern

and another one that does not.
Identifier analysis Names of methods implementing the concern are alike.
Language clues Context of concern contains keywords which are synonyms for the

crosscutting concern.
Unique methods Concern is implemented by exactly one method.

Method clustering Names of methods implementing the concern are alike.
Call clustering Concern is implemented by calls to same methods from different

modules.
Fan-in analysis Concern is implemented in separate method which is called a high

number of times, or many methods implementing the concern call
the same method.

Clone detection Concern is implemented by reusing a certain code fragment.

Table 5. What conditions does the implementation of the concerns have to satisfy in
order for a technique to find viable aspect candidates?

‘Identifier Analysis’, ‘Method Clustering’, ‘Language Clues’ and ‘Token-
based clone detection’ all rely on the assumption that developers rig-
orously made use of naming conventions when implementing the cross-
cutting concerns. ‘Execution Patterns’ and ‘Call Clustering’ assume that
methods which often get called together from within different contexts
are candidate aspects. The fan-in technique assumes that crosscutting
concerns are implemented by methods which are called many times (large
footprint), or by methods calling such methods.

Technique User Involvement
Execution patterns Inspection of the resulting “recurring patterns”.
Dynamic analysis Selection of use cases and manual interpretation of results.
Identifier analysis Browsing of mined aspects using IDE integration.
Language clues Manual interpretation of resulting lexical chains.
Unique methods Inspection of the unique methods; eased by sorting on importance.

Method clustering Browsing of mined aspects using IDE integration.
Call clustering Manual inspection of resulting clusters.
Fan-in analysis Selection of candidates from list of methods, sorted on highest fan-in.
Clone detection Browsing and manual interpretation of the discovered clones.

Table 6. Which kind of user involvement do the different techniques require?

Table 6 summarises the kind of involvement that is required from the
user. None of the existing techniques works fully automatic. All tech-
niques require that their users browse through the resulting aspect can-
didates in order to find suitable aspects. Some require that the users



supply appropriate input, like for instance the ‘Dynamic Analysis’ tech-
nique which expects as input also a number of use-cases.

We combined all these tables into a single taxonomy, depicted in Fig-
ure 2, that could serve as an initial roadmap to aspect miners and re-
searchers. Each of the nine considered techniques is represented by a
small rectangle. The four larger rectangles distinguish ‘static’ from ‘dy-
namic’ techniques, and ‘method-level’ techniques from techniques that
report ‘method fragments’ as seeds. The two rounded rectangles on the
left partition the considered techniques into ‘token-based’ techniques and
“structural/behavioral’ ones.

Dynamic

Static
Dynamic
Analysis

Execution
Patterns

Unique
Methods

Fan-in
Analysis

Call
Clustering

Method
Clustering

Identifier
Analysis

Language
Clues

Clustering

Concept
Analysis

Clone
Detection

AST-based
Clone Detection

Token-based
Clone Detection

PDG-based
Clone Detection

m
et
ho
d

fra
gm

en
ts

Token-
Based

Structural /
Behavioral

m
et
ho
d-
le
ve
l

Fig. 2. An initial taxonomy of Automated Code-Level Aspect Mining Techniques

The largest rectangles, separating static from dynamic techniques, rep-
resent an extremely relevant criterion for practitioners and researchers,
since it entails different requirements on the input (source code vs. exe-
cutable system) and different interpretations of the output (conservative
vs. partial results). This is discussed more thoroughly in the next section.

It is interesting to observe that all known dynamic techniques are structu-
ral/behavioral and work at method-level, whereas the static techniques
can be divided into ‘method-level’ and ‘method-fragments’, as well as
based on the kind of information used (i.e., ‘token-based’ vs. ‘struc-
tural/behavioural’). This is relevant information for tool developers or
practitioners, who might have knowledge about the best aspect indica-
tors to use (lexical oriented or structure/behaviour based) or who may
have certain demands about the granularity of the results.



Each technique listed in Figure 2 is uniquely classified by each of the
three criteria described above (except ‘Execution patterns’, which relies
on both static and dynamic analysis). The ellipses on the right show some
additional taxonomic properties that group some (but not all) of the
techniques. More specifically, they specify the basic algorithm underlying
the technique: ‘Concept analysis’, ‘Clustering’ or ‘Clone detection’.

6 Discussion

In this section we discuss some of the lessons we have learned from our
comparison of automated code-level aspect mining techniques.
Static versus dynamic data. By relying on static information only,
most techniques impose little requirements on the program under anal-
ysis. Often, the static information required by these techniques can be
computed even for software systems that do not form a complete exe-
cutable or, in some cases, for code that does not even compile or parse.
Dynamic techniques impose heavier constraints by requiring both com-
pilation and execution, as well as an appropriate execution environment.
For a user of aspect mining techniques, this can have a significant impact
on the choice of the used technique.
The only technique which applies both static and dynamic information is
‘Execution patterns’ [16]. While for this technique the static information
is used to perform a more fine-grained analysis than with its purely
dynamic variant, for the other techniques we discussed, a combination
of static and dynamic analysis does not immediately seem to provide
any obvious advantages. Future aspect mining techniques however may
combine static information with dynamic analysis. A common problem
with dynamic analysis is that, for large systems, the data provided by
tracing the execution of the system might be huge. One possible way to
limit this enormous amount of data could be to use static information
to restrict the number of places in the code which will be instrumented,
thus resulting in smaller traces.
Granularity. Most techniques retrieve aspect candidates as sets of meth-
ods that pertain to a crosscutting concern. This kind of granularity works
reasonably well if the entire method implements the cross-cutting be-
haviour, and thus the places in the code where this method gets called
can be considered as the joinpoints where the refactored aspect needs to
intervene. However, for concerns like e.g. parameter checking, the cross-
cutting behaviour is not localised into a single method-call, but is instead
implemented by a ‘pattern’ in the code, which is spread throughout mul-
tiple statements. In such cases, the user has to provide additional effort
in analysing the results of the aspect mining technique in order to high-
light the code fragments that are part of the cross-cutting concerns, or
use a technique which works at the granularity of method statements.
Tangling and Scattering. Both tangling and scattering have been pre-
sented as indicators of cross-cutting concerns. While all techniques take
scattering into account, and try to approximate it by for instance re-
quiring calls to cross-cutting behaviour to originate from different class
hierarchies, none of the techniques, with the exception of ‘Dynamic anal-
ysis’, look for symptoms of tangling. This can be explained by the fact



that any heuristic for tangling needs high-level information about the
different concerns in a system. Since ‘Dynamic Analysis’ makes use of
use-case scenarios, it can take tangling into account by requiring that
methods of different classes should be specific to a use-case scenario. As
such information seems hard to approximate without external informa-
tion, it seems unlikely that techniques which analyse source code only
can easily take tangling into account. However, when information on
artefacts from the earlier phases of the software engineering process are
available, these may be exploited to provide a heuristic for tangling.
Empirical validation. In order to perform a quantitative comparison
of the studied techniques, empirical validation is of fundamental impor-
tance. In most reported studies, however, it was skipped and replaced
with a more qualitative result assessment. This is due to the intrinsic
difficulty of such a validation: it is hard to define (a priori) the set of
relevant aspects to be discovered and to decide (a posteriori) which re-
ported aspects are wrong. Nevertheless, it is impossible for this discipline
to make further progress without such an empirical validation. This re-
quires the ability to measure the precision and recall of the results, both
in terms of the reported aspects and in terms of the discovered aspect
seeds (code entities assigned to the aspect candidates).
In addition to the precision and recall metrics, user studies should be
conducted to empirically validate the results. End users of the aspect
mining techniques (e.g., the programmers of a system on which the aspect
mining is being applied) should be involved in order to evaluate the
actual usefulness and usability of each proposed technique. In addition to
studies in an industrial context, replication of such studies with students,
in classroom settings, would be fruitful too. Such studies might provide
important indications of the actual needs that emerge in the execution
of a real task of migration toward AOSD. This might in turn steer the
research on aspect mining (and refactoring) approaches.
Scalability. Although we have mentioned the largest system on which
each technique was validated, it is impossible at this time to make hard
claims regarding the scalability of the techniques we studied. While the
size of the system can give some indication of whether a technique might
scale, and while some techniques were applied to large industrial systems,
we cannot make general claims based on the limited data provided by the
authors of the different aspect mining techniques. In order to properly
assess the scalability of a technique, one would not only have to take into
account the time complexity of a technique with respect to the input
size, but also the amount of user involvement required for applying that
technique. Techniques which require vast amounts of effort to browse
through may be less cost-effective. Measuring the amount of required
user involvement is strongly related with the need for more empirical
validation, as metrics like precision and recall are necessary to quantify
this property.
Preconditions. All of the techniques make different assumptions about
how cross-cutting concerns are implemented in the system, in order for
the technique to find viable aspect candidates (see Table 5). Since the as-
sumptions of the techniques we studied seem quite complementary, and
each technique thus aims at discovering a different flavour of implemen-



tation of cross-cutting concerns, it is advisable for users of aspect mining
techniques to apply multiple techniques to the same system. This way,
aspects that are missed by one technique because they do not exhibit a
particular symptom, may be detected by another technique. The assess-
ment of the current aspect mining techniques we presented in this paper
can serve as a roadmap for a developer to select which techniques might
be applicable to mine for aspect candidates in a given system.
Common benchmark. There is a strong need to compare the quality
of the different aspect mining techniques that have been proposed in lit-
erature. Only very few approaches provide a detailed analysis of their
effectiveness. Most techniques are presented only as a proof-of-concept
in which it is demonstrated that useful aspects are found. And even for
those techniques that have presented more detailed results, they cannot
necessarily be compared with others either because they were performed
on a different case or because they were presented in a non-compatible
format, possibly using different metrics. Therefore, in order to obtain
better insights into the strengths and weaknesses of known aspect min-
ing approaches, it is advisable to validate the different techniques on a
common case-study and using a common set of well-defined metrics.
JHotDraw [39] seems to be a good candidate for becoming a common
benchmark for aspect mining techniques. Ceccato et al. [20] already de-
scribed an experiment in which they used this case to qualitatively com-
pare three different aspect mining techniques: ‘Dynamic analysis’, ‘Fan-
in analysis’ and ‘Identifier analysis’. In addition, JHotDraw is currently
being reworked to an aspect-oriented version, AJHotDraw [40], which
is supposed to be behaviourally consistent with JHotDraw itself. The
results of mining aspects on JHotDraw could be compared with those
aspects actually present in AJHotDraw.

7 Related research areas

From our description of the different techniques in Section 3, it became
clear that the field of aspect mining is strongly related to and inspired by
a number of other research fields, of which we recall the most important
ones in this section. A closer study of these related fields may provide
useful ideas to advance the state of the art in aspect mining.
Data Mining. A number of the techniques we discussed make use of

data mining algorithms like cluster analysis and formal concept anal-
ysis. This does not come as a surprise, as in the past data mining
techniques have already been successfully applied on large-scale data
sets to retrieve groups of elements which conceptually belong to-
gether. This research domain is quite extensive however, and may
contain many other approaches which may be ideal candidates for
being used as the basis of aspect mining techniques.

Software Comprehension. Aspect mining is closely related to tech-
niques that aid developers in understanding a piece of software.
While the goal of software comprehension techniques is more gen-
eral than discovering cross-cutting concerns in legacy code, the re-
sults obtained in this field can lead to interesting insights concerning
aspect mining.



Program Analysis. In a similar way, knowing that some program anal-
ysis techniques (for example, clone detection) have already been suc-
cessfully applied to aspect mining, it might be worthwhile consider-
ing other program analysis techniques like slicing and metrics for
the purpose of aspect mining.

Re(verse) Engineering. There has been quite some research on how
to re(verse)-engineer an ill-structured software system to one that
is better structured (for example, with a nice object-oriented design
and well-defined architecture). Variants of some of these re(verse)
engineering techniques may prove useful for aspect mining as well.

Concept and Feature Location. Existing approaches to locate high
level concepts or features (i.e., user-triggered functional requirements)
in the source code may be used for the location of cross-cutting func-
tionalities as well, assuming these are known to the programmers.
Thus, they have good potential of combination with the aspect min-
ing techniques surveyed in this paper, as was the case for Eisenbarth
et al.’s feature location method [41] and Dynamo [18].

To the authors’ knowledge, the present work is the first attempt to pro-
vide a survey of currently existing aspect mining techniques. Its main
contribution to the aspect mining literature is a tentative framework for
the classification of the existing techniques into a coherent taxonomy.
Research contributions in the area of aspect mining are being produced
at an extremely high rate (further works have appeared since the date of
submission of this paper), so we cannot be exhaustive. Rather, we aim
at defining a framework that can be reused, possibly with adaptations,
whenever a new technique needs to be compared with the existing ones.

8 Conclusion

In this paper we presented a survey of existing automated code-level
aspect mining techniques. To compare these techniques we proposed a
comparative framework and taxonomy which allowed us to discriminate
among the different techniques. From this comparison we learned impor-
tant lessons that can be used by practitioners when selecting an aspect
mining technique and that can serve as input to improve the state of the
art in this research area.
Aspect mining users are likely to have some knowledge about the system
under analysis. They might know whether a set of well-defined use-cases
is available and can be employed to isolate relevant concerns or if it is bet-
ter to rely on the source code alone. This discriminates dynamic versus
static analyses. Moreover, they might have some information about the
presence of adhered naming conventions throughout the system, which
enables token-oriented techniques. Additional knowledge, such as the
occurrence of code duplication, might be relevant to decide on the gran-
ularity of the technique to use and to select the basic algorithm exploited
by the mining technique.
The main contribution of this work to the research area of aspect min-
ing is the definition of a (preliminary) classification framework, that can
be used to position each new technique proposed in the area, and to



compare it with the existing ones along relevant dimensions. Other con-
tributions came out of the discussion of the taxonomy. The main future
directions that emerged from this study are the need for empirical, com-
parative evaluations and the opportunity for developing combined tech-
niques. Indeed, since every technique relies on different assumptions and
uses different underlying analysis techniques, the studied techniques are
highly complementary, which suggests the possibility of several useful
combinations. More specifically, it could be worthwhile to:

– combine techniques that rely on static and dynamic analysis;

– combine token-oriented and structural/behavioural techniques;

– extend techniques that work at the granularity of methods with tech-
niques that work at the level of code fragments;

– improve the results of techniques that only look for symptoms of
scattering, by taking into account the phenomenon of tangling too;

– combine techniques that rely on different underlying assumptions,
thus enabling the discovery of different kinds of aspects.

A natural follow-up to this study would be a more in-depth comparison
of the results obtained by the different techniques, based on empirical
validation. To enable a quantitative assessment, we need a common set
of benchmark programs against which the techniques can be compared,
as well as a common set of metrics for measuring the precision and re-
call of the produced results. Involvement of end-users of the tools to
assess the quality of the produced results is also important, considering
some of the mined aspect candidates could be refactored eventually into
implementation aspects.

Acknowledgments

The authors are grateful to Mariano Ceccato, Marius Marin and Tom
Tourwé, to our anonymous reviewers and to other members of the aspect
mining community, for the valuable comments they provided on earlier
versions of this paper.

References

1. Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N degrees
of separation: multi-dimensional separation of concerns. In: Interna-
tional Conference on Software Engineering (ICSE), IEEE Computer
Society Press (1999) 107–119

2. Hannemann, J., Kiczales, G.: Overcoming the prevalent decompo-
sition in legacy code. In: Workshop on Advanced Separation of
Concerns, International Conference on Software Engineering (ICSE).
(2001)

3. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications (2003)

4. Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid, A.,
Tekinerdogan, B.: Discovering early aspects. IEEE Software 23(1)
(2006) 61–70



5. Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented
analysis and design. In: International Conference on Software En-
gineering (ICSE), Washington, DC, USA, IEEE Computer Society
Press (2004) 158–167

6. Rashid, A., Sawyer, P., Moreira, A.M.D., Araújo, J.: Early aspects:
A model for aspect-oriented requirements engineerin. In: Joint In-
ternational Conference on Requirements Engineering (RE), IEEE
Computer Society Press (2002) 199–202

7. Tekinerdogan, B., Aksit, M.: Deriving design aspects from canonical
models. In Demeyer, S., Bosch, J., eds.: Workshop Reader of the 12th
European Conference on Object-Oriented Programming (ECOOP).
Lecture Notes in Computer Science, Springer-Verlag (1998) 410–413

8. Bass, L., Klein, M., Northrop, L.: Identifying aspects using ar-
chitectural reasoning. Position paper presented at Early Aspects
2004: Aspect-Oriented Requirements Engineering and Architecture
Design, Workshop of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD) (2004)

9. Robillard, M.P., Murphy, G.C.: Concern graphs: Finding and de-
scribing concerns using structural program dependencies. In: In-
ternational Conference on Software Engineering (ICSE 2002), ACM
Press (2002) 406–416

10. Mens, K., Poll, B., González, S.: Using intentional source-code views
to aid software maintenance. In: International Conference on Soft-
ware Maintenance (ICSM’03), IEEE Computer Society Press (2003)
169–178

11. Griswold, W., Kato, Y., Yuan, J.: Aspect browser: Tool support for
managing dispersed aspects. In: Workshop on Multi-Dimensional
Separation of Concerns in Object-oriented Systems. (1999)

12. Zhang, C., Jacobsen, H.: Extended aspect mining tool.
http://www.eecg.utoronto.ca/∼czhang/amtex (2002)

13. Zhang, C., Jacobsen, H.A.: Prism is research in aspect mining. In:
OOPSLA, ACM (2004)

14. Breu, S., Krinke, J.: Aspect mining using event traces. In: Auto-
mated Software Engineering (ASE). (2004)

15. Krinke, J., Breu, S.: Control-flow-graph-based aspect mining. In:
1st Workshop on Aspect Reverse Engineering. (2004)

16. Breu, S.: Towards hybrid aspect mining: Static extensions to dy-
namic aspect mining. In: 1st Workshop on Aspect Reverse Engi-
neering. (2004)

17. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foun-
dations. Spring-Verlag (1999)

18. Tonella, P., Ceccato, M.: Aspect mining through the formal concept
analysis of execution traces. In: Working Conference on Reverse
Engineering (WCRE). (2004)

19. Tourwé, T., Mens, K.: Mining aspectual views using formal con-
cept analysis. In: Source Code Analysis and Manipulation Workshop
(SCAM). (2004)

20. Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonello, P., Tourwé,
T.: A qualitative comparison of three aspect mining techniques. In:
International Workshop on Program Comprehension (IWPC 2005),
IEEE Computer Society Press (2005) 13–22

21. Mens, K., Tourwé, T.: Delving source-code with formal concept anal-
ysis. Elsevier Journal on Computer Languages, Systems & Structures
(2005) To appear.

22. Shepherd, D., Tourwé, T., Pollock, L.: Using language clues to dis-
cover crosscutting concerns. In: Workshop on the Modeling and
Analysis of Concerns. (2005)



23. Morris, J., Hirst, G.: Lexical cohesion computed by thesaural rela-
tions as an indicator of the structure of text. Computational Lin-
guistics 17(1) (1991) 21–48

24. Budanitski, A.: Semantic distance in wordnet: an experimental,
application-oriented evaluation of five measures. (2001)

25. Gybels, K., Kellens, A.: An experiment in using inductive logic
programming to uncover pointcuts. In: First European Interactive
Workshop on Aspects in Software. (2004)

26. Gybels, K., Kellens, A.: Experiences with identifying aspects in
Smalltalk using ’unique methods’. In: Workshop on Linking Aspect
Technology and Evolution. (2005)

27. Shepherd, D., Pollock, L.: Interfaces, aspects and views. In: Linking
Aspect Technology and Evolution (LATE) Workshop. (2005)

28. Karanjkar, S.: Development of graph clustering algorithms. Master’s
thesis, University of Minnesota (1998)

29. He, L., Bai, H., Zhang, J., Hu, C.: Amuca algorithm for aspect min-
ing. In: Software Engineering and Knowledge Engineering (SEKE).
(2005)

30. Marin, M., van Deursen, A., Moonen, L.: Identifying aspects us-
ing fan-in analysis. In: Working Conference on Reverse Engineering
(WCRE), IEEE Computer Society (2004) 132–141

31. Shepherd, D., Gibson, E., Pollock, L.: Design and evaluation of
an automated aspect mining tool. In: International Conference on
Software Engineering Research and Practice. (2004)

32. Komondoor, R., Horwitz, S.: Using slicing to identify duplication
in source code. In: International Symposium on Static Analysis,
Springer-Verlag (2001) 40–56

33. Krinke, J.: Identifying similar code with program dependence
graphs. In: Working Conference on Reverse Engineering (WCRE’01),
IEEE Computer Society Press (2001) 301–309

34. Bruntink, M., Deursen, A.v., Engelen, R.v., Tourwé, T.: An evalu-
ation of clone detection techniques for identifying crosscutting con-
cerns. In: International Conference on Software Maintenance (ICSM
2004), IEEE Computer Society Press (2004)

35. Bruntink, M., van Deursen, A., van Engelen, R., Tourwè, T.: On
the use of clone detection for identifying crosscutting concern code.
IEEE Transactions on Software Engineering 31(10) (2005) 804–818

36. Baker, B.: On finding duplication and near-duplication in large
software systems. In: Working Conference on Reverse Engineering
(WCRE 1995), IEEE Computer Society Press (1995) 86–95

37. Baxter, I., Yahin, A., Moura, L., Sant’ Anna, M., Bier, L.: Clone de-
tection using abstract syntax trees. In: International Conference on
Software Maintenance (ICSM 1998), IEEE Computer Society Press
(1998)

38. Bruntink, M.: Aspect mining using clone class metrics. In: 1st Work-
shop on Aspect Reverse Engineering. (2004)

39. Brant, J.: Hotdraw. Master’s thesis, University of Illinois (1992)
40. van Deursen, A., Marin, M., Moonen, L.: AJHotDraw: A showcase

for refactoring to aspects. In: Workshop on Linking Aspect Technol-
ogy and Evolution. (2005)

41. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source
code. IEEE Transactions on Software Engineering 29(3) (2003) 195–
209


