
Program Testing Using High-Level Property-Driven Models

Isabel Michiels1, Coen De Roover1, Johan Brichau1,2, Elisa Gonzalez Boix1, Theo D’Hondt1

1Programming Technology Lab 2Laboratoire d’Informatique Fondamentale de Lille
Vrije Universiteit Brussel, Belgium Université des Sciences et Technologies de Lille, France

Abstract

Testing is a crucial part of the software development life
cycle that necessitates adequate techniques and tools. On
the one hand, unit testing techniques are particularly easy
and lightweight to use but are restricted to testing the ex-
ternal behaviour of a program. On the other hand, test-
ing techniques that use property-driven models of the soft-
ware are able to test behavioural properties of the entire
execution of a program. However, these models are often
specified in terms of low-level execution events of the pro-
gram. In this paper, we present the lightweight property-
driven testing platform calledBEHAVE, where tests are
written as property-driven behavioural models over high-
level run-time events. We validate our approach by test-
ing behavioural properties related to the automatic mem-
ory management in the interpreter of the Pico programming
language.

1. Introduction

The increasing complexity and size of today’s software
systems provides ample opportunities for developers to in-
troduce faulty and erroneous behaviour in the system’s im-
plementation. The presence of suchbugsin many finished
software products emphasizes the need for integrated test-
ing in the development process. However, software testing
is a laborious activity that is often still conducted without
any adequate tools and thus consumes more than 50% of
the total software development effort [3].

Model-oriented verification techniques [5] permit us to
accurately verify the entire program’s behaviour against its
specification, but they are also time-consuming, complex
and do not scale very well. This is because the entire be-
haviour of a software system must be specified in a com-
plete and precise behavioural model of all execution states
of that system. On the other end of the spectrum, unit test-
ing techniques like the XUnit open source testing frame-
works [9](e.g. SUnit for Smalltalk, CUnit for C, etc.) are

particularly lightweight. Using these techniques, devel-
opers focus on testing small localizable parts of the sys-
tem’s implementation incrementally, based on particular us-
age scenarios. Although these incremental approaches ad-
dress the scalability problem and are relatively easy to use,
they do not verify all aspects of the behaviour of the ex-
ecuting system. Instead, they can merely test the external
behaviour of particular parts of a system. Using property-
driven models for testing combines some of the advantages
of model-oriented verification and unit-based testing. They
are lightweight in the sense that they only model partic-
ular propertiesof the program’s execution. Moreover, in
contrast to unit testing, they also test non-externally veri-
fiable behaviour of the executing program with respect to
the modeled properties. Nevertheless, property-driven test-
ing does require the specification of behavioural models of
these properties and these are often specified in terms of
low-level execution events of the program.

In this paper, we present the property-driven testing plat-
form BEHAVE and apply it to test particular behavioural
properties of memory management in the Pico language
interpreter. The main contribution of BEHAVE is that the
behavioural models are specified using a declarative for-
malism which renders the models machine-verifiable and,
at the same time, understandable to the developers [13].
More specifically, BEHAVE offers support for testing par-
ticular behaviour of an application by specifying property-
driven modelsoverhigh-level run-time eventsusingtempo-
ral logic programming. We will start our paper by clarifying
our case study of the Pico language interpreter and its au-
tomatic memory management in section 2. In section 3 we
will introduce our platform called BEHAVE together with its
underlying approach and we will demonstrate the use of our
platform by testing garbage collection in Pico. We will end
with related work in section 4 and a conclusion in section 5.

2. The Pico Interpreter and its Memory Model

Pico [12] is an interpreted programming language devel-
oped at the Vrije Universiteit Brussel. While it was origi-

1



nally conceived to teach programming concepts to students
outside the realm of computer science, its interpreter im-
plementation (which totals about 8000 lines of condense C
code) is nowadays also used for teaching about program-
ming languages, interpreters and automatic memory man-
agement. In this paper, we use the Pico interpreter as a case
study to illustrate our approach. We will test a particular
kind of erroneous behaviour related to automatic memory
management.

The Pico memory consists of a heap that is managed by
an automatic garbage collector. The garbage collection al-
gorithm can be triggered every time a chunk of memory is
requested. If no sufficient memory is available, the garbage
collector will traverse the Pico environment and possibly
defragment it. As a result, chunks can be moved to a com-
pletely different address in the Pico heap. This change of
location happens transparently because the garbage collec-
tor also updates any references to that chunk. However, this
requires that all references to that chunk are also stored on
the heap, which is not always the case. In many parts of
the Pico implementation, references to chunks of memory
on the Pico heap need to be stored in a temporary variable
inside a C function. More particularly this happens in so
called ‘continuation functions’ which are C functions that
represent a part of program execution in Pico. They can be
recognized as functions with no return type and no param-
eters. If a garbage collect occurs during the execution of
such a continuation function, those references to the Pico
memory might become invalid and the Pico interpreter will
crash.

Obviously, we want to detect such an unwanted be-
haviour through careful testing. This means that we need
to detect the occurrence of a garbage collect in between the
assignment and the use of a temporary variable that holds
a reference to the Pico memory. Unit testing is insufficient
because such a test only fails if a garbage collect actually
defragments memory. Depending on the actual memory
consumption and organisation, such tests might thus fail or
not, although the erroneous behaviour of apossiblegarbage
collect is always present. Therefore, we need to test the
possibleoccurrences of a garbage collect in between the as-
signments and the uses of a temporary variable inside a C
function. To this extent, we developed a property-driven
model that is verified using the BEHAVE platform.

3. Property-Driven Testing with BEHAVE

In general, three important phases can be distinguished
in application testing: specification of a model, verifying
the model against the actual behaviour (running the test) and
evaluating the test results. Using BEHAVE, developers spec-
ify property-driven models using a declarative program-
ming language. These models express certain behavioural

properties that must hold throughout an application’s life-
time and they are automatically verified with respect to
a high-level execution-trace of the program. This execu-
tion trace ishigh-levelbecause it contains the application-
specific events that are required to verify the model. These
high-level events are also specified by the developer. Fig-
ure 1 provides a general overview of all constituents of this
approach when applied to the testing of the garbage collec-
tor in the Pico interpreter. The Pico implementation con-
sists of many continuation functions, of which an excerpt is
shown in figure 1b. The execution of this function results
in the creation of an execution-trace (shown in figure 1a)
that only contains the observed behaviour in terms of high-
level events. These high-level events are used to verify the
property-driven model specified in figure 1c. Finally, fig-
ure 1d, 1e and 1f specify how the high-level events need to
be recorded during the execution of the program. We will
further explain the details of each of these parts throughout
the remainder of the paper.

To summarize, the use of the BEHAVE platform for
property-driven testing of software applications amounts to
the following 4-step recipe:

1. Identify the high-level run-time events of the property
to be tested,

2. Specify a property-driven model,
3. Specify the application-specific instances of high-level

run-time events,
4. Run the test by verifying the property-driven model

against the actual behaviour and evaluate the results.

In the following sections we will explain each of these
steps through the application of BEHAVE for testing the
garbage collector of the Pico language interpreter.

3.1. Identifying the High-Level Run-Time
Events

The first step of our recipe comprises the identifica-
tion of the high-level run-time events we need to verify
the garbage collection property mentioned in section 2.
Having analysed that description, we need to specify the
following high-level run-time events: possible garbage
collect (possibleGC ), temporary variable used (tempUsed )
and temporary variable assigned (update or initialisation)
(tempUpdated ). Indeed, we want to detect occurrences of
possible garbage collection eventsin betweenthe assign-
ment and use of temporary variables holding a reference to
the Pico memory. Figure 1a shows instances of these events
in an execution trace using logic (Prolog) facts. Each event
also declares additional information associated to the event.
For example, each event contains a time-stamp, which is the
first value that is shown in each event instance in figure 1a.
The tempUsed event on line 2 also declares the name of the



Execute
while

intercepting
high-level

events

(b) excerpt from source code (a) observed behavior

(c) high-level property-driven model 

(f) associated run-time values

(d) high-level events specification

verified against

specific for this 
application

(e) application-specific instances

1 static _NIL_TYPE_ COX(_NIL_TYPE_) {

2 _EXP_TYPE env, val;

3 _TAG_TYPE_ tag;

4 _stk_pop_EXP_(val);

5 _stk_peek_EXP_(env);

6 tag = _ag_get_TAG_(env);

7 if (tag == _ENV_tag_)

8 { _env_load_(env);

9 _stk_push_EXP(val); }

10 else

11 _error_str_(_ATC_ERROR_, con_STR); }

(a)

1 keyword(time, ’log("%i", TIME++);’).

2 keyword(cntName,C,P,Result) :-

3 continuationName(C,P,Name),

4 concat(["log(\"",Name,"\");"],Result).

5 keyword(var(V),C,P,Result) :-

6 concat(["zombieLog(\"",V,"\");"],Result).

7 keyword(assVar,C,P,Result) :-

8 assignmentToVariable(C,Var),

9 keyword(var(Var),C,P,Result).

(b)

1 event(89,tempUpdated(’COX’,identifier(val))).

2 event(90,tempUsed(’COX’,val)).

3 event(91,tempUpdated(’COX’,identifier(env))).

4 event(92,tempUsed(’COX’,env)).

5 ...

6 event(96,possibleGc(’_env_load_’)).

7 event(97,tempUsed(’COX’,val)).

(c)

Figure 1: Source code part I

1 static _NIL_TYPE_ COX(_NIL_TYPE_) {

2 _EXP_TYPE env, val;

3 _TAG_TYPE_ tag;

4 _stk_pop_EXP_(val);

5 _stk_peek_EXP_(env);

6 tag = _ag_get_TAG_(env);

7 if (tag == _ENV_tag_)

8 { _env_load_(env);

9 _stk_push_EXP(val); }

10 else

11 _error_str_(_ATC_ERROR_, con_STR); }

(a)

1 keyword(time, ’log("%i", TIME++);’).

2 keyword(cntName,C,P,Result) :-

3 continuationName(C,P,Name),

4 concat(["log(\"",Name,"\");"],Result).

5 keyword(var(V),C,P,Result) :-

6 concat(["zombieLog(\"",V,"\");"],Result).

7 keyword(assVar,C,P,Result) :-

8 assignmentToVariable(C,Var),

9 keyword(var(Var),C,P,Result).

(b)

1 event(89,tempUpdated(’COX’,identifier(val))).

2 event(90,tempUsed(’COX’,val)).

3 event(91,tempUpdated(’COX’,identifier(env))).

4 event(92,tempUsed(’COX’,env)).

5 ...

6 event(96,possibleGc(’_env_load_’)).

7 event(97,tempUsed(’COX’,val)).

(c)

Figure 1: Source code part I

1 intercept(before,gcPossible,

2 event(time,possibleGc(cntName))).

3 intercept(after,or(peekedExp,poppedExp),

4 event(time,tempUpdated(cntName,macroVar)).

5 intercept(after,varAssignment,

6 event(time,tempUpdated(cntName,assVar)).

7 intercept(instead,tempVarUsed,

8 event(time,tempUsed(cntName,varName))).

(a)

1 tempVariable(Construct,Path) :-

2 identifierHasSymbol(Construct,Var),

3 declaredVariableAs(Path,Var,_EXP_TYPE_).

4 gcPossible(Construct) :-

5 macroCallHasName(Construct,_mem_claim_).

6 peekedExp(Construct) :-

7 macroCallHasName(Construct,_stk_peek_EXP_).

8 varAssignment(Construct,Path) :-

9 assignmentHasLeftExpression(Construct,Var),

10 tempVar(Var).

11 tempVarUsed(Construct,Path) :-

12 tempVariable(Construct,Path),

13 not(leftValue(Construct,Path)),

14 inContinuation(Path).

(b)

1 possibleGC(C) :-

2 event(possibleGc(C)).

3 tempUsed(C,Var) :-

4 event(tempUsed(C,Var)).

5 safeToUseTemp(C,Var) :-

6 •ttempUpdated(C,Var)),

7 ¬!−tpossibleGC(_))).

8 unsafeUseOfTemp(C,Var) :-

9 tempUsed(C,Var),

10 ¬safeToUseTemp(C,Var).

11 test(counterEx(continuation(C),variable(V))):-

12 !unsafeUseOfTemp(C,V)).

(c)

Figure 2: Source code and corresponding behavioral garbage collection concepts of the Pico Interpreter.

1 intercept(before,gcPossible,

2 event(time,possibleGc(cntName))).

3 intercept(after,or(peekedExp,poppedExp),

4 event(time,tempUpdated(cntName,macroVar))).

5 intercept(after,varAssignment,

6 event(time,tempUpdated(cntName,assVar))).

7 intercept(instead,tempVarUsed,

8 event(time,tempUsed(cntName,varName))).

(a)

1 tempVariable(Construct,Path) :-

2 identifierHasSymbol(Construct,Var),

3 declaredVariableAs(Path,Var,_EXP_TYPE_).

4 gcPossible(Construct) :-

5 macroCallHasName(Construct,_mem_claim_).

6 peekedExp(Construct) :-

7 macroCallHasName(Construct,_stk_peek_EXP_).

8 varAssignment(Construct,Path) :-

9 assignmentHasLeftExpression(Construct,Var),

10 tempVar(Var).

11 tempVarUsed(Construct,Path) :-

12 tempVariable(Construct,Path),

13 not(leftValue(Construct,Path)),

14 inContinuation(Path).

(b)

1 possibleGC(C) :-

2 event(possibleGc(C)).

3 tempUsed(C,Var) :-

4 event(tempUsed(C,Var)).

5 safeToUseTemp(C,Var) :-

6 •ttempUpdated(C,Var)),

7 ¬!−tpossibleGC(_))).

8 unsafeUseOfTemp(C,Var) :-

9 tempUsed(C,Var),

10 ¬safeToUseTemp(C,Var).

11 test(counterEx(continuation(C),variable(V))):-

12 !unsafeUseOfTemp(C,V)).

(c)

Figure 2: Source code and corresponding behavioral garbage collection concepts of the Pico Interpreter.

1 static _NIL_TYPE_ COX(_NIL_TYPE_) {

2 _EXP_TYPE env, val;

3 _TAG_TYPE_ tag;

4 _stk_pop_EXP_(val);

5 _stk_peek_EXP_(env);

6 tag = _ag_get_TAG_(env);

7 if (tag == _ENV_tag_)

8 { _env_load_(env);

9 _stk_push_EXP(val); }

10 else

11 _error_str_(_ATC_ERROR_, con_STR); }

(a)

1 keyword(time,C,P, ’log("%i", TIME++);’).

2 keyword(cntName,C,P,Result) :-

3 continuationName(C,P,Name),

4 concat(["log(\"",Name,"\");"],Result).

5 keyword(var(V),C,P,Result) :-

6 concat(["zombieLog(\"",V,"\");"],Result).

7 keyword(assVar,C,P,Result) :-

8 assignmentToVariable(C,Var),

9 keyword(var(Var),C,P,Result).

(b)

1 event(89,tempUpdated(’COX’,identifier(val))).

2 event(90,tempUsed(’COX’,val)).

3 event(91,tempUpdated(’COX’,identifier(env))).

4 event(92,tempUsed(’COX’,env)).

5 ...

6 event(96,possibleGc(’_env_load_’)).

7 event(97,tempUsed(’COX’,val)).

(c)

Figure 1: Source code part I

1 intercept(before,gcPossible,

2 event(time,possibleGc(cntName))).

3 intercept(after,or(peekedExp,poppedExp),

4 event(time,tempUpdated(cntName,macroVar))).

5 intercept(after,varAssignment,

6 event(time,tempUpdated(cntName,assVar))).

7 intercept(instead,tempVarUsed,

8 event(time,tempUsed(cntName,varName))).

(a)

1 tempVariable(Construct,Path) :-

2 identifierHasSymbol(Construct,Var),

3 declaredVariableAs(Path,Var,_EXP_TYPE_).

4 gcPossible(Construct) :-

5 macroCallHasName(Construct,_mem_claim_).

6 peekedExp(Construct) :-

7 macroCallHasName(Construct,_stk_peek_EXP_).

8 varAssignment(Construct,Path) :-

9 assignmentHasLeftExpression(Construct,Var),

10 tempVar(Var).

11 tempVarUsed(Construct,Path) :-

12 tempVariable(Construct,Path),

13 not(leftValue(Construct,Path)),

14 inContinuation(Path).

(b)

1 possibleGC(C) :-

2 event(possibleGc(C)).

3 tempUsed(C,Var) :-

4 event(tempUsed(C,Var)).

5 safeToUseTemp(C,Var) :-

6 •ttempUpdated(C,Var),

7 ¬!−tpossibleGC(_).

8 unsafeUseOfTemp(C,Var) :-

9 tempUsed(C,Var),

10 ¬safeToUseTemp(C,Var).

11 test(continuation(C),variable(V)):-

12 !unsafeUseOfTemp(C,V)).

(c)

Figure 2: Source code and corresponding behavioral garbage collection concepts of the Pico Interpreter.

Figure 1: Using the BEHAVE platform for testing Pico memory management

temporary variable (val ) and the name of the continuation
function (COX) in which it is defined.

The identification of these high-level run-time events al-
lows the property-driven model to be specified at a high
level of abstraction, i.e. in terms of these high-level events
instead of low-level execution traces. Furthermore, because
a developer can specify which high-level events to intercept,
this approach also achieves a selective and compact exe-
cution trace only containing the needed run-time informa-
tion. Note that the identification of these high-level events is
completely up to the developer; he has to specifywhensuch
a high-level event occurs and alsohow to obtain any addi-
tional run-time information. We will explain in section 3.3
how these high-level events are specified such that they are
recorded during the execution of the program.

3.2. Specifying a Property-Driven Model

In the second recipe step of BEHAVE, we specify a
property-driven model using a temporal logic programming
language based on Prolog. We chose a logic language
as specification language because of its declarative nature.
This ensures that a model will be human-readable and at
a high level of abstraction, which is needed for specifying
a property in terms of concepts rather than low-level pro-
gramming constructs, such as a call to a function. In Prolog,
a program consists of logic clauses representing knowledge

about a particular problem at hand. As we have explained
in the previous section, the high-level execution trace of the
C program also consists of a set of logic facts. This means
that we can implement the property-driven model as a set
of high-level assertionsover the execution trace, expressed
using logic clauses.

Our choice for using the temporal logic programming
language MTL [4], a temporal variant of Prolog, is par-
ticularly useful because temporal logic programming com-
prises all functionality of logic programming and provides
some additional logic operators for expressing temporal
constraints. Such temporal constraints are of extreme im-
portance when reasoning about events representing run-
time behaviour. The temporal operators which we will fur-
ther use in our property-driven model are:2 (always),�
(sometimes),• (previous) and◦ (next). Using these oper-
ators, we can describe temporal relations between events
contained in the execution trace in an even more expres-
sive manner as opposed to when you use traditional logic
programming. However, although temporal logic formulae
have been successfully applied in the program verification
domain, they are sometimes hard to understand. Therefore
users not familiar with temporal logic are still free to specify
their models using plain Prolog assertions.

Finally, since we use our platform for testing an applica-
tion’s behaviour, we are always looking for occurrences of
unwantedbehaviour. Testing is an activity that tries to find



out where the behaviour of a program is broken. Therefore,
our property-driven models will need to specify unwanted
behaviour andwherein the source code this unwanted be-
haviour occurs. This approach is of importance for correct-
ing the source code of the application in case a test fails, as
we will explain in section 3.4.

Using the high-level events identified in section 3.1, we
can now specify a property-driven model using temporal
logic clauses that describes the desired as well as the unde-
sired behaviour of the program with respect to these events.
In section 2, we described that a possible garbage collect
event may not occur between the assignment (which is ei-
ther an update or an initialisation) and the use of a tempo-
rary variable. In other words,after a possible garbage col-
lection event you should not use temporary variables unless
they have been updated in between.Expressed as unwanted
behaviour, we will look for all uses of temporary variables
that do not obey this last saying. The property-driven model
that specifies this behaviour is shown in figure 1c. Lines 1-4
introduce additional abstractions over the events in the exe-
cution trace, i.e.possibleGC andtempUsed 1. On lines 5-10
the concepts of unsafe and safe uses of temporary variables
are defined as the logic assertionsunsafeUseOfTemp and
safeToUseTemp respectively. This last assertion (defined on
lines 5-7) states that it is safe to use a temporary variable
Var within a continuation functionC if within t timesteps
in the past from now, the variableVar has been updated (or
given an initial value if it didn’t have a value before) and if
within that time frame no possible garbage collection could
have occurred. TheunsafeUseOfTemp(C,Var) assertion on
lines 8-10 then captures the unsafe use of a temporary vari-
able that states the complement. The actual test can be seen
on lines 11-12 and expresses the wish of finding a variable
V within a continuation functionC that is used in an unsafe
way, as it is defined above.

3.3. Specifying Application-Specific In-
stances of High-Level Events

In the previous sections, the high-level events that we
need for verifying garbage collection were identified and
the property-driven model was expressed as assertions over
these high-level events using temporal logic programming.
In this subsection, we describe how a developer that uses
the BEHAVE platform can specifywhichevents have to be
intercepted andhow they should be recorded. This con-
sists of specifyingwhat source-code constructs raise these
high-level events (figure 1e), how associated run-time val-
ues need to be extracted in order to be recorded with the
event (figure 1f) and the specification of the events them-

1Note that we also need the same abstraction for
tempUpdated(C,V) , but we didn’t include it here due to space
limitations.

selves (figure 1d). Once again, logic programs are used to
describe these actions.

The declarations in figure 1d describe the high-level
events that need to be recorded. All declarations are of
the form intercept(When,What,RecordAs) . We will ex-
plain these declarations by example. Consider lines 1-
2 where we declare that the high-level event of a possi-
ble garbage collect is recorded in the execution trace as
event(time,possibleGc(cntName)) . More precisely, this
event will be recorded rightbefore the execution of the
source code construct that is identified by thegcPossible

assertion. This assertion is defined by the logic clause on
lines 4-5 in figure 1e. This clause specifies that the high-
level event of a possible garbage collect is triggered by
the execution of the source-code constructConstruct if
it is a C macrocall that is namedmemclaim . There are
three other macrocalls in the Pico implementation besides
memclaim that can trigger the garbage collection prop-

erty. However, due to space limitations we did not include
all of them here but there exists a very similar logic clause
for each of them. Furthermore, instead of merely logging
the occurrence of a possible garbage collect event, we also
log the time at which the event occurred and the name of
the continuation functioncntName 2 in which the possible
garbage collect event occurs. We will explain how the run-
time values of these so-calledkeywordstime andcntName

are computed later on.
In lines 3-6, the same high-level event

(event(time,tempUpdated(cntName,varName)) ) is
described by two different logic declarations. This is
because the high-level event of a temporary variable being
(re)assigned a value can be manifested in the source code in
various ways. More specifically, this event is triggered by
the execution of the source code construct that is specified
by the peekedExp , the poppedExp or thevarAssignment

assertions. Another difference between the two clauses has
to do with the different run-time values that are needed.
These are represented by the keywords (macroVar and
assVar .

The source code constructs can be identified because
BEHAVE makes an entire application’s parse tree avail-
able. Let’s have a look at the logic clause on lines 1-
3 in figure 1e that defines a temporary variable as the
tempVariable(Construct,Path) assertion. This rule has
access to each parse tree node through theConstruct vari-
able, while thePath variable represents the path from the
tree’s root that leads to thatConstruct node. This defines
what construct is a temporary variable pointing to a Pico
memory chunk in the Pico implementation. In essence,
some source-code construct is such a temporary variable if
it is an identifier with nameVar and if it has been declared

2Note also thatcntName and time are not logic variables here; in
Prolog logic variables are denoted with a capital letter



as being of typeEXP TYPE . ThetempVarUsed rule on lines
11-14 needs some more explanation. This rule states that a
temporary variable (denoted by the variableConstruct ) has
been used if first of all it is a temporary variable (line 12),
if it is found to be used within a continuation function (line
14) and if it is not part of the left side of a variable assign-
ment (line 13), because then it is not used but updated.

We still need to explain how the run-time information
associated with each high-level event can be retrieved. In
figure 1d on line 2 we denoted that for the high-level run-
time eventpossibleGc we wanted to log the name of the
continuation function where the possible garbage collection
event could occur through thecntName keyword. These run-
time values will have to be obtained by the execution of
application-specific source code. The most important key-
words used here together with the associated C code can be
found in figure 1f. On line 1, thetime keyword is defined as
a call to a C log function that will merely write a number to
the execution trace file and increment a time counter. The
keyword cntName on lines 2-4 uses acontinuationName

rule, which is not included here, but this rule looks for the
continuation function node in thePath of this Construct

and takes its name. The two rules on lines 5-9 are used
in combination to be able to log the name of a variable to
which a variable has been assigned3.

3.4. Running the Test and Evaluating the
Results

Verifying the property-driven model against the actual
behaviour and then evaluating the results forms the last step
of our recipe. Our platform first instruments the source
code of the application under test to be able to record
all possible occurrences of the defined high-level run-time
events. Second, the instrumented source code gets exe-
cuted according to a particular scenario which creates the
execution trace containing the high-level run-time events
that occurred during execution. Afterwards, the property-
driven model can be verified by launching the logic query
:- test(Function,Variable) . A fail of this query would
mean that no variables can be found that are used in an un-
safe way. However, if this query yields results, the results
will describe which variables in which continuation func-
tions are used in an unsafe way.

Applying our approach to the complete Pico implemen-
tation, we were able to find three occurrences of unsafe us-
age of variables in two different continuation functions. Let
us consider one of the two results:continuation(’COX’),

variable(val); . This result means that in theCOXcon-
tinuation function the temporary variableval is used in an
unsafe way. Depending on the state of the heap representing

3Note that we need two completely analogous rules to the one on lines
7-9 for the keywords macroVar and varName as used in figure 1d

underlying Pico memory, if a garbage collect event occurred
that triggers a heap defragmentation during the execution of
theCOXcontinuation function, the system would crash com-
pletely. The C code fragment representing this function is
depicted in figure 1b: on line 9 the temporary variableval

is used and apparently the statement on line 8, a call to the
function env load triggered a possible garbage collection
event (as can be seen in figure 1a on line 6).

4. Related Work

A lot of research has been done on dynamic analysis ap-
proaches, differing in the domain they are applied, analy-
sis time, expressiveness of the medium used to express be-
havioral models, what run-time events can be intercepted,
etc. We briefly discuss those most closely related to our
approach.

CCI [14], is a general program monitor notification tool
for C programs. At run-time, an execution monitor is no-
tified of events through calls to a user-implemented macro
which takes an integer indicating the type of event that oc-
curred and an event-specific associated value. As CCI is a
pure program monitor notification tool, it provides no lan-
guage specifically tailored to reasoning about intercepted
events, which our platform does provide. JMonitor [10]
provides a Java API for specifying event patterns and as-
sociating them with user provided event monitors. JMoni-
tor doesn’t offer any mechanism either to analyse observed
events.

Coca [6] performs a dynamic analysis on C programs
by having them executed in a stepwise fashion by a debug-
ger. Coca runs alongside the debugging process to steer
the execution of the program. Analysis is done on-line, so
considering alternative matches for a run-time event with-
out advancing the application is not possible. This makes
it difficult to express assertions about nested events. Coca
is however suited to debugging purposes as queries can be
expressed in a Prolog variant augmented with predicates to
request future run-time events.

Auguston et al. [1, 2] present the interesting procedural
assertion specification language FORMAN. Atomic low-
level events occur at a time point, while composite events
occupy an interval in time. An event grammar formally
specifies the low-level constituents of composite events and
their mutual ordering on the time line. This allows for auto-
matic low-level event selection according to a given asser-
tion over composite events. The information recorded about
each composite event is however dependent on its atomic
constituents. In this setting we prefer the more declara-
tive nature of the property models resulting from our tem-
poral logic programming specification language. Our ex-
periments have also indicated the benefits of being able to
freely determine the run-time values associated with high-



level events. Due to the lack of a formal event grammar, our
approach however requires more user involvement.

TestLog [7] focuses on testing Smalltalk applications. It
also uses a Prolog-like logic language, but reasons about
whole-program execution traces comprising method invo-
cations and the recursive state of each receiver before and
after the invocation.

5. Conclusion

We presented the BEHAVE platform for testing be-
havioural properties of software applications using declar-
ative property-driven behavioural models. These models
are formulated as declarative high-level temporal assertions
over high-level run-time events freely chosen by the appli-
cation tester. Our approach features the following charac-
teristics:

• Because our testing approach is property-driven, we
can verify a specific part of program execution; this
makes our approach applicable to larger programs as
well;

• The most commonly used dynamic analysis ap-
proaches demand a model being written over a fixed
set of low-level programming language constructs;
using the BEHAVE platform an application tester
can specify himself what run-time events should be
recorded; consequently verification is again computa-
tionally less expensive because of the selectively cho-
sen events in the execution of a program;

• Moreover, the high-level property-driven models are
written in a declarative medium which makes them
more human-readable; hence they can also serve as
documentation artefacts between successive applica-
tion testers during software evolution;

To cope with the large degrees of freedom our platform
offers, we outlined a four-step recipe which guides a user
of our platform for testing a specific system property. We
validated this recipe through testing a particular kind of be-
haviour of the garbage collector in the Pico language in-
terpreter and were able to find some undiscovered bugs in
the implementation. The BEHAVE platform has also been
validated in the context of documenting and verifying high-
level behavioral program documentation [13].

Up until now, our approach has only been applied to the
Pico case study for two different properties. However it will
be applied onto other case studies as well in the near future.
It would also be fairly straightforward to apply our approach
to object-oriented applications. So far we only applied our
approach to C code, but we have the technology available to
apply it to programs written in the object-oriented program-
ming paradigm as well using SOUL [11, 8].

Furthermore we are planning experiments to use our
platform in a teaching environment to aid a student in grasp-
ing the concepts of a particular program under study.

References

[1] M. Auguston. Building Program Behavior Models. InProc.
of the European Conf. on Artificial Intelligence Worksh. on
Spatial and Temporal Reasoning (ECAI98), pages 19–26,
1998.

[2] M. Auguston. Tools for Program Dynamic Analysis, Test-
ing, and Debugging Based on Event Grammars. InProceed-
ings of the 12th International Conference on Software En-
gineering and Knowledge Engineering (SEKE), pages 159–
166, July 6-8 2000.

[3] F. Brooks.The Mythical Man-Month. Addison-Wesley, 2nd
edition edition, 1995.

[4] C. Brzoska. Temporal Logic Programming with Metric and
Past Operators. InProc. of the Worksh. on Executable Modal
and Temporal Logics, pages 21–39, 1995.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Check-
ing. MIT Press, 1999.

[6] M. Ducasśe. Coca: An automated Debugger for C. InProc.
of the 21st Intl. Conf. on Software engineering (ICSE99),
pages 504–513, 1999.

[7] S. Ducasse, M. Freidig, and R. Wuyts. Logic and
Trace-based Object-Oriented Application Testing. InProc.
of the Intl. Worksh. on Object-Oriented Reengineering
(WOOR04), 2004.

[8] J. Fabry and T. Mens. Language-Independent Detection
of Object-Oriented Design Patterns.Elsevier International
Journal on Computer Languages, Systems & Structures -
Proceedsings of the ESUG 2004 Conference., 30(1-2):21–
33, 2004.

[9] P. Hamill. Unit Test Frameworks. O’Reilly, November 2004.
[10] M. Karaorman and J. Freeman. jMonitor: Java Runtime

Event Specification and Monitoring Library. InProc. of the
4th Intl. Worksh. on Run-time Verification (RV04), volume
113 of Electronic Notes in Theoretical Computer Science,
pages 181–200, 2004.

[11] K. Mens, I. Michiels, and R. Wuyts. Supporting Software
Development Through Declaratively Codified Programming
Patterns. InProceedings of the 13th International Soft-
ware Engineering and Knowledge Engineering Conference
(SEKE01), 2001.

[12] W. D. Meuter, T. D’Hondt, and J. Dedecker. Pico: Scheme
for Mere Mortals. InOnline Proc. of the 1st European Lisp
and Scheme Worksh., 2004.

[13] C. D. Roover, I. Michiels, K. Gybels, K. Gybels, and
T. D’Hondt. An Approach to High-Level Behavioral Pro-
gram Documentation Allowing Lightweight Verification. In
Proceedings of the 14th International Conference on Pro-
gram Comprehension (ICPC 2006), Athens, June 14-16 (To
be published), 2006.

[14] K. Templer and C. Jeffery. A Configurable Automatic In-
strumentation Tool for ANSI C. InProc. of the 13th IEEE
Intl. Conf. on Automated Software Engineering (ASE98),
page 249, 1998.


