
Proceedings of the
First Domain-Specific Aspect

Languages Workshop

ACM International Conference on Generative Programming
and Component Engineering (GPCE 2006)

October 22-26, 2006
Portland, Oregon

Technical Report VUB-PROG-TR-06-33
Vrije Universiteit Brussel

Foreword

Although the majority of work in the AOSD community focuses on
general-purpose aspect languages (eg. AspectJ), seminal work on
AOSD proposed a number of domain-specific aspect languages, such
as COOL for concurrency management and RIDL for serialization. A
growing trend of research in the AOSD community is returning to this
seminal work, motivated by the known advantages of domain-specific
approaches, as argued by Mitchell Wand in his keynote at ICFP
2003. This workshop is conceived for researchers who are further
exploring the area of domain-specific aspect languages, including
language design, enabling technologies and composition issues.

This volume contains 6 papers and abstracts of invited talks. We hope
the reader will find them useful for advancing their understanding of
some issues in concerning the design of aspect languages.

The organizing committee:
Éric Tanter (University of Chile, Chile)

Thomas Cleenewerck (Vrije Universiteit Brussel, Belgium)
Johan Fabry (Vrije Universiteit Brussel, Belgium)

Anne-Françoise Le Meur (University of Lille, France)
Jacques Noyé (École des Mines de Nantes, France)

Technical Papers

A. H. Bagge, K. T. Kalleberg. DSAL = library + notation:
Program Transformation for Domain-Specific Aspect
Languages. ..Page 4

J. Fabry, N. Pessemier. KALA: A Domain-Specific Solution
to Tangled Aspect Code. ... Page 12

D. Rebernak, M. Mernik, H. Wu, J. Gray. Domain-Specific
Aspect Languages for Modularizing Crosscutting Concerns
in Grammar. ... Page 19

S. M. Watt. Post Facto Type Extension for Mathematical
Programming. .. Page 26

Position Papers

Y. Coady, C. Gibbs, M. Haupt, J. Vitek, H. Yamauchi.
Towards a Domain-Specific Aspect Language for Virtual
Machines. .. Page 33

D. Hutchins. Partial Evaluation + Reflection = Domain-
Specific Aspect Languages. .. Page 37

Submitted to DSAL’06

DSAL = library+notation:
Program Transformation for Domain-Specific Aspect Languages

Anya Helene Bagge Karl Trygve Kalleberg
University of Bergen, Norway

{anya,karltk}@ii.uib.no

Abstract
Domain-specific languages (DSLs) can greatly ease program
development compared to general-purpose languages, but
the cost of implementing a domain-specific language can be
prohibitively high compared to the perceived benefit. This is
more pronounced for narrower domains, and perhaps most
acute for domain-specific aspect languages (DSALs).

A common technique for implementing a DSL is writ-
ing a software library in an existing programming language.
Although this does not have the same syntactic appeal and
possibilities as a full implementation, it is a technique familiar
to most programmers, and it can be done cheaply compared
to developing a full DSL compiler. Subsequently, the desired
notation may be implemented as a simple syntactic prepro-
cessor. The cross-cutting nature of DSALs, however, makes it
difficult to encapsulate these in libraries.

In this paper, we show a technique for implementing a
DSAL as a library+notation. We realize this by implementing
the library in a program transformation system and the
notation as a syntactic extension of the subject language.
We discuss our experience with applying this technique to
multiple kinds of DSALs.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.11 [Soft-
ware Architectures]: Langauges, Domain-specific architec-
tures; D.3.4 [Programming Languages]: Processors—Translator
writing systems and compiler generators

General Terms Design, Languages

Keywords Domain-Specific Aspect Languages, Aspect-
Orientation, Program Transformation

1. Introduction
The implementation of domain-specific abstractions is usu-
ally done by way of libraries and frameworks. Although
this provides the semantics of the domain, it misses out on
good notation and many optimisation opportunities. Imple-
menting domain specific languages by adding notation (syn-
tax) to a library, and then programming a simple compiler

[copyright notice will appear here]

that translates from the notation into equivalent library calls
is an easy and powerful technique, which is cost-effective
in many larger domains. Both the libraries and the sim-
ple compiler can be implemented in general purpose lan-
guages without too much effort, and it is important to note
that the library need not be implemented in the same lan-
guage as the compiler. If the “library” language supports
syntax macros, like Scheme [16], or has a sufficiently pow-
erful meta-programming facility, like C++ templates [1], the
translation task may be accomplished through the inherent
meta-programming constructs of this language. Otherwise,
a stand-alone preprocessor is commonly used. For example,
adding complex numbers or interval arithmetic to Java, with
an appropriate mathematical notation, can be accomplished
by writing or reusing a Java library, and writing a simple
translator from the mathematical notation into OO-style calls.
The approach of adding notation to (object-oriented) libraries
was explored in the MetaBorg project [12], where the subject
language Java was extended in various ways using Stratego
as the meta-programming language.

For domain-specific aspect languages, the translation
story is different. Behind the notation visible to the pro-
grammer lie cross-cutting concerns which may reach across
the entire program, possibly requiring extensive static anal-
ysis to resolve. The straight-forward translation scheme into
library calls for the subject language is not applicable as we
are no longer dealing with basic macro expansion. Instead,
we shall view aspects as meta-programs that transform the
code in the base program. These meta-programs may be im-
plemented with transformation libraries in a transformation
language (which may be different from the subject language).
This allows us to consider DSALs as syntactic abstractions
over transformation libraries, analogous to the way DSLs are
syntactic abstractions over base libraries in the subject lan-
guage. That is, we do not translate the DSAL notation into
library calls in the subject language, but rather to library calls
in the transformation language. Provided that the transfor-
mation language has a sufficiently powerful transformation
library for the subject language, writing a transformation li-
brary extension for a domain-specific aspect is an easy task.
We will demonstrate this technique by example, through the
construction of Alert, a small error-handling DSAL extension
to the Tiny Imperative Language (TIL).

The main contributions of this article are: A discussion of
how the library + notation method for DSLs can be applied to
DSALs, if the library is implemented in a meta-language;
an example of the convenience of employing a program
transformation language in the implementation of DSALs,
compared to implementation in a general-purpose language;

transdsal rev. exported 1 2006/10/8

and a discussion of our experience with this technique for
several different subject languages and aspect domains.

The paper is organised as follows. We will begin by
briefly introducing our DSAL example and the TIL language
(Section 2), before we discuss the implementation of our
DSAL using program transformation (Section 3). Finally, we
discuss our experiences and related work (Section 4), then
offer some concluding remarks (Section 5).

2. The Alert DSAL
Handling errors and exceptional circumstances is an impor-
tant, yet tedious part of programming. Modern languages
offer little linguistic support beyond the notion of exceptions,
and this language feature does not deal with the various
forms of cross-cutting concerns found in the handling of er-
rors, namely that the choice of how and where errors are han-
dled is spread out through the code (with ifs and try/catch
blocks at every corner), leading to a tangling of normal code
and error-handling code. Also, the choice of how to handle
errors is dependent on the mechanism by which a function re-
ports errors—checking return codes is different from catching
exceptions, even though both may be used to signal errors.
Confusingly, even the default action taken on error depends
on the error reporting mechanism, from ignoring it (for return
codes and error flags) to aborting the program (exceptions).

The Alert DSAL allows each function in a program to de-
clare its alert mechanisms—how it reports errors and other
exceptional situations that arise, and allows callers to specify
how alerts should be handled (the handling policy), indepen-
dent of the alert mechanism. We use the word alert for any
kind of exceptional circumstance a function may wish to re-
port; this includes errors, but may also be other out-of-band
information, such as progress reports. Typical examples of
alert mechanisms are exceptions, special return values (com-
monly 0 or -1) or global error flags (errno in C and POSIX,
for instance). Ways of handling alerts include substituting
a default value for the alerting function’s return code; log-
ging and continuing; executing recovery code; propagating
the alert up the call stack; aborting the program, or simply
ignoring the alert.

The alert extension is a good example of a domain-specific
aspect language. It allows separation of several concerns: the
mechanism (how an alert is reported) is separated from the
policy (how it is handled), and code dealing with alerts is
separated from code dealing with normal circumstances. The
granularity of the policies (i.e., to what parts of the code
they apply) can be specified at different scoping levels, from
expressions and blocks to whole classes and packages.

Separating normality and exceptionality has already been
demonstrated with AspectJ [23], but the AspectJ solution is
less notationally elegant, and fails to separate mechanism
from policy (it only deals with exceptions).1 Using domain-
specific syntax makes the extension easier to deal with for
programmers unfamiliar with the full complexity of general
aspect languages. Our alert extension is described in full in
[6]. Here, we will look at the implementation of a simplified
version for the Tiny Imperative Language.

2.1 The TIL Language

The Tiny Imperative Language (TIL) is a simple imperative
programming language used for educational [10] and com-

1 We are not experts on aspect orientation, but we believe that the full
separation of concerns available with our alert system is difficult if
not impossible to achieve with existing general aspect languages.

Alert declaration. Alert declarations are given after the regular
function declaration. Actual arguments and the function’s return
value are available in the alert condition expressions. Pre-alerts have
a condition that is checked before a call to the function and typically
involve checks on the arguments; post-alerts are checked after the
call has returned, and typically involve the return code (accessible
as the special variable value, legal only in alert conditions and
handlers.).
FunDecl AlertDecl -> FunDecl
"pre" Exp "alert" Id -> AlertDecl
"post" Exp "alert" Id -> AlertDecl
"value" -> Exp

Figure 1. Grammar for TIL function declarations with alert
extension.

parison purposes in the program transformation community.
The grammar for TIL is given in the appendix (Section A). A
TIL program consists of a list of function definitions followed
by a main program. TIL statements include the usual if,
while,for and block control statements, variable declarations
and assignments. Expressions include boolean, string and in-
teger literals, variables, operator calls and function calls. We
will use the name TIL+Alert for the extended TIL language.

2.2 Alert declarations and handlers

An alert declaration specifies a function’s alert mechanisms.
Our simple extension allows two ways of reporting alerts; via
a condition which is checked before a call, or via a condition
checked after a call. The pre-checks allows a function to
report invalid parameters (before the call, avoiding the need
for checks within the function itself), while the post-checks
can be used for testing return values. The syntax for alert
declarations is given in Figure 1. As an example, the following
function definition declares that the function lookup raises
the alert Failed if the return value is an empty string:

fun lookup(key : string) : string
post value == "" alert Failed

begin ... end

The following declaration specifies that a ParameterError
occurs if f is called with an argument less than zero, and that
if the return value is -1, an Aborted alert was raised:

fun f(x : int) : int
pre x < 0 alert ParameterError
post value == -1 alert Aborted

A handler declaration specifies what action is to be taken if
a given alert is raised in a function matched by its call
pattern (the syntax is shown in Figure 2). The call pattern
can be either * (all functions) or a list of named functions,
possibly with parameter lists. This corresponds to the pointcut
concept in AspectJ [3, 19]. The handler itself is a statement;
it can reference the actual arguments of the call (if a formal
parameter list is provided in the handler declaration), names
from the scope to which it applies, and value—the return
value of the function for which the handler was called. For
example, this handler declaration specifies that the program
should abort with an error message in case of a fatal error:

on FatalError in * begin
print("Fatal Error!");
exit(1);

end

transdsal rev. exported 2 2006/10/8

Handlers. A handler associates a statement with an alert condi-
tion; the statement is executed if the alert occurs. The use statement
substitutes a value for the return value of the alerting function.
"on" Id "in" {CallPattern ","} Stat -> Stat
"use" Exp ";" -> Stat

Call patterns. A * matches a call to any function. The second
form matches a call to a named function; the third form makes the
actual arguments of the call available to the handler.

"*" -> CallPattern
Id -> CallPattern
Id "(" {Id ","}* ")" -> CallPattern

Figure 2. Grammar for handler declarations. The notation {X
Y}*means X repeated zero or more times, separated by Ys.

The use statement is used to “return” a value from the
handler; this value will be given to the original caller as if
it was returned directly from the function called:

on Failed in lookup(k) begin
log("lookup failed: ", k);
use "Unknown";

end

The on-declaration is a statement, and applies to all calls
matching the call pattern within the same lexical scope. If
more than one handler may apply for a given alert, the most
specific one closest in scoping applies.

TIL+Alert does not add anything that can not be expressed
in TIL itself, at the cost of less notational convenience. For
example, given the above alert and handler declarations, a
call

print(lookup("foo"));

would need to implemented somewhat like

var t : string;
t = lookup("foo");
if t == "" then t = "Unknown"; end
print(t);

This cumbersome pattern should be familiar to many pro-
grammers (programming with Unix system calls, for in-
stance, or with C in general): save the result in a temporary
variable, test it, handle any error, resume normal operations
if no error was detected or if the error was handled. Excep-
tions alleviate the need to check for errors on every return,
but writing try/catch blocks everywhere a handler is needed
is still cumbersome, and changing handling policies for large
portions of code is tedious and error-prone.

3. Implementation of TIL+Alert
We have several possibilities when faced with the task of
implementing a DSAL, or a language extension in general:

1. Compile to object code—write an entirely new compiler
for the extended language.

2. Compile to unextended language—write an aspect-
weaving preprocessor for an existing compiler.

3. Compile to aspect language—write a preprocessor for an
existing aspect weaver.

The first choice is typically the most costly, and therefore
also the least attractive. The second option is a common
technique for bootstrapping new languages, and was used

for both C++ and AspectJ. The third option is only possible
if the subject language we are extending already supports
a form of aspects which can be suitably used for writing
implementing (most of) the semantics of our DSAL. We will
discuss this option in more detail in Section 4.

DSALs are almost by definition extensions of existing
languages, and we can therefore expect to have at least
some language infrastructure. In other words, we need only
consider the latter two situations above. In our experience,
implementing the aspect extension as library + notation in a
program transformation system is a very efficient approach
in terms of development time.

3.1 DSAL = library + notation

We have said that (alert handling) aspects are meta-programs,
then showed the programmer notation for these in Section 2.2
where we discussed the alert grammar. This covers the
“notation” half of our equation. Now we will discuss how
the semantics are implemented as a transformation library
written in a program transformation system.

Stratego/XT [11] is our implementation vehicle of choice.
Stratego is a domain-specific language for program transfor-
mation based on the paradigm of strategic programming [21]
and provides many convenient language abstractions for our
problem domain. The language is bundled with XT, a set
of reusable transformation components and generators—in
particular a formalism for defining language syntax, called
SDF [26]—that support the development of language pro-
cessing tools. In Section 4 we will discuss some of the benefits
and drawbacks of using program transformation systems for
implementing aspect weavers.

An existing language infrastructure for TIL exists that pro-
vides a grammar, a rudimentary compiler that does type
checking and optimization, and finally a runtime that exe-
cutes the compiled result. Together, these components make
out a general-purpose transformation library for TIL. Using it,
we can implement any program analysis and transformations
on TIL programs [10]. The Alert grammar is implemented as
a separate grammar module of about 30 lines of SDF code.
Compositing this with the basic TIL grammar results in the
complete syntax for the TIL+Alert language, c.f. the first step
in Figure 3. We then use the TIL transformation library to
implement a new Alert transformation library. Based on this,
we can run meta-programs which perform the semantics of
the alert constructs, i.e. the on and pre/post declarations: At
compile-time, an abstract syntax tree for TIL+Alert is con-
structed and the corresponding meta-program for each alert
construct is executed. Once all alert constructs in the pro-
gram have been handled, the base program will have been
rewritten. This completes the aspect weaving.

Ideologically, our approach can be considered an exam-
ple of the “transformations for abstractions”-philosophy de-
scribed by Visser [27] – we are effectively extending the open
TIL infrastructure with transformations (our meta-programs)
that provide new abstractions (the alerts). Next, we will de-
scribe the principles behind the implementation of the alert
extension, and pay particular attention to the weaving done
by the meta programs.

3.2 Type Checking

The constructs of the Alert language (pre, post, on and use)
require their own type checking. To do this, we exploit the
construction of the basic TIL type checker. It is a rule set.
By adding new type checking rules to this set, we can easily

transdsal rev. exported 3 2006/10/8

TIL
syntax

Alert
syntax+

TIL
typecheck

Alert
typecheck+

Alert weave

TIL optimize

TIL runtime

Figure 3. Implementation schematics. The Alert weave step
implements the interpreter for the Alert meta-language and
transforms a TIL+Alert program into a valid TIL program.

extend its domain (i.e. the ASTs it can process), as we do here
for use. The following is a Stratego rewrite rule:

TypecheckUse: Use(e) -> Use(e’){t}
where <typecheck-exp ; typeof> e => t

This rule, named TypecheckUse, says that if we are at a Use
node in the AST with one subnode called e (this happens
to be an expression), then we reuse the typecheck-exp
function from the TIL library and annotate the Use node
with the computed type t. The ; operator works as function
composition. The cases for pre and post are very similar.
For type checking purposes, we define an on declaration to
be a statement, thus having the void type. These few rules
implement the “Alert typecheck” box in Figure 3.

3.3 Alert Weaving

The compilation flow in Figure 3 shows that after type check-
ing, the DSAL meta-program parts of a TIL+Alert program
are executed, effectuating the weaving. Once weaved, the
Alert constructs are gone and the rest of the pipeline will
process a pure TIL program. This program is optimised and
compiled using unmodified steps of the TIL compiler.

The DSAL notation can be expanded using the simple
translation scheme for we DSLs, described in the introduc-
tion, i.e. basic macro expansion, but with one crucial differ-
ence: whereas the DSL notation is expanded to library calls
of a subject language library, the DSAL notation is expanded
to library calls of a transformation language library, and the
transformation language is generally different from the sub-
ject language. Here, TIL is our subject language and Stratego
is our transformation language. Essentially, the DSAL nota-
tion is a syntactic abstraction over the Alert transformation
library. This notation is embedded in the subject language
(TIL), providing a distilled form of meta-programming in-
side TIL for managing the error handling concern.

When weaving Alert, we have to consider three constructs:
the modified function definitions which now have pre/post
conditions, the on handler declarations, and function calls.
The code for the following cases are all part of the Alert
transformation library where they are are implemented as
Stratego rewrite rules. When the DSAL notation is expanded,
it results in calls to these rules.

Pre/Post Conditions on Function Definitions Pre/post con-
ditions are easy to process. They are merely markers, or an-
notations, on the functions. The expression of a pre/post con-

dition can only be activated by an on-handler, so the meta-
program processing the pre/post conditions has two tasks:
first, to store the alert declaration for later use, and second,
to remove it from the AST so that we may eventually reach a
pure TIL AST. The following rewrite rule, WeaveFunDef, does
this:

WeaveFunDef:
FunDef(x@FunDeclAlert(fd@FunDecl(n, _, _), _), body) ->
FunDef(fd, body)

where rules(Functions: n -> x)

It takes a function definition (a FunDef node) that has a
subnode which is a pre/post condition (a FunDeclAlert) and
rewrites the FunDef node to a pure TIL FunDef by removing
the FunDeclAlert node. Further, WeaveFunDef creates a new,
dynamic rule called Functions that records a mapping from
the name of this function to its complete pre/post alert
declaration. A dynamic rule works exactly like a rewrite
rule, but can be introduced at runtime, much like closures
in functional programming languages. This is done with the
rules construct. After WeaveFunDef has finished, the pre/post
condition is removed, and the Functions rule can now be
used as a mapping function from the name of a TIL+Alert
function to its declaration.

In the code above, _ is the wildcard pattern (matches
anything) and v@p(x) means bind the variable v to the AST
matched by the pattern p(x).

On The processing of on itself is also easy. Its node is
removed from the AST and we add it to the current set
of active on-handlers, maintained in the dynamic rule On.
On maps from the name of an alert to the call patterns and
handler for it.

WeaveOn: On(n, patterns, handler) -> None
where rules(On : n -> (patterns, handler))

Function Calls Rewriting function calls to adhere to the
new semantics is the crux of the Alert DSAL, and is done
by WeaveFunCall. This rule implements the following trans-
lation scheme. Consider the pattern for functions f in the
following form, where f is the function name, fi are the vari-
able names, ti are the corresponding types, tr is the return
type, and the precondition is as explained earlier:

fun f(f0 : t0, ...) : tr
pre exp alert signal

begin ... end

Whenever we see the declaration of an on handler, we need to
process the subsequent calls in the same (static) scope, since
these may now need to be transformed. We are looking for
patterns on the form:

on signal in pattern handler;
...
z := f(e0, ...);

When we encounter an instance of this pattern, we may need
to replace the call to f by some extra logic that performs the
precondition check and, if necessary, executes the relevant
on-handler according to the following call template2.

z := begin

2 The begin/end block here is called an expression block. It is
effectively a closure that must always end in a return. It will
be removed by a later translation step that lifts out the variables
contained within it, finally giving a valid TIL program.

transdsal rev. exported 4 2006/10/8

var r : tr;
var a_0 : t_0 := e_0; ...
if exp then handler
else r := f(a_0, ...) end
return r;

end

WeaveFunCallwill perform the aspect weaving. We will now
describe the principles behind it, but not present the full
source code, as this is available in the downloadable source
code for TIL+Alert (see Section 5).

The weaving of WeaveFunCall can only happen at FunCall
nodes, i.e. nodes in the TIL+Alert AST that are function
calls. Assume WeaveFunCall is applied to a function call of
the function f . First, it will check that f signals alerts by
consulting the Function dynamic rule that was produced by
WeaveFunDef. If indeed f has a declared alert, then the set
of active on handlers for the current (static) scope is checked
by consulting the On dynamic rule that was initialized by
WeaveOn. Multiple on handlers can be active, so another Alert
library function is used to resolve which takes precedence
(the closest, most specific). Once the appropriate handler is
found, the function call to f is rewritten according to the call
template shown above, i.e. the FunCall node is replaced by
an expression block (an EBlock) which does the precondition
check before the call.

Extra care must be taken in the handling of variable
names during this rewrite. The precondition expression is
formulated in terms of the formal variable names of f , so we
cannot insert that subtree unchanged. We must remap the
variables, and this is done by a function called remap-vars.
As the call template shows, for each formal parameter fi of
f , we create a local variable ai that is assigned the actual
value from the call site. We rename the variables in the
precondition expression of f , from fi to ai, and insert the
rewritten expression as exp in the call template.

3.4 Coordination

The meta-programs induced by the on, pre and post decla-
rations are dispatched by a high-level strategy that can be
likened to an interpreter for the Alert aspect extension. This
strategy is implemented as a traversal over the TIL+Alert
AST. It contains the logic responsible for translating the Alert
notation into calls to the Alert transformation library, and in
that capacity, it corresponds to the DSL macro expander. Its
execution will coordinate the meta-programs for the various
alert constructs. Once the traversal completes, all the Alert-
specific nodes will have been excised from the tree, and the
result is a woven TIL AST that can be optimized and run.

4. Discussion
While DSLs can often be implemented as rather simple macro
expanders, the same translation scheme is apparently not ap-
plicable for DSALs. The cross-cutting nature of DSALs means
that statements or declarations in a DSAL usually have non-
local effects. A single line in the DSAL may bring about
changes to every other line in the program, and this is not
possible to achieve using macro expanders. However, the
translation scheme offered by the macro expansion technique
is appealing both because of its simplicity and its familiar-
ity; we already have ample experience and tools which may
be brought to bear if we could reformulate the DSAL im-
plementation problem to be a DSL implementation problem.
This is what our technique offers, by using a program trans-
formation system to implement the library (semantics) for the

DSAL notation (syntax). Here, we perform a brief evaluation
of our approach.

4.1 Program Transformation

Program transformation languages are domain-specific lan-
guages for manipulating program trees. Stratego and other
transformation language such as TXL [15] and ASF [25] all
have abstract syntax trees as built-in data types, rewrite rules
with structural pattern matching to perform tree modifica-
tion, concrete syntax support and libraries with generic trans-
formation functions. The advantage to using such languages
for program transformation is that the transformation pro-
grams generally become smaller and more declarative when
compared to implementations in general-purpose languages,
be they imperative, object-oriented or functional.

High-level Transformations In our experience, when do-
ing experiments with aspect language and aspect weaving,
working with on high-level program representation such as
the AST is often preferable to lower-level representions tra-
ditionally found in compiler-backends. The AST provides all
the information from the original source code and is together
with a symbol table a convient and familar data structure
to work with. When working with ASTs, it is important for
the transformation language to have good support for both
reading and manipulating trees and tree-like data structures.

Generic Tree Traversals Many program transformation lan-
guages and functional languages, especially members of the
ML family, have linguistic support for pattern matching on
trees. We have already seen pattern matching in Stratego in
the rewrite rules in Section 3. Using recursive functions and
pattern matching, tree traversals are relatively simple to ex-
press, e.g.:

fun visit(Or(e, e)) = ..
| visit(And(e, e)) = ..

In object-oriented (OO) languages, the Visitor pattern is a
common idiom for tree traversal, but compared to pattern
matching with recursion, it is very verbose. Both techniques
perform poorly when the AST changes, however. Introducing
a new AST node type requires changes to all recursive visitor
functions, or in the OO case to the interface of the Visitor
(and thus all classes implementing it). There is, however, an
aspect-oriented solution to the cross-cutting-concern part of
this problem [22].

Generic programming [20] in functional languages and
generic traversals, as offered in Stratego, provide a solution.
Generic traversals also allow arbitrary composition of traver-
sal strategies.

bottomup(s) = all(bottomup(s)); s

This defines bottomup (post-order traversal) of a transforma-
tion s as “first, apply bottomup(s) recursively to all children
of the current node, then apply the transformation s to the
result”. Once defined, this function can be used to succinctly
program the variable renaming needed by the WeaveFunDef
in Section 3.3:

remap-vars(|varmap) =
bottomup(try(\ Var(n) -> Var(<lookup> (n, varmap)) \))

Syntax Analysis Support Program transformation lan-
guages typically come with parsing toolkits and libraries for
manipulating existing languages, reducing the effort needed
to create a language infrastructure. Also, there is often a tight

transdsal rev. exported 5 2006/10/8

integration between the parser and the transformation lan-
guage in transformation systems. Among other things, this
allows expressing manipulations of code fragments from the
subject language very precisely, using concrete syntax.

Rewriting with Concrete Syntax Another important task is
tree manipulation. Rewrite rules provide a concise syntax
and semantics for tree rewriting, but rewriting on ASTs
can of course be expressed in any language. In program
transformation languages, rewriting with concrete syntax, i.e.
using code fragments written in the subject language is often
provided, and this may improve the readability of rewrite
rules considerably, e.g.:

Optimize: |[if 0 then ~e0 else ~e1 end]| -> |[~e1]|

Here, ˜e0 and ˜e1 are a meta-variables, i.e. variables in
the transformation language (Stratego) and not the subject
language (TIL).

Generic Transformation Libraries Libraries for language
processing are not unique to program transformation sys-
tems, but transformation libraries often contain quite exten-
sive collections of tree traversal and rule set evaluation strate-
gies not found elsewhere. Also, some transformation systems
provide generic, reusable functionality for data- and control-
flow analysis, as well as basic support for variable renaming
and type analysis. However, the libraries of transformation
systems are often less complete than that of general purpose
languages, when it comes to typical abstract data types.

Maturity and Learning Curve A clear disadvantage of con-
temporary program transformation systems is their relative
immaturity when compared to implementations of main-
stream, general-purpose languages. The compilers are usu-
ally slower, the development environments are not as ad-
vanced, and fewer options for debugging and profiling exist.
Further, the same domain abstractions that make domain-
specific transformation languages effective to use, also make
them more difficult to learn, a tradeoff that must be evaluated
when considering the use of a transformation language.

4.2 Program Transformation Languages for Aspect
Implementation

The stance we take in this paper is that a aspect languages
are a form of domain-specific transformation language; they
provide convenient abstractions (join points, pointcuts, ad-
vice) for performing certain kinds of transformations (as-
pect weaving—dealing with cross-cutting concerns). They
hide the full complexity of program transformation from pro-
grammers. Domain-specific aspect languages are even more
domain-specific, and hide the complexities of general aspects
from their users.

As domain-specific transformation languages, DSALs are
conveniently implemented as libraries in a program transfor-
mation language. We make this claim based on our experience
with the DSAL = library+notation method from constructing
the following systems:

• A domain-specific error-handling aspect language [6]—
a simplified version of this is used as an example in
this paper. Our current implementation is for C, and
is implemented in the Stratego program transformation
language [11] using the C Transformers framework [9].
• A component and aspect language for adaptation and

reuse of Java classes. An early version of this is described
in [5]; it is implemented by translation to AspectJ [3, 19],
using Stratego.

• AspectStratego [18]—an aspect-language extension to the
Stratego program transformation language; implemented
in Stratego itself, by compilation to primitive Stratego
code.
• CodeBoost [7]—a transformation system for C++ that pro-

vides user-defined rules; an aspect language that allows
users to declare library-specific optimization patterns in-
side the C++ code. The patterns are simple rewrite rules,
executed at compile-time. User-defined rules is imple-
mented with the library+notation technique, with the li-
brary written in Stratego.

Part of the design goals for many of these experiments was
harnessing the expressive power of general program trans-
formation systems into “domain-specific transformation lan-
guages” that the programmers of the subject languages could
benefit from. In a word, these domain-specific transformation
languages are DSALs. For most of our systems, the transfor-
mations underlying these extensions, i.e. the implementation
of the DSAL semantics, are reusable Stratego libraries, and
form the basis for further extensions and experiments.

Experiences One lesson learned from the construction of
these DSALs is that good infrastructure for syntax extensions
of the subject language is important. Reusing frontends from
existing compilers usually preclude extending the syntax, as
that would require massive changes to the frontend itself
(and for mainstream languages, this is a substantial task).
Implementing robust grammars for complicated languages
like C++ and Java is infeasible, so language infrastructures
provided by program transformation systems were of great
help to us. Another lesson is that familiarity with language
construction is crucial. Extending a subject language with
an arbitrary DSAL may be very complicated, depending on
what the DSAL is supposed to achieve. It may therefore be
premature to expect regular developers to be able to design
their own DSAL language extensions. This is often in more
due to the complex semantics of the subject language itself,
than the complexity of the DSAL.

4.3 Related Work

JTS, the Jakarta Tool Suite [8] is a toolkit for developing
domain-specific languages. It consists of Jak, a DSL-extension
to Java for implementing program transformation, and Bali,
a tool for composing grammars. Jak allows syntax trees and
tree fragments to be written in concrete syntax within a Java
program, and provides abstractions for traversal and modifi-
cation of syntax trees. Bali generates grammar specifications
for a lexer and parser and class hierarchies for tree nodes,
with constructor, editing and unparsing methods. Bali sup-
ports composition of grammars from multiple DSLs. DSL
development with JTS is much like what we have described
here; an existing language is extended with domain-specific
syntax (in Bali), and a small tool is written (in Jak), translating
the DSL to the base language.

XAspects [24] is a system for developing DSALs. It pro-
vides a plug-in architecture supporting the use of multiple
DSALs within the same program. Declarations belonging to
each DSAL are marked syntactically, picked up by the XAs-
pects compiler and delivered to the plug-ins. The plug-ins
then perform any necessary modification to the visible pro-
gram interface (declared classes and methods). Bytecode is
then generated by the AspectJ compiler; the plug-ins then
have an opportunity to perform cross-cutting analysis and
generating AspectJ code which is woven by the AspectJ com-
piler. Thus, implementation of a new DSAL is reduced to cre-

transdsal rev. exported 6 2006/10/8

ating a plug-in which performs the necessary analyses and
generates AspectJ code. Our method, with program transfor-
mation, can either complement XAspects, as a way of im-
plementing XAspects plug-ins, or replace it, by developing
a libraries for AspectJ manipulation in a program transfor-
mation language. The plug-in architecture of XAspects is ap-
pealing, as it forces possibly conflicting DSALs to conform to
a common framework, making composition of DSALs easier.
Both XAspects and our implementation can be seen as li-
brary+notation approaches. However, since domain-specific
aspects in XAspects can only modify existing code using As-
pectJ advice and intertype declarations, there are limits to the
invasiveness of the DSAL expressed with XAspects. Our im-
plementation strategy has no such constraint since Stratego
supports any kind of code modification.

The AspectBench Compiler [2] provides another open-
ended aspect compiler, but is more focused on general aspect
languages. It implements the AspectJ language, but is also
intended as research platform for experimenting with aspect
language extensions generally.

Logic meta programming (LMP) is proposed as a frame-
work for implementing DSALs in [13], because expressing
cross-cutting concerns using logic languages is appealing. We
believe that our approach could be instantiated with an LMP
system as well: the DSAL notation may be desugared into
small logic meta-programs which perform the actual weav-
ing. Depending on the logic language, constructing and com-
positing logic-based transformation libraries may be possible.

In [14], the authors argue that AOP is a general discipline
that should be confine itself in a domain-specific language,
but rather be addressed with a general, open framework for
composing all kinds of aspects. Such an infrastructure, should
it be constructed, would be an interesting compilation target
to expand DSAL notation to.

Gray and Roychoudhury [17] describe the implementation
of a general aspect language for Object Pascal using the DMS
program transformation system. They conclude that since
transformation systems often provide good and reusable lan-
guage infrastructure for various subject languages, they are
good starting points when developing new aspect extensions.
We are of the same opinion, and advocate a disciplined ap-
proach where the aspect extensions themselves are imple-
mented as reusable transformation libraries that may in turn
be used a substrate for later extensions.

Assman and Ludwig [4] describe the implementation of
aspect weaving using graph rewrite systems. The authors
express the weaving steps in terms of graph rewrite rules,
similar to how we describe them as tree rewrite rules. In
principle, transformation libraries could be constructed from
the sets of graph rewriting rules, but the rule set appears
to always be evaluated exhaustively. This makes rule set
composition (i.e. library extension) problematic, since two
rule sets that are known to terminate may no longer terminate
when composed. In Stratego, there is no fixed normalization
strategy; the transformation programmer may select one from
the library or compose one herself, which in practice adds a
very useful degree of flexibility.

5. Conclusion
In this paper, we have discussed the library+notation method
for implementing DSLs: building a library that implements
the semantics of the domain, a syntax definition for the de-
sired notation, and a simple translator that expands the no-
tation into library calls. We showed how this method can
also be used effectively for implementing DSALs by writ-

ing the library part in a program transformation system,
expressing the notation as a syntax extension to a subject
language, and translating the notation of the DSAL into li-
brary calls in the transformation system. This makes the
DSAL a meta-program that is executed at compile-time, and
that will rewrite the subject program according to the im-
plemented DSAL semantics. Our illustrating examples were
based around a small imperative language with an aspect
extension for separately declaring error handling policies.

We argued that, based on our experience, program trans-
formation systems are ideal vehicles for implementing such
libraries because they themselves come with domain-specific
languages and tools for doing language processing, which
greatly reduces the burden of implementation when com-
pared to general purpose languages.

The complete implementation of TIL+Alert is available at
www.codeboost.org/alert/til.

Acknowledgments
Kalleberg is supported by the The Research Council of Nor-
way (NFR) through the project PLI-AST. We would like to
thank the anonymous reviewers for insightful feedback.

References
[1] D. Abrahams and A. Gurtovoy. C++ Template Meta-

Programming. Addison-Wesley, Boston, MA, USA, 2005. ISBN
0-321-22725-5.

[2] C. Allan, P. Avgustinov, A. S. Christensen, B. Dufour, C. Goard,
L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, J. Tibble, and C. Verbrugge. abc: the
AspectBench compiler for AspectJ – a workbench for aspect-
oriented programming language and compilers research. In
OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 88–89. ACM Press, New York, NY, USA,
2005. ISBN 1-59593-193-7.

[3] AspectJ homepage. URL http://eclipse.org/aspectj/.

[4] U. Assmann and A. Ludwig. Aspect weaving with graph
rewriting. In GCSE ’99: Proceedings of the First International
Symposium on Generative and Component-Based Software Engi-
neering, pages 24–36. Springer-Verlag, London, UK, 2000. ISBN
3-540-41172-0.

[5] A. H. Bagge, M. Bravenboer, K. T. Kalleberg, K. Muilwijk,
and E. Visser. Adaptive code reuse by aspects, cloning
and renaming. Technical Report UU-CS-2005-031, Utrecht
University, 2005.

[6] A. H. Bagge, V. David, K. T. Kalleberg, and M. Haveraaen.
Stayin’ alert: Mouldable exception handling. In Fifth Inter-
national Conference on Generative Programming and Component
Engineering (GPCE 2006). ACM Press, Portland, Oregon, Octo-
ber 2006.

[7] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser. Design
of the CodeBoost transformation system for domain-specific
optimisation of C++ programs. In D. Binkley and P. Tonella,
editors, Third International Workshop on Source Code Analysis
and Manipulation (SCAM 2003), pages 65–75. IEEE Computer
Society Press, Amsterdam, The Netherlands, September 2003.

[8] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. In ICSR ’98:
Proceedings of the 5th International Conference on Software Reuse,
page 143. IEEE Computer Society, Washington, DC, USA, 1998.
ISBN 0-8186-8377-5.

[9] A. Borghi, V. David, and A. Demaille. C-transformers:
A framework to write C program transformations. ACM
Crossroads, 12(3), April 2006.

transdsal rev. exported 7 2006/10/8

[10] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT Tutorial, Examples, and Reference Manual. Department
of Information and Computing Sciences, Universiteit Utrecht,
Utrecht, The Netherlands, August 2005. (Draft).

[11] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.16: Components for transformation systems. In
F. Tip and J. Hatcliff, editors, PEPM’06: Workshop on Partial
Evaluation and Program Manipulation. ACM Press, January 2006.

[12] M. Bravenboer and E. Visser. Concrete syntax for objects:
domain-specific language embedding and assimilation without
restrictions. In OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 365–383. ACM Press, New
York, NY, USA, 2004. ISBN 1-58113-831-9.

[13] J. Brichau, K. Mens, and K. D. Volder. Building composable
aspect-specific languages with logic metaprogramming. In
GPCE ’02: The ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering, pages 110–127.
Springer-Verlag, London, UK, 2002. ISBN 3-540-44284-7.

[14] C. A. Constantinides, A. Bader, T. H. Elrad, P. Netinant, and
M. E. Fayad. Designing an aspect-oriented framework in an
object-oriented environment. ACM Comput. Surv., 32(1es):41,
2000. ISSN 0360-0300.

[15] J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. Txl: a
rapid prototyping system for programming language dialects.
Comput. Lang., 16(1):97–107, 1991. ISSN 0096-0551.

[16] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction
in Scheme. Lisp Symb. Comput., 5(4):295–326, 1992. ISSN
0892-4635.

[17] J. Gray and S. Roychoudhury. A technique for constructing
aspect weavers using a program transformation engine. In
AOSD ’04: Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 36–45. ACM Press,
New York, NY, USA, 2004. ISBN 1-58113-842-3.

[18] K. T. Kalleberg and E. Visser. Combining aspect-oriented
and strategic programming. In H. Cirstea and N. Marti-
Oliet, editors, Workshop on Rule-Based Programming (RULE’05),
Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, Nara, Japan, April 2005.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. Lindskov Knud-
sen, editor, ECOOP 2001: Object-Oriented Programming: 15th
European Conference, volume 2072 of LNCS, pages 327–353.
Springer-Verlag, June 2001. ISBN 3-540-42206-4.

[20] R. Lämmel and S. P. Jones. Scrap your boilerplate: a practical
design pattern for generic programming. SIGPLAN Not., 38(3):
26–37, 2003. ISSN 0362-1340.

[21] R. Lämmel, E. Visser, and J. Visser. Strategic program-
ming meets adaptive programming. In Proceedings of
Aspect-Oriented Software Development (AOSD’03), pages
168–177. ACM Press, Boston, USA, March 2003. URL
http://www.program-transformation.org/Transform/
StrategicProgrammingMeetsAdaptiveProgramming.

[22] K. Lieberherr, B. Patt-Shamir, and D. Orleans. Traversals of
object structures: Specification and efficient implementation.
ACM Trans. Program. Lang. Syst., 26(2):370–412, 2004. ISSN
0164-0925.

[23] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. ICSE, 00:
418, 2000. ISBN 1-58113-206-9.

[24] M. Shonle, K. Lieberherr, and A. Shah. XAspects: an extensible
system for domain-specific aspect languages. In OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 28–37. ACM Press, New York, NY, USA, 2003. ISBN
1-58113-751-6.

[25] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier.
Compiling language definitions: the ASF+SDF compiler. ACM
Trans. Program. Lang. Syst., 24(4):334–368, 2002. ISSN 0164-0925.

[26] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[27] E. Visser. Transformations for abstractions. In J. Krinke and
G. Antoniol, editors, Fifth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM’05), pages 3–12. IEEE
Computer Society Press, Budapest, Hungary, October 2005.

A. TIL Grammar
Programs. A program is a list of function definitions, fol-
lowed by a main program (a list of statements).

FunDef* Stat* -> Program

Functions. A function definition defines is function with a
given signature (FunDecl) and body (a list of statements).

"fun" Id "(" {Param ","}* ")" ":" Type -> FunDecl
FunDecl "begin" Stat* "end" -> FunDef
Id ":" Type -> Param

Statements:

"var" Id ";" -> Stat
"var" Id ":" Type ";" -> Stat
Id ":=" Exp ";" -> Stat
"begin" Stat* "end" -> Stat
"if" Exp "then" Stat* "end" -> Stat
"if" Exp "then" Stat* "else" Stat* "end" -> Stat
"while" Exp "do" Stat* "end" -> Stat
"for" Id ":=" Exp "to" Exp "do" Stat* "end" -> Stat
Id "(" {Exp ","}* ")" ";" -> Stat
"return" Exp ";" -> Stat

Expressions:

"true" | "false" -> Exp
Id -> Exp
Int -> Exp
String -> Exp
Exp Op Exp -> Exp
"(" Exp ")" -> Exp
Id "(" {Exp ","}* ")" -> Exp

Lexical syntax:

[A-Za-z][A-Za-z0-9]* -> Id
[0-9]+ -> Int
"\"" StrChar* "\"" -> String
~[\"\\\n] | [\\][\"\\n] -> StrChar

transdsal rev. exported 8 2006/10/8

KALA: A Domain-Specific Solution to Tangled Aspect Code

Johan Fabry
INRIA Futurs - LIFL, Projet Jacquard/GOAL

Bâtiment M3
59655 Villeneuve d’Ascq, France

johan.fabry@lifl.fr

Nicolas Pessemier
INRIA Futurs - LIFL, Projet Jacquard/GOAL

Bâtiment M3
59655 Villeneuve d’Ascq, France

nicolas.pessemier@lifl.fr

1. Introduction
In multi-tiered distributed systems transaction management has
long been a mainstay of concurrency management. Transactions
were however originally conceived only for brief and unstructured
database accesses. Because of this they are a poor match for appli-
cations that wish to access data in a more structured way, or for a
relatively long time. Negative consequences of this mismatch are,
for example, that transaction throughput is only optimal when each
transaction has a very short life-time. The multiple shortcomings
of classical transactions are recognized by an important body of
work in the transaction management community. To address them,
many advanced transaction models (ATMS) have been developed,
including a formalism called ACTA [CR91]. Each of these ad-
vanced models addresses a subset of the known shortcomings of
classical transactions.

As with classical transactions, advanced transaction manage-
ment is a cross-cutting concern. We have therefore investigated how
it can be modularized into an aspect and developed the domain-
specific aspect language KALA [FD06]. KALA is based on the
ACTA formalism, and KALA programs declare how a particular
application uses an ATMS, as expressed in ACTA.

When performing this research, we encountered a problem in
the aspect code itself. We found that because the ATMS concern is
a complex concern it can be subdivided in multiple sub-concerns,
and that the code for these sub-concerns cross-cut the aspect itself.
This yields aspect code which itself tangles multiple concerns. We
therefore termed this phenomenon Tangled Aspect Code.

In this paper we describe how KALA is able to address the prob-
lem of Tangled Aspect Code through the use of domain informa-
tion. KALA was developed solely for the domain of ATMS, and
with the intent to tackle this problem. As a result the modulariza-
tion for sub-concerns offered by KALA is straightforward for the
programmer and the composition of sub-concerns requires no pro-
grammer intervention.

2. KALA in a Nutshell
2.1 Advanced Transaction Management
As we have said above, a number of ATMS have been developed,
each addressing a specific set of shortcomings of classical transac-

[copyright notice will appear here]

tions. We do not give an overview of these models here, as this
is outside of the scope of this paper. Instead we briefly discuss
two well-known models: Nested Transactions [Mos81] and Sagas
[GMS87]. These are illustrated in Figures 1 and 2, and we provide
a short description of these models next.

T

Tc'Tc

Tgc Tgc'

Figure 1. The Nested Transactions ATMS

Nested transactions [Mos81] is one of the oldest and easily the
most well-known ATMS. It enables a running transaction T to have
a number of child transactions Tc. Each Tc can view the data used
by T . This is in contrast to classical transactions, where the data
of T is not shared with other transactions. Tc may itself also have
a number of children Tgc, forming a tree of transactions. When
a child transaction Tc commits its data, this data is not written
to the database, but instead delegated to its parent T , where it
becomes part of the data of T . If a transaction Tx is the root of
a transaction tree, i.e. it has no parent, Tx’s data will be committed
to the database when T commits. Lastly, if a child transaction Tc
aborts, the parent T is unaffected. T is not required to also abort,
i.e. when it ends it may choose freely to either commit or abort.

S

T1 T2 T3
C1 C2

Figure 2. The Sagas ATMS

Sagas [GMS87] is, next to Nested Transactions, one of the old-
est ATMS and also arguably one of the most referenced ATMS in
the community. Sagas is tailored towards long-lived transactions.
Instead of one long transaction T , a saga S splits T into a sequence
of sub-transactions T1 to Tn. Each sub-transaction is a normal
classical transaction and this sequence is executed completely be-
fore the saga commits. To abort or rollback a running saga S, the
currently running sub-transaction Ti is aborted and the work of
already committed transactions T1 to Ti − 1 has to be undone,

1 2006/10/5

as their results have already been committed to the database. To
allow this, the application programmer has to define for each sub-
transaction Ti a compensating transaction Ci that performs a se-
mantical compensation action. To undo the work of T1 to Ti − 1,
C1 to Ci− 1 are run by the runtime transaction monitor in inverse
sequence, i.e. starting with Ci− 1.

As said above, and illustrated by these two examples, different
ATMS exhibit different concurrency management properties. This
allows a given application to choose the advanced model that pro-
vides the best match to the concurrency management properties it
requires. Also, if no matching model exists, it is possible to cre-
ate a new model that provides the properties required by the ap-
plication. However, as we argue in [Fab05] when using traditional
software engineering approaches, there is only a small degree of
separation of concerns between the ATMS concern and the other
concerns present in the application.

2.2 ACTA and KALA
In general, to use transactions in an application, the developer needs
to add transaction demarcation code, which is spread throughout
the entire application. Using aspects, however, previous work has
successfully achieved the modularization of the concern of classical
transaction management [KG02, RC03, SLB02].

Advanced transaction models also suffer from the problem of
cross-cutting demarcation code [Fab05]. Therefore, we created the
domain-specific aspect language called KALA [FD06] to modular-
ize advanced transaction management as an aspect for Java applica-
tions. KALA is based on the ACTA formalism for ATMS [CR91],
which is accepted in the community as covering a wide field of ad-
vanced transaction models. In ACTA, extra properties are given to
classical transactions, or properties of such transactions are mod-
ified, resulting in a collection of transactions that exhibits the be-
havior of an advanced model. The formalism declares three kinds
of properties: dependencies, views and delegation which are de-
clared between two transactions. The views and delegation proper-
ties correspond to viewing and delegation between them, which we
have mentioned above when discussing nested transactions. Depen-
dencies set relationships between two transactions and can be used
to, for instance, sequence multiple transactions or trigger the be-
ginning of a compensating transaction, which will be illustrated in
Sections 4.2 and 6.1.1. KALA reifies the ACTA constructs of de-
pendencies, views and delegation as the dep, view and del state-
ments in the language. A full discussion of KALA is outside of the
scope of this paper, instead we give a brief overview here. For a full
description we refer to [FD06, Fab05].

A KALA program specifies what dependencies, views and del-
egations apply at the begin, commit and abort time of a transaction.
As is the norm in multi-tier transactional systems, the life-cycle of
a transaction coincides with the life-cycle of a method. The trans-
action begins when the method begins, commits when the method
ends normally and aborts if the method ends with a (given type
of) exception. All data accesses within this method (and within the
methods called by this method) are included in the transaction. To
identify this method, the signature of the method is used, possibly
using wildcards, similar to AspectJ [asp06]. This yields the follow-
ing overall structure of the KALA declarations for a method (square
brackets indicate placeholders for actual KALA statements):

1 MethodSignature(ArgumentList){
2 [preliminaries]
3 begin { [begin time properties] }
4 commit { [commit time properties] }
5 abort { [abort time properties] }
6 }

Note that the depencency, view and delegation specifications in-
side a begin, commit and abort block are considered to happen in
the same atomic action. Therefore the sequence of these statements
within such a block is of no importance.

In order for dependencies, views and delegation to be applied to
two transactions the KALA code needs to be able to refer to these
transactions. This is performed through the use of a global naming
service. Within KALA code, a local reference to such a name, i.e.
an alias, is obtained through the alias statement. This statement
takes the alias for that transaction, and a Java expression that eval-
uates to the key that is looked up in the name service. This expres-
sion has access to the actual parameters of the method and to aliases
which have already been resolved. The alias self is always bound
to the currently executing transaction. An alias placed in prelimi-
naries is looked up immediately before the transaction starts, and
is accessible thoughout the remainder of the KALA code for that
method. Aliases placed in begin, commit and abort blocks are
looked up at that moment in the life-cycle of the transaction, and
are only accessible at that time. A transaction can be added to the
naming service, i.e. given a global name, using the name statement.
This statement takes an alias (which may be self), and a Java ex-
pression that evaluates to the key for the naming service. Note that,
contrary to dependencies, views and delegation, the sequence of
name and alias statements is important, as the expressions used
in these statements have access to already resolved aliases.

In addition to naming, KALA also provides support for groups.
Transactions can be added to a named group using the groupAdd
statements. KALA makes no distinctions between transactions and
groups of transactions, i.e. all statements can take groups or trans-
actions as arguments1.

KALA requires the programmer to perform manual memory
deallocation for transactions (equivalent to the free statement in
C++). This is performed through the terminate statement, which
takes as argument the alias of the transaction or group to be freed.
Termination can be performed at begin, commit or abort time
of a transaction. If the transaction being terminated has not yet
committed, it will be immediately forced to rollback.

Lastly, the preliminaries may contain an autostart statement.
This statement specifies that a separate transaction needs to be
started, in parallel to this transaction. The autostart specifies the
signature of the method corresponding to this transaction, a list of
actual parameters, and a KALA specification for this transaction.
Autostarts are used, for example, within the KALA specification of
a transaction Ti of a Saga S to specify the compensating transac-
tion Ci. This specification then also contains dependencies at be-
gin, commit and abort time of Ti that restrict Ci to only run if the
Saga is aborted.

3. Tangled Aspect Code
3.1 Sub-concerns in the Aspect
If we consider various ATMS from a conceptual point of view, we
find that these ATMS are not one monolithic block, but incorpo-
rate different design decisions. For example, consider how rollback
is handled in the Sagas ATMS: compensating transactions are exe-
cuted in the inverse sequence of the steps of the saga. Translated to
application code, i.e. methods, each step corresponds to a method,
as is each counterstep. If we consider conceptually the tasks that
need to be performed by the demarcation code for such a step, we
can infer that some parts of this code treat managing rollback of
the saga. This code performs the work of defining and starting up
compensating transactions, ensuring that these only begin when the

1 The only exception being that a group cannot be the destination of a
delegation operation.

2 2006/10/5

saga aborts, and that they run in the right sequence. All of these
low-level tasks comprise the code for one concern, which is man-
aging rollback of the saga.

We can indeed consider management of rollbacks a true concern
in this demarcation code, as it is a design decision of the ATMS
that lies conceptually at a higher level of abstraction than the im-
plementation details of the code, i.e. the various tasks of the code
we identified above. This corresponds to the original consideration
of a concern by Parnas [Par72] where he states that a module, i.e.
a concern, corresponds to the implementation of a design decision.
We claim that management of rollbacks is part of the design of the
ATMS, as different implementations of this concern can be eas-
ily envisioned. For example, we could specify that compensating
transactions run in the same sequence as the steps of the saga, or
even let the compensating transactions run in parallel, to attempt to
speed up saga rollback.

Sagas demarcation code will however contain more than code
for rollbacks. In addition to this, the general structure of the Saga
as a sequence of steps, where each step is itself a transaction, also
needs to be defined. In other words, if we reflect on the various tasks
performed by saga demarcation code, we find that this code treats
two different sub-concerns: first the management of the structure
of the overall transaction, and second the management of how
rollback is performed.

This conceptual decomposition of an ATMS into different sub-
concerns is not unique to the Sagas ATMS. We have performed a
similar analysis of various ATMS, and found that these are also
composed of multiple sub-concerns [Fab05]. In addition to the two
sub-concerns of structure and rollback handling identified above,
we have encountered the sub-concerns of view management and
delegation management. Note that the list of four sub-concerns
of ATMS is open-ended. Although we have identified these sub-
concerns in many ATMS, it is possible that a new ATMS contains
a sub-concern which we have not yet encountered.

To summarize, we should not consider an ATMS conceptually
as one monolithic block, but rather as a composition of a number
of sub-concerns. We have identified four such sub-concerns so far:
the structure of the advanced transaction, how rollback is handled,
the management of views and the management of delegation.

3.2 Tangled Aspect Code
If we wish to modify sub-concerns of an ATMS, or add imple-
mentations for new sub-concerns to an existing ATMS, the aspect
that modularizes the ATMS must take into account this require-
ment. The aspect must be structured in such a way that modifica-
tion of sub-concerns is easy, enabling easy creation of new ATMS
through changes in the implementation of these sub-concerns. In
other words, such a conceptual separation into modules should
therefore ideally also be present in the KALA code. This would
bring the well-known advantages of Separation of Concerns to the
level of the aspect.

We find, however, that such a separation into multiple modules
is absent from the KALA code. The reason for this is the primary
decomposition inherent in KALA code. KALA code reflects the
life-cycle of a transaction, and is therefore subdivided into three
different phases: a begin phase, a commit phase and an abort phase.
In contrast to this, the implementation of a sub-concern can affect
multiple phases in the life-cycle, and in one phase the code for
multiple sub-concerns can be present. For example, in Sagas the
code for the rollback concern is contained in the begin and commit
blocks of various steps, and in the commit and abort blocks of
the top-level Saga, as we will see in Section 4.2. As a result,
the aspect code for the ATMS concern tangles the multiple sub-
concerns present in the ATMS being implemented.

We can see this tangling as a case of the tyranny of the dominant
decomposition [TOHJ99]. The dominant decomposition in KALA
is the life-cycle of the transaction in begin, commit and abort
phases. The modularization of sub-concerns of an ATMS, however,
is orthogonal to time. One sub-concern can act at multiple points in
the life-cycle of a transaction. As a result, the sub-concerns cross-
cut the dominant decomposition, leading to code which is scattered
and tangled. In other words, a KALA program is a combination
of different sub-concerns and we see that the code of these sub-
concerns is tangled. We call this phenomenon, where the aspect
itself is a tangled mess of sub-concerns, tangled aspect code.

4. Separate Definition of Concern Code
Instead of having an ATMS as a monolithic block, we want to
apply the known benefits of separation of concerns [HVL95] to the
process of creating and modifying an ATMS. Applying separation
of concerns here, i.e. programming an ATMS in multiple modules,
will greatly ease implementation and modification of this ATMS.
This enables a new ATMS to be built, or an existing ATMS to be
adapted. This in effect tailors an ATMS to best fit the transactional
properties required by the application being developed.

We have seen above that these concerns cut across the dom-
inant decomposition of KALA code, which is the life-cycle of
a transaction. Therefore a separate modularization mechanism is
required for these concerns. KALA contains such a mechanism,
which allows separating the specification of the different concerns
in a straightforward manner by writing them as separate KALA
files. The composition of these modules into a complete specifica-
tion is fully automatic, and is discussed in the next section. The
straightforward modularization and automatic composition is pos-
sible because we used the properties of the domain when creating
KALA.

In this section, we show how, applied to a given application,
KALA can be used to define the different concerns of an ATMS
separately. We assume here that an analysis has first been made of
the different concerns present in the ATMS being used, as we have
performed in Section 3. The different concerns identified in such
an analysis, applied to an application, can then be written down
separately in multiple KALA files, i.e. one file per concern. We
show this by taking the Sagas ATMS we analyzed in Section 3.1,
and writing KALA code for this ATMS.

As a concrete example of KALA code for the use of Sagas,
we use the example of a bank transfer operation we introduced in
[Fab05]. This is part of an application for bank cashiers, servicing
customer at the teller window. The transfer operation is split in
three steps: a transfer, a printReceipt and a logTransfer
method, all called in sequence from a moneyTransfer method.
The first step performs the actual money transfer, the second step
prints out a receipt for the customer, and the third step updates
the global log of the bank. Note that we do not include the Java
code of the bank transfer operation here, as it is not relevant to this
discussion.

We identified in Section 3.1 that the Sagas ATMS is comprised
of two concerns: first the management of the structure of the over-
all transaction, and second the management of how rollback is per-
formed. To have an implementation of these transactional concerns
for the bank transfer operation, we now write KALA declarations
for all four methods first for the structure concern, and second for
the rollback concern.

4.1 Sagas: Structure
The first concern we implement here, is the structure of the saga.
Recall that we identified this concern as the management of the
overall structure of the saga, in which the steps perform their work.
The structure concern codifies the subdivision of the saga into

3 2006/10/5

multiple steps, allowing each step to obtain a reference to the top-
level saga, and ensures that after the saga has ended cleanup work
is performed.

Note that although we subdivide the discussion of the imple-
mentation of this concern into two parts, all the code for the struc-
ture concern is implemented in one file, as is indicated by the con-
tinuity in line number counting.

4.1.1 Saga Top-level
The first KALA declarations we show are for the top-level
moneyTransfer method and are given below. This code registers
itself in the naming service, such that the steps in the saga, shown
later, can obtain a reference to the saga. At commit and abort time,
the unique identifier of this saga is used to refer to a group name
which is therefore guaranteed to be unique for this saga. In this
group, the various steps of the saga will have registered themselves.
As a result, termination of this group implies termination of all the
steps of the saga, and together with termination of the saga itself
ensures proper cleanup is performed.

1 Cashier.moneyTransfer
2 (Account src, Account dest , int amt) {
3 name(self Thread.currentThread());
4 commit { terminate("ID" + self + "Step");
5 terminate(self); }
6 abort { terminate("ID" + self + "Step");
7 terminate(self); }
8 }

4.1.2 Saga Steps
The code of all the steps of the saga is virtually identical, the only
difference being the identification of the method corresponding to
each step. We therefore only show the code for the logTransfer
step. Each of these steps first require a reference to the top-level
transaction so as to, second, add itself to the group of steps. By
adding itself to the group of steps, it ensures that it will be termi-
nated when the saga ends, by the code either in line 5 or 7.

9 Cashier.logTransfer
10 (Account src, Account dest , int amt) {
11 alias (Saga Thread.currentThread());
12 groupAdd(self "ID" + Saga + "Step");
13 }

This concludes the code for the structure concern of the sagas
ATMS, applied to the bank transfer example. This code implements
the structure of the saga in multiple steps, with termination of
the steps when the saga ends. The following concern will add the
handling of rollbacks of this structure, yielding the behavior of the
Sagas ATMS.

4.2 Sagas: Rollback Handling
The second concern which we implement here, is rollback handling
for the saga. Recall that in order to rollback a saga, the currently
executing step is aborted, and that all committed steps are compen-
sated for by executing compensating steps in the reverse sequence
of step execution.

The KALA code below is an implementation of the above con-
cern, and is defined in a separate KALA file. Again, we subdivide
the discussion of the implementation in multiple parts, and the line
numbers show this code all belongs to one file.

4.2.1 Saga Top-level
The top level of the saga registers itself, as in the structure concern,
because the steps and compensating steps will place dependencies
on the sagas, as we see later. At commit and abort time, the group

of compensating steps is aborted, similar to what is performed in
the structure concern.

1 Cashier.moneyTransfer
2 (Account src, Account dest , int amt) {
3 name(self Thread.currentThread());
4 commit { terminate("ID" + self + "Comp");
5 terminate(self); }
6 abort { terminate("ID" + self + "Comp");
7 terminate(self); }
8 }

4.2.2 Last Step
In the last step of the saga, to implement the rollback concern,
a number of dependencies have to be set between the step and
the saga when the step begins. To set these dependencies, in lines
12 and 13, a reference to the saga has to be obtained, which is
performed in line 11. Saga ad self forces the Saga to abort if
this transaction aborts. self wd Saga states that if the Saga aborts
before this transaction ends, it is also forced to abort. Saga scd
self ensures that the Saga does not commit before this transaction
has committed.

9 Cashier.logTransfer
10 (Account src, Account dest , int amt) {
11 alias (Saga Thread.currentThread());
12 begin { dep(Saga ad self); dep(self wd Saga);
13 dep(Saga scd self); }
14 }

4.2.3 First and Second Step
The first step of the saga needs to declare the compensating trans-
action used when the saga rollbacks. It achieves this by using an
autostart statement in lines 18 thru 22, which compensates a
bank transfer simply by performing the inverse transfer operation.
The secondary transaction registers itself under a unique name in
line 21, so that in lines 23 and 26 a reference can be obtained to
this transaction to set the required dependencies. Also, the compen-
sating transaction adds itself to the group of compensating trans-
actions in line 22, ensuring it is properly terminated in line 4 or
6, when the saga ends. The dependencies on the compensating
transaction ensure that it does not begin unless this transaction has
committed (Comp bcd self), only begins if the saga aborts (Comp
bad Saga) and disallow it to abort in that case (Comp cmd Saga)

15 Cashier.transfer
16 (Account src, Account dest , int amt) {
17 alias (Saga Thread.currentThread());
18 autostart (transfer
19 (Account src, Account dest, int amt)
20 (dest, src, amt) {
21 name(self "ID" + Saga + "Comp");
22 groupAdd(self "ID" + Saga + "Comp"); });
23 begin { alias (Comp "ID" + Saga + "Comp");
24 dep(Saga ad self); dep(self wd Saga);
25 dep(Comp bcd self); }
26 commit { alias (Comp "ID" + Saga + "Comp");
27 dep(Comp cmd Saga);dep(Comp bad Saga);}
28 }

The second step of the saga is highly similar to the first step of
the saga, the only differences being a different autostart, and de-
pendencies being placed on the previous compensating transaction,
as can be seen below. A reference to the compensating transaction
of the first step of the saga is obtained in line 32. This allows the
CompPrev wcd Comp dependency to be placed in line 42, ensur-
ing that the previous compensating transaction begins after this has

4 2006/10/5

ended. In other words, this determines the sequence in which the
compensating transactions will run.

29 Cashier.printReceipt
30 (Account src, Account dest, int amt) {
31 alias (Saga Thread.currentThread());
32 alias (CompPrev "ID"+Saga+"Comp");
33 autostart (printTransferCancel
34 (Account src, Account dest, int amt)
35 (src, dest, amt) {
36 name(self "ID" + Saga + "Comp");
37 groupAdd(self "ID" + Saga + "Comp"); });
38 begin { alias (Comp "ID" + Saga + "Comp");
39 dep(Saga ad self); dep(self wd Saga);
40 dep(Comp bcd self); }
41 commit { alias (Comp "ID" + Saga + "Comp");
42 dep(CompPrev wcd Comp);
43 dep(Comp cmd Saga);dep(Comp bad Saga);}
44 }

This completes the KALA code of the concern of rollback
handling for the bank transfer operation using the sagas ATMS.
As there are no more concerns in this ATMS, this concludes the
KALA code for this example.

4.3 Conclusion
In this section we have shown how the implementation of a chosen
ATMS for a given application is modularized using KALA code.
In KALA, each module is implemented in a separate file. As an ex-
ample we have shown a bank transfer operation that uses the Sagas
ATMS. We have taken the decomposition of the Sagas ATMS, per-
fomed in Section 3.1, which identified two concerns, and given the
KALA code for each of these concerns.

This modularization frees us from having to write tangled aspect
code, which brings the benefits of separation of concerns to the
process of defining an ATMS as an aspect. Instead of having to
write aspect code which itself is tangled with multiple concerns,
with all the impediments this entails, we now cleanly separate each
concern in a separate KALA module.

5. Composing KALA Code
Given a definition of an ATMS concern in multiple modules, these
need to be composed to form the complete KALA program. Con-
ceptually, the concerns are combined before the ATMS aspect is
woven, because it is the combination of these concerns that forms
the complete definition of the ATMS. The KALA weaver, there-
fore, is not built to weave each concern of an ATMS separately
into the base code. Instead all KALA modules are combined into
one KALA file, describing how the ATMS is used, and this full
description is woven into the base code2.

Because of the domain-specific nature of KALA we were able
to fully take into account the properties of the domain, yielding
a composition mechanism that requires no programmer interven-
tion.This is mainly due to the inherent composition properties of
the ACTA model, which were taken into account when designing
the KALA language. As a result, composition of multiple KALA
modules is straightforward. In fact, composing multiple specifica-
tions in essence boils down to a simple merge, as we show here.

Conceptually, different KALA specifications declare that differ-
ent actions need to take place at a given time in the life-cycle of a
transaction: before the transaction begins, at begin time, at commit

2 Although this aspect code will be tangled aspect code, this is not an issue
since this code is but an intermediate representation which is not presented
to a programmer.

time or at abort time. In the composed file, therefore, for each of
these moments in the life cycle all the actions defined for that point
need to be performed. In other words, all the declarations that per-
tain to one moment in the life-cycle of the transaction have to be
gathered into one block of the resulting specification.

The sequence of statements for naming and grouping within this
composition matters, however, as an alias referred in a KALA state-
ment needs to have been previously looked up. Therefore, when
composing multiple KALA specifications, the partial ordering of
naming and grouping statements within each KALA file needs to
be preserved in the global file.

Considering in more detail the begin, commit and abort
blocks of KALA code, we can state that the sequence of the code
for setting dependencies, placing views, performing delegation and
termination, however, is irrelevant. This is because, as said in Sec-
tion 2.2, these are considered to happen in the same atomic action
of begin, commit or abort. Therefore, when composing a number
of begin, commit or abort blocks for the same method, their
dependency, view, delegation and terminate statements can be sim-
ply joined into one sequence which respects the partial ordering
of names and groups. The same observation holds for autostart
statements, as their sequence in the KALA code also is of no im-
portance. All autostart statements for one method are placed
before the begin block of the composed KALA specification.

We can implement the above composition by a simple merge,
the implementation of which is outlined next. Given that we have
a number of KALA specifications for one method and we need to
generate an output file:

1. Start the output file with the method signature suffixed with {.

2. For each specification, take the sequence of top-level declara-
tions and add them to the output file.

3. Write the start of a begin block to the output file.

4. For each specification take the sequence of begin declarations
and add them to the output file.

5. Write the close of the begin block, and the start of the commit
block to the output file.

6. For each specification take the sequence of commit declarations
and add them to the output file.

7. Write the close of the commit block, and the start of the abort
block to the output file.

8. For each specification take the sequence of abort declarations
and add them to the output file.

9. Write the close of the abort block and the closing } to the
output file.

There is one downside, however, to this simple merging, which
is name clashes: multiple modules should not define the same
names. If these modules redefine the name with the same target,
as in line 3 of both modules in the sagas example in Section 4,
this is not an issue. But if multiple modules define the same name
for a different target this will lead to wrongly placed dependencies,
views, delegation, and so on, yielding faulty code. Conceptually,
this issue can, however, be easily solved through a renaming or a
merge of names. Therefore we do not provide an outline of such an
implementation here.

The above is all which is required to compose multiple KALA
modules into one full program. Thanks to the properties of the
domain, which were taken into account when designing KALA,
we have a straightforward composition mechanism that requires no
programmer intervention.

5 2006/10/5

6. Building a New ATMS: Cooperating Nested
Transactions

In this section we show how we can use KALA to define a new
ATMS to fit a given application or class of applications. The goal
is to achieve an ATMS in which the transactional properties bet-
ter align with the transactional properties of the (class of) appli-
cation(s). We show this by creating a new ATMS, which we call
Cooperating Nested Transactions, that aims to achieve the high-
est possible performance for computations that are hierarchically
structured.

Before we introduce Cooperating Nested Transactions, we first
give a definition of the Nested Transactions ATMS in multiple
KALA modules. Second, we show how we can easily modify this
definition to yield the Cooperating Nested Transactions ATMS.

In this section, we do not provide example applications to which
the KALA code is applied. This is because as we solely wish to con-
centrate on the implementation of the ATMS, without considering
how this ATMS is used by an application. We will use placeholder
code, which is marked like this, when referring to base-level enti-
ties, such as method signatures. When these ATMS are used for a
given application, this placeholder code needs to be replaced by the
appropriate code for that application.

6.1 Nested Transactions
In Section 3.1 we established that Nested Transactions is composed
out of four different concerns: structure, handling of rollbacks, view
management and delegation of operations. We now write KALA
code for each of these concerns separately.

6.1.1 Structure
The structure of Nested Transactions is not fixed statically as in
Sagas, instead of this, at runtime a tree structure of transactions
is built. Each transaction that forms a part of the tree structure is
solely responsible for itself. Given such a tree structure, built at
runtime, there is however one restriction: a parent may not commit
before all its children have ended. Therefore a commit dependency
cd needs to be placed between a parent and each of its children.
This requires that each child obtain a reference to its parent before
placing this dependency, as shown in line 4 of the code below. We
achieve this by first letting each transaction name itself (line 2), so
that it can be referred to by its children, and second letting each
transaction obtain a reference to its parent by performing a lookup
in line 3.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 begin { dep(parent cd self); }
5 commit { terminate(self); }
6 abort { terminate(self); }
7 }

6.1.2 Rollback Handling
When rolling back a transaction which is a part of a tree of nested
transactions we need to ensure that if this transaction aborts, all its
children also abort. This is implemented first by letting each child
add itself to a group associated with the parent in line 4 of the code
below, and second by letting each transaction terminate its children
when aborting, in line 6 of the code below. Having each child add
itself to the group associated with the parent, however, also implies
that each parent needs to also clean up this group when committing,
which is performed in line 5.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 groupAdd(self "ID" + parent + "Children");
5 commit { terminate("ID" + self + "Children"); }
6 abort { terminate("ID" + self + "Children"); }
7 }

6.1.3 Delegation
Upon commit of a child its work is delegated to the parent, which is
performed in line 4 of the KALA code below. Again this requires a
reference to the parent, which in turn requires that each transaction
register itself.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 commit { del(self parent); }
5 }

6.1.4 View Management
Thirdly, in Nested Transactions, a child has a view on the interme-
diate results of its parent, which is achieved by setting the view at
begin time in line 4 of the code below.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 begin { view(self parent); }
5 }

This concludes the definition of the Nested Transactions ATMS.
We now show how we can straightforwardly modify this ATMS to
better fit a particular class of applications.

6.2 Cooperating Nested Transactions
One of the advantages of using the multi-tiered architecture in a
large-scale distributed system is the ability of this architecture to
provide a faster response time of the middle tier through load bal-
ancing. We can use parallelization on multiple servers to perform
sub-computations of a given algorithm in parallel, but we want
the entire computation to be performed as a single transaction to
prevent data inconsistency. In a hierarchically structured computa-
tion, we can have sub-computations as nested sub-transactions of
the main algorithm, and distribute sub-transactions over multiple
servers, to be performed in parallel.

We can consider using Nested Transactions as an ATMS for
this application: as sub-computations are sub-transactions they will
preserve data consistency, and can access the data of the parent.
Also, a failure in the sub-computation will not necessarily imply
that the entire computation is lost. This allows graceful recovery of
errors in the computation, without needlessly losing work. Having
sub-computations performed in parallel, however, may entail that
each of these sub-computations needs to be able to access the other
computations’ intermediate results, as they are supposed to coop-
erate, in parallel, to achieve the overall goal. This is not possible
when using nested transactions and therefore, we have adapted the
Nested Transactions ATMS to allow sharing between multiple sub-
transactions, yielding a new ATMS: Cooperating Nested Transac-
tions (CNT).

In CNT, all siblings of a parent transaction have access to
each other’s intermediate results though a view relationship. This,
however, has an impact when aborting a child transaction. The
siblings which have seen the inconsistent data of this child and
have not committed are also considered to be inconsistent and
should abort. This only applies to the sibling transactions that
run simultaneously, in parallel, with the aborting sub-transaction.

6 2006/10/5

Siblings that have committed before the aborter are not aborted,
and siblings that start after the abortion need not abort. This limits
the lost work in such cases to only include sibling sub-transactions
which run at the same time as the aborting sub-transactions. This is
an advantage of using CNT over running the entire computation
in one transaction. If we would do this and a sub-computation
aborts, automatically all of the work of the entire computation
would be lost. With CNT, only the work of the sub-computations
simultaneously running is lost.

We have implemented CNT in KALA by taking the implemen-
tation of Nested Transactions and modifying the concerns of view
management and rollback handling. This illustrates one of the ben-
efits of applying separation of concerns at the level of the ATMS
definition, easing modification of an ATMS as only the code for the
changing concerns needs to be considered, as we show next.

6.2.1 View Management
In CNT, all children of a given transaction can see each other’s
intermediate results. To implement this, in the code below, views
are set from this transaction to all siblings, and the reverse, in line
7. This, however, requires each child of a transaction to add itself
to the group of children of the parent, performed in line 4, and that
a reference to be obtained to this group, in line 5. Also, when a
transaction ends, the group of children of this transaction has to be
removed by the system, which is performed in lines 8 and 9 of the
code below.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent extends expression);

4 groupAdd(self "ID" + parent + "Children");
5 alias(siblings "ID" + parent + "Children");
6 begin { view(self parent);
7 view(self siblings); view(siblings self); }
8 commit { terminate("ID" + self + "Children"); }
9 abort { terminate("ID" + self + "Children"); }

10 }

6.2.2 Rollback Handling
When performing rollback, siblings of the erroneous transaction
should also abort, as they have seen the intermediate state of the
aborting transaction. We cannot modify transactions that have al-
ready committed, but we can abort all currently running siblings
of the aborting transaction, which is performed by the terminate
statement in line 7.

1 packageName.className.methodName(parameterList) {

2 name(self name expression);

3 alias(parent parent expression);

4 groupAdd(self "ID" + parent + "Children");
5 commit { terminate("ID" + self + "Children"); }
6 abort { terminate("ID" + self + "Children");
7 terminate("ID" + parent +"Children"); }
8 }

7. Conclusion
KALA was designed to enable the modular specification of ATMS,
avoiding the need to write tangled aspect code. In this paper we
introduced how KALA enables the application of separation of
concerns in the process of defining an ATMS.

In KALA, each concern can straightforwardly be written in a
separate module and the composition does not require any pro-
grammer intervention. This is thanks to the domain-specific nature
of KALA, where the properties of the domain were extensively

taken into account when defining the modularization and compo-
sition mechanism.

We have shown how two existing ATMS can be programmed as
KALA modules, namely Nested Transactions and Sagas. Further-
more, we described how a new ATMS: Cooperating Nested Trans-
actions was created by modifying a number of modules from an
existing ATMS, in this case Nested Transactions. This shows the
benefit of modularization in KALA code, i.e. applying separation
of concerns when defining an ATMS.

Acknowledgments
Thanks to Denis Conan for fruitful discussions when considering
the topic of Tangled Aspect Code and thanks to Theo D’Hondt for
supporting this research.

References
[asp06] The AspectJ project, 2006. http://eclipse.org/aspectj/.

[CR91] Panos K. Chrysanthis and Krithi Ramamritham. A formalism
for extended transaction models. In Proceedings of the 17th
International Conference on Very Large Data Bases, pages
103–112, 1991.

[Fab05] Johan Fabry. Modularizing Advanced Transaction Manage-
ment - Tackling Tangled Aspect Code. PhD thesis, Vrije Uni-
versiteit Brussel, Vakgroep Informatica, Laboratorium voor
Programmeerkunde (PROG), July 2005.

[FD06] Johan Fabry and Theo D’Hondt. KALA: Kernel aspect
language for advanced transactions. In Proceedings of the
2006 ACM Symposium on Applied Computing Conference,
2006.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proceedings of the ACM SIGMOD Annual Conference on
Management of data, pages 249 – 259, 1987.

[HVL95] Walter L. Hürsh and Cristina Videira Lopes. Separation of
concerns. Technical report, College of Computer Science,
Northeastern University, 1995.

[KG02] Jörg Kienzle and Rachid Guerraoui. AOP: Does it make
sense? - the case of concurrency and failures. In Proceedings
of ECOOP 2002. Springer Verlag, 2002.

[Mos81] J. Eliot B. Moss. Nested Transactions: An Approach to
Reliable Distributed Computing. PhD thesis, Massachusetts
Institute of Technology, 1981.

[Par72] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[RC03] Awais Rashid and Ruzanna Chitchyan. Persistence as an
aspect. In 2nd International Conference on Aspect-Oriented
Software Development. ACM, 2003.

[SLB02] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Imple-
menting distribution and persistence aspects with AspectJ. In
Proceedings of OOPSLA 02. ACM, 2002.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley
M. Sutton Jr. N degrees of separation: Multi-dimensional
separation of concerns. In International Conference on
Software Engineering, pages 107–119, 1999.

7 2006/10/5

Rebernak, Mernik, Wu, Gray

Domain-Specific Aspect Languages for Modularizing
Crosscutting Concerns in Grammars

Damijan Rebernak Marjan Mernik
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ul. 17, 2000 Maribor, Slovenia

{damijan.rebernak, marjan.mernik}@uni-mb.si

Hui Wu Jeff Gray
University of Alabama at Birmingham

Department of Computer and Information Sciences
1300 University Blvd, Birmingham, AL 35294, USA

{wuh, gray}@cis.uab.edu

Abstract
The emergence of crosscutting concerns can be observed in various
representations of software artifacts (e.g., source code, models, re-
quirements, and language grammars). Although much of the focus
of AOP has been on aspect languages that augment the descriptive
power of general purpose programming languages, there is also a
need for domain-specific aspect languages that address particular
crosscutting concerns found in software representations other than
traditional source code. This paper discusses the issues involved
in the design and implementation of domain-specific aspect lan-
guages that are focused within the domain of language specifica-
tion. Specifically, the paper outlines the challenges and issues that
we faced while designing two separate aspect languages that assist
in modularizing crosscutting concerns in grammars.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—semantics, syntax; D.3.3
[Programming Languages]: Language Constructs and Features—
classes and objects, data type and structures, frameworks, inher-
itance patterns; D.3.4 [Programming Languages]: Processors—
compilers, debuggers, interpreters, parsing, preprocessors, com-
piler generators

General Terms Algorithms, Design, Languages.

Keywords Aspect-Oriented Programming, Domain-Specific Lan-
guages, grammars, language specification, join point models

1. Introduction
Over the past decade, many aspect-oriented languages have been
proposed, designed and implemented (e.g., AspectC [2], AspectC#
[3], and AspectJ [4]). However, the majority of these efforts are
devoted to general-purpose aspect languages (GPALs), despite the
fact that preliminary work in AOP had its genesis with domain-
specific aspect languages (DSALs) [23]. A DSAL is focused on
the description of specific crosscutting concerns (e.g., concurrency
and distribution) that provide language constructs tailored to the
particular representation of such concerns. Examples of DSALs in-
clude [9, 12, 30, 32]. In comparison, a GPAL is an aspect language
that is not coupled to any specific crosscutting concern and pro-
vides general language constructs that permit modularization of a

[copyright notice will appear here]

broad range of crosscutting concerns. The majority of DSALs have
been developed for languages that are general-purpose program-
ming languages (GPLs) [30]; i.e., the aspect-language is focused
on a specific concern, but it is applied to a GPL such as Java or
C++. The scope of this paper is focused on the concept of a DSAL
that is applied to a domain-specific language (DSL) [24]; i.e., the
aspect language is focused on a specific concern and applied to a
DSL that also captures the intentions of an expert in a particular do-
main. The distinction is highlighted by the partitioning of the aspect
language (which can be either a GPAL or a DSAL) from the asso-
ciated component language (which can be either a GPL or DSL).
In the DSAL/DSL combination explored in this paper, a different
join point model was needed. This paper discusses several issues
associated with DSALs applied to DSLs, rather than GPLs.

The focus of this paper is in the well-established domain of
programming language definition and compiler generation. His-
torically, the development of the first compilers in the late-fifties
were implemented without adequate tools, resulting in a very com-
plicated and time consuming task. To assist in compiler and lan-
guage tool construction, formal methods were developed that made
the implementation of programming languages easier. Such for-
mal methods contributed to the automatic generation of compil-
ers/interpreters. Several concepts from general programming lan-
guages have been adopted into the formalisms used to specify lan-
guages, such as object-oriented techniques [27]. To achieve mod-
ularity, extensibility and reusability to the fullest extent, new tech-
niques such as aspect-orientation are being used to assist in mod-
ularizing the semantic concerns that crosscut many language com-
ponents described in a grammar [15, 20, 21, 28, 36].

Within a language specification, modularization is typically
based on language syntax constructs (e.g., declarations, expres-
sions, and commands). Adding new functionality to an existing
language sometimes can be done in a modular way by providing
separate grammar productions associated with the extension. For
example, additions made to specific types of expressions within a
language can be made by changing only those syntax and seman-
tic productions associated with expressions. In such cases, a new
feature does not crosscut other productions within the language
specification. However, there are certain types of language exten-
sions (e.g., type checking and code generation) that may require
changes in many (if not in all) of the language productions rep-
resented in the grammar. Because language specifications are also
used to generate language-based tools automatically (e.g., editors,
type checkers, and debuggers) [16], the various concerns associ-
ated with each language tool are often scattered throughout the
core language specification. Such language extensions to support
tool generation emerge as aspects that crosscut language compo-
nents [36]. As such, these concerns often represent refinements

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 1 2006/10/4

over the structure of the grammar [5]. This paper shows how appli-
cation of aspect-oriented principles toward language specification
can assist in modularizing the concerns that crosscut the language
grammar.

This paper describes two approaches to integrate AOP with
specifications that describe language grammars. Although the ap-
proaches are both focused on the common domain of language
specification, the two resulting aspect languages apply to different
compiler generators; namely, LISA [26] and ANTLR [1]. LISA re-
lies on attribute grammars and ANTLR uses syntax-directed trans-
lation. Furthermore, LISA specifications enable higher modularity,
extensibility, and reusability through concepts such as multiple at-
tribute grammar inheritance and templates [25]. These differences
among LISA and ANTLR contribute to proposing two DSALs that
are quite different.

The organization of the paper is as follows. Challenges associ-
ated with the design and usage of GPALs and DSALs are discussed
in Section 2. The various issues that are encountered when devel-
oping domain-specific join point models are presented in Section
3. In Sections 4 and 5, two separate DSALs for language definition
(namely, AspectLISA and AspectG) are described. Related work is
summarized in Section 6 followed by concluding remarks in Sec-
tion 7.

2. Challenges Facing General-Purpose and
Domain-Specific Aspect Languages

A DSL is a programming language for solving problems in a par-
ticular domain that provides built-in abstractions and notations for
that domain. DSLs are usually small, more declarative than imper-
ative, and more aligned to the needs of an end-user than general-
purpose languages. Use of DSLs has been adopted for a variety
of applications because of opportunities for systematic reuse and
easier verification [24]. Because of these benefits, DSLs have be-
come more important in software engineering [10, 14]. Moreover,
DSLs offer possibilities for analysis, verification, optimization, par-
allelization, and transformation of DSL code, at a level of special-
ization not available with general-purpose code.

Similar conclusions can be drawn among GPALs and DSALs.
Although GPALs are useful, certain crosscutting concerns are sim-
ply best described using DSALs [9, 30]. More importantly, domain-
specific analysis and verification can be described by DSALs to
prevent the occurence of subtle errors [31]. Yet in other cases,
adding new aspects might produce inefficient code and domain-
specific optimization is needed [19]. Furthermore, current GPALs
(e.g., AspectJ) are not expressive enough to separate all concerns
(e.g., structure-shy concerns [30]).

Clearly, in order to address fully the problem of separation of
concerns, domain-specific solutions are needed. This has been ob-
served also by other researchers. Gray recognized that specific do-
mains will have numerous dominant decompositions and hence dif-
ferent crosscutting concerns [13]. Consequently, different aspect
weavers will be required, even at various levels of abstraction (e.g.,
models). Hugunin defined four key areas of research that can im-
prove the power and usability of AOP [18]: 1) improved separate
compilation and static checking, 2) increased expressiveness for
pointcuts, 3) simpler use of aspects in specialized domains, and
4) enhanced usability and extensibility of AOP development tools.
Currently, AspectJ has initial support, but not completely sufficient,
for particular domains by use of abstract aspect libraries. Not sur-
prisingly, domain-specific aspects are one of the key future research
areas in AOSD.

Several of the challenges of using GPALs can be overcome
by DSALs. However, DSALs also have their own drawbacks. The
most notable challenges of DSALs are: the cost of DSAL develop-

ment and maintenance, inter-operability with other tools, and user
training. One of the most formidable challenges is the extra effort
required to design and implement a DSAL. Without an appropri-
ate methodology and tools, the associated costs of introducing a
new DSAL can be higher than the savings obtained through us-
age. With respect to DSLs, there are several techniques available
to assist in implementation [24], such as: compiler/interpreter, em-
bedding, preprocessing, and extensible compiler/interpreter. In ad-
dition, several tools [22, 26] exist to facilitate the DSL implemen-
tation process. We believe that such tools can also assist in DSAL
design and implementation.

Another disadvantage of DSALs is that some domains have con-
cerns that require several different DSALs to be developed. In such
cases, several DSALs have to coordinate with each other and also
interact with a component language. This imposes additional chal-
lenges in the design and implementation of DSALs, as well as in
user training. It could be argued that it is not feasible to introduce
many DSALs because it could overload the ability of the program-
mers to learn many different languages. However, conscious lan-
guage design enables programmers to program at much higher ab-
straction levels and with less code. Conversely, programmers need
to write more low-level code without DSALs [30].

3. Domain-Specific Join Point Models
When designing a new DSAL, a completely different join point
model (JPM) might be needed as an alternative to the JPM used
by a GPAL like AspectJ. The main issues in designing a JPM for a
DSAL include:

• What are the join points that will be captured in the DSAL?
• Are the DSAL join points static or dynamic?
• What granularity is required for these join points?
• What is an appropriate pointcut language to describe these

joinpoints?
• What are advice in this domain?
• Is extension/refinement only about behavior, or also structure?
• How is information exchanged between join points and associ-

ated advice (context exchange)? Is parameterization of advice
needed?

In specific domains such as context-dependent computing (e.g.,
service-oriented and ubiquitous computing), AOP needs to address
context passing concerns. Several specific approaches have been
proposed such as: contextual pointcut expressions [8], temporal-
based context aware pointcuts [17], and context-aware aspects [33].
Such concerns are more easily addressed through DSALs than
GPALs [7]. A DSAL designer must also consider the issue of
aspect ordering (i.e., how inter-aspect dependencies are handled)
and if there is a need to dynamically add/remove aspects during the
execution.

Another issue to be considered in the design of a DSAL is
the degree that abstraction, reusability, modularity, and extensibil-
ity are needed to specify a crosscutting concern that is domain-
specific. An abstraction is an entity that embodies a computation
[35]. The abstraction principle shows that it is possible to construct
abstractions over any syntactic class, provided the phrases of that
class specify some kind of computation (e.g., function abstraction,
procedure abstraction, and generic abstraction). A GPL provides
a large set of powerful abstraction mechanisms, whereas a DSL
strives to offer the correct set of predefined abstractions. This is
reasonable because a GPL cannot possibly provide the right ab-
stractions needed for all possible applications. Because a DSL has
a restricted domain, it is possible to provide some, if not all, of the

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 2 2006/10/4

desired abstractions. Many DSLs do not provide general-purpose
abstraction mechanisms because it is often possible to define a fixed
set of abstractions that are sufficient for all the applications in a do-
main. Hence, we can expect that some DSALs will use fixed and
predefined pointcuts and advice with limited possibility for general
abstraction. On the other hand, a DSAL that is applied to a general-
purpose component language should have more sophisticated con-
structs for pointcuts and advice. For example, pointcuts should be
generic, reusable, comprehensible and not tightly coupled to an ap-
plication’s structure. Tourwe et al. proposed an annotation of in-
ductively generated pointcuts as a solution to this problem [34].

4. AspectLISA
This section describes our investigation into applying aspects to our
own language definition tool called LISA. The first subsection in-
troduces LISA and is followed by a discussion of how AspectLISA
extends a LISA language specification through aspects that cross-
cut the language definition.

4.1 LISA: A Domain-Specific Component Language
LISA [22] is a tool that automatically generates a compiler and
other language related tools from formal language specifications.
The LISA specification notation that is used to define a new lan-
guage is based on multiple attribute grammar inheritance [25],
which enables incremental language development and reusability
of specifications. The LISA specification language consists of reg-
ular definitions, attribute definitions, rules (which are generalized
syntax rules that encapsulate semantic rules), and methods on se-
mantic domains.

The lexical part of a new language definition is denoted by the
reserved word lexicon. From this part, LISA generates Java source
code that implements a scanner for the defined lexicon. Tokens are
defined using named regular expressions. Each regular expression
has a unique name and can be extended or redefined in a derived
language. In the example below, we have two regular definitions:
Commands and ReservedWord. Reserved word ignore is used to
define characters and tokens that are ignored by the scanner (i.e.,
not included in the token list). The syntax and semantic parts of
a language specification are encapsulated into generalized LISA
rules (denoted by the reserved word rule). LISA follows the well-
known standard BNF notation for defining the syntax of a program-
ming language. Context-free productions are specified in the rule
part of a language definition (e.g., START ::= begin COMMANDS
end). Generalized LISA rules serve as an interface for language
specifications and may be extended through inheritance. A new
language specification inherits the properties of its ancestors and
may introduce new properties that extend, modify or override its
inherited properties. The semantic part of a language specification
is defined by an attribute grammar. Semantic actions must be pro-
vided for every production in the compute part of a context-free
production. To pass values in the syntax tree, non-terminals have
attributes. Semantic rules (i.e., attribute calculations) are defined in
Java (i.e., the right-hand side of the semantic equation).

In order to illustrate the LISA specification language, the defin-
ition of a toy language for robotic control is given below. The robot
can move in different directions (left, right, down, up) and the task
is to compute its final position. An example of the program is begin
up right up end with the meaning {outp.x=1, outp.y=2}.

language Robot {
lexicon {
Commands left | right | up | down
ReservedWord begin | end
ignore [\0x0D\0x0A\] // skip whitespaces

}
attributes Point *.inp, *.outp;

rule start {
START ::= begin COMMANDS end compute {

START.outp = COMMANDS.outp;
// robot position in the beginning
COMMANDS.inp = new Point(0, 0); };

}

rule moves {
COMMANDS ::= COMMAND COMMANDS compute {

COMMANDS[0].outp = COMMANDS[1].outp; // propagation of position
COMMAND.inp = COMMANDS[0].inp; // to sub-commands
COMMANDS[1].inp = COMMAND.outp; }

| epsilon compute { // epsilon (empty) production
COMMANDS.outp = COMMANDS.inp; };

}

rule move {
// each command changes one coordinate
COMMAND ::= left compute {

COMMAND.outp = new Point((COMMAND.inp).x-1,(COMMAND.inp).y); };
COMMAND ::= right compute {

COMMAND.outp = new Point((COMMAND.inp).x+1,(COMMAND.inp).y); };
COMMAND ::= up compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y+1); };
COMMAND ::= down compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y-1); };
}

}

From this language specification, LISA generates highly effi-
cient Java source code that represents the scanner/parser/compiler
of the defined language. Additional information about LISA (in-
cluding software, tutorial, and examples), can be found on LISA’s
web page [22] and in [25, 26].

4.2 AspectLISA: A Domain-Specific Aspect Language
In language specification there are situations when new semantic
aspects crosscut basic modular structure. For example, some se-
mantic rules have to be repeated in different productions; i.e., the
introduction of an assignment statement requires variables, which
imply definition of the environment and its propagation in all the
defined productions. We also identified some other crosscuting con-
cerns, as described in Section 1.

In consideration of the questions stated in Section 3 regarding
the JPM for specific domains, join points in AspectLISA are sta-
tic points in a language specification where additional semantic
rules can be attached. These points can be syntactic production
rules or generalized LISA rules. A set of join points in AspectLISA
is described by a pointcut that matches rules/productions in the
language specification. To define a pointcut in AspectLISA, two
different wildcards are available. The wildcard ‘..’ matches zero or
more terminal or non-terminal symbols and can be used to spec-
ify right-hand side matching rules. The wildcard ‘∗’ is used to
match parts or whole literals representing a symbol (terminal or
non-terminal symbol). Some examples of pointcut specifications
are shown below:

. : * ::= .. ;
matches any production in any rule in all languages across the current lan-
guage hierarchy

Robot.m* : * ::= .. ;
matches any production in all rules which start with m in the Robot lan-
guage

Robot.move : COMMAND ::= left ;
matches only a production COMMAND ::= left in the rule move of the
Robot language

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 3 2006/10/4

Pointcuts in AspectLISA are defined using the reserved word
pointcut. Each pointcut has a unique name and a list of actual
parameters (terminals and non-terminals) that denote the public
interface for advice. An example of a pointcut that identifies all
productions with COMMAND as the left-hand non-terminal is:

pointcut Time<COMMAND> *.move : COMMAND ::= * ;

In AspectLISA, advice are parameterized semantic rules writ-
ten as native Java assignment statements that can be applied at
join points specified by a pointcut. Advice defines additional se-
mantics (extension/refinement) and does not impact the structural
(syntax) level of a language specification. In AspectLISA, there is
only one way to apply advice on a specific join point due to the
fact that attribute grammars are declarative. The order of semantic
rules is calculated during compilation/evaluation time when depen-
dencies among attributes are identified. Therefore, applying advice
before/after a join point is not applicable. For the same reason or-
dering of different aspects is not necessary.

Suppose that the Robot language needs to be extended to incor-
porate the concept of time. An example advice for time calculation
that is applied on join points specified by pointcut Time is:

advice TimeSemantics<C> on Time { C.time=1; }

After weaving takes place, the semantic function COMMAND.time=1;
is added to all productions within rule move. In addition, advice in
AspectLISA can have an apply part for applying predefined se-
mantic patterns such as: value distribution, list distribution, value
construction, list construction, bucket brigade, and propagate value.
These semantic patterns are common in attribute grammars and
represent fixed abstractions. For example, to propagate environ-
ment attributes over an entire evaluation tree, the semantic pattern
bucketBrigadeLeft should be used (inEnv and outEnv are at-
tributes used to store and propagate the environment).

pointcut All<> *.* : * ::= .. ;

advice EnvProp<> on All apply bucketBrigadeLeft(inEnv, outEnv) { }

Modularity, reusability and extensibility of language specifica-
tion have been much improved in LISA using multiple attribute
grammar inheritance [25]. In AspectLISA, pointcuts and advice are
also subjects of inheritance. All pointcuts of predecessors can be
used in all ancestors. Pointcuts with the same signature (name and
parameters) as in ancestors can be used but cannot be extended in
inherited languages. Such pointcuts are overriden by default. Ad-
vice inherited from ancestors using the extends keyword must be
merged with the advice in the specific language. If advice exists in
the inherited parent language, then the semantic functions of the ad-
vice must be merged; otherwise, advice are simply copied from the
inherited language to the current language. Advice can also over-
ride the semantics of its parent using the keyword override.

An example of inheritance on advice is shown below. Note that
the pointcut on which this advice is applied is inherited.

advice extends TimeSemantics<C> {
C.time=1.0 / C.inspeed; C.outSpeed = C.inspeed; }

4.2.1 Aspect Weaving in AspectLISA
The crucial part of every aspect-oriented compiler is an aspect
weaver that is responsible for appending advice code into appro-
priate places described by pointcuts.

Weaving takes place after the initial phase of LISA’s compiler,
which is responsible for parsing the LISA source and generating

the necessary data structures for pointcuts and advice. The main
weaving algorithm is described by Algorithm 1.

Algorithm 1 Main weaving algorithm
method weaveAll(lastLanguage)
// lastLanguage is last language in hierarchy
Languagelist← allDefinedLanguages
for all L ∈ Languagelist do

L← nextElement(Languagelist)
// if L is not part of language hierarchy the weaving
// in that Language is not necessary

if L is reachable from lastLanguage then
weave(L)

end if
end for

Weaving starts at the first (parent) language (component) de-
fined by the developer and follows its hierarchy. The same algo-
rithm is applied to each language specification over the entire hier-
archy of languages. The weaving procedure for each user-defined
language is described by Algorithm 2. Note that the lookup method
(pointcutLookup(A, L)) works the same as in most compilers for
object-oriented languages.

Algorithm 2 Weaving algorithm for one Language
method weave(L)
Adviceset← getAllAdvice(L)
for all A ∈ Adviceset do

A← nextElement(Adviceset)
// advice must not be overriden by none of its successors
if A is not overriden then

// find appropriate pointcut in current or parent languages
pointcut← pointcutLookup(A, L);
// find all production rules that match pointcut
productionRules← findProductions(pointcut, L);
for all prodRule ∈ productionRules do

prodRule← nextElement(productionRules)
// substitute formal parameters of advice with actual
// parameters of pointcut and apply semantic functions
// to the production
addSemanticsToRule(prodRule, A, L)

end for
end if

end for

5. AspectG
This section describes our second investigation into a DSAL for
language specification. The first subsection introduces ANTLR as
the DSL representing the component language. The second sub-
section provides a discussion of AspectG, which is our DSAL that
weaves crosscutting concerns into ANTLR grammars.

5.1 ANTLR: A Domain-Specific Component Language
ANTLR (ANother Tool for Language Recognition) is a parser gen-
erator that provides a framework for constructing various program-
ming language related tools (e.g., recognizers, compilers, and trans-
lators) from grammatical specifications [1]. The ANTLR specifi-
cation language is based on EBNF notation and enables syntax-
directed generation of a compiler. The tokens comprising the lex-
ical part of the grammar for the new language are defined using
named regular expressions. The parser representing the semantic
part of the language specification is defined as a subclass of the
grammar specification and encapsulates semantic rules within each

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 4 2006/10/4

grammar production. The semantic actions within each produc-
tion rule are written in a GPL (e.g., Java, C#, C++, or Python).
The Robot language described in Section 4 has been rewritten in
ANTLR and partially provided below. This simple example illus-
trates the ANTLR specification language with semantic rules de-
fined in Java. AspectG follows the DSL implementation pattern us-
ing a pre-processor that serves as a compiler and application gen-
erator to perform a source-to-source transformation (i.e., the DSL
source code is translated into the source code of an existing GPL).
The ANTLR specification of the Robot language translates Robot
code into the equivalent Java code (e.g., Robot.java) that can be
compiled and executed on the Java Virtual Machine.

// The following class represents the Robot parser in ANTLR
class P extends Parser; {FileIO fileio=new FileIO();}
root:(

BEGIN
{
fileio.print("public class Robot");
fileio.print("{");
fileio.print("public static void main(String[] args) {");
fileio.print("int x = 0;");
fileio.print("int y = 0;");
}

commands
END EOF!
{
fileio.print("System.out.println(\"x coord= \" + x +

\" \" + \"y coordinator= \" + y);");
fileio.print(" }");
fileio.print("}");
fileio.end();
}

);
commands:(command commands

|
);

command :(
LEFT {fileio.print("x=x-1;");

fileio.print("time=time+1;");}
|RIGHT {fileio.print("x=x+1;");

fileio.print("time=time+1;");}
|UP {fileio.print("y=y+1;");

fileio.print("time=time+1;");}
|DOWN {fileio.print("y=y-1;");

fileio.print("time=time+1;");});

// The following class represents the Robot lexer in ANTLR
class L extends Lexer;
BEGIN : "begin";
END : "end";
LEFT : "left";
RIGHT : "right";
UP : "up";
DOWN : "down";
// whitespace
WS : (’ ’

| ’\t’
| ’\r’ ’\n’ { newline(); }
| ’\n’ { newline(); }
) {$setType(Token.SKIP);} ;

From the above language specification, ANTLR generates Java
source code representing the scanner and parser for the Robot
language. Additional information about ANTLR can be found on
the ANTLR web page [1].

5.2 AspectG: A Domain-Specific Aspect Language
In our past work [36], we noticed that crosscutting concerns
emerged within the grammar of the language specification. In par-
ticular, the implementation hooks for various language tools (e.g.,
debugger and testing engine) required modification to be made to
every production in the grammar. Manually changing the grammar
through invasive modifications proved to be a very time consuming
and error prone task. It is difficult to build new testing tools for each

new language of interest and for each supported platform because
each language tool depends heavily on the underlying operating
system’s capabilities and lower-level native code functionality [29].

We developed a general framework called the DSL Testing Tool
Studio (DTTS), which assists in debugging, testing, and profiling a
program written in a DSL. Using the DTTS, a DSL debugger and
unit test engine can be generated automatically from the DSL gram-
mar provided that an explicit mapping is specified between the DSL
and the translated GPL. To specify this mapping, additional seman-
tic actions inside each grammar production are defined. A crosscut-
ting concern emerges from the addition of the explicit mapping in
each of the grammar productions. The manual addition of the same
mapping code in each grammar production results in much redun-
dancy that can be better modularized using an aspect-oriented ap-
proach applied to grammars. In the case of generating a debugger
for the Robot language, the debug mapping for the Robot DSL de-
bugger was originally specified manually at the Robot DSL gram-
mar level shown below. For example, line 12 to line 18 represents
the semantic rule of the LEFT command. Line 12 keeps track of the
Robot DSL line number; line 14 records the first line of the trans-
lated GPL code segment; line 16 marks the last line of the translated
GPL code segment; line 17 and line 18 generate the mapping code
statement used by the DTTS. These semantic actions are repeated
in every terminal production of the Robot grammar.

10 command
11 :(LEFT {
12 dsllinenumber=dsllinenumber+1;
13 fileio.print(" x=x-1;");
14 gplbeginline=fileio.getLinenumber();
15 fileio.print(" time=time+1;");
16 gplendline=fileio.getLinenumber();
17 filemap.print("mapping.add(newMap(" + dsllinenumber +

",\"Robot.java\"," +
18 gplbeginline + "," + gplendline + "));");}
19 |RIGHT {
20 dsllinenumber=dsllinenumber+1;
21 fileio.print(" x=x+1;");
22 gplbeginline=fileio.getLinenumber();
23 fileio.print(" time=time+1;");
24 gplendline=fileio.getLinenumber();
25 filemap.print("mapping.add(newMap(" + dsllinenumber +

",\"Robot.java\"," +
26 gplbeginline + "," + gplendline + "));");}

The same mapping statements for the RIGHT command appear
in lines 20, 22, and 24 to 26. Although the Robot DSL is simple,
it is not uncommon to have grammars with hundreds of production
rules. In such cases, much redundancy will exist because the debug
mapping code is replicated across each production. Of course,
because the debug mapping concern is not properly modularized,
changing any part of the debug mapping has a rippling effect across
the entire grammar. An aspect-oriented approach can offer much
benefit in such a case. We have created AspectG as a tool to help us
manage crosscutting concerns in ANTLR language specifications.

The AspectG pointcut model can match on both the syntax of
the grammar and the semantic rule within each production (written
in Java). Join points in ANTLR are static points in the language
specifications where additional semantic rules can be attached. A
set of join points in AspectG is described with pointcuts that de-
fine the location where the advice is to apply. A wildcard can be
used within the signature of a pointcut. The wildcard ‘∗’ matches
zero or more terminal or non-terminal symbols to represent a set of
qualified join points. Some examples of pointcut specifications are
shown below:

.; matches any production in the entire Robot language
command.*; matches any production in a command production in the Robot language

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 5 2006/10/4

Pointcuts in AspectG are defined using the reserved word point-
cut and two keywords (e.g., within and match). The within pred-
icate is used to locate grammar productions at the syntax level and
match is used to define the location of a GPL statement within a
semantic rule. Each pointcut has a unique name and a list of actual
parameter signatures (terminals and non-terminals) and semantic
rules. Considering the following pointcut:

pointcut productions(): within(command.*);

The pointcut called productions is defined with the wild card
command.* and matches each join point that is a command pro-
duction in a grammar (e.g., RIGHT). As an example of a pointcut
that combines both predicate types, consider the following:

pointcut count gpllinenumber(): within(command.*) &&
match(fileio.print("time=time+1;"));

The pointcut count gpllinenumber is a pattern specification
corresponding to command productions having a semantic action
with a statement matching the signature fileio.print("time=
time+1;"). The advice in AspectG is defined in a similar man-
ner to AspectJ, which brings together a pointcut that selects join
points and a body of code representing the effect of the advice [4].
The advice are semantic rules written as native Java statements that
can be applied at join points specified by pointcuts. Unlike LISA,
in ANTLR the order of GPL statements in semantic rules is very
important. Therefore, in AspectG the ability to apply advice be-
fore/after a join point is necessary, as shown in the example below.

before(): productions() { dsllinenumber=dsllinenumber+1;}
after(): count gpllinenumber() {
gplendline=fileio.getLinenumber();

}

The before advice defined on the productions pointcut
means that before the parser proceeds with execution of each
command production, the DSL line number is incremented (i.e.,
dsllinumber=dsllinenumber+1;). The after advice associated
with the count gpllinenumber means that line numbers for the
GPL are updated (i.e., gplendline=fileio.getLinenumber();)
after the parser matches a timer increment (i.e., fileio.print
("time=time+1;");).

The changes in terms of aspects automatically propagate into
the generated parser through the modified grammar productions.
After weaving a grammar aspect and parsing the Robot DSL code,
the new ANTLR grammar can generate the mapping information
that contains the information needed by the DTTS (i.e., each Robot
DSL code statement line number along with its corresponding
generated Java statement line numbers is recorded in the grammar).

5.2.1 Aspect Weaving in AspectG
Unlike AspectLISA’s compiler approach, AspectG uses a program
transformation system (specifically, we use DMS - the Design
Maintenance System [6]) to perform the underlying weaving on the
language specification. The AspectG abstraction hides the details
of the accidental complexities of using the transformation system
from the users; i.e., a user of AspectG focuses on describing the
crosscutting grammar concerns at a higher level of abstraction
using an aspect language, rather than writing lower level program
transformation rules [36]. In AspectG, each of the crosscutting
concerns is modularized as an aspect that is weaved into an ANTLR
grammar using parameterized low-level transformation functions.

We have developed four weaving functions to handle four dif-
ferent types of join points that may occur within a grammar. The

four possible join points provided by AspectG are: before a seman-
tic action; after a semantic action; before a specific statement that
is inside a semantic action; and, after a specific statement that is
inside a semantic action. These joint points are represented in As-
pectG by before and after keywords within the context of a seman-
tic action or specific statement. Weaving takes place after the initial
phase of AspectG’s compiler, which is responsible for parsing the
AspectG specification and generating the program transformation
rules. The generated program transformation rules provide bind-
ings to the appropriate weaving function parameters corresponding
to the pointcut and advice defined in the aspect language. Algo-
rithm 3 describes the weaving procedure for AspectG. Note that
the algorithm requires two parameters (advice and a join point)
and weaves the advice parameter into the join points designated
by the pointcut predicate. Additional technical details are provided
in [11].

Algorithm 3 AspectG weaving
for all jp ∈ pointcutslist do

for all a ∈ adviceslist do
if jp’s name equals a’s pointcut name then

weave(jp, a)
end if

end for
end for

The actual weaving of the language specification is done by
the DMS program transformation engine according to the different
program transformation rules generated by the AspectG compiler.
The weave method first looks for all potential pointcut positions in
the semantic sections of a grammar. The weaver then back tracks
to the pointcut’s ancestor node type and value in the syntax level
to filter out the unqualified pointcut positions. Finally, the advice is
inserted in the correct position of the grammar specification using
the ASTInterface API provided by DMS, which provides methods
for modifying a given syntax tree to regenerate a new tree structure.

6. Related work
AspectASF [21] is a simple DSAL for language specifications writ-
ten in the ASF+SDF formalism. Only rewrite rules are supported.
Therefore, join points in AspectASF are static points in equation
rules describing semantics of the language. The pointcut pattern
language in AspectASF is a simple pattern matching language on
the structure of equations where only labels and left-hand sides of
equations can be matched. Pointcuts can be of two types: entering
an equation (after a successful match of left-hand side) and exit-
ing an equation (just before returning the right-hand side). Advice
specify additional equations that are written in the ASF formalism.
The AspectASF weaver transforms the original language specifica-
tions by augmenting the base grammar with new concerns (i.e., ad-
ditional equations are appended to appropriate places in the gram-
mar).

An early approach of aspect-orientation in language specifica-
tions is presented in the compiler generator system JastAdd [15].
The JastAdd system is a class weaver: it reads all the JastAdd mod-
ules (aspects) and weaves the fields and methods into the appropri-
ate classes during the generation of the AST classes. This approach
does not follow the conventional join point model where join points
are specified using a pointcut pattern language. However, it can be
seen as inter-type declarations in AspectJ where join points are all
non-anonymous types in the program and pointcuts are the names
of classes or interfaces. Hence, JastAdd uses implicit joint points
while AspectLISA and AspectG use explict joint points described
by pointcuts. Moreover, JastAdd does not enable inheritance on ad-
vice and pointcuts as AspectLISA does.

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 6 2006/10/4

7. Conclusion
Domain-specific aspect languages (DSALs) represent a focused
approach toward providing a language that allows a programmer
or end-user to define a specific type of concern. DSALs can be
contrasted with general-purpose aspect languages (GPALs) that
provide a more general language for capturing a broader range of
crosscutting concerns. Within the research on DSALs, much of the
application is centered on specific concerns for a language like Java
or C++. This paper differs from the scope of general research by
describing our investigation into DSALs for DSLs such as language
specification.

The paper summarized the challenges of DSAL development
and presented two separate case studies of different DSALs applied
to two different languages. Future work includes new pointcut pred-
icates that assist in specifying the control flow within a grammar.
Such a predicate would allow aspects associated with various forms
of run-time analysis to be specified and captured.

References
[1] ANTLR – ANother Tool for Language Recognition.

http://www.antlr.org, 2006.

[2] AspectC. http://www.aspectc.org/, 2006.

[3] AspectC#. http://www.castleproject.org/index.php/aspectsharp, 2006.

[4] AspectJ. http://eclipse.org/aspectj/, 2006.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. IEEE Transactions on Software Engineering, 30(6):355–
371, June 2004.

[6] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transformation
for practical scalable software evolution. In Proceedings of
International Conference on Software Engineering (ICSE), pages
625–634, 2004.

[7] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating
system code. In Proceedings of Joint European Software Engineering
Conference (ESEC), pages 88–98, 2001.

[8] T. Cottenier and T. Elrad. Contextual pointcut expressions for
dynamic service customization. In Dynamic Aspects Workshop
(DAW), pages 95–99, 2005.

[9] C. Courbis and A. Finkelstein. Towards aspect weaving applications.
In Proceedings of International Conference on Software Engineering
(ICSE), pages 69–77, 2005.

[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools and Applications. Addison-Wesley, 2000.

[11] DSL Testing Tool Studio. http://www.cis.uab.edu/wuh/ddf/, 2006.

[12] J. Fabry and T. Cleenewerck. Aspect-oriented domain-specific
languages for advanced transaction management. In Proceedings of
International Conference on Enterprise Information Systems (ICEIS),
pages 428–432, 2005.

[13] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling crosscutting
constraints in domain-specific modeling. Communications of the
ACM, Special Issue on Aspect-Oriented Programming, pages 87–93,
October 2001.

[14] J. Greenfield, K. Short, S. Cook, and S. Kent. Software factories:
assembling applications with patterns, models, frameworks and tools.
Wiley Publishing, 2004.

[15] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–
58, 2003.

[16] P. Henriques, M. Varanda Pereira, M. Mernik, M. Lenič, J. Gray, and
H. Wu. Automatic generation of language-based tools using LISA.
IEE Proceedings - Software Engineering, 152(2):54–69, April 2005.

[17] C. Herzeel, K. Gybels, and P. Costanza. A temporal logic language

for context awareness in pointcuts. In ECOOP Workshop: Revival of
Dynamic Languages, 2006.

[18] J. Hugunin. The next steps for aspect-oriented programming
languages. In NSF Workshop on Software Design and Productivity,
2001.

[19] J. Irwin, J. Loingtier, J. R. Gilbert, G. Kiczales, J. Lamping,
A. Mendhekar, and T. Shpeisman. Aspect-oriented programming
of sparse matrix code. In Proceedings of International Scientific
Computing in Object-Oriented Parallel Environments, 1997.

[20] K. T. Kalleberg and E. Visser. Combining aspect-oriented and
strategic programming. Electr. Notes Theor. Comput. Sci, 147(1):5–
30, 2006.

[21] P. Klint, T.van der Storm, and J.J. Vinju. Term rewriting meets
aspect-oriented programming. Technical report, CWI, 2004.

[22] LISA. http://marcel.uni-mb.si/lisa, 2006.

[23] C. Lopes. Aspect-Oriented Programming: A Historical Perspective.
In Aspect-Oriented Software Development, R. Filman, T. Elrad, M.
Aksit, S. Clarke (eds.), Addison-Wesley, 2004.

[24] M. Mernik, J. Heering, and A. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–
344, 2005.

[25] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. Multiple
Attribute Grammar Inheritance. Informatica, 24(3):319–328, 2000.

[26] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. LISA: An
Interactive Environment for Programming Language Development. In
Proceedings of International Conference on Compiler Construction
(CC), pages 1–4, 2002.

[27] M. Mernik, X. Wu, and B. Bryant. Object-oriented language
specifications: Current status and future trends. In ECOOP Workshop:
Evolution and Reuse of Language Specifications for DSLs (ERLS),
2004.

[28] D. Rebernak, M. Mernik, P. R. Henriques, and M. J. V. Pereira.
AspectLISA: an aspect-oriented compiler construction system based
on attribute grammars. In Workshop on Language Descriptions, Tools
and Applications (LDTA), pages 44–61, 2006.

[29] J. B. Rosenberg. How Debuggers Work: Algorithms, Data Structures,
and Architecture. John Wiley and Sons, 1996.

[30] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An extensible
system for domain-specific aspect languages. In Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented
Programming, Systems, Languages, and Applications, pages 28–37,
2003.

[31] J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis. VEST: An aspect-based composition tool for real-time
systems. In Real-Time Applications Symposium, pages 58–69, 2003.

[32] D. Suvee, W. Vanderperren, and V. Jonckers. Jasco: An aspect-
oriented approach tailored for component based software develop-
ment. In Proceedings of International Conference on Aspect-oriented
Software Development (AOSD), pages 21–29, 2003.

[33] E. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-aware
aspects. In Proceedings of International Symposium on Software
Composition, pages 227–249, 2006.

[34] T. Tourwe, A. Kellens, W. Vanderperren, and F. Vannieuwenhuyse.
Inductively generated pointcuts to suppport reafctoring to aspects. In
AOSD Workshop on Software Engineering Properties of Languages
for Aspect Technologies (SPLAT), 2004.

[35] D. A. Watt. Programming Language Concepts and Paradigms.
Prentice-Hall, 1990.

[36] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik. Weaving a
debugging aspect into domain-specific language grammars. In
Proceedings of ACM Symposium on Applied Computing (SAC), pages
1370–1374, 2005.

Domain-Specific Aspect Languages for Modularizing Crosscutting Concerns in Grammars 7 2006/10/4

Post Facto Type Extension for Mathematical Programming

Stephen M. Watt
Department of Computer Science

University of Western Ontario
London ON, Canada N6A 5B7

watt@csd.uwo.ca

Abstract
We present the concept of post facto extensions, which may be used
to enrich types after they have been defined. Adding exported be-
haviours without altering data representation permits existing types
to be augmented without renaming. This allows large libraries to be
structured in a clean, layered fashion and allows independently de-
veloped software components to be used together. This form of type
extension has been found to be particularly useful in mathematical
software, where often new abstractions are applicable to existing
objects. We describe an implementation of post facto extension, as
provided by Aldor , and explain how it has been used to structure a
large mathematical library.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Methodologies; D.3.2 [Pro-
gramming Languages]: Language Classifications—Specialized ap-
plication languages; D.3.3 [Programming Languages]: Language
Constructs and Features; I.1.3 [Symbolic and Algebraic Manipu-
lation]: Languages and Systems—Special-purpose algebraic sys-
tems

General Terms Design, Languages

Keywords Aldor, Axiom, Aspect-oriented programming, Sym-
bolic computation, Computer algebra

1. Introduction
As software libraries are extended and combined, it is often de-
sirable to view values of pre-existing types as instances of more
general abstractions defined later. This leads either to defining a
host of conversions, or to re-writing libraries. Conversions may be
either implicit or explicit, but in either case the programmer must
be aware of them and use compilers that can optimize them. Re-
writing libraries to endow pre-existing types with later-defined se-
mantics is time-consuming and decreases modularity.

This paper presents a programming language solution to this
problem. The solution, “post facto extension,” is a specialized in-
stance of what is today known as aspect-oriented programming, and
it has proven highly effective in structuring mathematical libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSAL 2006 Portland OR, USA.
Copyright c© 2006 ACM XXX-XXXXXXX-XX. . . $5.00.

for Aldor [1, 2, 3, 4]. Language support for post facto extension can
be readily added to object oriented or abstract datatype program-
ming languages without the complexity of full support for general
aspect-oriented programming.

This work has been motivated by the design of software for
computer algebra, an area concerned with answering mathematical
problems in terms of symbolic expressions rather than numbers.
In mathematics, as in software development, one of the principal
activities is that of generalization. By expressing problems more
abstractly, it is possible to make greater re-use of previous work.
From this point of view, it is quite natural to view previously de-
fined quantities as special instances of newly defined abstractions.

A simple example illustrates this point: Suppose we are de-
veloping a library, and one of the types is Integer. We provide
this type with the basic arithmetic operations, +, −, ×, =, <,
etc. Later, gcd and lcm are added to the library. Should the type
Integer be modified to export these operations, or should they
remain as independent functions? If additional arithmetic types are
added, it may be desirable to add a Ring abstraction, from which all
types with suitable arithmetic can inherit. Types that could provide
the Ring interface include square matrices, polynomials, quotient
fields, complex numbers and the integers. Should Integer be mod-
ified to export Ring? If Integer is not modified, then Integer
values cannot be used where elements of a Ring are required. It
is then necessary to introduce a new type and provide conversions.
As more abstractions are added, many conversions are used either
explicitly or implicitly and code becomes cumbersome and ineffi-
cient. If Integer is modified, then a new dependency is created and
previously complete components must be re-tested. It is also possi-
ble that adding this behaviour to the type will break third-party uses
of the library. When more than one library is involved, this problem
is exacerbated.

The problem of dealing with new abstractions for existing ob-
jects is by no means restricted to mathematical computation. It
arises whenever multiple libraries provide different functionality
for basic types in an object-oriented environment. An example
would be when different libraries provide string manipulation, reg-
ular expression matching and higher-level text operations. Situa-
tions such as this are now well-understood in the aspect-oriented
programming community. We have found this problem to be par-
ticularly acute in the construction of computer algebra software: In
this setting, it is the usual case that most basic types are instances
of many later-defined abstractions. Moreover, since there is wide
agreement on numerous mathematical abstractions, it is quite nat-
ural to expect the objects of one library to simply work in other
libraries.

The situation where we first noticed the problem was in the con-
struction of libraries for the Axiom [5] computer algebra system.
Given that the basic arithmetic types needed to participate in ad-
vanced mathematical operations, there seemed to be no way to de-

fine a fixed core language with a few basic types and an evolving
library of advanced functionality. During this period, the present
author was responsible for the design and implementation of the
programming language to be used for libraries to extend the Axiom
system. We were thus in the fortunate position to consider program-
ming language solutions to problems that arose in library design.

Our solution to the problem of dealing with new abstractions
for existing components relies on a key observation: Although
it is desirable to add new interfaces to mathematical types after
they have been defined, it is usually not desirable to change the
representation of values. We found it was almost always the case
that any new operations required by the new interfaces could be
defined in terms of existing exported behaviour without any change
to the object representation. This led to the idea that existing values
could participate in new interfaces without any changes to the
objects at all. Instead, higher-order operations on the types could
add the desired behaviours. This is the basic idea of what we call
“post facto extension” of types.

We have explored this idea in our design of the Aldor program-
ming language and have found it to be quite effective in cleanly
structuring complex mathematical libraries with many rich rela-
tions among the types. In Aldor , the expression of post facto exten-
sions is quite simple. From the programmer’s point of view, there
is little required to use them effectively. We believe that these ideas
may prove useful in areas outside of mathematical programming
and therefore should be more widely known.

This paper presents the main ideas of post facto type extension
and describes how it has been used to structure complex libraries:
Section 2 outlines the main ideas of Aldor and its type system. Sec-
tion 3 describes structural problems that were observed in building
mathematical libraries for Aldor . Section 4 then presents our so-
lution, post facto extensions. Section 5 explains some of the ways
that post facto extensions can be used in structuring large libraries.
We present our conclusions in Section 6.

2. Aldor and Its Type System
Aldor [1, 2, 3, 4] is a programming language originally intended to
provide compiled libraries for computer algebra. The design of the
language tries to balance high-level mathematical expressivity with
the possibility of compilation to efficient machine code so large
symbolic and numeric problems can be treated. There are several
aspects to the Aldor language that are intended to provide support
for mathematical programming, but which are somewhat unusual.
We outline these below.

Types and functions are first-class values. This means that they
may be created and used dynamically, providing representations for
mathematical sets and functions.

The type system has two levels. Each value belongs to some
unique type, known as its domain, and the domains of values can
be delcared statically. Domains themselves belong to the domain
Type. Domains may additionally belong to type categories that
specify additional properties. In particular, categories may spec-
ify that a domain must export certain operations or that some op-
erations have default implementations. Categories fill the role of
interfaces or abstract base classes of other languages, and may be
viewed as sub-types of the domain Type. Category membership can
be asserted at compile time and tested at run time.

The language is not object-oriented. There are a number of as-
pects of object-oriented programming that make it awkward to use
in an algebraic setting:

The first problem is that object-oriented languages favour a
programming style where objects maintain state and the execution
of a program consists of calling methods to change that state.

Mathematical programming is more suited to a functional style,
where one works with values and functions compute new values
based on their arguments and where values are seldom, if ever,
modified.

The second problem is that, in an object-oriented world, binary
operations do not inherit in a natural way. In mathematics it is quite
common to have functions that are homogeneous on their argu-
ments, for example +, ×, −, = and <. To illustrate the difficulty
with object-oriented inheritance, suppose we have a base class B
with a method plus, used as a.plus(b) to add a value of type B
to an object of type B and yielding new value of type B. That is,
plus : B × B → B. If class D is derived from class B then it
will have plus : D × B → B. This problem was already noted
by Barbara Liskov as arising in the design of CLU [6] and is cited
as one of the reasons that the language was based on abstract data
types rather than objects.

The third problem is related to the second. Class-based inheri-
tance does not provide sufficient static type checking for multiple-
argument functions. To illustrate, suppose that a base class B pro-
vides the abstraction of multiplication × : B × B → B and that
classes D1 and D2 are derived from it. We wish to ensure statically
that the multiplications D1 × D1 and D2 × D2 are allowed, but
that the multiplications D1 × D2 and D2 × D1 are disallowed.
In an object-oriented world, however, the inhomogeneous multipli-
cations would be allowed by virtue of the inherited multiplication
defined in class B.

An example can illustrate this last point. In Aldor one can define
a category Semigroup to capture the abstraction of a homogeneous
multiplication, and the domains DoubleFloat and Permutation
could be declared to belong to this category.

Semigroup: Category == with { *: (%, %) -> % }
DoubleFloat: Join(Semigroup, ...) == ...
Permutation: Join(Semigroup, ...) == ...

This causes the declared domains to export a suitable multiplica-
tion. For example, DoubleFloat will have an exported operation
“*” that takes two DoubleFloat values and returns a third. If x and
y are declared to be of type DoubleFloat and p and q are declared
to be of type Permutation, then it will be possible to multiply x*y
and p*q, but not x*p. This difference may be summarized by the
following relations:

x, y ∈ DoubleFloat ⊂ Semigroup
p, q ∈ Permutation ⊂ Semigroup

ff
OOP

x, y ∈ DoubleFloat ∈ Semigroup
p, q ∈ Permutation ∈ Semigroup

ff
Aldor

In an object orient world x and p belong to a common inherited
class, but in Aldor they do not.

Dependent types are fully supported. Aldor obtains the capabil-
ities of object-oriented programming through the use of dependent
types. Tuples may have components whose value determines the
type of other components and mappings may have return types that
depend on the values of parameters. As an example, consider the
following declaration:

f: (n: Integer, m: SquareMatrix(n, Integer))
-> List IntegerMod(n)

Here we suppose that SquareMatrix(n, Integer) is the type of
n×n square matrices with integer entries and that IntegerMod(n)
is a type representing the integers modulo n. The types of the
second argument and of the return value of f depend on the value
of the first argument. If the first argument is 3, then the second
argument must be a 3 × 3 matrix and the result will be a list of
integers modulo 3.

Dependent types are particularly useful when some of the com-
ponents are themselves types. For example, we may define

prodl: List Record(S: Semigroup, s: S) == [
[DoubleFloat, x],
[Permutation, p],
[DoubleFloat, y]

]

Here each element of the list consists of a type and a value belong-
ing to that type. By specifying that the type belong to a particular
category, we are able to determine statically what operations are
supported on the values. In Aldor , use of dependent types and in-
heritance in the category hierarchy take the place of objects and
inheritance in the class hierarchy.

Parametric polymorphism is provided by category- and domain-
producing functions. With types as first class values and depen-
dent types fully supported, functions producing types take the place
of templates in other languages. For example we may write

define Module(R: Ring): Category == Ring with {
*: (R, %) -> %

}

Complex(R: Ring): Module(R) with {
complex: (%, %) -> R;
real: % -> R;
imag: % -> R;
conjugate: % -> %;
...

} == add {
Rep == Record(real: R, imag: R);
...

}

Here, Module is a function that take a type parameter, R, belong-
ing to the category Ring and returns a category as its result. The
form Ring with {*: (R, %) -> R} constructs the category to
be returned as being the category Ring extended with one addi-
tional operation. The symbol % in the category expression refers to
the domain that exports the category. If D: Module(T), then D ex-
ports *: (T, D) -> D. The keyword define affects the publicly
visible information about Module that will be visible about compi-
lation units. It allows not only its type, (R: Ring) -> Category,
but also its value, (R:Ring) +-> Ring with {*:(R,%) -> %},
to be publicly visible.

The second definition declares Complex to have a dependent
mapping type, (R: Ring) -> Module(R) with.... That is,
Complex takes a type-valued parameter R that belongs to the cat-
egory Ring and returns a type-valued result that belongs to the
category Module(R) with.... The body of the function defini-
tion (the part after “==”) is a form that constructs a domain.

Category- and domain-producing expressions may be condi-
tional. Aldor provides conditional inheritance, allowing types
to be formed differently according to run-time conditions. For ex-
ample, we may write

UnivariatePolynomial(R: Ring): Module(R) with {
coeff: (%, Integer) -> R;
monomial: (R, Integer) -> %;

if R has Field then EuclideanDomain;
...

} == add {
...

}

That is, if the type parameter R to UnivariatePolynomial not
only belongs to the category Ring but also belongs to the category

Field, then the type UnivariatePolynomial(R) also belongs to
the category EuclideanDomain.

Post facto extensions. Aldor allows domains to be extended to
belong to new categories after they have been initially defined.
These allow domains to be defined in a layered fashion, separating
issues and eliminating dependencies, while providing rich function.
These are the focus of the present paper and are described in more
detail in Section 4.

Aldor grew out of an earlier language by Jenks and Trager [7]
that already used the idea of domains and categories. This lan-
guage was the original library language for the Axiom system
(then known as Scratchpad II), and inspired a number of other
projects for computer algebra languages, including Newspeak [8]
and Views [9].

3. Problems in Library Design
We now describe a certain problems that we observed in building
the first Aldor libraries. We describe some of these problems using
the terminology of Aldor , but their translation into other program-
ming languages should be straightforward. Later we show how
these problems are solved with post facto extensions.

Old domains and new categories. We can now revisit the exam-
ple of the introduction using more precise language: In building
libraries for mathematical computation, it is quite normal to define
new categories and to find that existing domains could be made to
belong to them. Many of the most basic types, such as Integer,
IntegerMod(p), Fraction(R), Complex(R), Matrix(n,m,R)
and UnivariatePolynomial(R), have a wealth of mathematical
properties and are often potential instances of newly defined cat-
egories. The same thing is true for floating point types if one is
willing to overlook the fact that they are not exactly associative.

In building the basic Aldor libraries, there was the choice of
whether to modify these basic domains to belong to all the ap-
plicable categories defined in the standard libraries, or whether to
maintain modularity. On the one hand, even within the standard li-
braries, modularity was desirable. Certain types, such as Integer
and Boolean must be known in the language definition and it
would be injudicious to therefore have to fix an intricate hierarchy
of algebraic categories as part of the basic language. Even if these
basic domains were modified to belong to all the applicable cate-
gories in the standard libraries, then the problem of membership in
categories from new libraries would still exist. On the other hand, if
the basic domains were not made to belong to the categories of the
standard libraries, then values belonging to these domains could not
be used by any of the advanced functions. The solution of having
a basic and an elaborated version of each type would lead to code
filled with distracting explicit conversions or subtly dangerous im-
plicit conversions.

Difficulties with multiple libraries. Commonly, application must
work with objects that inherit from base classes or interfaces from
independent libraries. There is the problem, however, that objects
returned by methods of one library are not suitable for use in calls
to methods of other libraries. One solution is for the application to
build its objects as compound structures containing component ob-
jects from the separate libraries. In this case conversions and con-
structors are used to move between the types. Sometimes an ap-
plication will define a new base class for its hierarchy that inherits
from both libraries as a way to deal with this situation. Then clients
of the application that require yet other third libraries must repeat
the process. This is really just another instance of old types lacking
new interfaces. except in this case the interfaces come from sepa-
rate libraries and there is no real possibility of integrating the set of
types.

Large dependency sets in libraries. In many programming lan-
guages dependencies can arise among components because types
refer to each other in their definitions. In Aldor and certain other
languages, dependencies can also arise because types refer to each
other in their type. We give a simple example. Suppose we have the
following declarations:

define AbelianGroup: Category == with {
+: (%, %) -> %;
*: (Integer, %) -> %;
...

}

define DifferentialRing: Ring with {
diff: % -> %;

}

Integer: Join(DifferentialRing, ...) == ...

That is, the domain Integer is declared to (trivially) belong to
the category DifferentialRing so that it be possible to con-
struct differential operators and other structures with integer co-
efficients. The problem is that the type Integer appears in the def-
inition of AbelianGroup. Because of this, all domains that belong
to AbelianGroup have an indirect and undesired dependency on
DifferentialRing.

In compiling programs we may wish to verify that expressions
have well-defined type, to verify that types are well-formed and
to perform type inference. The dependencies that arise through the
types of types can lead to large systems requiring fixed-point analy-
sis. This not only imposes technical constraints on the type system,
it also requires careful compiler design to avoid long compilation
times for simple programs.

This form of dependency has been seen to be a practical prob-
lem. In the design of the Axiom system, basic mathematical types
were endowed with all appropriate advanced algebraic interfaces.
This led to an almost complete inter-dependency among the inter-
face specifications. Doing a complete type checking of the library
interfaces took several days, and this led to a reluctance to modify
the library.

Complex conditionalization. While conditional category mem-
bership is one of the more useful features of the Aldor language
and its predecessors, it is also subject to difficulties when new cat-
egories are used. We illustrate this with the domain-constructing
function DirectProduct(n, S) which constructs the type of n-
tuples of values from the type S.

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;

if S has Semigroup then Semigroup;
if S has Monoid then Monoid;
if S has Group then Group;
...
if S has Ring then Join(Ring, Module(S));
if S has Field then Join(Ring, VectorField(S));
...
if S has DifferentialRing then DifferentialRing;
if S has Ordered then Ordered;
...

} == add {
...

}

Here we see that the set of categories satisfied by DirectProduct(n,
S) depends very much on the categorical properties of the ar-
gument S. The direct product inherits from many, but not all, of
the categories satisfied by S. For example, if S is a Monoid, then
so is DirectProduct(n,S). The same is true for many other

categories. Sometimes DirectProduct(n,S) does not belong
to the categories satisfied by S. For example, if S is a Field
then DirectProduct(n,S) is not. Sometimes the opposite is
true: sometimes DirectProduct(n,S) belongs to additional cat-
egories by virtue of the categorical properties its argument. This
occurs, for example, when S is a Ring.

This example serves to make two points: First, we see that
the categorical properties of a domain-constructing function can
be quite complex and depend very much on the specific nature of
the type constructor — it is not possible to describe this behaviour
with a few simple universal rules. Second, we see that certain con-
structors are open-ended in their conditionalization requirements
— whenever new categories are added to the environment, it is
likely the constructor should be augmented.

4. Post Facto Extensions
Our solution to the problems we have outlined is to provide a
mechanism for domain-valued expressions to have their meaning
augmented with additional categories. This is achieved by allowing
names bound to domains and domain-producing functions to have
additional definitions and by providing rules by which the multiple
meanings visible in a given scope are to be combined. We explicitly
note that the representation of values belonging to the augmented
domains does not change. All that is different is that the domain to
which they belong is made to belong to additional categories, and
consequently support more operations.

Extending domains. If D is a domain-valued constant, then its
meaning may be extended with a definition of the form

extend D: C == E

This declares the D to belong to the category given by C in
addition to whatever other categories it belongs in the current
scope. In general, belonging to this new category may require D to
provide new exports. The expression E gives the implementation
of these new exports in terms of previously exported operations.
The keyword extend is required so that the definition is not taken
to be an independent, overloaded meaning.

To illustrate, the domain Integer may be made to belong
to the category DifferentialRing by providing the following
extension

extend Integer: DifferentialRing == add {
diff(n: Integer): Integer == 0;

}

Separately, Integer may be made to belong to the category
ConvertibleTo(MathML) by providing the extension

extend: Integer: ConvertibleTo(MathML) == add {
convert(n: Integer): MathML == mi(n)

}

Named domains can in this way have different behaviours added as
needed. When an existing domain is used with a new library, then
a set of extensions can be provided to make the domain belong
to whichever categories are desired. The programmer is free to
organize the extensions in any suitable manner. In a scope where a
domain-valued constant is used, its type is taken to be the Join of
all the categories of the visible extension definitions and its value
is taken to be the add of all the expressions from the extension
definitions. That is, if the visible definitions are

N: C0 == A0;
extend N: C1 == A1;
...
extend N: Cn == An;

then the domain used will be formed as

N: Join(C0,C1,...,Cn) ==
A0 add A1 add ... An add {}

Extending functions. Domain-producing functions may be ex-
tended by providing an additional function definitions, marked with
extend. An extension of a domain-producing function must have
arguments with the same domains as the corresponding arguments
of the original function. Normally, however, one or more of the ar-
guments will have different subtype properties. (This includes the
case where domain-valued arguments are declared to belong to dif-
ferent categories.) The declared return type of the extension func-
tion is taken to be an additional category to which the resulting
domain will belong. To illustrate, we rewrite the DirectProduct
example using extensions as shown in Figure 1. It would not nor-
mally be the case that the extensions would be given together as
shown here. More often the extensions would either be placed to-
gether with the category definitions or be grouped in some way
(e.g. extensions necessary to make domains of library 1 work with
library 2).

In a scope where a domain-producing function constant is used,
the original function value and all of the visible extensions are com-
bined to produce the function that is actually used. This allows
proper behaviour of function-valued names. So, for example, ex-
tended domain-producing functions may be passed as parameters,
saved as values etc, and later used as desired.

If the visible function definition and extensions for F are

F(a1: T01,...,ak: T0k): R0 == A0
extend F(a1: T11,...,ak: T1k): R1 == A1
...
extend F(a1: Tn1,...,ak: Tnk): Rn == An

this is equivalent to the definition

F(a1:Meet(T01...Tn1),...,an:Meet(T0k...Tnk)): with {
if a1 ∈ T01 and ... and ak ∈ T0k then R0;
if a1 ∈ T11 and ... and ak ∈ T1k then R1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then Rn;

} == add {
if a1 ∈ T01 and ... and ak ∈ T0k then A0;
if a1 ∈ T11 and ... and ak ∈ T1k then A1;
...
if a1 ∈ Tn1 and ... and ak ∈ Tnk then An;

}

Here the symbol “∈” is interpreted to be a subtype test for the
corresponding base domain. In particular, when Tij is a category
“∈” means “has.” If T0i = T1i = · · · = Tni then the i-th test can
be omitted.

These rules are applied recursively, with suitable interpretation
of Meet, Join and add, so that curried domain-producing functions
are handled naturally.

Implementation. In Aldor data values are not necessarily self-
identifying, but each expression has a unique well-defined domain.
Operations on data values are in principle extracted during execu-
tion from these domain objects and it is the compiler’s responsi-
bility to ensure that all the necessary domain objects are available
at known locations at run-time. Post-facto extension of domains is
implemented by constructing composite domain objects. Post-facto
extension of functions is implemented by combining functions as
described above. One of the most important aspects of the imple-
mentation of post facto extension is the static optimization of exten-
sion compositions, determining which functions should be called
during execution. This enables a number of further optimizations,
resulting in relatively efficient code.

Post facto extension can also be implemented in an object-
oriented environment. In this case it is necessary to modify data
structures representing class objects. These classes (including vir-

tual function tables) are usually accessed through the member ob-
jects so there is the added complexity of matching the lifetime of
the post facto extensions with their scope.

Relation to other work. Our design of post facto extensions
makes use of the idea of mixins, from the Flavors system [10],
applied to type-producing functions. This allows a separation of
concerns in the creation and use of first class type objects, as de-
scribed in [2]. The result gives a specialized form of what has
come to be known as aspect-oriented programming [11], appli-
cable to parameterized and non-parameterized types. If we view
contant domains as nullary domain-producing fuctions, we may
view post-facto extension as providing scoped point cuts associ-
ated to domain constructors. In the non-parametric case, a similar
effect can be achieved with open classes [12]. The use of type
categories in Aldor allows the compiler to perform various opti-
mizations, as described in [1], to eliminate function look-up and
perform in-lining where possible, taking into account post facto
extensions.

5. Use in Library Design
We now have a dozen years’ experience in the use of post facto
extensions for structuring mathematical libraries for Aldor . This
section describes some of the ways in which we have found it to be
useful.

Uniform treatment of raw types and object types. Many pro-
gramming languages make a distinction between “raw types” and
“object types.” This distinction does not exist in Aldor . The lan-
guage defines a set of standard types and the library endows them
with operations. All basic domains are initially defined simply as
data representations. All primitives are given as independent oper-
ations, provided by the Machine package. For example, we have

Boolean: Type == add {};
Integer: Type == add {};
DoubleFloat: Type == add {};
...

and the Machine package provides primitives for arithmetic on val-
ues of these types. Later, these types are extended by the standard
library to have a richer structure.

Layering large libraries. We have found it useful to be able to
build large libraries in layers, with fewer dependency cycles. In
bootstrapping the Standard Aldor Library, we have the following
layers:

1. Basic types without operations. The basic types are simply
declared to be types, and the data representation is implicit in
the use of available machine primitives on these types.

2. Basic types with representation. The basic types are extended
to themselves export the relevant primitives. They may now
be treated as types with an opaque representation. As the basic
types are extended with operations, they may refer to each other
in the signatures of their exports. For example, we may have

extend Boolean: with {
=: (%, %) -> Booelean;
convert: % -> String;
...

} == ...

extend Integer: with {
=: (%, %) -> Boolean;
<: (%, %) -> Boolean;
convert: % -> String;
...

} == ...

DirectProduct(n: Integer, S: Set): Set with {
component: (Integer, %) -> S;
new: Tuple S -> %;

} == add { ... }

extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ...
extend DirectProduct(n: Integer, S: Monoid): Monoid == ...
extend DirectProduct(n: Integer, S: Group): Group == ...
...
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ...
extend DirectProduct(n: Integer, S: Ordered): Ordered == ...
...

Figure 1. DirectProduct defined using extensions

extend String: with {
=: (%, %) -> Boolean;
#: % -> Integer -- Length.
...

} == ...

These may be compiled without having to resort to a multi-type
fixed-point determination in type inference.

3. Definition of constructed types. The library uses the primitive
types to construct a richer set of useful types, such as linked
lists, hash tables, I/O abstractions, etc.

4. Types with useful categories. The Standard Library defines a
number of categories, and the basic and constructed types are
extended to belong to them as appropriate.

The Algebra Library is built on top of the Standard Library as
follows:

5. Mathematical categories. The Algebra Library defines a rich
categorical structure with categories corresponding to many of
the standard algebraic abstractions. These include abstractions
for the concept of group, ring, euclidean domain, field, module,
algebra, etc.

6. Extension of the basic types. The arithmetic types of the Stan-
dard Library are extended to belong to all the appropriate cate-
gories from the Algebra Library.

7. Definition of mathematical domains. The library defines a set of
common mathematical domains, such as polynomials, matrices,
quotients, finite fields and so on.

A number of more sophisticated mathematical libraries are built
on top of the Algebra Library, and these extend the types of the
Standard Library and Algebra Library, as appropriate.

This layering allows the elimination of cyclic dependencies in
the design of the libraries and allows the libraries to be built and
tested in a modular fashion. It does this without compromising the
rich set of behaviours desired for the basic types.

Combined use of multiple libraries. With post facto extensions
it is quite easy to use multiple, independently developed libraries
without a host of data conversions. The application programmer
decides which categories from the various libraries will be impor-
tant and extends the necessary types to export them. Having done
this, the values computed by one library may be readily used in the
other libraries without conversion.

Separation of concerns. With post facto extensions it is straight-
forward to separately implement various independent aspects of do-
mains. This is one of the standard goals of aspect-oriented program-
ming. For example, one set of extensions can provide algebraic al-

gorithms, while another set of extensions provide translations to
TEX and a third set of extensions provide translations to MathML.
The code for each set of extensions can be separately developed,
tested and maintained.

Adding callback algorithms to parameters. One of the difficul-
ties with generic programming is that there are often specialized al-
gorithms that apply over certain domains. In C++ this is handled by
template specialization and is resolved statically. However, in Al-
dor types may be constructed dynamically so we need some other
mechanism to access specialized algorithms. Post facto extension,
combined with conditional category tests, allows generic code to
use special purpose algorithms, when applicable, without revising
library components.

We illustrate this point with an example from linear algebra.
Such a package can be defined generically over any commutative
ring. More efficient algorithms may be used, however, when the
ring is known to be an integral domain or a field. We may thus
assemble these algorithms into a package as follows:

LinearAlgebra(R:CommutativeRing, M:MatrixCategory R):
with {...} == add {

local Elim: LinearEliminationCategory(R, M) == {
R has Field =>

OrdinaryGaussElimination(R, M);
R has IntegralDomain =>

TwoStepFractionFreeGaussElimination(R,M);
DivisionFreeGaussElimination(R, M);

}

determinant(m:M):R == determinant(m)$Elim;
}

Certain coefficient rings may support efficient specialized algo-
rithms. For example, we may want to compute over the integers
using Chinese remaindering. However, we do not want to have to
modify the LinearAlgebra package whenever a new method is
incorporated into the library. We therefore define a category that a
ring can implement to provide linear algebra algorithms over itself:

LinearAlgebraRing: Category == with {
determinant: (M:MatrixCategory %) -> M -> %;
rank: (M:MatrixCategory %) -> M -> Integer;
...

}

We make one modification to the LinearAlgebra package to take
advantage of special-case algorithms carried in a LinearAlgebra-
Ring view: we replace the determinant function with

determinant(m:M):R == {
if R has LinearAlgebraRing then

determinant(M)(a)$R;
else

determinant(m)$Elim;
}

When we have special algorithms for some domain, we extend
the domain to know about them:

extend Integer: LinearAlgebraRing == add {
determinant(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingDeterminant(M, m);
rank(M: MatrixCategory %)(m: M): % ==

ChineseRemainderingRank(M, m);
...

}

Whenever we use the LinearAlgebra package, it will use the
designated algorithm even if the coefficient ring is determined
dynamically.

The technique of using post facto extensions to endow domains
with special- case algorithms has been used in the in the construc-
tion of the

PIT library [13]. The notion of rings knowing how to
perform operations in structures over themselves has been explored
earlier in relation to composing factorization algorithms [14].

6. Conclusions
We have examined a number of problems that arise in the con-
struction of software libraries. These are all related to question of
whether existing types should be updated with new abstractions as
libraries grow or are used together. We have noted that the prob-
lem is particularly accute in computer algebra, where it is quite
usual that pre-existing types can satisfy newly defined abstractions.
We have observed, however, that in mathematical programming
new abstractions do not usually require any change in data rep-
resentation in order to be applied. Based on this observation, we
have proposed the notion of post facto extension of types and of
type producing functions. This provides a specialized instance of
aspect-oriented programming that has proven particularly effective
for mathematical computing.

Acknowledgments
The author would like to thank Samuel S. Dooley for his assistance
with the first implementation of post facto extensions in the A]

compiler at IBM Research. He would also like to express his grat-
itude to the late Manuel Bronstein for the LinearAlgebraRing
example.

References
[1] Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Morrison, S.C.,

Steinbach, J.M., Sutor, R.S.: A first report on the A# compiler,
Proc. 1994 International Symposium on Symbolic and Algebraic
Computation, pp. 25–31, ACM Press.

[2] Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Morrison, S.C.,
Steinbach, J.M., Sutor, R.S.: AXIOM Library Compiler User Guide,
The Numerical Algorithms Group Ltd, Oxford 1994.

[3] Watt, S.M., Aldor, in Handbook of Computer Algebra, Grabmeier,
Kaltofen and Weispfenning (editors), Springer Verlag 2003, pp. 265–
270.

[4] Aldor User Guide, http://www.aldor.org (2003).
[5] Jenks, R.D., Sutor, R.S.: Axiom: The Scientific Computation System,

Springer Verlag (1992).
[6] Liskov, B. A history of CLU, Proc. Second ACM SIGPLAN conference

on History of programming languages, pp. 133–147, ACM Press (1993).

[7] Jenks, R., Trager, B.: A language for computational algebra, Proc.
1981 ACM Symposium on Symbolic and Algebraic Computation, pp.
6–13, ACM Press.

[8] Foderaro, J.K.: The Design of a Language for Algebraic Computation,
Ph.D. Thesis, UC Berkeley, 1983.

[9] Abdali, S.K., Cherry, G.W., Soiffer, N.: A Smalltalk system for
algebraic manipulation, Proc. 1986 Object Oriented Programming
Systems Languages and Applications, pp. 277–283, ACM Press.

[10] Moon, D.A.: Object-oriented programming with flavors, Proc. 1986
Object Oriented Programming Systems Languages and Applications,
pp. 1–8, ACM Press.

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J-M., Irwin, J.: Aspect-Oriented Programming, Proc.
European Conference on Object-Oriented Programming, LNCS 1241
pp. 220-242, Springer Verlag (1997).

[12] Millstein, T., Chambers, C.: Modular Statically Typed Multimethods,
Proc. European Conference on Object-Oriented Programming, LNCS
1628 pp. 279-303, Springer Verlag (1999).

[13] Bronstein, M.:
PIT : A strongly-typed embeddable computer algebra

library, Proc. DISCO’96, LNCS 1128 pp. 22-33, Springer Verlag.
[14] Davenport, J., Gianni, P., Trager, B.: Scratchpad’s view of algebra II:

a categorical view of factorization, Proc. 1991 International Symposium
on Symbolic and Algebraic Computation, pp. 32–38, ACM Press.

Towards a Domain-Specific Aspect Language
for Virtual Machines

– Position Paper –

Yvonne Coady Celina Gibbs
University of Victoria, Canada

ycoady@cs.uvic.ca, celinag@uvic.ca

Michael Haupt
Darmstadt University of Technology /
Hasso Plattner Institute for Software

Systems Engineering, Germany
michael.haupt@hpi.uni-potsdam.de

Jan Vitek Hiroshi Yamauchi
Purdue University, USA

{jv,yamauchi}@cs.purdue.edu

Abstract
High-level language virtual machines, e. g., for the Java program-
ming language, offer a unique and challenging domain for aspects.
This position paper motivates the need for an aspect-oriented lan-
guage designed precisely for this domain. We start by overviewing
examples of some of the crosscutting concerns we have refactored
as aspects in VMs, and then demonstrate how mainstream aspect-
oriented programming languages need to be augmented in order to
elegantly implement these and similar concerns. We believe current
join point and advice models are not expressive enough for this do-
main. Predominantly this is due to the fact that the concept of a
point in the execution of the VM requires the ability to explicitly
specify subtle issues regarding system state and services. Finally,
the paper outlines, based on a design view on virtual machines, the
shape of a possible domain-specific aspect language for the imple-
mentation of such systems.

1. Introduction
A virtual machine—virtual machines in the context of this paper
are always high-level language virtual machines [12] such as the
Java virtual machine—can be seen as providing several services to
the application it runs, such as memory management, execution (in-
terpreted or JIT-compiled), adaptive optimisation, thread manage-
ment, synchronisation, and so forth. These services often interact
closely, and these interactions’ work flows are non-trivial.

When adopting a view that regards each such service as being
a concern, the crosscutting nature of the services and their inter-
actions becomes perceivable. Further considering that future VMs
could customise services on the basis of application-specific be-
haviour [18], it becomes clear that virtual machines call for em-
ploying aspect-oriented programming in their implementations.

As an example, take the cooperation of the execution, organiser
and controller services in the Jikes RVM’s [2, 3, 13] adaptive op-
timisation system [4]. The execution service is that part of the VM
actually running an application; albeit it is not explicitly modelled
as a dedicated service in the Jikes RVM, viewing it as such sup-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL ’06 October 23, 2006, Portland, Oregon, USA.
Copyright c© 2006 the authors.

ports our notion of VMs as collections of services. Organiser ser-
vices are responsible for collecting performance data and issuing
optimisation suggestions. The controller gathers such suggestions
and decides on whether they should be put into action.

In this setting, an organiser observing call edge hotness may
be signalled by the execution service that a particular call edge
has been executed so-and-so many times, and the organiser may
issue an optimisation request when that call edge exceeds a certain
threshold. Though optimisation based on edge hotness is straight-
forward to describe, its current implementation requires using sev-
eral threads and queues for their communication. The logic cuts
across the virtual machine and is expressed only in an implicit way,
by means of attaching queues to threads appropriately.

Several attempts have been made to actually utilise AOP in
implementing virtual machine services. We focus on two particular
examples in this work within Java-in-Java virtual machines. The
first example is GCSpy, a heap visualiser [16], which has been
introduced to the Jikes RVM using AspectJ [14, 5]. The second
example is an implementation of software transactional memory
(STM) in the OpenVM [15].

Observing the examples’ utilisations of AOP constructs, it is
interesting to see that, in both cases, the implementors had to go
to considerable length to realise their particular VM services as
crosscutting concerns. The observation has led to the recognition
of some shortcomings of existing AOP languages that in turn call
for dedicated modelling mechanisms for crosscutting in the virtual
machine implementation domain.

The structure of this position paper is as follows. The next Sec-
tion will briefly describe the aspect-oriented realisation of GCSpy
in the Jikes RVM and of STM in the OpenVM, respectively. Section
3 will describe the identified shortcomings. Section 4 will present
an initial proposal for some characteristics of a domain-specific
aspect language for virtual machine implementations. Not all of
the proposed language mechanisms are necessarily specific to the
virtual machine implementation domain: some merely introduce a
higher level of abstraction over generally applicable AOP language
mechanisms, albeit in a way allowing for the declarative expression
of domain-specific requirements. Section 5 summarises the paper
and outlines future work directions.

2. Case Study: GCSpy and STM
Our experience with aspects in the VM domain include two re-
search systems developed in Java, the Jikes RVM and the OpenVM.
In both cases, we used standard AOP mechanisms provided by As-
pectJ, as described in the high-level overview in the subsections
that follow.

2.1 The GCSpy Aspect
GCspy is a heap visualisation framework designed to visualise a
wide variety of memory management systems. A system as com-
plex as a VM benefits greatly from non-invasive, pluggable tools
that provide system visualisation while minimising the effects on
that system. Visualisation tools such as GCSpy inherently have
many fine-grained interaction points that span the system they are
visualising, lending themselves to an aspect-oriented implementa-
tion.

GCSpy-specific code interacts with the base RVM in order to
establish two things: (1) to gather data before and after garbage
collection, and (2) to connect a GCSpy server and client-GUI for
heap visualisation. Details associated with the GCSpy aspect are
overviewed in the table below. The code touches 12 classes, has a
1:1 ratio of pointcuts to advice, and uses a collection that spans
before/after/around advice and can be further characterised as a
‘heterogenous’ concern [8].

GCSpy in RVM
Classes Involved 12
Pointcuts 15
Before Advice 5
After Advice 6
Around Advice with Proceed 2
Around Advice without Proceed 2
LOC in Aspect 126

2.2 The STM Aspect
Historically, concurrent access to shared data has been controlled
using mutual-exclusion locks and condition variables where crit-
ical sections are identified with a language-specific demarcation.
Software transactional memory (STM) provides a declarative style
of concurrency control, allowing programmers to work with the
high level abstraction of software-based transactions. The abstrac-
tion replaces critical sections with transactions, which can be in
one of several possible states and can be manipulated with a set of
well-defined operations.

Modifying the OpenVM to support STM involved a series of
changes that lent themselves to an aspect-oriented implementa-
tion. The details of this AspectJ implementation are overviewed
in the table below. The code touches 13 classes, has a 1:1 ratio of
pointcuts to advice, and employs the heavy use of non-proceeding
around advice.

STM in OpenVM
Classes Involved 13
Pointcuts 22
Before Advice 1
After Advice 3
Around Advice with Proceed 4
Around Advice without Proceed 14
LOC in Aspect 114

3. AOP in VMs: Current Shortcomings
Modularity within the implementation of a VM is generally chal-
lenging [6]. Implementations tend to rely on the “black art” of fine-
grained optimisation within a predominantly monolithic system.
But more recent implementations of virtual machines have shown
that modularity and performance can indeed co-exist, and bode well
for a future were JVMs can be more easily customised according
to application-specific needs [18].

In previous work, we have demonstrated how the Jikes RVM’s
modularity can be enhanced even with a naı̈ve implementation of
aspects, and how these aspects impact system evolution [11]. Here,
we consider a more qualitative assessment of the representations
of the aspects themselves, and the ways in which AspectJ could
be augmented to better support the needs of crosscutting concerns
in this domain. In our experience, we have determined the need to
explicitly define principled points in the execution of the VM in
terms of a combination of current system state and a composition
of system services. The following subsections consider the ways in
which domain-specific needs outstrip current join point, pointcut
and advice models for AspectJ [14].

3.1 Join Points in VMs
The AspectJ joint point model was designed according to princi-
pled points in the execution of a program, such that join points
remain stable under a stable interface. Similarly, a characteristic
required of domain-specific join points is stability across inconse-
quential changes as well as being understandable to a typical VM
programmer. It is our experience that the types of join points—both
static and dynamic—exposed by most existing join point models
are not sufficient for expressing the special needs of crosscutting
concern composition in virtual machine implementations. We be-
lieve a domain-specific aspect language for VMs could adhere to
the stability characteristic offered by traditional join points, while
augmenting the model with further support for meaningful and
much needed service composition. We believe one of the interest-
ing challenges in this work is that, in the domain of VMs, this re-
quires simultaneous attention to both higher-level abstractions and
lower-level details.

For example, the current AspectJ-based implementation of GC-
Spy and STM services both require a largely 1:1 pointcut to advice
ratio as shown in Sec. 2. There is little redundancy of advice as
they apply to specific points in the execution of the system. As a
result, the aspects are relatively large and arguably difficult to un-
derstand from a high-level perspective. Though they improve the
ability for developers to reason about their internal structure and
external interaction, the improvement is arguably less compelling
than a higher-level representation may be able to achieve. To get a
sense of what the AspectJ-based implementation looks like in terms
of implementation, four fine-grained pointcut/advice pairs are re-
quired just to ensure GCSpy starts properly when the VM boots. A
similar phenomenon exists in the STM aspect. An abstracted view
of the GCSpy code follows.

before(): execution(* Plan.boot ()) {
Plan.objectMap = new ObjectMap ();
Plan.objectMap.boot ();

}

before(VM_Address ref):
args(...) && execution(* Plan.postCopy (...)) {

Plan.objectMap.alloc (...);
}

before(VM_Address original):
args(...) && execution(* Plan.allocCopy (...)) {

Plan.objectMap.dealloc (...);
}

void around(VM_Address ref ,..) :
args(...) && execution(* Plan.postAlloc (...)) {

if (allocator == Plan.DEFAULT_SPACE
&& bytes <= Plan.LOS_SIZE_THRESHOLD) {

Plan.objectMap.alloc (...);
else

proceed (...);
}

We consider the possibility to define such a concern as a higher-
level abstraction, at the granularity of a service. We envision this to
include startup parameters that would specify information such as
whether it is started in a separate thread, whether the application
triggers it, or other threads under certain circumstances trigger
it. This high-level abstraction shields the VM programmer from
knowledge of the fine-grained points at which the service interacts
with other services, shifting the complexity to the domain-specific
aspect language processor. In the case of the startup of GCSpy, the
GCSpy service interacts with the VM boot service. An example of
GCSpy’s interaction with the VM boot service is further illustrated
in Sec. 4.

In terms of requirements along the lines of a finer granularity
than currently allowed by AspectJ’s pointcut model, another prob-
lem exhibited in both the GCSpy and STM aspects is the aggressive
refactoring of the VM code they crosscut in order to expose appro-
priate join points. In [17], Siadat et al. provide results that sug-
gest an intolerable amount of refactoring to expose sufficient join-
points in systems code. Refactorings resulting from naı̈ve aspect-
oriented implementations yielded either (a) empty methods, or (b)
new methods that do not necessarily enhance the system. They even
break modularity by introducing methods for which no abstraction
is required. We would prefer ways to accomplish more explicit fine-
grained inter-service relationships within VMs. Our experience in
this domain has lead us to conclude that current join point models
are not fine-grained enough to be highly effective within VMs.

3.2 Pointcut Descriptors
Pointcut descriptors determine whether a given join point matches a
point in the execution of the VM. In our experience, virtual machine
services may expose some points where other services may inter-
act and often inherently require access to dynamic, often shared,
VM system state. For example, the execution concern may expose
a point indicating that a certain call edge hotness has exceeded a
given threshold, which might be interesting for the adaptive op-
timisation concern. Similarly, the generalisation of memory man-
agement systems monitored by GCSpy, or controlled by STM, also
lend themselves to this scenario, where one service is interested in
points in the execution of the composed system only if system state
is appropriate.

The circumstances in which an optimisation request is to be
generated are cumbersome to express using the pointcut language
present in AspectJ. The pointcut must match only if the call edge
hotness actually exceeds the threshold; as long as a call edge’s invo-
cation count is less than the threshold, the optimisation aspect is in
the “do not optimise” state, which it leaves in the moment the count
exceeds the threshold. As soon as another, greater threshold is ex-
ceeded, the aspect may choose an even higher level of optimisation
for the call edge. This basically constitutes a stateful aspect [10]
and could be expressed using the appropriate means, e. g., trace-
matches [1].

We would like to stress that this kind of pointcut is not specific
to the domain of virtual machine implementations and hence does
not actually constitute a need for a domain-specific language con-
struct. It is rather the case that stateful aspects of this kind charac-
teristically occur in the domain. Still, a declarative way of express-
ing them, other than a generic one as seen in the tracematch syntax,
may be more viable by means of introducing greater abstraction.

3.3 Advice
Advice supply a means of specifying code to run at a join point.
It is important for a domain-specific language to carefully consider
the nature of the VM domain. It is unacceptable, within this do-
main, to introduce possibly prohibitive performance penalties, or
dramatic increases in the system’s memory footprint. Returning to

the adaptive optimiser example mentioned above, if the execution
service signals sufficient call edge hotness, the optimising service
actually should not necessarily kick in immediately. In this case,
it could harm the VM’s performance to optimise every single call
edge as the execution service sees it fit for being optimised. The
VM should instead wait until there are ample time and resources
available. Usually, this is implemented using separate threads and
a queue storing requests (as in the Jikes RVM; cf. above). The two
concerns interact in a detached way; they utilise asynchronous ad-
vice [7], as met in, e. g., the AWED language [9].

Asynchronous advice cannot be expressed directly using simple
AspectJ mechanisms, as the required queues and associated state
have to be introduced as explicit data structures. Although there
is no such concept as an asynchronous advice in traditional AOP
advice models, we believe this to be highly desirable in VMs. Given
that there are very likely many VM services that do not interact
synchronously, modeling such services as crosscutting concerns
calls for providing a mechanism allowing for such definitions.

4. A DSAL for Virtual Machines
Based on our experience with aspects in VMs so far, we believe a
domain-specific aspect language for virtual machines must address
the following issues:

1. Many common services in a VM can be structured as crosscut-
ting concerns. An according DSAL should provide a high-level
view on VM abstractions and their corresponding implementa-
tion that allows for expressing virtual machine services as mod-
ules of their own, explicitly specifying their characteristics and
relations to other services. The abstractions should be general-
isable across multiple VMs, enabling the services to be gener-
alisable as well.

2. Existing join point models are not sufficient to express the ra-
tionale and type of interaction between the concerns found in a
VM. A DSAL for VMs should allow for exposing types of join
points met in virtual machines, for expressing them in appropri-
ate pointcuts, and for specifying advice that should run at those
points in meaningful ways (synchronously/asynchronously).

Regarding the first issue, a VM service should be expressible as
a single, configurable module in terms relative to core VM abstrac-
tions. For a simple example, a completely asynchronous service
(running in a dedicated thread) could be succinctly expressed like
this:

detached service AdaptiveOptimiser { ... }

or advice associated with a boot-time sequence might be expressed
like this:

service GCSpy {
during(VMbooting): { ... }
...

}

with the DSAL weaver knowing about the places to join to in terms
of boot-time logic, as signified by during. Of course, there may be
cases where it is necessary to specify the order of service startups,
in case of possible conflicts.

Each service should also make clear which points it exposes
to others, establishing a clear interface for crosscutting behaviour.
For example, in the case of the STM aspect, it may be possible to
apply either optimistic or pessimistic concurrency control strategies
depending on the level of conflict in the system. The points at
which these different concurrency control services could be applied
should be exposed by the STM service.

As for adaptive optimisation, the circumstance that a method
m2() should be inlined in m1() when it has been called therefrom

more than 100 times could be expressed like this, as part of an
organiser service:
detached service CallEdgeOrganiser {

whenever(VM_Method m1 , VM_Method m2):
edgehotness(m1 ,m2) exceeds 100 {

inline(m2 , m1);
}

}

In this example, the whenever advice type means asynchronous
advice execution, and the exceeds comparison operator implies
that the edgehotness value must exceed the given threshold for the
pointcut to match. The edgehotness value, by the way, is exposed
from the execution service.

5. Summary
Our experience with aspects in VMs leads us to believe that this do-
main could benefit greatly from VM-specific AOP mechanisms. In
this paper, we have argued this point based on our sample aspects in
the RVM, the OpenVM, and additionally reasoning about a com-
mon optimisation scenario. We also have described the ways we
believe the join point model in AspectJ could be augmented to suit
this domain. Based on these observations, we have proposed to re-
gard crosscutting concerns in virtual machines as a special domain
of aspects, requiring support in the form of dedicated language ex-
pressions.

Future work in this area will focus on a close examination
of crosscutting in high-level language virtual machines. Based on
results from this analysis, a more complete critique of existing AOP
models will be formulated, along with a more detailed version of
the proposed domain-specific aspect language.

References
[1] C. Allan et al. Adding Trace Matching with Free Variables to AspectJ.

In Proc. OOPSLA 2005, pages 345–364. ACM Press, 2005.

[2] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and V. Sarkar.
Jalapeño—a compiler-supported java virtual machine for servers.
ACM SIGPLAN 1999 Workshop on Compiler Support for System
Software (WCSSS ’99), May 1999.

[3] B. Alpern et al. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, February 2000.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
Optimization in the Jalapeño JVM. In OOPSLA 2000 Proceedings,
pages 47–65. ACM Press, 2000.

[5] AspectJ Home Page. http://www.eclipse.org/aspectj/.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High
Performance Garbage Collection in Java with MMTk. In ICSE, pages
137–146, 2004.

[7] M. Cilia, M. Haupt, M. Mezini, and A. P. Buchmann. The conver-
gence of aop and active databases: Towards reactive middleware. In
Proc. GPCE 2003, volume 2830, pages 169–188. Springer, 2003.

[8] A. Colyer and A. Clement. Dlarge-scale aosd for middleware. In
AOSD ’04: Proceedings of the International Conference on Aspect-
Oriented Software Development, pages 56–65. ACM Press, 2004.

[9] R. Douence, D. Le Botlan, J. Noye, and M. Sudholt. Concurrent
aspects. In Proc of GPCE. Springer, 2006.

[10] R. Douence, P. Fradet, and M. Sudholt. A framework for the detection
and resolution of aspect interactions. In Proc of GPCE, pages 173–
188. Springer, 2002.

[11] C. Gibbs, R. Liu, and Y. Coady. Sustainable system infrastructure and
big bang evolution: Can aspects keep pace? In Proc. ECOOP 2005.
Springer, 2005.

[12] J. E. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan-Kaufmann, 2005.

[13] The Jikes Research Virtual Machine. http://jikesrvm.
sourceforge.net/.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In J. Lindskov Knudsen, editor,
Proc. ECOOP 2001, volume 2072 of LNCS, pages 327–353. Springer,
2001.

[15] OpenVM Home Page. http://ovmj.org/.

[16] T. Printezis and R. Jones. Gcspy: an adaptable heap visualisation
framework. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 343–358. ACM Press, 2002.

[17] J. Siadat, R. Walker, and C. Kiddle. Optimization aspects in
network simulation. In AOSD ’06: Proceedings of the International
Conference on Aspect-Oriented Software Development, pages 122–
133. ACM Press, 2006.

[18] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. In ISMM ’04: Proceedings
of the 4th international symposium on Memory management, pages
49–60. ACM Press, 2004.

http://www.eclipse.org/ aspectj/
http://jikesrvm.sourceforge.net/
http://jikesrvm.sourceforge.net/
http://ovmj.org/

Partial Evaluation + Reflection = Domain Specific Aspect
Languages

DeLesley Hutchins
LFCS, University of Edinburgh
D.S.Hutchins@sms.ed.ac.uk

Abstract
Domain-specific languages (DSLs) are typically implemented by
code generation, in which domain-specific constructs are translated
to a general-purpose “host” language. Aspect-oriented languages
go one step further. An aspect weaver doesn’t just generate code,
it transforms code in the host language. In both cases, one of
the major challenges in building and using the DSL is achieving
good integration between the code generator and the host language.
Generated code should be type safe, and any errors should be
reported before generation.

Partial evaluation and multi-stage languages are excellent tools
for implementing ordinary DSLs which satisfy these requirements.
Combining partial evaluation with reflection could potentially yield
a system which is strong enough to perform aspect weaving as well.
This paper discusses some of the technical hurdles which must be
overcome to make such a combination work in practice.

1. Introduction
A domain-specific language (DSL) differs from an ordinary library
because the functionality provided by a DSL cannot be easilyen-
capsulated behind ordinary functions and classes. Efficiency is the
usual culprit behind this failure of encapsulation. A cleaninterface
may introduce a layer ofinterpretive overheadwhich is unaccept-
able. To reduce such overhead, DSLs are often implemented by
means of code generation, in which domain-specific constructs are
translated or compiled to a general-purpose “host” language.

Like DSLs, aspect-oriented programming (AOP) addresses a
failure of encapsulation. In the case of AOP, encapsulationfails be-
causecross-cutting concerns, which are logically separate in the
high-level design of a program, become tangled together in the
source code. An aspect language allows such concerns to be spec-
ified separately, and thenweavesthe aspects together to generate a
complete program [12].

Whereas DSLs are primarily concerned withgeneratingcode,
aspect languages are primarily concerned withtransformingcode.
These two tasks are qualitatively different. A code generator does
not need to understand the full syntax and semantics of the host
language. Many successful code generators are little more than
glorified macro systems — they manipulate blocks of code as
untyped syntax trees, or even ASCII text.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DSAL Workshop, GPCE 2006 Oct 23d 2006, Portland OR
Copyright c© 2006 ACM [to be supplied]. . . $5.00

A code transformer, on the other hand, must parse and under-
stand the code that it transforms. For example, in order to perform
aspect weaving, the AspectJ compiler must correctly distinguish
between field and method signatures, and keep track of the inheri-
tance relationships between classes.

Nevertheless, the distinction between code generation andcode
transformation is not black and white. Indeed, a domain-specific
aspect language (DSAL) can be usefully defined as a DSL which
performs both code generation and weaving. It may generate code
for domain-specific constructs, and then weave that code into an
existing general purpose program. RIDL and COOL follow this
pattern [15].

Most programmers would agree that writing good code is diffi-
cult. Experience with DSLs has shown that writing good code gen-
erators is even more difficult. As a result, a great deal of research
has focused on developing toolkits which simplify the task of writ-
ing generators. This paper discusses some of the issues involved
in building a toolkit for constructing DSALs, which must perform
both code generation and weaving. One of the main challengesfor
such a toolkit is achieving close integration between the DSAL and
the host language.

With any DSL, generated code should be correct and type-safe,
and any errors should be reportedbeforecode generation, so that
the user does not need to read generated code. In a DSAL, good
integration is even more important, since the weaving process must
directly modify constructs in the host language. Ideally, the weaver
should respect the semantics of the host language, so that weaving
does not create unexpected changes in behavior.

Partial evaluation and multi-stage languages are excellent tools
for writing DSLs which are well-integrated with their host language
[11] [19]. Combinining partial evaluation with reflection could
potentially yield a system which is strong enough to performaspect
weaving as well. However, there are a number of technical hurdles
to overcome before this mechanism can be applied in the real
world.

2. Language Integration in DSLs
Parser generators such asyacc andantlr are an old and familiar
example of DSLs. A parser generator takes a grammar definition
as input, and generates a program which parses the grammar. The
following is an ANTLR grammar rule:

expr returns [int v] { int e1, e2; }
: v=literal
| e1=literal "+" e2=expr { v = e1 + e2; }
;

The important thing to notice about this example is that it con-
tains a mixure of domain-specific code, and code in the host lan-
guage (here Java or C++). ANTLR does not attempt to parse or un-

derstand code in the host language, it simply copies the raw ASCII
text. Any syntax errors or type errors will not be discoveredun-
til after the code has been generated. Manipulating source code as
ASCII text can also introduce subtle scoping and naming errors, as
was frequently encountered in early, “unhygienic” macro systems.
This is an example of poor integration with the host language.

On the other hand, ANTLR does perform domain-specific anal-
ysis of the code that it generates. Because code generation is done
ahead of time, it can detect ambiguous grammars, missing rules,
and similar problems.

Parser combinators represent an alternative approach [14]. The
following is code written in Haskell. (Unlike ANTLR, there is no
syntax sugar, so it is somewhat harder to read).

add e1 _ e2 = e1 + e2

expr :: Parser Char Int
expr = literal

<|> (pSucceed add) <*>
literal <*> (pSym ’+’) <*> expr

With combinators, each grammar rule is actually given a type
in the host language;Parser Char Int is the type of an object
which parses a character string to return an integer. Small parsers
are combined using the<|> and <*> operators to create larger
parsers. These operators are statically typed, so any type errors
will be discovered before composition, rather than after. Instead
of representing host-language expressions as ASCII text, Haskell
uses higher-order functions.

Haskell is a particularly good language for writing DSLs, be-
cause it is possible to manipulate pieces of code as first-class val-
ues, much like Lisp and Scheme. It is easy to wrap any expression
up as a function, and then pass it as an argument to the code gener-
ator. Unlike Lisp and Scheme, Haskell is statically-typed.Static
typing confers an important benefit: if a DSL code generator is
well-typed, then the code that it generates is also guaranteed to
be well-typed.

As a result of these features, parser combinators are well-
integrated with Haskell. Unfortunately, they also have a disadvan-
tage. The parser is not generated until run-time, so there isa layer
of interpretive overhead. Type errors are detected at compile-time,
but domain-specific errors, such as ambiguous grammars, will not
be detected until run-time.

2.1 Partial Evaluation and multi-stage languages

Partial evaluation is an old technique which attempts to overcome
these problems. A partial evaluator fuses a compiler with anin-
terpreter. Offline partial evaluation, which is the kind commonly
used in practice, works by labeling every expression in a program
as either “static” or “dynamic”. This process is known asbinding-
time analysis. Static expressions are evaluated at compile-time by
the interpreter, while dynamic expressions are compiled tomachine
code, which will be evaluated at run-time [11].

Multi-stage languages operate on a similar principle [19].A
multi-stage language allows a block of code to be “quoted”, which
means that the evaluation of the code is delayed. A dual “un-
quoting” mechanism forces the immediate evaluation of particular
subexpressions. The net effect is similar to partial evaluation – ex-
pressions are labeled as either “evaluate now” (static) or “evaluate
later” (dynamic).

These two mechanisms are designed to eliminate the interpre-
tive overhead associated with a DSL. In the case of parsers, the
production rules for a particular grammar are statically defined. A
partial evaluator would thus evaluate the<*> and<|> operators at
compile-time. Any composition errors (such as those causedby an
ambiguous grammar) would also be detected at compile-time.

2.1.1 A Toolkit for building DSLs?

Put together, the tools described above offer some hope of a univer-
sal toolkit for building DSLs which arewell-integratedwith their
host language, and whichrespect the semanticsof that language.
The key ingredients are the following:

• First-class functions, which can be used to manipulate codeas
values.

• Static typing, which guarantees that the generated code will be
type-safe.

• Partial evaluation or staging.

(Partial evaluation automatically respects the semanticsof the
host language, because the “semantics” of a language is justa
description of the evaluation rules for that language.)

2.1.2 Limitations and partially static data

Unfortunately, partial evaluation does have some limitations in
practice, which have been described extensively in the literature
[10]. The amount of speedup, and the nature of the generated
code, depend closely on two things: the way in which the DSL
interpreter was written, and the precise algorithm used forbinding-
time analysis. Aggressive analyzers can locate more staticdata, but
the evaluator may then fail to terminate.

Even when binding-time analysis works properly, a partial eval-
uator will only rewrite program terms according to the reduc-
tion rules of the host language. There are a number of other pro-
gram transformations (such as deforestation [21]) which are both
semantics-preserving, and which yield substantial speedups, but
these are beyond the reach of partial evaluators.

One of the most serious problems is that partial evaluators must
label data structures as either “static” or “dynamic”. Interpreters for
real-world DSLs often manipulate data structures that are “partially
static”, containing a mixture of static and dynamic information. A
simple evaluator is forced to label such structures as “dynamic”,
which means that they will be unable to remove much of the
interpretive overhead.

Complex data structures must be factored into static and dy-
namic parts. This can be done either by rewriting the interpreter,
using more sophisticated binding-time analysis, or both. “Tag re-
moval” in strongly typed languages is a special case of the problem,
and one which is particularly difficult to solve [20].

3. Aspect Weaving
In the DSL examples above, “good integration” with the host lan-
guage means that expressions in the host language can be wrapped
up and passed to the code generator in a type-safe manner. Aspect
weavers go far beyond this, because they must parse, understand,
and modify constructs in the host language.

Reflection, which is found in many OO languages, including
Smalltalk, CLOS, and (to some extent) Java, allows ordinarycode
to inspect and/or modify existing classes. Class declarations are
known at compile-time, and so they constitute static data. Com-
bining reflection with partial evaluation extends the rangeof gener-
ators which can be produced.

3.1 Introspection

The reflection facilities provided by Java areintrospective. It is
possible to inspect, but not modify, the structure of a program. In
particular, Java supports the following operations:

• It is possible to find the class of an object at run-time.
• It is possible to query the class to find method names and

signatures.

• It is possible to call a method whose name and signature is not
known until run-time.

This kind of reflection is useful for generating “boilerplate”
code, which must peform the same task in the same way on a wide
variety of data types. In functional programming circles, boilerplate
generation is called “generic programming” [13] [7]. Examples of
“boilerplate” include:

• Comparing two objects for equality. (Compare the values of all
fields.)

• Serializing an object, or converting it to string. (Serialize all
fields.)

• Generic traversals and rewrites of complex data, such as XML.

Programmers tend to avoid reflection where possible because
its performance is abysmal. However, if the class of an object is
statically known, then it is possible to partially evaluatereflective
calls. Partial evaluation eliminates the method lookup code, and
transform reflective method calls into ordinary method calls [4].

Consider the following example, which is taken from [4]:

static void printFields(Object anObj) {
Field[] fields = anObj.getClass().getFields();
for (int i = 0; i < fields.length; i++)
System.out.println(fields[i].getName() +

": " + fields[i].get(anObj);
}

If the class ofanObj is statically known, thengetFields () can be
evaluated at compile-time. Oncefields is known, the loop will be
further unrolled, producing a piece of code with no reflective calls.

Note that the class ofanObj may be known even if its value is
not, in the following two situations. First, if the type ofanObj at
partial-evaluation time isC, whereC is a final class, then the run-
time class ofanObj is guaranteed to beC. Second, the run-time
class ofanObj is C if the value ofanObj is the dynamic expression
new C(...) .

Exploiting this information requires a very sophisticatedpartial
evaluator. In addition to labeling expressions as static ordynamic,
it must label theirtypeas either static or dynamic. Partial evaluation
must be integrated with the type system.

3.2 Extensible classes

Smalltalk and CLOS not only allow classes to be inspected, they
allow existing classes to be modified, or new classes to be created
on the fly [3] [18]. In a statically typed language like Java, cre-
ating a new class would be a reflective operation, because classes
are not ordinary objects. Since Smalltalk and CLOS are dynamic
languages, creating new classes on the fly is standard practice.

By itself, introspection is limited because it can only be used to
generate code inside methods. However, if classes are objects, then
code generators can create the methods and classes themselves as
well.

In principle, this mechanism is powerful enough to do the kind
of aspect weaving found in AspectJ. An aspect weaver would first
inspect the set of currently defined classes, and then modifythose
definitions as appropriate. Unfortunately, there are some serious
technical problems that need to be overcome in order to make
weaving work with a partial evaluator.

3.2.1 Classes Should be Immutable

Aspect-weaving is ordinarily thought of as an operation which
modifies existing classes. Unfortunately, modification is aside-
effect which changes the heap. Dealing with a mutable heap makes
things much more difficult, because everything stored on theheap
becomes partially static data — the Achilles Heel of partialevalu-
ators.

Fortunately, this problem is easily solved. The solution isto treat
an aspect as a function which takes animmutableset of classes as
input, and yields a new set of transformed classes as output.This
is the strategy used by feature-oriented programming, and there are
several additional reasons to prefer it.

Lopez-Herrejon has argued that treating aspects as functions
makes it easy to control the order of multiple transformations, and
enablesstep-wise refinement[16].

Perhaps even more importantly, different parts of a program
may need to use different sets of class extensions, which mean that
the original definitions must be preserved. Bergel’s class boxes [2],
which are an extension to Smalltalk, allows classes to be extended
only within a particular scope.

3.2.2 Type Safety

In a statically-typed language, classes denote types, so any trans-
formation which affects class signatures (such as AspectJ’s inter-
type declarations) will affect the well-typedness of program code.
Aspect weaving must thus be done before type checking, because it
will invalidate any type judgements that were previously made. Un-
fortunately, doing aspect weaving first creates two problems. First,
the weaver must manipulate code that may not be correct, which is
especially problematic if it is combined with a partial evaluator that
relies on correct type information. Second, type errors will appear
in the generated code, where they are more difficult to fix.

One solution to this problem is to use a type system based on
virtual classes, as found in the gbeta language [5]. Type judgements
in gbeta are made under the assumption that the full definition of
a virtual class is not statically known. Virtual classes canthus be
extended without invalidating previous type judgements.

The use of virtual classes places a strong restriction on the
aspect-weaver: the weaver cannot perform arbitrary transforma-
tions; it must only generate subclasses. The question of howto en-
force this restriction in a fully reflective environment is an open
problem.

Even with a restricted weaver, providing extensible classes
within a type-safe language requires a type system much more
powerful than Java’s — one which is based upon dependent types
[8] [9] [6]. The only alternative to heroic type hackery is touse a
host language which is not statically typed. Dynamic languages do
not solve the underlying the problem, though, because we would
still like the assurance that weaving will not introduce type errors;
that’s part of what it means to respect the semantics of the host
language.

3.2.3 The DEEP programming language

I have taken a few steps towards a DSAL toolkit in the design of
the DEEP programming language [8]. DEEP is a formal language
calculus which integrates dependent types, singleton types, and
partial evaluation. By combining these three mechanisms together,
DEEPcan deal with partially static data.

The basic idea behind the DEEP type system is that the type
of an expression should hold whatever information is known about
that expression at compile-time. In the case of static data,the type
of an expression will be asingleton typerepresenting its value. For
example, the type of(1 + 2) is 3. The type system may partially
evaluate a term in order to assign an accurate type to that term.

For expressions which are not statically known, DEEP uses
dependent types, which contain a mixture of both types and values.
For example, ifmyList is a list of length3 (a dependent type) then
length(myList) will have type3, even if the elements of the list
are not statically known. The advantage of this scheme is that it is a
good way to deal with partially static data; the disadvantage is that
programming with dependent types can be notoriously tricky.

The DEEP language is based on prototypes rather than classes.
At compile-time, a prototype is treated as a type for the purpose
of static type checking. At run-time, a prototype is just an ordinary
object: it can be stored in a field, or passed as an argument to a
function. The prototype model allows classes to be created and
manipulated by ordinary code, just like in CLOS and Smalltalk,
without sacrificing static type safety. This model is intended to
simplify the task of writing code generators.

Finally, DEEP supportsdeep mixin compositionof modules.
Deep mixin composition is an extension of inheritance whichal-
lows a group of classes to be encapsulated in a module, and then
extended as single unit. Classes keep the same name within the
module, so it appears to client code as if the classes have been up-
dated in place. This form of composition is the same as that found
in feature-oriented programming [1], multi-dimensional separation
of concerns [17], and virtual classes in gbeta [5].

Deep mixin composition has some of the capabilities of aspect-
weaving, but not all. It is possible to add “before” and “after”
code to individual methods, but it is not possible to quantify over
methods and classes, or to write general-purpose transformations.
Quantification requires reflection, which DEEP does not currently
support.

Summary.
To summarize, DEEPprovides the following:

• A statically typed language with a powerful type system.
• A partial evaluator which supports partially-static data.
• First-class functions, classes, and modules.
• Deep mixin composition.

However, the DEEP calculus currently doesnot support reflec-
tion of any kind. The lack of reflection means that it is not possible
to write generic boilerplate code, or to do general-purposeaspect
weaving.

Adding simple introspection would be easy enough, but it is
not sufficient for true aspect-weaving. Ideally, reflectionshould
be integrated with the mechanism for mixin composition, so that
the type system can guarantee that a particular class extension
generates a proper subtype. Doing this in a way that is both type-
safe, and sufficiently flexible for DSALs, remains an open problem.

4. Conclusion
Combining partial evaluation with first-class functions isan excel-
lent way to write code generators for DSLs. Such generators are
type-safe and well-integrated with the host language. Adding sim-
ple reflection to this mix allows the automatic generation of“boil-
erplate” code.

It may be possible to write full-blown aspect-weavers by com-
bining partial evaluation with both reflection and first-class classes.
However, if it is possible to extend classes in arbitrary ways, then
the resulting transformations may not be type-safe. The mechanism
for extending classes safely (i.e. inheritance) should be integrated
with reflection, and the best way to do this is not obvious.

References
[1] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise

refinement.Proceedings of ICSE, 2003.

[2] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes:
Controlling visibility of class extensions.Computer Languages,
Systems and Structures, 31(3):107–126, 2005.

[3] D. Bobrow, R. Gabriel, and J. White. CLOS in Context: The Shape
of the Design Space.Object-Oriented Programming – The CLOS
Perspective, 1993.

[4] M. Braux and J. Noye. Towards partially evaluating reflection in java.
Proceedings of Partial Evaluation and Program Manipulation, 2000.

[5] E. Ernst. Higher order hierarchies.Proceedings of ECOOP, 2003.

[6] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus.
Proceedings of POPL, 2006.

[7] R. Hinze. A new approach to generic functional programming.
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 119–132, 2000.

[8] D. Hutchins. Eliminating distinctions of class: Using prototypes to
model virtual classes.Proceedings of OOPSLA, 2006.

[9] A. Igarashi and B. Pierce. Foundations for virtual types. Proceedings
of ECOOP, 1999.

[10] N. Jones. Mix ten years later.Proceedings of the 1995 ACM
SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 24–38, 1995.

[11] N. Jones, C. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1993.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj.Proceedings of ECOOP, 2001.

[13] R. Lämmel and S. P. Jones. Scrap your boilerplate: a practical design
pattern for generic programming.ACM SIGPLAN Notices, 38(3):26–
37, 2003.

[14] D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world.Technical Report UU-CS-2001-35,
Departement of Computer Science, Universiteit Utrecht, 2001.

[15] C. Lopes.D: A Language Framework for Distributed Programming.
PhD thesis, 1997.

[16] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A disciplined
approach to aspect composition. 2006.

[17] H. O. Peri Tarr. Multi-dimensional separation of concerns and the
hyperspace approach.Proceedings of the Symposium on Software
Architectures and Component Technology: The State of the Art in
Software Development. Kluwer., 2000.

[18] F. Rivard. Smalltalk: a Reflective Language.Proceedings of
Reflection, 96:21–38, 1996.

[19] W. Taha. A gentle introduction to multi-stage programming. Domain-
Specific Program Generation, pages 30–50, 2003.

[20] W. Taha, H. Makholm, and J. Hughes. Tag Elimination and Jones-
Optimality. Proceedings of the Second Symposium on Programs as
Data Objects, pages 257–275, 2001.

[21] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1990.

	1.bagge.pdf
	Introduction
	The Alert DSAL
	The TIL Language
	Alert declarations and handlers

	Implementation of TIL+Alert
	DSAL = library + notation
	Type Checking
	Alert Weaving
	Coordination

	Discussion
	Program Transformation
	Program Transformation Languages for Aspect Implementation
	Related Work

	Conclusion
	TIL Grammar

	2. fabry.pdf
	3. Rebernak.pdf
	4. watt.pdf
	5. Coady.pdf
	Introduction
	Case Study: GCSpy and STM
	The GCSpy Aspect
	The STM Aspect

	AOP in VMs: Current Shortcomings
	Join Points in VMs
	Pointcut Descriptors
	Advice

	A DSAL for Virtual Machines
	Summary

	6. hutchins.pdf

