
Automated Pattern-Based Pointcut Generation

Mathieu Braem, Kris Gybels, Andy Kellens? Wim Vanderperren

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{mbraem,kgybels,akellens,wvdperre}@vub.ac.be

Abstract. One of the main problems in Aspect-Oriented Software De-
velopment is the so-called fragile pointcut problem. Uncovering and spec-
ifying a good robust pointcut is not an easy task. In this paper we propose
to use Inductive Logic Programming, and more specifically the FOIL al-
gorithm, to automatically identify intentional pattern-based pointcuts.
We present the toolchain we implemented to induce a pointcut given a
set of identified joinpoints. Using several realistic medium-scale experi-
ments, we show that our approach is able to automatically induce robust
pointcuts for a set of joinpoints.

1 Introduction

Separation of concerns [27] is a crucial property for realizing comprehensible
and maintainable software. Current software engineering paradigms do however
not always succeed in cleanly modularizing all concerns. Consequently, these
concerns are spread and repeated over several modules in the system. Due to this
code duplication, it becomes very hard to alter such concerns within the system.
These concerns are called crosscutting because the concern virtually crosscuts
the decomposition of the system. Typical examples of crosscutting concerns are
debugging concerns such as logging [19] and contract verification [31], security
concerns [8] such as confidentiality and access control, and business rules [26, 9]
that describe business-specific logic.

Aspect-Oriented Software Development aims to provide a solution for these
crosscutting concerns [19]. To this end, AOSD introduces an additional module
construct, named an aspect. Traditional aspects consist of two main parts: a
pointcut definition and an advice. Points in the program’s execution where an
aspect can be applied are called joinpoints. The declarative pointcut language
allows to concisely describe a set of joinpoints where the aspect should be applied.
The advice is the concrete behavior that is to be executed at a certain pointcut,
typically before, after or around the original behavior identified by the joinpoints.

Since existing software systems can benefit from the advantages of AOSD as
well, a number of techniques have been proposed to identify crosscutting con-
cerns in source code (aspect mining) and transform these concerns into aspects
(aspect refactoring). Although these aspect refactorings are automated to a cer-
tain degree, the resulting pointcuts only provide an enumeration of the joinpoints
? Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through

Science and Technology in Flanders” (IWT Vlaanderen).

which need to be captured by the aspect. As a result, the slightest change in
the base code may easily break the pointcut. Although solutions to this problem
exist, like for instance the CARMA pointcut language [11] that allows to specify
pointcuts that describe collections of joinpoints more intentionally, the job of
rendering the refactored pointcut more intentional has to be done manually by
the developer.

In this paper we propose to exploit Inductive Logic Programming techniques
to automatically deduce an intentional pointcut from a given set of joinpoints.
The next section details the problem of uncovering intentional pointcuts and
introduces the running example used throughout this paper. Section 3 introduces
Inductive Logic Programming and the concrete algorithms used and in section 4
we apply ILP for automatically generating intentional pointcuts. Afterwards, we
present the tools created to support our approach, compare with related work
and state our conclusions.

2 Background and Problem Statement

2.1 Pattern-Based Pointcuts

The main problem in maintaining aspect-oriented code is the so-called fragile
pointcut problem [21]. Pointcuts are deemed fragile when seemingly innocent
changes to the base program, such as renaming or relocating a method, break a
pointcut such that it no longer captures the joinpoints it is intended to capture.
When code is added to a program and introduces new joinpoints in the joinpoint
model of the program, pointcuts are similarly considered fragile when some of
these new joinpoints should be captured by the pointcut but it fails to do so.

1 public class Point {
2

3 private int x,y;
4

5 public void setX(int a) {
6 this.x=a;
7 }
8 public void setY(int a) {
9 this.y=a;

10 }
11 public int getX() {
12 return x;
13 }
14 public int getY() {
15 return y;
16 }
17 }

Fig. 1. A simple Point class

As described in our previous work [11] and that of others [20], pointcuts
are particularly fragile when they are written in an enumerative style. As an

example take the Point class of figure 1. When adding an observer aspect, we
need a pointcut that captures all executions of methods on the Point class that
are state changing. A purely enumerative pointcut is shown in figure 2.

The pointcut language used in the examples here and the remainder of the
paper is a pointcut language expressed using logic programming based on the
CARMA pointcut language [11]. The main difference is that CARMA uses a
fully dynamic joinpoint model, which for example allows conditions in pointcuts
on the values associated with joinpoints. The pointcut language used in this
paper has a purely static joinpoint model, which effectively equates joinpoints
with shadow joinpoints. An extension of the work presented here that takes a
dynamic joinpoint model into account is left for future work. The important
point however is that the pointcut language used here similarly to CARMA also
allows full access to the static joinpoint model of the program, which allows
writing advanced intentional pointcuts.

1 stateChanges(?jpvar):
2 execution(?jpvar,setX).
3 stateChanges(?jpvar):
4 execution(?jpvar,setY).

Fig. 2. A pointcut for the Observer aspect, written in a purely enumerative style.

The pointcut of figure 2 matches if the joinpoint at hand is either the execu-
tion of method setX or the execution of method setY. Such an enumeratively de-
scribed pointcut obviously breaks easily. For example, when we evolve the point
class to a three-dimensional point and add a setZ method, the stateChanges
pointcut does not match the added method and thus fails to comply with the
intention of capturing all methods that change the state of a Point object.

The problem with enumerative pointcuts is of course the motivation for writ-
ing pointcuts in a more pattern-based style, exploiting a pattern that is exhibited
by the joinpoints that should be captured. The pointcut in figure 3 uses quantifi-
cation over the names of methods that start with set. It remains consistent when
evolving the point to a three-dimensional point. However, consider for example
the addition of a reset method that resets the x and y dimension of the point
to the default values. This method does not have the begins with the keyword set
pattern in common with the other state changing methods. Conversely, consider
the addition of a method setting which simply returns the value of a setting,
rather than doing any assignments. This method also exhibits the begins with
keyword set pattern but should in fact not be captured by the pointcut. We can
capture the reset and setting methods as a deviation from the pattern by in-
cluding an extra condition that the name of the method may also be reset and
should not be setting, but this tends to add an enumerative list of exceptions
to the pointcut.

1 stateChanges(?jpvar):
2 execution(?jpvar,?methodName),
3 startsWith(?methodName,‘set’).

Fig. 3. A pointcut for the Observer aspect, written in a pattern-based style.

1 stateChanges(?jpvar):
2 execution(?jpvar,?methodName),
3 inMethod(?assignmentJP,?methodName),
4 isAssignment(?assignmentJP,?assignmentTarget),
5 instanceVariable(?assignmentTarget,?className),

Fig. 4. A pointcut for the observer

Using an advanced pointcut language that gives access to the full static join-
point model of methods, it is possible to exploit a more robust pattern [11].
Figure 4 illustrates a pointcut that exploits the pattern that all the state chang-
ing methods contain an assignment to an instance variable of an object. This
pointcut does not break when adding the setting or reset methods.

2.2 Automated Support for Pattern-Based Pointcuts

The area of aspect refactoring and aspect mining is a particularly interesting
research area within AOSD that is currently being explored. In performing as-
pect mining and refactoring, the problem crops up of finding a pointcut for the
newly created aspect. Also, as with object-oriented refactoring, research is being
performed on how to automate these refactorings using tool support. In such
tools, it would be interesting to be able to automate the step of generating a
pattern-based pointcut as well. Currently, most proposals for automating as-
pect refactoring simply generate an enumerative pointcut, which then too easily
breaks when the program is evolved after refactoring.

In this paper we present the results of using a specific machine learning
technique for deriving a pattern exhibited by examples. In particular we use
inductive logic programming, which is in fact an algorithm that works similarly
to the process we’ve described in the previous section for coming to an evolution-
robust pattern-based pointcut. We further describe this relation informally in the
next section, and present in detail the ILP algorithm.

3 Inductive Logic Programming

3.1 Logic Induction of Pointcuts

The algorithm of logic induction is similar to the process we followed in section
2.1 for coming to a more evolution-robust pattern-based pointcut. Informally,
the way ILP works and the relationship to this manual process is as follows:

positive examples: ILP takes as input a number of positive examples, in our
setting of deriving pattern-based pointcuts these would be joinpoints that
the pointcut should capture.

background information: A second input to ILP is background information
on the examples. In our setting, these would be the result of predicates in
the pointcut language that are true for the joinpoints, or in other words,
the data associated with the joinpoints. Such as the name of the message of
the joinpoint, the type of the joinpoint (message, assignment, ...), in which
method or class the joinpoint occurs.

induction: ILP follows an iterative process of inducing a logic rule for combi-
nations of the positive examples. This is similar to the manual process we
followed in the previous section: we take two examples such as the methods
setX and setY, and find that in the background information the fact that
the names of the methods start with set holds true.

negative examples: ILP also takes as input a number of negative examples,
the rules that are derived during the iterative induction should never cover
negative examples. Negative examples effectively force the algorithm to use
other information of the background in the induced rules. This is similar
to the process followed in the previous section where we added a setting
method which should not be covered by the pointcut.

3.2 FOIL

In this paper we use the FOIL ILP algorithm [28]. FOIL learns hypotheses
which are sets of first-order rules, similar to Horn clauses. However, since no
literals containing function symbols are allowed, the rules are more restricted
than Horn clauses. On the other hand, the rules are more expressive because
literals appearing in the body of the rules may be negated.

Pseudo-code for the algorithm is shown in figure 5. The algorithm takes a
top-down approach to ILP. Starting with the most general rule, FOIL specializes
it until no more negative examples are covered. The algorithm involves a double
loop to find suitable queries. In the outer loop the algorithm generates rules, each
time starting with the most general rule, covering all examples. In the inner loop,
it adds clauses to the rule, until no more negative examples are covered. The
algorithm halts when all positive examples have been covered.

The algorithm generates candidate literals based on the literals and variables
already present in the rule, and on predicates found in the background informa-
tion. Suppose the current rule is P (?x1, ?x2, . . . , ?xk) ← L1 . . . Ln. FOIL now
considers the following literals for addition as Ln+1.

– Q(?v1, . . . , ?vr), where Q is predicate occurring in the background informa-
tion and where ?vi(∀i, 0 < i < r) is either a new variable or a variable already
present in the rule. At least one of the variables ?vi has to be present in rule.

– Equal(?xj , ?xk), where ?xj and ?xk are variables already present in the rule.
– The negation of the literals formed in the rules above.

FOIL(Target predicate, Predicates, Examples)

1: Pos← Examples for which Target predicate is true
2: Neg ← Examples for which Target predicate is false
3: Learned rules← {}
4: while Pos is not empty do {learn a new rule}
5: NewRule← a new rule for Target predicate with no preconditions
6: NewRuleNeg ← Neg
7: while NewRuleNeg is not empty do {specialize NewRule}
8: Candidate literals← generate candidate new literals for NewRule
9: calculate Foil Gain for each literal in Candidate literals

10: add literal with highest Foil Gain to preconditions of NewRule
11: NewRuleNeg ← subset of NewRuleNeg satisfying NewRule preconditions
12: end while
13: Learned Rules← Learned Rules ∪ {NewRule}
14: Pos← Pos\{ members of Pos covered by NewRule}
15: end while
16: return Learned rules

Fig. 5. FOIL Algorithm

At each step of the inner loop a heuristic function is evaluated for all can-
didate literals. The result of this function shows how much the rule gains from
adding this literal. The candidate literal which results in the highest gain is cho-
sen as the next literal. This gain function, shown in figure 6, is a simple measure,
based on the comparison of the number of covered positive (p) and negative (n)
examples before (p0, n0) and after (p1, n1) the literal is added to the rule. The
numbers of bindings that remain positive (t) after adding the literal to the rule
is factored in.

Foil Gain(L, R) = t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
Fig. 6. Foil Gain function

4 Applying ILP for Pointcut Abstraction

The FOIL algorithm is able to find rules from a set of logic facts. It requires a
number of positive examples and a set of negative examples to avoid oversimpli-
fication. In addition, it expects a sufficiently large set of background information
in order to be able to induce a rule. The positive examples for FOIL are the join-
points where the aspect needs to be applied. They can either be manually selected

Joinpoint predicates
isRead(?joinpoint, ?variable)
isSendOf(?joinpoint, ?method)
returnStatement(?joinpoint)
execution(?joinpoint, ?method)
inMethod(?joinpoint, ?method)
isAssignment(?joinpoint,?variable)

Structural predicates
methodInClass(?method, ?class)
classExtends(?class, ?class)
classImplements(?class, ?class)
argumentOf(?variable, ?method,
?pos)
instanceVariable(?variable, ?class)
typeOf(?variable, ?class)

Modifier predicates
isFinal(?arg)
isPublic(?arg)
isAbstract(?arg)
isStrict(?arg)
isStatic(?member)

newStatement(?joinpoint,?class)
throwStatement(?joinpoint,?variable)
catchStatement(?joinpoint,?class)
finallyStatement(?joinpoint)
synchronizedBlock(?joinpoint,?variable)
castStatement(?joinpoint,?class,?variable)
instanceofStatement(?joinpoint,?class,?variable)

methodReturns(?method, ?class)
classInPackage(?class, ?package)
isInterface(?class)
isClass(?class)
isMethod(?method)
isVariable(?variable)
isConstructor(?method)

isProtected(?member)
isPrivate(?member)
isVolatile(?variable)
isTransient(?variable)
isSynchronized(?method)
isNative(?method)
annotationOf(?member,?class)

Fig. 7. Predicates available in the crosscut language to select joinpoints, the solutions
for these predicates are used as background information for the ILP algorithm.

or automatically using for example an aspect mining technique. All other join-
points are defined as negative examples for the ILP algorithm. As background
information, we construct a logic database consisting of the information that is
normally available in the pointcut language on these joinpoints. These are the
solutions of the predicates shown in figure 7, which also includes predicates about
the relationships between classes etc. Because this pointcut language is based
on a purely static joinpoint model, these solutions can be determined using only
the program’s source or compiled representation, i.e. compiled Java classes.

The algorithm will induce a pointcut that captures exactly the joinpoints
currently in the program that should be captured (the positive examples), and
none of the others (the negative examples). This is guaranteed by the algorithm.
What we furthermore expect is that that the induced pointcut also is a non-
fragile or robust pointcut. In general we will not have a specific pointcut in
mind that the algorithm should derive (otherwise the application of ILP would
be rather pointless), though in these experiments we can use the robust pointcut
we derived manually in section 2.1 as a benchmark for comparison.

4.1 Basic Point class

As an example of our approach, take the simple Point class from figure 1. In a first
step we derive the static joinpoints from this code, and derive the information
on all of these that is given by the predicates of the pointcut language (figure 7).
This forms the background information for the logic induction algorithm, part
of this generated background information is shown in figure 8.

returnStatement(jp1).
returnStatement(jp6).
returnStatement(jp11).
returnStatement(jp14,).
returnStatement(jp17).
inMethod(jp1,‘Point.setX(I)I’).
inMethod(jp2,‘Point.setX(I)I’).
inMethod(jp3,‘Point.setX(I)I’).
inMethod(jp4,‘Point.setX(I)I’).
inMethod(jp6,‘Point.setY(I)I’).
inMethod(jp7,‘Point.setY(I)I’).
inMethod(jp8,‘Point.setY(I)I’).
inMethod(jp9,‘Point.setY(I)I’).
inMethod(jp11,‘Point.getX()I’).
inMethod(jp12,‘Point.getX()I’).
inMethod(jp14,‘Point.getY()I’).
inMethod(jp15,‘Point.getY()I’).
inMethod(jp17,‘Point.Point()V’).
isRead(jp3,‘l0’).
isRead(jp4,‘l1’).
isRead(jp8,‘l2’).
isRead(jp9,‘l3’).

isRead(jp12,‘Point.x’).
isRead(jp15,‘Point.y’).
methodInClass(‘Point.setX(I)I’,‘Point’).
methodInClass(‘Point.setY(I)I’,‘Point’).
methodInClass(‘Point.getX()I’,‘Point’).
methodInClass(‘Point.getY()I’,‘Point’).
methodInClass(‘Point.Point()V’,‘Point’).
classExtends(‘Point’,‘java.lang.Object’).
methodReturns(‘Point.setX(I)I’,‘int’).
methodReturns(‘Point.setY(I)I’,‘int’).
methodReturns(‘Point.getX()I’,‘int’).
methodReturns(‘Point.getY()I’,‘int’).
isAssignment(jp2,‘Point.x’).
isAssignment(jp7,‘Point.y’).
instanceVariable(‘Point.x’,‘Point,int’).
instanceVariable(‘Point.y’,‘Point,int’).
classInPackage(‘java.lang.Object’,‘java.lang’).
execution(jp0,‘Point.setX(I)I’).
execution(jp5,‘Point.setY(I)I’).
execution(jp10,‘Point.getX()I’).
execution(jp13,‘Point.getY()I’).
execution(jp16,‘Point.Point()V’).

Fig. 8. Part of the background information for the Point class of figure 1.

The methods that are state changing on this simple Point class are the meth-
ods setX and setY only. We identify these two joinpoints as positive examples
of our desired stateChanges pointcut, which are the joinpoints jp0 and jp5 re-
spectively. The pointcut should not cover the other joinpoints: the joinpoints
jp10 and jp13, for instance, denote the execution of the getX and getY method.
Clearly, these methods are not state changing. So these and all other joinpoints
besides jp0 and jp5 are marked as negative examples. We give the FOIL algo-
rithm the positive examples stateChanges(jp0) and stateChanges(jp2). The
resulting rule is shown in figure 9. The pointcut selects all executions of methods
that contain an assignment.

The resulting pointcut is clearly not very robust. An evolution that easily
breaks the pointcut would be to have a getX method that does an assignment
to a local variable which does not mean that that method changes the state of

an object, yet its execution would be captured by the pointcut. This result is
however not very surprising: the Point class is small and does not include non-
state changing methods that do assignments to local variables which would have
served as a negative example for the FOIL algorithm. As the induced pointcut
covers all positive examples and no negative ones, the induction stops and no
further predicates from the background information are used to limit the rule to
only the positive examples. The ILP algorithm works better on larger programs,
so that more negative examples are available to avoid oversimplified pattern-
based pointcuts.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D).

Fig. 9. Induced stateChanges pointcut.

In order to have a more realistic example, we apply our experiment to the
Point class bundled with Java. We do not include a full listing of the generated
background, but instead we give some statistics about the generated facts. Ta-
ble 1 compares the number of facts found in the AWT Point class to the number
of facts from the basic Point example.

Table 1. Generated facts statistics

Classes # Facts # Joinpoints

Toy example 1 71 10
AWT Point class 1 364 70
Complete AWT library 362 276863 65060

We identify four execution joinpoints in the AWT Point class where a state
changing method is invoked and input them as positive examples to the al-
gorithm. The remaining 66 joinpoints are defined as negative examples. The
resulting pointcut is shown in figure 10. In this case, the algorithm generates a
pointcut that is sufficiently robust for evolution: it is in fact the same pointcut
we determined manually in section 2.1.

4.2 Extended experiments

In order to provide a limited evaluation of our approach, we conduct several
more involved experiments using the state-changes example on the Java AWT
framework.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E).

Fig. 10. Resulting pointcut when applying our approach to the AWT Point class.

Large fact database: We apply our approach to the complete Java AWT
library in order to evaluate whether our approach still returns a useful result
when the number of facts is very large. This library contains approximately 362
classes and generates more than 250000 facts. The result is the same as for the
Java AWT Point class alone: the same pointcut as was determined manually in
section 2.1 is induced. For a performance evaluation, we refer to section 5.

Negation: One of the distinguishing features of the FOIL algorithm in compar-
ison to other ILP algorithms is its ability to induce rules containing negations.
As a variation of the state changing methods example, we need a pointcut for
the executions of methods that change the observable representation of an ob-
ject. This means the method does assignments to instance variables that are
not declared transient using the modifier transient in Java: conceptually, these
fields are not part of the object’s persistent state and are not retained in the
object’s serialization. This is used for example when a class defines a cache in
order to optimize some parts of its operations. As such, observers do not need to
be notified when transient fields are altered. When applying this experiment to
the Java AWT library, our algorithm induces the rule shown in figure 11, which
in comparison to the pointcuts induced above adds exactly the properties in the
background to distinguish these joinpoints from the negative examples that we
would expect it to add, i.e. the fact that the instance variables being assigned
to are not declared transient.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E),
6 not(isTransient(D)).

Fig. 11. Resulting pointcut for non-transient field assignments in Java AWT.

InEquality: The FOIL algorithm is also able to induce inequality for certain
rule variables. For example, suppose we want to detect all methods that contain
“illegal” assignments, namely assignments to instance variables of other classes.

The rule of figure 12 is induced when we apply this experiment to the AWT
library. This rule declares that a method is illegally state changing when it
contains an assignment to an instance variable that does not belong to the same
class as the method.

1 illegalStateChanges(A):
2 execution(A,B),
3 methodInClass(B,C),
4 inMethod(D,B),
5 isAssignment(D,E),
6 instanceVariable(E,F),
7 C<>F.

Fig. 12. Resulting pointcut for field assignments from a different class than the class
defining the field.

Recursion: Another advantage of the FOIL algorithm is its ability to induce
recursive rules. For example, suppose we redefine state changing methods to also
include execution joinpoints of methods that indirectly change the state of an
object by invoking a method that is state changing. This is useful for imple-
mentations of the observer aspect that take into account the jumping aspect
problem [4, 11]. In order to capture this pattern robustly, two pointcut rules are
required, one of which is recursive. In this experiment our ILP implementation
however did not induce such a recursive pointcut rule although theoretically the
algorithm is able to induce recursive rules. The algorithm induces several rules
that are unnecessarily complicated, depending on information that is irrelevant
to the state changing concern. This pointcut breaks easily when the base pro-
gram evolves because it is concerned with too much information. This failure
is probably due to a problem in our current implementation of the algorithm.
For instance, when we use method names as positive examples rather than join-
points, a recursive rule is induced which does not exhibit such fragility issues,
the resulting rule is shown in figure 13.

1 stateChanges(A):
2 inMethod(B,A),
3 isAssignment(B,C),
4 instanceVariable(C,D).
5 stateChanges(A):
6 inMethod(B,A),
7 isSendOf(B,C),
8 stateChanges(C).

Fig. 13. Recursive stateChanges rule.

5 Tool Support

Our approach is supported by a fully automatic tool-chain, which is illustrated
in figure 14. The tool-chain consists of the following tools:

Fact
Gen

Java
Classes

XML
Facts JFacts QFoil

Fatcs

QFoilInduced
PoincutJFactsCARMA

Pointcut

Fig. 14. The tool-chain for inducing CARMA pointcuts from Java classes.

– FactGen: This tool translates a range of Java class files and/or jar files to
a set of facts representing these classes. The tool uses the javassist library
[7] to process the binary class files. The javassist library provides a high-
level reflective API that allows to inspect the full Java byte code, including
method bodies. The output of the FactGen tool is the fact representation in
XML format.

– JFacts: This tool allows to translate logic predicates from one syntax into
another. Currently, the tool supports the FactGen’s XML syntax, QFoil’s
syntax, CARMA’s syntax and the Prolog syntax.

– QFoil: This tool is the implementation of the FOIL ILP algorithm by Ross
Quinlan [29]. It takes a set of facts and a set of positive examples as input
(negative examples are implicitly assumed) and tries to induce a logic rule
that covers all of the positive examples and rejects all of the negative exam-
ples. This implementation of FOIL is particularly interesting because of its
performance (see the benchmarks in the next paragraph).

In order to evaluate our approach performance-wise, we conduct several
benchmark experiments with an increasingly large number of facts. The experi-
ments were done using the state changing methods example. Table 2 shows the
results1. In all cases, except for the toy Point class of course, the rule from Fig-
ure 10 was induced. The performance results are acceptable as the time required
is not much more than compiling such a large set of classes. Considering the
premature stage of the FactGen and JFacts tools, we believe that a significant
improvement is still possible there.
1 The timings were performed on an Intel Pentium 4 3Ghz. Each timing represents

the average time of a single experiment, based on 100 experiments.

Table 2. Benchmark results of our prototype tool-chain.

classes # facts # joinpoints FactGen+JFacts (s) QFOIL (s)

Toy Point class 1 71 10 0.461 0.01
AWT Point class 1 364 70 0.5902 0.0142
25 classes from AWT 25 11622 2855 1.8098 0.8779
50 classes from AWT 50 42870 10982 3.9702 5.4671
75 classes from AWT 75 79403 21367 6.5163 4.4448
100 classes from AWT 100 88236 23409 7.1599 5.4526
AWT (no subpackages) 118 103752 27862 7.9929 7.1708

6 Related Work

To our knowledge, there exist no other approaches which try to automatically
generate pattern-based pointcuts. In previous work [12] we already report on a
first attempt for using inductive logic programming in order to derive pattern-
based pointcuts. In this work we employ Relative Least General Generalisa-
tion [25], an alternative ILP algorithm, instead of the FOIL algorithm. Using
RLGG, we are able to derive correct pointcuts for some specific crosscutting
concerns in a Smalltalk image. However, due to the limitations of both our im-
plementation as well as the applied ILP algorithm (for instance, the algorithm
does not support negated literals), our RLGG-based technique often results in
pointcuts that suffer from some fragility: the resulting pointcuts for example
frequently contain redundant literals referring to the names of specific meth-
ods or classes, which of course easily breaks the pointcut when these names are
changed. Furthermore, our earlier work suffers from serious scalability issues.

As mentioned earlier, the major area of application of our technique lies in
the automated refactoring of crosscutting concerns in pre-AOP code into aspects.
Quite a number of techniques exist [13, 24, 22, 15] which propose refactorings in
order to turn object-oriented applications into aspect-oriented ones. However,
these techniques do not consider the generation of pattern-based pointcuts. In-
stead they propose to automatically generate an enumeration-based pointcut
which, optionally, can be manually turned into a pattern-based pointcut by the
developer. As is pointed out by Binkley et al. [2], our technique is complementary
with these approaches as it can be used to both improve the level of automaticity
of the refactoring, as well as the evolvability of the refactored aspects.

In the context of aspect mining, which is closely related to object-to-aspect
refactorings, a wealth of approaches are available that allow for the identification
of crosscutting concerns in an existing code base. The result of such a technique
is typically an enumeration of joinpoints where the concern is located. Cec-
cato et al. [6] provide a comparison of three different aspect mining techniques:
identifier analysis, fan-in analysis and analysis of execution traces. Breu and
Krinke propose an approach based on analyzing event traces for concern identi-
fication [3]. Bruntink et al. [5] make use of clone detection techniques in order
to isolate idiomatically implemented crosscutting concerns. These approaches
are complementary with our approach in that the joinpoints they identify can

serve as positive examples for our ILP algorithm. Furthermore, several tools
exist that support aspect mining activities by allowing developers to manually
explore crosscutting concerns in source code, such as the aspect mining tool [14],
FEAT [30], JQuery [17] and the Concern Manipulation Environment [16].

7 Conclusions and Future Work

In this paper we present our approach using Inductive Logic Programming for
generating a concise and robust pointcut from a given enumeration of joinpoints.
We report on several successful experiments that apply our approach to a real-
istic and medium-scale case study. Although we present our approach using a
logic pointcut language based on CARMA, there is no problem in applying the
approach to other pointcut languages, e.g. AspectJ [18], as well.

Several facets are still open for improvement though:

– Multiple Results: Our current tools only generate one pointcut for a given
set of joinpoints. In some cases, most notably when there is few background
information (i.e. a small number of little classes), several alternative point-
cuts are possible. Our current approach has a bias for short, non-negative
and non-recursive rules. As we have described in the paper, this might not
always lead to a (good) result. Therefore, it would be useful to allow present-
ing multiple pointcut results. To this end, we will need to experiment with
alternative configurations of the FOIL algorithm in order to have several
useful configurations.

– Other Algorithms: There exist several algorithms for Inductive Logic Pro-
gramming. In previous work, we conduct several small-scale experiments
with the Relative Least General Generalization (RLGG) [25] algorithm in
an aspect mining context [12]. Having several algorithms might improve the
quality of the selected results to the end-user. For example, solutions that
are induced by more than one algorithm might be better.

– Run-Time Information: Our current approach only analyzes the static pro-
gram information to induce pointcuts. Pointcuts that require run-time pro-
gram information, such as stateful aspects [10], cannot be induced. For this
end, facts representing the run-time behavior of the program are necessary.
We are currently investigating whether it is possible to induce such dynamic
pointcuts using several program traces as background information.

– Tool Integration: Although our current tool works fully automatically, it is
a stand-alone command-line tool that is not integrated in an IDE. We plan
to develop an Eclipse plugin for our tool. This plugin can then be as a basis
for inducing pattern-based pointcuts by other plugins which provide support
for the refactoring process.

References

1. Mehmet Akşit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Develop-
ment (AOSD-2003). ACM Press, March 2003.

2. D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Automated refac-
toring of object oriented code into aspects. In 21st IEEE International Conference
on Software Maintenance (ICSM), 2005.

3. Silvia Breu and Jens Krinke. Aspect mining using event traces. In 19th Interna-
tional Conference on Automated Software Engineering, pages 310–315, Los Alami-
tos, California, September 2004. IEEE Computer Society.

4. Johan Brichau, Wolfgang De Meuter, and Kris De Volder. Jumping aspects. In
C. Lopes, L. Bergmans, M. D’Hondt, and P. Tarr, editors, Workshop on Aspects
and Dimensions of Concerns (ECOOP 2000), June 2000.

5. M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An evaluation
of clone detection techniques for identifying crosscutting concerns. In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM). IEEE
Computer Society Press, 2004.

6. M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonello, and T. Tourwé. A qual-
itative comparison of three aspect mining techniques. In Proceedings of the 13th
International Workshop on Program Comprehension (IWPC 2005), pages 13–22.
IEEE Computer Society Press, 2005.

7. Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java byte-
code translators. In GPCE ’03: Proceedings of the second international conference
on Generative programming and component engineering, pages 364–376, New York,
NY, USA, 2003. Springer-Verlag New York, Inc.

8. Bart De Win, Wouter Joosen, and Frank Piessens. Developing secure applications
through aspect-oriented programming. pages 633–650. Addison-Wesley, Boston,
2005.

9. Maja D’Hondt and Viviane Jonckers. Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge. In Lieberherr [23], pages 132–140.

10. Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and inter-
action analysis of stateful aspects. In Lieberherr [23], pages 141–150.

11. Kris Gybels and Johan Brichau. Arranging language features for pattern-based
crosscuts. In Akşit [1], pages 60–69.

12. Kris Gybels and Andy Kellens. An experiment in using inductive logic program-
ming to uncover pointcuts. In First European Interactive Workshop on Aspects in
Software, September 2004.

13. Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. Refactoring of
aspect-oriented software. In 4th Annual International Conference on Object-
Oriented and Internet-based Technologies,Concepts, and Applications for a Net-
worked World, 2003.

14. J. Hannemann. The Aspect Mining Tool web site. http://www.cs.ubc.ca/labs/spl/
projects/amt.html.

15. Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of
crosscutting concerns. In Peri Tarr, editor, Proc. 4rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2005), pages 135–146. ACM Press, March 2005.

16. William Harrison, Harold Ossher, Stanley M. Sutton Jr., and Peri Tarr. Con-
cern modeling in the concern manipulation environment. IBM Research Re-
port RC23344, IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
September 2004.

17. Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In Akşit [1], pages 178–187.

18. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072, pages 327–353, Berlin, June 2001. Springer-Verlag.

19. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

20. Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, anno-
tations, advice and pointcuts. In European Conference on Object-Oriented Pro-
gramming, ECOOP 2005, 2005.

21. Christian Koppen and Maximilian Störzer. PCDiff: Attacking the fragile pointcut
problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan Wloka,
editors, European Interactive Workshop on Aspects in Software (EIWAS), Septem-
ber 2004.

22. Ramnivas Laddad. Aspect-oriented refactoring, dec 2003.
23. Karl Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented Software Devel-

opment (AOSD-2004). ACM Press, March 2004.
24. Miguel Pessoa Monteiro. Catalogue of refactorings for aspectj. Technical Report

UM-DI-GECSD-200401, Universidade Do Minho, 2004.
25. S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,

editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.
26. H. Ossher and P. Tarr. The shape of things to come: Using multi-dimensional

separation of concerns with Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43–50, October 2001.

27. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, December 1972.

28. J. Ross Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239–266, August 1990.

29. Ross Quinlan. Qfoil: the reference foil implementation. Home page at http:

//www.rulequest.com/Personal/, 2005.
30. Martin P. Robillard and Gail C. Murphy. Automatically inferring concern code

from program investigation activities. In Proceedings of Automated Software En-
gineering (ASE) 2003, pages 225–235. IEEE Computer Society, 2003.

31. Wim Vanderperren, Davy Suvée, and Viviane Jonckers. Combining AOSD and
CBSD in PacoSuite through invasive composition adapters and JAsCo. In
Net.ObjectDays 2003, pages 36–50, September 2003.

