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Chapter 1

Introduction

As stated by Moore [43], the number of transistors that can be integrated into
a single chip doubles every two year. Moreover, the complexity of processor
chips is proportional to the number of transistors embedded into a single chip.
Making the transistors smaller is not only beneficial for making more complex
and faster chips, it also lowers the power consumption of these chips. In the
early years of computing, a computer could easily fill a whole room whereas
today cellphones with a multitude of the power of these early computers match
in the palm of your hand. Moreover, with the use of a variety of standard
technologies like infrared, bluetooth and wifi we can connect these miniaturised
devices in a mobile ad hoc network.

With the rise of these technologies, the dream of Weiser [66] where per-
sons are surrounded by a cloud of small devices cooperating with eachother and
adapting themselves to their context is getting closer. These small connected
computing units, dubbed ambient devices, have characteristics which are sig-
nificantly different from the conventional devices. One of these characteristics
is that connections cannot be assumed stable, this stems from the fact that
these devices are mobile and can leave a certain area in any moment in time.
The development of context-aware applications coping with frequently occurring
disconnections is a subject of various research projects.

Adapting applications to change their behaviour according to their context
can be done by making use of conventional languages, however as shown by
Turing every language proven to be Turing complete is as powerful as any other
Turing complete language. We do not argue this fact but put forward the
expressive power of the language and maintainability of the written code. A
sterling example where expressiveness is even chosen over computational power
is shown in the world of databases where the language SQL is used to describe
the data needed from a database. In this dissertation we propose the Fact Space
Model, a new programming model sculpted to offer fine grained control over the
effects of disconnections in a mobile environment. A proof of concept of the
Fact Space Model is the experimental programming language Crime.
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1.1 Motivation

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development
of context-aware applications. Context-aware applications reap the benefits of
having a view on the environment by providing additional or smarter behaviour.
An example application which provides additional behaviour by exploiting its
view on the environment could provide the customers of a super market with
the promotions of products residing in its environment. Smarter behaviour is
provided by a mobile phone application which switches its profile to silent when
entering a room where a meeting is taking place.

The implementations of context-aware applications suffer from the fact that
the current context-aware frameworks do not provide the necessary means to
react on all relevant changes in the environment, in particular when context
information becomes unavailable. In a mobile environment where context in-
formation is exchanged by making use of a MANET network [14], the context
information a device perceives is related to its connectivity with co-located de-
vices. In the supermarket example, when the customer leaves the store, the
provided context involving promotions should be withdrawn as this informa-
tion is no longer useful for the user. This retraction of information must be
performed each time devices disconnect.

Most existing coordination languages are unable to react on a combination of
events occurring in the contextual environment. Although there exist languages
that use an inference engine for reasoning about multiple events, they do not
provide the necessary hooks for reacting on disconnections which is important
in a mobile setting. Our solution proposes an inference engine at its core which
enables reasoning about multiple events in a distributed environment. Further-
more, we incorporate a truth maintenance system in order to guarantee that
only valid consequences are derived from the perceived environment.

One of the characteristics of a mobile environment is that devices must be
able to discover one another without the need of a centralised coordination
manager. This is because a centralised manager conflicts with the autonomy
criteria of Ambient Intelligence [34] where each device must be able to operate
independently. Therefore we propose a decentralised architecture for the Fact
Space Model.

In order to deal with the issues of current mobile coordination languages,
we propose the Fact Space Model. This model provides a logic coordination
language for reasoning about fluctuating context in mobile ad hoc networks by
the incorporation of a distributed reasoning engine in combination with a truth
maintenance system to ease the development of context-aware applications.

1.2 Proof of Concept

To validate the proposed Fact Space Model, we developed an experimental coor-
dination language, dubbed Crime, which is a direct translation of the principles
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put forward by the Fact Space Model. Crime provides the necessary support
to exchange context information among different devices residing in a mobile
environment where disconnections occur frequently.

Various experiments involving the implementation of context-aware applica-
tions have been conducted, such as the implementation of context-aware jukebox
and chat applications. We observed that in order to implement these applica-
tions, it is often necessary to query past context. However, due to the fact
that past context facts are automatically removed as new information becomes
available, it was up to the Crime programmer himself to write plumbing code
for recording and querying past context. Therefore, we have extended Crime
to Crime Time, where temporal operators are added as primitives, to alleviate
the programmer from ad hoc management of the context history.

Special care has been taken to explore and adapt optimisation to cope with
the characteristics of a mobile environment. The incorporation of these optimi-
sation into Crime resulted into a language were the intermittent disconnection
are handled fast and efficiently.

1.3 Document Overview

As our proposed solution tackles the problems at hand by combining and ex-
tending the principles from existing coordination models, distributed reasoning
systems and context-aware frameworks, the first part of this thesis is dedicated
to each of these related fields.

The next chapter presents tuple spaces and federated tuple spaces, on which
we based the Fact Space Model. These models provide both space and time un-
coupling by making use of an associative shared memory. However, they offer
no immediate support for reacting on a combinations of events. Our solution
extends the tuple space model with a declarative language facilitating the need
to react on multiple events in the environment. Declarative programming and
logic programming languages are discussed in the next chapter. Chapter 3 dis-
cusses reasoning engines and truth maintenance systems, which are combined
in the Fact Space Model enabling easily development of context-aware applica-
tions. Subsequently, chapter 4 describes existing context-aware frameworks and
compares them to our experimental coordination language Crime.

Our solution, the Fact Space Model, is presented in the subsequent chapter.
We first explain the different parts constituting the model, and next we discuss
a concrete instantiation of this model, dubbed Crime. Thereafter we illustrate
the use of Crime for implementing context-aware applications. This coordi-
nation model provides the necessary hooks to overcome the problems at hand
with existing approaches, as for instance reacting on disconnections. Chapter 6
highlights the implementation details of this experimental language by supply-
ing the necessary pseudo code for algorithms, and UML diagrams for the most
relevant parts of our implementation.

The two subsequent chapters represent extensions to this basic implemen-
tation. A first extension proposes the introduction of temporal operators to
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enable reasoning about past context information. A second extensions imple-
ments optimisations to the basic Rete algorithm and presents the results of
conducted experiments for benchmarking these optimisations techniques.

A last chapter concludes this dissertation by recapitulating the goal and
results of this thesis and presenting our contributions and future work.
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Chapter 2

Tuple Spaces

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development of
context-aware applications. Before elaborating on these issues in chapter 5, we
describe the historical background and outline the technical principles of the
Tuple Space Model, the communication model used in the remainder of this
thesis.

Communication between processes and applications is a very mundane fea-
ture of today’s multitasking operating systems. One of the simplest commu-
nication mechanisms uses files where communication is performed by letting
one process writing to, and another reading from them. Sockets are another
commonly used communication mechanism allowing processes to communicate
by explicitly naming the process it wants to transfer data to. Classic problems
which arise when multiple processes communicate are deadlocks (when a pro-
cess awaits resources that are locked by other processes) and starvation (when a
process is blocked from a resource necessary to finish its task). A more complex
communication model, communicating sequential processes CSP [32] was
invented during the development of the Occam language [33], which provides
a formalism to express the communication among processes. With this formal-
ism, independent processes which communicate solely by message passing can
be modelled by the use of a few primitives and its operators. The classic prob-
lems of deadlock and starvation are supplemented with a set of additional issues
when moving to a mobile distributed setting.

When expanding the communication among processes to a distributed en-
vironment, the notion of time is something that can not be taken for granted.
Specialised algorithms like Lamport timestamps [40] must be used to allow the
ordering of events in a distributed setting. Further issues arise when the com-
munication channels are no longer reliable.

All communication mechanisms can be grouped into four models, namely
monitor, message passing, remote operations, and generative communication.
The first three categories are already discussed, the latter one is introduced
by Gelernter [26]. The Tuple Space Model falls in this last category, where
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communication is realised by the use of a shared distributed associative memory
in order to coordinate interprocess communication.

Coordination languages are concerned with the communication between the
different entities in a system. These can be situated in a distributed envi-
ronment or hosted on the same device. Coordination languages implement a
communication model in contrast to computation languages which implement
a computational model.

In most low level main stream languages like C [38] and C++ [63], commu-
nication is not embedded in the language itself, rather special purpose libraries
are used to orchestrate communication which are forced to adopt the paradigm
of the language. This is in contrast with coordination languages where the
paradigm itself is dedicated to communication. Linda was the first coordina-
tion language, it uses the model of generative communication for coordination,
and needs a host language for its computation.

The remainder of this chapter is organised as follows, the next section pro-
vides an overview of the and how it differentiates itself from other coordination
models. In section 2.2 the coordination language Linda is described by means
of some example applications, and some problems with the primitive operations
of the language are discussed. Upon describing how the Tuple Space Model can
cope with a distributed environment, we present extensions to the Tuple Space
Model to operate in a mobile environment. First we discuss the Lime language
which extends the model with transiently shared tuple spaces, and subsequently
we present Tota, which adds a special kind of tuple to the original model in
order to orchestrate global coordination.

2.1 Tuple Space Model

The basic building block of the Tuple Space Model is a tuple, which con-
tains the information the system can work with. These tuples all reside in
a globally accessible memory called a tuple space. For example the tuple
<’’Hello World", 42> is a tuple of the kind ‘‘Hello World’’ having one
integer field with value 42. A field can be data or executable code. A dis-
tinction is made between tuples which have solely data fields, and tuples which
have at least one field containing executable code. The former kind of tuples are
called passive tuples whereas the latter are called active tuples. The difference
between both kinds is that a passive tuple can be stored directly into the tuple
space. In contrast an active tuple contains code which must be evaluated by a
special operator to a passive value. When all active fields have been processed
to passive values, a passive tuple is constructed and inserted to the tuple space.
All tuples reside in a tuple space which is accessible by a number of concurrent
processes, possibly distributed over different devices. Processes can publish and
withdraw facts from the tuple space which acts as a shared distributed associa-
tive memory. Communication between concurrent processes is handled solely
through the tuple space. In order to let two concurrent processes communicate,
one process publishes tuples to the tuple space and the other process withdraws

17



them. Communication in the Tuple Space Model has some very distinct proper-

Figure 2.1: Tuple spaces: communication

ties that make it different from other communication models. Tuples published
to the tuple space are available for all processes which results in an uncoupling
in space as the receiver process does not need to be know beforehand. Time
uncoupling arises from the fact that tuples can outlive the process that gen-
erated it. Tuple spaces therefore allow communication between processes that
are not active at the same time. These properties are in contrast with com-
munication models such as message passing where the receiver process must
be named explicitly and interprocess communication is synchronous. Because
of the synchronous nature of such message passing models, it is impossible to
conduct communication between time uncoupled processes. Note that although
some communication models allow communication with an unknown group of
receivers, by means of broadcasting, they do not provide a time uncoupling. In
the rest of this section the four basic operations in, out, eval, and read present
are presented, and the distinct properties of the communication model are high-
lighted.

2.1.1 Pattern Matching and Unification

A tuple space can be seen as a data memory with specialised primitives in order
to access the data residing in it. The primitives which are discussed in the
section 2.1.2 are based upon the notion of pattern matching and unification.
Here we give a short introduction to both the concepts pattern matching and
unification.

Pattern matching is used to test whether a given data fits some pattern
[1]. Considering an example datum, has attribute(Merlin, hat), we may
say that this data matches the pattern has attribute(?a, ?b), with both
?a and ?b variables. The datum also fits with some other patterns like for
example has attribute(?a, hat) and has attribute(Merlin, ?a), where
Merlin and hat are constants. An example pattern that does not match
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has attribute(Merlin, hat) is: has attribute(?a, Merlin), because the
second argument should be the constant hat instead of the constant Merlin.

The process responsible for verifying whether a datum matches a pattern is
called the pattern matcher. The pattern matcher has three inputs, a datum,
a pattern and a frame and returns the updated frame as its result. A frame
is a datastructure consisting of a mapping between variable names and values,
this mapping is called the bindings. This frame is augmented by the pattern
matcher by adding new bindings during the matching. The algorithm verifies if
the given datum matches the specified pattern in a way that it stays consistent
with the variable bindings of the frame. When a inconsistency is found, the
pattern matcher reports that the pattern doesn’t match.

Unification is a special kind of pattern matching, where both the pattern and
the datum can contain variables [1]. A unifier takes two patterns and a frame
as its inputs and tries to a list of bindings that makes the patterns equal. So for
example, the patterns has attribute(Merlin, ?a) and has attribute(?b,
hat) can be unified and the resulting frame is extended with a binding for the
variable ?a to the value hat and for the second variable, ?b the value equals
Merlin. For the example to unify the pattern has attribute(Merlin, ?a)
and has attribute(?a, hat) the unification fails as the variable ?a can not
be the constant Merlin and hat at the same time. In contradiction with pattern
matching, unification of two patterns doesn’t need to result in bindings for each
variable occurring in one of those patterns.

2.1.2 Operations

Here we present the four commonly used operators in tuple space based lan-
guages.

The out statement

out(Name, P2, ..., Pn). (2.1)

The parameters starting from P2 may all be actual or formal parameters. When
we assume that P2 up to Pn are all actual parameters, the out statement returns
directly and publishes the tuple <Name, P2, ..., Pn> to the tuple space. In
the case that there is at least one formal parameter contained in the out state-
ment, this is called inverse structural naming.

Consider a chat channel where users can send messages to other persons
that are available and willing to chat. Alice wants to receive a message, which
is simulated by the first line in the code excerpt of listing 2.1. When another
user publishes a tuple out(Alice, "Hello"), Alice receives this message. Users
are also able to send their messages randomly to all users that want to receive
messages, by using the inverse structural naming mechanism, and can spam
other users by publishing a tuple out(?nickName :string, "Hello").
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in ( Al ice , ?message : s t r i n g ) .
out ( Al ice , ” He l lo ” ) .
out (? nickName : s t r i ng , ” He l lo ” ) .

Listing 2.1: Example using inverse structural naming

The eval statement

eval(Name, P1(A2), ..., Pn−1(An)). (2.2)

The parameters starting from A2 must all be actual parameters. These actual
parameters A2 up to An are the arguments for the processes P1 up to Pn. The
eval statement forks a thread in parallel with the main thread, and this new
thread waits until all processes have returned a passive value, whereas the main
thread isn’t waiting and keeps on running. When all passive values have been
collected, a passive tuple is constructed and published in the tuple space.

The in statement

in(Name, P2, ..., Pn). (2.3)

The parameters starting from P2 may all be actual or formal parameters. When
we assume that P2 up to Pn are all formal parameters, the tuple space is searched
for a tuple matching the Name and structure specified by the in statement. When
there’s at least one formal parameter in the in statement, inverse structural
naming occurs. Then the formal parameters are bound with the actual param-
eters of the found tuple, and the execution of the program continues. Upon
completion of this operation the matching tuple has been removed atomically
from the tuple space. When at the time that the in statement is executed no
matching tuple is present, the execution is suspended until a matching tuple is
published in the tuple space.

The use of formal parameters allows the programmer to access a group of
tuples with the same signature. The usage of actual parameters in the in state-
ment allows the programmer to give a more specific representation for the tuple.
This way a topology between certain facts is introduced, and a specific-general
relation among tuples is established. All actual parameters together with the
tuple name are said to form the structural name of the tuple. In the following
in statement the structural name of the requested tuple is Appointment-”New
York”-Alice.

in(Appointment, ?date : integer, “NewY ork“, Alice). (2.4)

As can be seen, this structural name is a combination of only the actual param-
eters of the tuple which introduces a family of tuples. This structural naming
can be compared with unification known from logic computer languages such as
Prolog [62]. From another point of view the structural name can also be related
to the select operation on a relational database.

20



Formal parameters can also be used in the out statement. When such a
statement is published to the tuple space, it can be read by an in statement
with an actual parameter to bound with the formal parameter.

out(Name, i : integer). (2.5)

in(Name, 5). (2.6)

The read statement

read(Name, P2, ..., Pn). (2.7)

The read statement is identical to the in statement except that the matched
tuple is not removed from the tuple space. Publishing and withdrawal of tuples
need to be executed atomically, otherwise duplications could arise from two pro-
cesses that execute an in operation. Indeed, when such a operation is executed
simultaneously only one process receives the tuple from the tuple space, other
processes conducting the operations at the same time receive an other matching
tuple or block until a matching tuple is published.

2.1.3 Properties

Space Uncoupling

Communication in the Tuple Space Model is performed using out, which does
not designate a receiving process. A published tuple can be read by any process
having access to the tuple space, allowing interprocess communication between
processes that do not know each other. The process that executed the out
statement does not know which process performed the in operation on the tuple
it published.

In most mainstream communication mechanisms, data can be received from
a process that is not known in advance. The Tuple Space Model extends these
models to allow sending data to an unknown processes. This allows writing
programs that do not specify the receiving process nor the sending process
beforehand. This property can offer important advantages.

Consider for instance a distributed application where a computation is di-
vided over the available hosts in the network. There is one master host which
divides the computation and sends each host a part of the total computation.
The hosts which perform the actual computation are dubbed worker hosts as
they perform the actual work, whereas the master host only delegates. In or-
der to make optimal use of the computational infrastructure, the master host
should ensure that new computations are made available to the hosts which are
finished. Implementing this in the Tuple Space Model is trivial as the sending
of a new computation is just the publishing of a tuple. As we can not assume
that all worker hosts perform their computation at equal speed some hosts finish
their part of the computation before other worker hosts. Therefore the work is
divided in more computations than there are hosts available, by this mechanism
faster hosts can request more computations than slower hosts. When a host is
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finished with its computation, it can retrieve a new computation by performing
an in operation. When there are still requested computations left in the tuple
space, the worker host retracts this instantly form the tuple space. When there
are no computations left, the worker host blocks until the master host publishes
new requests in the tuple space. Applying this coordination scheme results in
a computation which is balanced over the available hosts. Because of the space
uncoupling worker hosts do not need to contact the master host directly to
complete their task or to request a new computation.

Time Uncoupling

A tuple published by the out statement is withdrawn when the process that
created the tuple terminates. The removal – on termination of the process – of a
tuple can be avoided if the process explicitly specifies not to do so. This allows
the tuple to outlive the program, and allows communication between programs
which are not active at the same time. Note that time uncoupled processes are
nothing new and are already provided in most operating systems using files.
However, in the Tuple Space Model time uncoupling is embedded in the core
of the language and no specialised language features are needed to have this
property.

Sharing Variables

Because publishing and withdrawing tuples from the tuple space is ensured to
be atomic, no special process is needed to shield shared variables. A shared
variable can be easily represented by a tuple in the tuple space. Note that this
is a powerful mechanism because no extra threads are needed to shield access
to the variable. The distributed nature of the Tuple Space Model ensures that
a published tuple is accessible by all processes. As shown later, the atomicity of
the Tuple Space Model makes it possible to implement distributed semaphores
the same way as shared variables.

2.1.4 Tuple Distribution

The main difficulties of concrete tuple space implementations lies in the distri-
bution of tuples among network nodes. Various distribution models have been
proposed [42] and the most common ones are explained here.

Centralisation

The centralisation model entrusts a designated host to regulate all operations
on a tuple space. This host contains the whole tuple space and is accessible
by all clients in the network. The centralisation model’s main advantage is its
ease of implementation. As the tuple space is located on one host, assuring
atomicity of the operations is easier than with a distributed datastructure. The
disadvantages of a centralised architecture relate to the system’s scalability and
reliability. When the number of nodes increases, the load for the hosts increases,
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making it a bottleneck for the system. Moreover, when stability and reliabil-
ity are important a pure centralised approach is not sufficient as it introduces
a single point of failure. Finally, as all communication must go through the
designated host, the network resources are not used optimally.

Partitioning

In the partitioning strategy multiple hosts are designated to be the server for a
specific subset of tuples with a common characteristic (e.g. for a particular set of
names). The publishing of a tuple in the tuple space, is then routed to the precise
server depending on a specific property of the tuple at hand. The choice of
the partitioning function is crucial in such systems, since naive partitions of the
tuple space can lead to an unbalanced distribution of the tuples over the available
hosts. More complex systems dynamically adapt the partitioning function to the
applications running on the hosts. Beside data decentralisation, partitioning also
has the benefit that operations on the tuple space can be conducted concurrently
as long as the tuples reside on different hosts. Partitioning does not solve the
problems regarding reliability that centralisation introduces, as each partition
uses a centralised architecture, as described in the previous paragraph.

Full Replication

Full replication makes replica’s of the entire tuple space on multiple designated
servers. The publishing and withdrawal of tuples requires the involvement of all
hosts. As there are duplicate tuples residing on multiple servers, it’s important
to keep the whole tuple space consistent. Ensuring such consistency requires
costly locking protocols which block the whole tuple space for a single opera-
tion. Some support for fault-tolerance is inherently supported by making use of
full replicas. Using replication enables performing consistency checks at regular
intervals. A disadvantage of full replication is the increased network commu-
nication for multicasting destructive operations to all clients in the network.

Figure 2.2: Centralised model of tuple space
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Figure 2.3: Partitioning model of tuple space

Figure 2.4: Full replication model

2.2 Linda

Linda is the first language that implemented the Tuple Space Model providing
the full power of asynchronous interprocess communication, which is uncoupled
in both time and space. Linda is not a conventional programming language,
but rather it is a coordination language. This implies that Linda has as its do-
main the interaction between different processes rather than the computation
performed by these processes. Linda can be embedded into any computational
language (it has been embedded in a range of imperative languages like C [46],
but also in functional programming languages like ML [58]). Such a complete
language is capable of describing both the computation performed by a process
as well as how it should coordinate activity with other processes. This sec-
tion gives an overview of the Linda coordination language by specifying small
examples which are typical for the Tuple Space Model.

2.2.1 Basic Communication

Code Example

As a concrete example of the use of the Tuple Space Model, consider the Linda
code in listing 2.2. The process encode is started and performs a conversion of
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the string ‘‘Active’’ to the string ‘‘Passive’’. The in operation blocks until
a Message tuple has become available. This process first performs an out oper-
ation which causes the publication of the tuple ‘‘Hello World’’, 1 in the tu-
ple space. When the in operation is executed, the formal parameter ?number is
bound to the value 1. The evaluation of eval(Message, encode(‘‘Active’’))
results in the insertion of an active tuple. Afterwards, the in operation reads
the passive tuple from the tuple state, and this causes the variable binding of
?state to ‘‘Passive’’. The last line of the code prints the value of the for-
mal parameter ?state which equals ‘‘Passive’’; So, ‘‘State = Passive’’
is printed. The steps of this example together with the tuple space state is
depicted in figure 2.5.

int main ( ) {
out ( ” He l l o World” , 1 ) ;
int number ;
in ( ” He l l o World” , ?number ) ;

p roc e s s S t r ing encode ( S t r ing x ) {return ” Pass ive ” ;}
eva l ( Message , encode ( ”Active ” ) ) ;
S t r ing s t a t e ;
in ( Message , ? s t a t e ) ;
p r i n t f ( ” State = %s” , s t a t e ) ;

}

Listing 2.2: Linda: hello world example

The insertions of active tuples is not blocked but a separate process is started
for each template field that needs to be calculated. When all processes have
returned a value, a passive tuple (recall that a passive tuple does not contain
executable code at any of its fields) is constructed based on these return values
and inserted.

Semaphores

Linda is a coordination language because its basic primitives allow expressing
concurrency control patterns to govern the interaction between different pro-
cesses. A well-known concurrency control pattern is the semaphore invented by
E. Dijkstra and first implemented in THE operating system [20]. It is a pro-
tected variable used to restrict access to a common datastructure. Semaphores
can be used in general with N processes that may concurrently access the same
datastructure. In the case where the access is limited to only one process at a
time, we can use a binary semaphore. In the general case, when more then one
process may access the resource, it’s called a counting semaphore. Semaphores
are commonly used to coordinate synchronisation in concurrent programs. The
operations on a semaphore are P and V.

The semantics of the V operation is to increase the semaphore by one which is
realised as one atomic operation. The P operator blocks access to the semaphore
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(a) out operation (b) in operation

(c) evaluation (d) in operation

Figure 2.5: Hello world example: tuple space depicted on different timesteps

P( Semaphore s ) {
Suspend un t i l s > 0

}

V( Semaphore s ) {
s += 1 ;

}

Table 2.1: Operations on semaphores

s, until it has a value higher than zero. In Linda every tuple having only one
element is equivalent to a binary semaphore. To understand this, recall that
the operations on the tuple space are guaranteed to be executed atomically.
Therefore the V operation can be simulated by the insertion of a tuple in the
tuple space. The P operation can be implemented by an in operation.

Note that the tuple space properties give the semaphores implemented in
Linda a time and space independent nature. Space uncoupling stems from the
fact that the semaphore is accessible from different processes possibly residing
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void P( Template semaphore ) {
in ( semaphore ) ;

}

void V( Template semaphore ) {
out ( semaphore ) ;

}

Table 2.2: Semaphores implementation in Linda

on different devices on the network, making the semaphore distributed. Time
uncoupling is achieved because the semaphore can possibly outlive the process
that created it. Hence Linda inherently incorporates semaphores.

Synchronous Communication

Another coordination pattern is the rendez-vous pattern which allows processes
to perform synchronous communication. The out operation does not wait for
the tuple to be withdrawn from the tuple space. This is not a hard restriction as
we can easily simulate synchronous communication by a limited set of operations
[26].

outs ( t ) = in (A) , out ( t ) , in (B)
i n s ( t ) = out (A) , in ( t ) , out (B)

Note that this transformation can only be used by two processes conducting
synchronous communication at the same time. When multiple processes want to
communicate synchronously, new auxiliary symbols must be introduced; Namely
one for every pair of communicating processes. Once again, the benefits of
Linda communication is preserved: no prior knowledge of the data provider is
needed by the data consumer, only the auxiliary symbols that are used.

Multiple Tuple Spaces

Over the years several extensions to the basic Linda language where proposed.
A first extension to the original Linda model was introduced due to a lack of
separation of concerns. Since tuple spaces are a shared datastructure in which
all processes can read and write, information can not be hidden or scoped.
Therefore, multiple tuple spaces were proposed. These tuple spaces can be
made by the processes itself, and provide an abstraction layer to group tuples
with the same properties. This extension led to a concrete implementation MTS
Linda [8].

Multiple tuple spaces were influenced by the need to hide information. Be-
cause all tuples reside in the same tuple spaces, all processes in the system
can access the same information. Non-related processes using the same tuple
space can easily influence eachother, either by accident or maliciously. Also in
large software systems where there are multiple users that run their programs
concurrently, it is not acceptable that a user can see or modify other users’ infor-
mation. Beside of the coordination abstraction, a tuple space actually represents
a datastructure which holds a multi-set of tuples and the Linda operations can
be seen as accessors and mutators. With this view in mind, the natural way to
address the scoping problem is to the tuple space as a datastructure which can
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be created, assigned, and passed around like any other datastructure. Hence
making it a first class data type. However, there is no clear semantics on the
various problems which arise when making tuple spaces first class. One of the
problems that arises is to provide the semantics for a process which requests a
tuple from a deleted or retracted tuple space. [8]

int main ( ) {
TupleSpace myts ;
myts . out ( ”Test ” , 4 2 ) ;
myts . rd ( ”Test ” , ? i ) ;
eva l (42 , f ( 1 3 7 ) ) ;
rd (42 , ? i ) ;
out ( ”Ts” , myts ) ;
in ( ”Ts” , ?myts ) ;
TupleSpace A, B;
A = B;
i f (A == B) { . . }

}

Listing 2.3: Operations on multiple tuple spaces [8]

The code in listing 2.3 performs some operations on multiple tuple spaces. The
first line of code in the main procedure creates a new local tuple space myts
where tuples can be published and withdrawn form. When the out operation
is performed on the local tuple space, by executing the second line in the proce-
dure, the tuple (‘‘Test’’, 42) is inserted in that local tuple space. Executing
a read operation on that tuple space results in a variable binding for the for-
mal parameter ?i to the value 42. The evaluation eval(42, f(137)) results
in publishing an active tuple in the tuple space. The read operation that is
performed after that evaluation reads a resulting passive tuple. The line of code
beneath the read operation results in copying the local tuple space myts in
the context tuple space, so the in operation performed afterwards retrieves the
tuple space and binds the variable ?myts to that tuple space. The execution of
the line of code A = B results in assigning a copy of tuple space B to tuple space
A. The if-test performed afterwards compares those two tuple spaces. Note that
outside the main procedure, the local tuple space myts leaves its scope and is
deleted.

2.2.2 Summary

Linda has been designed for a distributed environment where there is access
to a globally shared tuple space. It provides primitives adopted from the tuple
space model for the access to this memory. These primitives can be used to
simulate the standard coordination patterns like semaphores and the rendez-
vous pattern. Moreover these primitives provide additional properties like time
and space uncoupling. A first problem with Linda concerns the inability to hide
information, this has been solved by the introduction of multiple tuple spaces.
More problems with the basic set of primitives provided by Linda, are discussed
in the next sections.
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2.3 The Multiple rd Problem

The Linda model is not able to cope with the multiple rd problem. In order to
solve this problem a new primitive operation copy-collect was introduced by
A. Rowstron and A. Wood [52]. In this section we show the problem by means
of an illustrative example and show why the new operator is a solution for the
rd problem.
”A multiple rd is defined as an operation where two or more processes are re-
quired to concurrently, and non destructively read one or more tuples from a
tuple space which match the same template, where there are at least two or
more tuples that match the template, and at least two of the processes can be
satisfied by the same tuples“ A.Rowstron [52].

This section handles two rd-problems that arise by using the basic Linda
primitives. The claim is that the basic primitives of Linda are not sufficiently
expressive when trying to solve this rd problem.

To understand this, consider the tuple space with two or more tuples repre-
senting the leasing of cars <Leased, ?CarId, 42> to the customer with id 42.
There are a lot of processes which need this information, and one of the opera-
tions of these processes is to retrieve all the the carId’s which are rented to the
customer with id 42. At first one may be tempted to solve this by just invoking
multiple rd, but this isn’t a correct approach because a second rd operation
blocks the entire program. This forms the first problem that can be avoided
by using polling. A second problem arises when there are multiple tuples that
match. The definition of rd is to non-deterministicly retrieve a tuple from the
tuple space, and thus invoking multiple rd does not allow the programmer to
retrieve all tuples residing in the tuple space.

Semaphore Solution

As the operations on the tuple space are guaranteed to be atomic, a general
solution to overcome the problem is to use a special semaphore tuple which is
determined beforehand by all involving processes. When a process wants to ac-
cess this particular kind of tuple – tuples with a type equal to Leased – it first
has to read the semaphore tuple. Thereafter all the wanted tuples – tuples with
type Leased and customer id equal to 42 – must be destructively removed to en-
sure that all tuples are retrieved. Upon completing the operation the reinsertion
of the removed tuples and the locked tuple. Those removed tuples were kept
for performing the actual action on them. This is a general solution because
although the tuples are destructively removed from the tuple space, the other
processes which may need these tuples are not aware of this removal as they
cannot acquire the semaphore tuple and thus cannot read the tuples during the
operation. When the operation is finished, all tuples are restored. This tech-
nique applied to the car rental company is depicted in figure 2.6. The numbers
in the picture denote the time steps involved: the two processes execute concur-
rently, but process A retrieves the semaphore tuple and therefore executes first.
The figure illustrates the steps up until processes B retrieves the semaphore.
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Figure 2.6: Multiple rd problem: semaphore solution

The solution presented above is not an acceptable solution for a number
of reasons. First of all: all processes need to follow the protocol and must
know about the lock tuple. When there are unrelated processes working on
the same tuple space, they may not follow the protocol. This scenario is very
likely when extending an existing program where the tuples where accessed
concurrently. Either way, if one process does not follow the protocol either by
error or maliciously, the other processes can no longer assume they have access
to all possible tuples.

As a second reason why utilising this approach is not acceptable in the
context of our dissertation, is the loss of the benefits of the Tuple Space Model,
which is done by serialising access to the tuple space. This is clearly not an
acceptable property in a distributed setting. Moreover, in the car company
example, we see that parallel access is not harmful at all because of the non-
destructive nature of the rd operation.

Copy-collect

In order to solve the rd problem, a new primitive copy-collect is introduced.
The general form of the primitive is:

x = copy−c o l l e c t ( t s one , ts two , template )

Copy-collect copies all tuples that match with the template from tuples
space ts one into tuple space ts two. The return value of the primitive denotes
the number of tuples that are copied to the destination tuple space. The inter-
action of the copy-collect primitive with the standard primitives is governed
by the following rules:

When the copy-collect primitive is invoked concurrently with the out or in
primitive on the first tuple space, and the tuple of that operation matches the
template of the copy-collect, the normal behaviour of the operations out and
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in is no longer guaranteed. Although, the other matching tuples are duplicated
to the destination tuple space.

Copy-collect is not allowed to live-lock : it always stops and returns a value,
this needs to be ensured by the implementer. As a copy-collect can take
more time than an out operation, multiple out operations can be issued during
the execution of the copy-collect. Because of these consequences, a naive
implementation could live-lock. Another requirement is that the copy-collect
primitive relays on out-ordering, this means that when one process invokes two
out statements, the second can not be published in the tuple space before the
first one.

Using copy-collect

The copy-collect primitive is a simple yet elegant solution to the multiple rd
problem. The primitive allows multiple processes to concurrently duplicate a
group of tuples to a destination tuple space. The process that copied the tuples
is informed about the number of tuples that were duplicated. Knowing this
number allows the process to retrieve all the tuples it needs by destructively
reading them from the destination tuple space.

To recapitulate, applying the copy-collect primitive to the car leasing com-
pany results in the following processes.

copy−c o l l e c t (T1 , T2 , <Leased , ? carId , 42>).

This is a good solution because during the copy-collect, other processes can
still access the tuple space. Moreover it exhibits the same expressiveness as the
other operations using the pattern matching facilities of Linda.

2.3.1 Asynchronous Tuple Space Access

When there are multiple matching tuples in the tuple space, the in and rd oper-
ations pick only one on a non-deterministic way. Some dialects of Linda allow
all matching tuples to be retrieved in one atomic operation. These operations
are referred to as bulk operations. These bulk operations have a non-blocking
nature, and allow asynchronous access to the tuple space whereas the Linda
primitives allow synchronous access. Hence, the Bonita [51] primitives were
introduced for allowing this asynchronous access. These primitives provide a
functional set of the Linda primitives and through their asynchronous access
allowing more efficient programs to be written as multiple requests on the tuple
space can be performed concurrently.

Bonita Primitives

rqid = dispatch(ts, tuple | [template, destructive | nondestructive])
The dispatch primitive replaces all the Linda primitives to insert or withdraw
tuples from the tuple space. The tuple space to be used is indicated by the first
parameter ts. The second parameter can be either a tuple or a template; When
a tuple is given as second parameter, this tuple is placed into the tuple space
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ts. When the second parameter is a template, the dispatch primitive retrieves
a tuple from the tuple space. When retrieving a tuple, the last parameter
indicates whether the tuple should be removed. The primitive is non-blocking
and returns an identifier which can be used to retrieve the matched tuple.

rqid = dispatch bulk(ts one, ts two, [template, destructive |
nondestructive]) This primitive requests the movement of tuples from
one tuple space ts one to the tuplespace ts two matching the template. The
last parameter is again used to indicate whether the matched tuples should
be removed from ts one. Like with the copy-collect primitive, described in
section 2.3, the number of moved tuples depends on the number of destructive
operations undertaken during the execution of the dispatch bulk operation.
This primitive is non-blocking and the rqid returned can be used to obtain the
number of tuples that have been moved by the operation.

arrived(rqid) This primitive checks that the result of the operation with
identifier rqid is available. This can either be a tuple or a number indicating
the quantity of moved tuples. The primitive is non-blocking and returns a
boolean representing the availability of the result. When invalid identifiers are
given to the arrived primitive, it returns false.

obtain(rqid) This primitive blocks until the result of the operation with iden-
tifier rqid is available.

Bonita Linda

The Linda primitives can easily be implemented with the Bonita primitives by
forcing immediate synchronisation using the operation obtain. The code below
shows how the rd operation can be implemented using the Bonita primitives.

i n t id , car Id ;
id = di spatch ( ts one , Leased , ? carId , 42 , nondes t ruc t ive ) ;
obta in ( id ) ;

In order to implement the in operation it is sufficient to change non-destructive
into destructive in the code above.

The copy-collect primitive can be implemented also easily with the Bonita
primitives, as shown in the code below.

i n t id , car Id ;
id = di spatch ( ts one , ts two , Leased , ? carId , 42 , nondes t ruc t ive ) ;
obta in ( id ) ;

Performance

In the previous section it has been shown that the Bonita primitives are func-
tionally equivalent to the Linda primitives. Now we exemplify how the Bonita
primitives can be used to increase performance by parallelising computation
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and communication. There is no equivalent operation in Linda to achieve this
behaviour. The Linda version of a communication and computation is shown
below, as the in operation blocks the process, the communication and the com-
putation is done sequentially.

i n t car Id ;
in ( t s one , Leased , ? carId , 4 2 ) ;
compute ( ) ;

The optimised version of the above Linda code snippet is shown below. Here
the computed procedure is performed in parallel with the retrieval

i n t id , car Id ;
id = di spatch ( ts one , Leased , ? carId , 42 , d e s t r u c t i v e ) ;
compute ( ) ;
obta in ( id ) ;

2.4 Lime

Lime [48] was the first coordination language based on the Tuple Space Model
that adapted it to operate in a dynamically changing network. The time and
space uncoupling properties of the Linda model align well with a mobile en-
vironment. This maps directly to a mobile environment where the network
topology is constantly changing. Furthermore tuple spaces provide a natural
way to reason about the context perceived by a mobile device. However the
Linda tuple space needs to be globally accessible for all entities in the network.
In a mobile environment, maintaining a globally accessible tuple space is hardly
possible.

Lime breaks down the Linda global tuple space into a hierarchy of tuple
spaces as shown in figure 2.7. Every process has its own tuple space which
contains the tuples it wants to share with other processes. The union of all
tuple spaces which reside on the same host, are grouped together in a Host
Level Tuple Space. These Host Level Tuple Spaces are again merged together in
a so called Federated Tuple Space as depicted in figure 2.7.

This Federated Tuple Space can be compared with the Linda tuple space,
though the content of this tuple space is dynamically changed according to the
connectivity of the hosts, as well as on the arrival of new processes on those
hosts.

In Linda, the tuple space coordinates the data that is associated with the
process communication, whereas Lime uses the tuple space to provide context
information depending on connectivity [48].

The smallest tuple space entity which is associated with a single process, is
referred to as the interface tuple space, and it provides the access to the context
of that mobile device. Clearly, breaking down the tuple space into a hierarchy
provides a powerful abstraction, the process needs not to be concerned with the
dynamically changing network topology which is reflected through changes in
the tuple space.
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Figure 2.7: Lime: federated tuple space [48]

A Lime group consists of a group of devices within one another’s range. All
tuples of a Lime group are transiently shared, and the tuple space perceived
by a mobile device through its interface tuple space is the conjunction of all
interface tuple spaces in that group. This way, the interface tuple space acts
like a view on the context of all members of the group.

Lime tuple spaces are named, and a process can access multiple tuple spaces
by specifying the designated name. A special tuple space called LimeSystem is
made accessible by the middleware which can be queried for special context
changes like the availability of host and the available tuple spaces itself.

2.4.1 Transiently Sharing

Because Lime operates in a mobile environment, no particular hosts can be pre-
ferred to store a global tuple space. Hence the notion of a persistent tuple space
like the one in Linda can not be introduced for the ever changing environment.
Therefore Lime introduces the transiently shared tuple space, which imposes
restrictions on the sharing mechanism depending on the connectivity. Because
the sharing of tuples depends on the connectivity of the mobile hosts, some
difficulties arise which are addressed by the use of specialised out operations as
shown in the rest of this section.

2.4.2 Operations

Consider the example where process A wants to communicate with process B.
Initially these processes are co-located, and process A publishes a tuple t for
further processing by process B. However, before process B gets the chance to
retrieve the tuple from the transiently shared tuple space, process A gets out
of reach. Due to the transiently properties, the tuple t is no longer accessi-
ble by process B. This process has been depicted in figure 2.8. To overcome
this unwanted removal, Lime introduces specialised primitives which deal with
location. These operators are explained in the remainder of section.
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Figure 2.8: Lime: transiently sharing

The out[λ](t) statement

Lime extends the conventional out operation with a destination. All tuples are
implicitly annotated with a current and destination location. The out oper-
ation has an optional parameter to explicitly specify the destination location.
Publishing a tuple with a destination location involves two steps: when the
destination is available, the tuple migrates immediately. Otherwise the tuple
stays in the current tuple space and is migrated when the destination location
is available. Such a tuple which awaits the arrival of its destination host, is said
to be a misplaced tuple.

The rd[ω, λ](t) and in[ω, λ](t) statement

The read operation resembles the in operation performed on a tuple. Reading
a tuple from the tuple space can be annotated with both a current ω and a
destination λ location. This allows the process to inspect the misplaced tuples
currently residing in the tuple space. The in operation conducts the same be-
haviour but this operation is also able to let the processes reason about misplaced
tuples currently residing in the tuple space.
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2.4.3 Lime Reactions

Adapting mobile software according to changing context takes up an important
part of most mobile applications. It might seem that this can be achieved easily
in Linda by waiting for an in statement which announces a context change.
However this solution gets cumbersome when there are a lot of context changes
to react on. Furthermore, the blocking semantics of in imply that in order
to react on different context changes a different thread should be started for
each possible context change. Therefore Lime has introduced reactions, which
execute a predefined piece of code when a specified tuple is inserted into the
tuple space. When the Lime reactions are activated, they execute a piece of
code.

Reactions are split up into weak and strong reactions: strong reactions are
executed atomically by the Lime engine. This implies that the reaction is ex-
ecuted immediately after a matching tuple was inserted. Being able to react
atomically with the insertion of a tuple clearly puts restrictions on the reacting
code that has to be executed, as it blocks the entire tuple space. Therefore, the
scope of strong reactions is restricted to that of the host tuple space and not
the whole federated tuple space. Weak reactions do not have this limitation,
however they are not guaranteed to be executed atomically. To avoid deadlocks,
weak and strong reactions are unable to use Lime’s blocking operations.

2.5 Tota

Like Lime, Tota [41] is also based on tuples, however in this model coordination
is not achieved by a tuple space distributed among the mobile hosts in the
network. Tota provides the facilities for tuples themselves to hop from host
to host using a migration policy. These tuples do not belong to a specific host
but are injected by a host in the network and flood the network according to
a pattern specified by the injected tuple. So, Tota tuples can be viewed as
a distributed datastructure representing some kind of distributed contextual
information.

The network topology of a group of Tota nodes is organised as a peer-to-
peer network where every node has access to a limited number of co-located
hosts. Every host can store tuples and provides the necessary support to let the
tuples propagate to other connected hosts. A tuple can no longer be viewed as
merely data, it is in fact a mobile program that hops from host to host. Tota
defines a tuple with content C and propagation rule P, T=(C,P). The content
is a list of fields, and coincides with the tuples from Linda. The propagation
rule P describes whether a tuple can be propagated and has the opportunity to
transform the tuple. The latter ability introduces a very powerful mechanism
as the propagation rule is able to maintain a state while flooding through the
network.

By letting the propagation rules change the tuple information, the passing
of tuples is changed from merely making copies of the tuples to a distributed
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computation by passing the Tota tuple around. Because of the propagation
rules, the distribution of tuples is no longer restricted to the physical network
topology but can be extended to any virtual network topology supported by
the physical one. For example, limiting the propagation of tuples to a certain
distance from the host which published the tuple, can easily be achieved by
computing the distance to the original host every time the tuple is migrated.
The propagation stops when the tuple’s distance is too far from its originating
host.

Tota not only supports active distribution of the tuples, but also dynamic
adaptation. As the underlying network topology is changed, these changes are
propagated to tuples and tuples can be automatically repropagated taking into
account the changed network content. Reconfigurations of the network, like the
addition of a host to the network are propagated by checking the propagation
rules of the already stored tuples and the repropagation of to tuples to this
newly added host in the network may be triggered depending on the propagation
rules. Using the same mechanism, the distribution of tuples adapts it according
to movements of a host through the network.

Communication in Tota is thus reduced to injecting tuples to the network
and detecting tuples in the local tuple space. Applications written in Tota are
able to access the local tuple space, publish tuples with a content and a prop-
agation rule, and can be notified about changes in the context. The injection
of a Tota tuple to the network, can be compared with a raindrop falling into
a pool, thus inducing a global change of the surface. Similarly the view of the
context of a process can be changed as a result of a local injection by another
device.

2.5.1 Architecture

Tota supports coordination among mobile devices, each running the Tota
middleware. Each mobile device keeps a list of reachable hosts which adapts
to reflect changes in the network topology. This may resemble the connectivity
in a MANET network [14] but this is not necessarily the case. This constant
detection of addressable hosts in the system is something that is built into the
core of the Tota system. While the precise definition of addressability may
differ from network to network, the Tota middleware must be able to reflect
on these changes.

Another responsibility of the middleware is the storage and propagation of
the tuples in the network. Beside propagating, it must also update these tuples
as the network topology changes. In order to accomplish this task, every tuple
must be uniquely identified, as the content of a tuple can change while it is
propagated, this can’t be used as identifier. Therefore, the tuples are tagged
with a unique id that is generated by the middleware and is not accessible at
the application level. This identification tag is composed of a sequence number
reflecting the amount of tuples already injected by a host, and the id of the host
itself (its ip address in a closed network environment).

The Tota middleware can be split up into three main parts: the API, the
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Figure 2.9: Tota architecture

event interface and the engine. The API is a layer between the engine and the
applications using the middleware. It specifies how tuples must be published
and allows the middleware to query the local tuple space. The event interface
allows the registration of event handlers in the tuple space. Since everything
can be represented by a tuple, every event can be modelled as the insertion of a
tuple, the event interface provides the registration and unregistration of event
handlers on the local tuple space. To conclude the engine itself performs the
propagation of the tuples through the network.

2.5.2 The Tota API

The underlying principles of the Tota model could be implemented in any lan-
guage. Here we present the basic operations provided by the Tota API by
a concrete implementation in Java. The insertion of a tuple can be achieved
through the inject method provided by the Tota API. After the injection the
tuple starts propagating through the network according to its propagation rule.
The construction of a tuple and how to define its propagation rule is explained
later. The local tuple space can be queried by the read and delete methods.
Read returns all the tuples in an ArrayList which matches the provided tem-
plate. Delete returns a similar list but also removes them from the local tuple
space. These operations can be compared with the bulk operations provided in
some Linda implementations.

pub l i c void i n j e c t ( Tuple tup l e )
pub l i c ArrayList read ( Tuple template )
pub l i c ArrayList d e l e t e ( Tuple template )

As the Tota middleware has an event system, the API provides two methods
to register and unregister event handlers. Subscribe installs an event handler
which is triggered upon the arrival of a tuple in the local tuple space, which
matches the provided template. Unsubscribe unregisters all event handlers
which where registered with a template matching the template provided as an
argument.
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pub l i c void sub s c r i b e ( Tuple template , S t r ing r e a c t i on )
pub l i c void unsubscr ibe ( Tuple template )

The methods provided by the Tota middleware presented all depend on
the representation of the tuple itself. Because the tuples are not merely data as
in Linda and Lime, more attention is given to this representation and an ab-
stract class of a model tuple is provided by the API. This abstract class already
implements a great part of the default behaviour for the tuple propagation.
The propagation strategy of this abstract class is a breath first, expanding ring
propagation [41]. In addition to the propagation strategy, four abstract methods
must be implemented to control the content updates, and the tuple behaviour.
These abstract methods are used in the propagation strategy as shown in the
code in listing 2.4.

i f ( dec idePropagat ion ( ) ) {
doAction ( ) ;
updatedTuple = changeTupleContent ( ) ;
i f ( dec ideSto r e ( ) ) {

totam . s t o r e ( updatedTuple ) ;
}

}

Listing 2.4: Tota: decidePropagation method [41]

The decidePropagation method provides a way to limit the scope of the prop-
agating tuple. At the one extreme when decidePropagation always returns
true, the tuple is sent to all hosts in the network, in a breath first way, as
specified by the default propagation strategy. At the other extreme, when the
decidePropagation always returns false, the tuple is not propagated at all. As
one can imagine, this method can be used to implement scoping control, like
propagation to nearby hosts. The doAction provides the tuple the full power of
the Tota API at the host it is propagated to, so it can read, delete, and inject
tuples. By this method the Tota API can be extended with for instance global
operators that do a network wide deletion of a certain tuple. Such functional-
ity is not provided by the Tota API itself, but can easily be implemented by
letting the decidePropagation always return true, and implement the deletion
of the tuple in the doAction.

The method changeTupleContent allows the programmer to change the tu-
ples content before it gets stored or is propagated to other host in the network.
This mechanism is used to let the tuple dynamically adapt as it’s being propa-
gated through the network. For example, when the content of the tuple contains
a counter then the changeTupleContent method could decrease it by one ev-
ery time the tuple is propagated. Then the decidePropagation method can
be used to check this counter in order to decide to let the tuple propagate or
not. This way the tuple itself can decide to only propagate only a certain dis-
tance from the host it was injected from. To conclude the decideStore decides
whether the tuple should be stored in the local tuple space or not. This method
allows the programmer to implement tuples that are just passed along without
being stored.
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2.6 Conclusion

This chapter gave an overview of the Tuple Space Model and some of the most
important languages based upon this model. The Tuple Space Model described
in section 2.1 is a coordination mechanism with some very appealing character-
istics to coordinate applications in a distributed environment. The Tuple Space
Model provides both time and space uncoupling by making use of an associative
shared memory. This memory can be implemented centralised or partitioned
over the available hosts in the network as shown in section 2.1.4. Subsequently
we have presented Linda, the first coordination language. This language which
is based upon the tuple space model has been explained by means of some typ-
ical examples. Moreover we have shown that the basic primitives of Linda can
easily simulate a distributed semaphore. In section 2.3 the multiple rd problem
which is inherently to the tuple space model has been identified and the need to
extend the basic primitives of Linda with the copy-collect primitive has been
shown.

In section 2.4 we moved from the distributed environment to the mobile en-
vironment. A first coordination language for the mobile environment discussed
is Lime, which extends the Linda tuple space with transiently shared tuple
spaces. The Fact Space Model that forms the basis for the Crime language, is
based upon this model. The use of transiently shared tuple spaces enables mo-
bile applications to share tuples depending on their connectivity. Subsequent we
have explored TOTA which extends Lime with a special kind of tuple which can
be seen as a small computing unit. As this special tuple is propagated through
the network it can provide global coordination over a network of mobile appli-
cations. However, reacting on a combination of tuples is not directly supported
by the Lime or TOTA coordination languages. One possible mechanisms is to
extend the coordination languages with a declarative language, this approach
is also followed by Crime. The use of a declarative programming language to
reason about context is shown in the next chapter.
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Chapter 3

Reasoning Engines and
Truth Maintenance Systems

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development of
context-aware applications. In the previous chapter we have introduced tuple
spaces in general and the Lime-distribution model which underlies Crime, the
distributed reasoning engine proposed in chapter 5. In this chapter an overview
is provided of existing reasoning engines and truth maintenance systems which
are the most relevant to our work.

Reasoning engines allow the development of programs which reason about
knowledge represented by rules and facts. Truth maintenance systems en-
sure that when the knowledge available to the reasoner can change non-
monotonically, the reasoning engine retracts no longer justified conclusions. Be-
fore diving into the specific concepts relating to reasoning engines and truth
maintenance systems, this chapter presents a general introduction to logic pro-
gramming to establish the necessary terminology.

This chapter also discusses the two most important reasoning strategies back-
ward and forward chaining: we argument the use of a forward-chained reasoning
engine over a backward-chained one in a mobile environment. Such a reasoning
engine is also dubbed a production system. Subsequently, the first large scale
production system language OPS5 is briefly explained. Section 3.3 then elabo-
rates on the Rete Match Algorithm – which was first explained in OPS5 –
and which significantly increases the performance of production systems.

Having explained the historical background on forward reasoning engines,
we present an overview of more recent approaches which have guided design of
Crime. The first one is Jess, which is a reasoning engine/production system
based on the Rete algorithm embedded in Java. Two following sections ex-
plain two distributed reasoning engines, namely DJess and ubiES. Djess is
a distributed version of Jess, enabling the language to share contextual data
among different inference engines and reacting on this shared knowledge. The
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second distributed reasoning we discuss is ubiES which uses a reasoning engine
to automatically detect context information.

A last part of this chapter presents truth maintenance systems as the Fact
Space Model we present in chapter 5, uses a justification-based truth mainte-
nance system in order to optimise the operations performed in the Rete network
incorporated in that proposed model.

3.1 Logic Programming

The logic programming paradigm allows the programmer to specify the results
which should be computed instead of how it is to be computed. In this paradigm,
one can simply specify a problem domain in terms of rules and facts which are
then used by the reasoning engine. This section highlights the principles of
declarative programming as well as the two most known reasoning strategies,
namely backward chaining and forward chaining.

3.1.1 Facts and Rules

As we have said in the introduction of this section, a logic program consists
of facts and rules. Facts are statements known to be true, e.g.. “Alice in
entertainment room”. Such facts are stored in a knowledge base, can be viewed
as a datastructure keeping a consistent model of the world. Informing a logic
programming language of a fact, is performed by asserting into the knowledge
base: the fact is said to be asserted to the knowledge base. Removing a fact
from the knowledge base is called the retraction of a fact.

Consider a knowledge base consisting of only one fact “Alice in entertainment
room”. The knowledge base can be queried: when we ask the question “Alice
in entertainment room ?”, we receive true as an answer because the knowledge
base is populated with the fact “Alice in entertainment room”. Another query,
“Alice in conference room” results in false because the knowledge base does not
contain the fact “Alice in conference room”. Note that the answer returned is
independent of the actual location, the knowledge base is only a representation
of the real world and thus could be wrong.

The latter query illustrates another property of a logic programming lan-
guage, which is that they often assume that if a fact is not known to be true, it
should be assumed false. This is related to the closed world assumption known
from database systems [59]. As a consequence, when a query of the form NOT
factx is posed, it succeeds unless the fact factx is present in the model of the
world. This behaviour is called negation as failure [23].

Rules, also called productions, express a relationship between different facts.
For example the rule If (‘‘In entertainment Room’’) ∧ (‘‘Weekend’’)
Then (‘‘Profile is Loud’’) expresses that when both facts “In entertain-
ment Room” and “Weekend” are known to be true, it must also be true that
“Profile is Loud”.
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The examples presented thus far are quite limited since they represent con-
cepts which inherently express relations (e.g. the location of a person or the
profile of a cellphone) as simple text strings. A much more expressive formal-
ism, predicate logic, can be used to reason about these relations as first class
entities and thus derive for instance all persons present in the same location.
Such queries would be impossible to express in propositional logic.

For example consider the rule to retrieve all persons in the kitchen. A rule
for querying all these persons uses the facts location(?person, ?room). This
rule, in Prolog notation, is shown in listing 3.1.

inKitchen ( Person ) :− l o c a t i o n ( Person , k i t chen ) .

Listing 3.1: Prolog: all persons in the kitchen

3.1.2 Backward Chaining

Backward chaining, tries to find available data that supports the goals or hy-
pothesis. Languages using backward chaining typically don’t use the Lisp-like
rule-syntax but use a head-tail notation instead as is shown in listing 3.2; The
head of the clause represent the then-part of the rule whereas the if -part is rep-
resented by the body of that clause. The most well-known logic programming
language which used a backward chaining reasoning engine is Prolog [62],

head :− body .

Listing 3.2: Head-tail notation for rules

The backward chaining algorithm finds those clauses whose head part is satisfied.
In order to illustrate this, consider the rule from the previous section rewrit-

ten in head-tail notation.

i s w i z a r d (?name) :−
ha s a t t r i b u t e (?name , magic wand ) ,
h a s a t t r i b u t e (?name , hat ) ,
h a s a t t r i b u t e (?name , rabb i t ) ,
a r t i s t name (?name ) .

Listing 3.3: Prolog: wizards rule

Suppose the knowledge base contains the same three facts as in the example
above:

ha s a t t r i b u t e ( Merlin , hat )
h a s a t t r i b u t e ( Merlin , r abb i t )
h a s a t t r i b u t e ( Merlin , magic wand)

Listing 3.4: Prolog: knowledge base

The set of goals, contains all facts which must be proven to be true. When a
new goal is wizard(Merlin) is added to the set of goals, the head of the clause
that was given above unifies with this goal, so all the conditions are added to
the set of goals. The new goal set now contains the following queries:
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ha s a t t r i b u t e ( Merlin , hat )
h a s a t t r i b u t e ( Merlin , r abb i t )
h a s a t t r i b u t e ( Merlin , magic wand)
ar t i s t name ( Merl in )

The first three queries in the goal set are satisfied because the knowledge base
contains three facts that unify with one of these queries. So, the only goal is to
find a fact that unifies with artist name(Merlin). When this fact is added to
the knowledge base, this goal is satisfied as well, the goal set becomes empty and
the query is wizard(Merlin) is satisfied. A well-known programming language
that uses a resolution strategy based upon backward chaining is Prolog [62].
Backward chaining algorithms are said to be goal-driven: given a query, the
algorithm tries to solve it by finding a head that is unified with this query and
resolving the sentences in the corresponding body.

3.1.3 Forward Chaining

Forward chaining is one of the two frequently used reasoning strategies, the
other being backward chaining which is explained in the previous section. A
forward chaining reasoner starts from the available data, and applies all appli-
cable rules to derive new data until no more rules can be applied. A well-known
example of a language which uses a forward chaining algorithm is CLIPS [27].
It provides a Lisp-like syntax whose general structure is shown in listing 3.5.
( name o f the product ion

cond i t i on s
=>
a c t i on s )

Listing 3.5: CLIPS: general rule

Forward chaining starts from known facts, kept in the knowledge base, and
triggers those rules whose prerequisites are satisfied. The triggering of such a
rule causes the execution of the conclusions of that rule, possibly resulting in
modifications to the knowledge base. The algorithm continues on searching for
such prerequisites of rules that are met until no more rules can be fired. As an
example consider the wizardsrule in listing 3.6. This rule has four preconditions
and one action. The preconditions specify that a person with a certain artist
name – ?name is a variable – which has a magic wand, a hat and a rabbit
should be considered a wizard. The wizards rule adds a new fact is wizard to
the knowledge base when all its prerequisites are met.
( wizards

h a s a t t r i b u t e (?name , magic wand ) ,
h a s a t t r i b u t e (?name , hat ) ,
h a s a t t r i b u t e (?name , rabb i t ) ,
a r t i s t name (?name)
=>
i s w i z a r d (?name ) )

Listing 3.6: CLIPS: wizards rule

Consider that we have asserted the following facts in the knowledge base:
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ha s a t t r i b u t e ( Merlin , hat )
h a s a t t r i b u t e ( Merlin , r abb i t )
h a s a t t r i b u t e ( Merlin , magic wand)

Listing 3.7: CLIPS: knowledge base

Since the condition artist name(Merlin) is not present in the knowledge base,
the rule cannot be triggered. However, when a new fact artist name(Merlin)
is added to the knowledge base, all conditions of the rule are satisfied and the
fact is wizard(Merlin) inserted in the knowledge base. This may result in the
triggering of additional rules which have the fact as a prerequisite.

The knowledge base reaches a fixed point when no new inferences are possi-
ble, because all sentences that could be concluded (part of the then-part of the
rule) are already contained in the knowledge base. Forward chaining is called
a data-driven technique since it does not attempt to derive a set of goals but
reacts on changes to the data in the knowledge base [53].

3.1.4 Conclusion

We have explained the two most commonly used derivation strategies used by
reasoning engines. The use of a backward-chained engine is preferred when the
user has a specific need to query the database in order to extract information
out of it, e.g. getting all persons residing in the kitchen. When the user does not
have a specific goal, the use of a forward-chained engine is preferred. As forward
chaining is data-driven the user does not need to specify a query in order to start
the searching process. Forward-chained reasoning engines were traditionally
used for expert systems which reason about high level domain knowledge much
in the same way as we propose to reason about context. A more elaborate
discussion between backward chaining and forward chaining in the context of
this dissertation is given in chapter 5.

3.2 OPS5

OPS5 is a production system language designed for building expert systems.
The language was introduced by Charles L. Forgy [35]. Problems are described
in a production system by making use of a set of unordered productions. Similar
to the rules in a declarative language, productions can be regarded as if-then
statements. A production system contains a state of the world it is modelling
by making use of a working memory, similar to the knowledge base of a logic
programming language. This working memory contains working memory ele-
ments, which can be regarded as facts. All these elements together form the
current state.

An example of a production definition is shown in listing 3.8. This production
qualifies somebody as a wizard, namely when he has a magic wand, a hat and a
rabbit, besides those attributes he should also have an artist name. Unlike in
Prolog, OPS5 supports named attributes in their facts, this name is proceeded
by ˆ. In order to ensure that all these attributes belong to the same person a
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variable <name> is used. The action to perform when a wizard is found, is the
addition of an element to the working memory which specifies that a certain
person is a wizard.

(p i s w i z a r d
( h a s a t t r i b u t e ˆname <name> ˆ a t t r i b u t e magic wand )
( h a s a t t r i b u t e ˆname <name> ˆ a t t r i b u t e hat )
( h a s a t t r i b u t e ˆname <name> ˆ a t t r i b u t e rabb i t )
( a r t i s t name ˆname <name>)
−−>
(make f a c t ˆname <name> ˆ i s w i z a r d t rue ) )

Listing 3.8: OPS5: production definition of wizards rule

The if -part of a production, the part before the arrow, contains several pre-
requisites. In the example production of listing 3.8, there are four prerequisites.
The first three preconditions specify the attributes a wizard must have, the
fourth specifies that a wizard should have an artist name. A precondition is
satisfied when it can be unified with a working memory element. When all the
preconditions of a production are satisfied by the current state (the set of all
working memory elements) the rule is triggered. The consequences of a pro-
duction, the part after the arrow, are then executed which is called firing the
production. In the example rule there is one action in the consequences of the
rule, which adds a fact to the working memory.

The algorithm for deriving a solution for the problem described by the pro-
duction system uses three operations. The first operation is match: which finds
all productions whose preconditions can be unified with a working memory el-
ement: we say that those productions are triggered. The set of all triggered
productions is called the conflict set. The second operation is to apply conflict
resolution on the conflict set. The conflict resolution strategy that is used, spec-
ifies the order in which matched productions are fired. A simple example of
conflict resolution is to fire the rules in alphabetic order. Firing the production
is done by the act operation, which is the third operation. This operation per-
forms the actual execution of the actions in the consequences of the production.

The production’s consequences consists of one of the following actions: make,
remove or modify. The make action instantiates and adds a new working mem-
ory element to the working memory, whereas the action remove leads to the
removal of the appropriate element in the working memory. The modify action
can be simulated by first removing a working memory element followed by the
addition of an element to the working memory.

The working memory can be considered as a database that contains the data
were the productions react upon. The data in the working memory is contained
in the working memory elements.

3.3 Rete

Rete [24] is a forward chaining algorithm where pattern matching is optimised.
Rete uses two kind of memories, namely a working memory and a production
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memory. The working memory contains facts that represent the current state of
the production system, whereas the production memory contains productions,
also referred to as rules. The facts in the working memory are represented
by working memory elements that contain several fields. Each of these fields
contains exactly one symbol, which is a non-variable. Considering the example
of a block world [21], where blocks of various colours can be positioned beneath,
on top of, or beside another block. So, a possible working memory could contain
seven working memory elements that represent the current state of the blocks:

co l ou r ( block1 , red )
co l ou r ( block2 , green )
co l ou r ( block3 , b lue )
p o s i t i o n ( block1 , beneath , b lock2 )
p o s i t i o n ( block1 , bes ide , b lock3 )
p o s i t i o n ( block2 , on , b lock1 )
p o s i t i o n ( block3 , bes ide , b lock1 )

Listing 3.9: Block world example [21]

A rule of the production memory has a set of conditions that must be met
in order to execute the set of actions that form the second part of the rule. A
rule is typically denoted by using the Lisp-like syntax that was shown in listing
3.5.

The example production block on ground production shown in listing 3.10
has two prerequisites and one single consequence. A block ?a can be considered
as positioned on the ground whenever that block is placed besides another block,
?b that isn’t standing on another block ?c. When these prerequisites are all
met, a new fact position(?a, on, ground) is added to the working memory.

( b lock on ground product ion
po s i t i o n ( ?a , bes ide , ?b ) ,
not p o s i t i o n ( ?b , on , ? c )
=>
make po s i t i o n ( ?a , on , ground ) )

Listing 3.10: Block on ground production

The actual matching algorithm considers the conditions of the rules in the
production system and searches for those productions in the system whose con-
ditions are all met. When such a production is found, the actions that form the
consequences of that rule are executed.

3.3.1 The Algorithm

The Rete algorithm represents rules as a network of nodes containing memory
tables. The construction of the Rete network itself are explained by using
the example wizards production that is shown in listing 3.11 which was already
explained previously. The Rete network of the wizards-production is shown
in figure 3.1. The rest of this section gives an explanation of how this network
is built.

( wizards
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ha s a t t r i b u t e (?name , magic wand ) ,
h a s a t t r i b u t e (?name , hat ) ,
h a s a t t r i b u t e (?name , rabb i t ) ,
a r t i s t name (?name)
=>
i s w i z a r d (?name ) )

Listing 3.11: Rete wizards rule

Figure 3.1: Rete network of the wizards rule

Rete reacts on updates from both the working memory and the production
memory to maintain consistency. Hence, whenever a working memory element is
added or removed from the working memory, the algorithm should check which
conditions are met. The same reasoning holds for the addition or removal of a
rule to the production memory.

The Rete algorithm builds a network which is conceptually divided in two
parts dubbed the alpha and the beta network.
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Alpha Network

The first part of the Rete network, the alpha network, is responsible for building
nodes that perform constant tests (i.e. whether the attribute corresponds to
“hat”) on the working memory elements. The working memory elements that
pass the test are kept in the alpha memories. The nodes of the alpha network are
also responsible for performing tests on the intra-elements, which are variables
that occur more than once in the same condition of the production. An example
of such an intra-element ?name is shown in listing 3.12. The rule easyName makes
a new fact for every person with a first name equal to his last name.

( easyName
person (?name , ?name)
=>
easyName (?name)

Listing 3.12: Rete intra-element

The alpha part of the Rete network consists of filter nodes. There are two
kind of filter nodes: a first one filters out those working memory elements that
have a wrong type. So, as there are four conditions in the wizards production,
four filter nodes are added to the root node of the network, one for each kind.
Three filter nodes test whether the type equals has attribute and a last one
tests on artist name. For the first three patterns in the prerequisites of the
production, all constants test require another filter node, one for magic wand,
hat and rabbit. These constant filter nodes are attached under the filter node
that tests the type of the precondition they appear in. Those nodes form the
alpha part of the wizards production network are depicted in figure 3.2.

The second kind of filter node filters out elements which have a non-
consistent binding for their intra-elements. So for example in listing 3.12 there
is one filter node to test the consistency of the intra-element ?name. This fil-
ter node filters out person(Duck, Donald) to its children but filters on per-
son(Bamm, Bamm).

Beta Network

The beta network forms the second part of the Rete network and operates
on two or more working memory elements. The nodes of the beta network,
which are called join nodes, are responsible for testing the consistency of the
variable bindings across different prerequisites of a production. Similar to alpha
memories in the alpha network, the beta network uses beta memories to store
some information. In the case of the beta memory, partial instances of the
production – called tokens – are kept. A join node has two inputs and for each
of its parents there is a separate memory available, namely the left and the right
one. Tokens that are passed to the join node from the left parent are stored
in the join node’s left memory (called a left activation), whereas those coming
from the right (right activation) are stored in the right memory.

In order to build the beta network the filter nodes of the alpha network are
combined pairwise by a join node that tests for consistent variable bindings. A
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Figure 3.2: Alpha network of the wizards rule

join node is a two-input node that has at least one filter node as its parent. The
last join node has a terminal node, production node or p-node, as its child. This
node executes all actions in the consequences of a rule, when all conditions of
that rule are met. So, each production node can be linked with a unique rule.
Note that these actions – addition or removal of facts in the working memory
– can again trigger other rules. This is called chaining. The complete Rete
network for our running example is given in figure 3.1.

Assuming the working memory contains the elements listed below, the mem-
ories of both the alpha and beta part of the network need to be updated.

wme1 : h a s a t t r i b u t e ( Merlin , magic wand)
wme2 : h a s a t t r i b u t e ( Merlin , hat )
wme3 : h a s a t t r i b u t e ( Merlin , r abb i t )

When a new working memory element artist name(Merlin) is added to
the working memory, the network is updated again. This working memory
element passes the filter artist name and so it is added to the alpha memory
of that filter node. This leads to the sending of a token to the children of
that filter node. In this case a single join node, where the token is matched
against the tokens in the other beta memory of that node. The left memory
of the join node already contains a token < + has attribute(Merlin, magic
wand); has attribute(Merlin, hat); has attribute(Merlin,rabbit) >,
the join node tries to match this token with the newly inserted one, < +
artist name(Merlin) >. The only test that this join node performs is the
consistency check of the variable ?name. Because the occurrence of that
variable has the same binding in both tokens, namely Merlin, a new token
(combination of the matched tokens of the inserted token and tokens be-
longing to the other memory) are sent to the children of this join node: <
+ has attribute(Merlin, magic wand); has attribute(Merlin, hat);
has attribute(Merlin, rabbit); artist name(Merlin) >.

This token is inserted in the production node, and causes the addition of
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a new working memory element, is wizard(Merlin), to the working memory.
This addition can be explained because the terminal nodes of the network, pro-
duction nodes, perform the actual execution of the actions in the consequences
of the productions whose conditions are all met.

Comparison with Relational Databases

The division of the alpha and beta network with their own specific nodes re-
sembles the structure that is obtained by relational databases. The working
memory itself can be represented by the relation, whereas a production can be
simulated by asking a query on that currently available relation. The constant
tests that are performed by the nodes in the alpha memory resemble the select
operation, whereas the join operation that is used in relational databases can be
represented by the tests in the join nodes of the beta part of the Rete network.

3.3.2 Efficiency

The Rete algorithm is able to increase the efficiency of normal pattern matchers
because it uses optimisations that decrease the computation time by caching
intermediate results in the memories of its nodes. First of all, the algorithm
is state-saving: the use of memories in both the alpha and beta part of the
network that store intermediate results between successive changes doesn’t lead
to recomputation of previously calculated results when new queries are launched.
Furthermore, the algorithm shares nodes that are used by the conditions of
several productions, so the memories of those nodes can also be reused, as
explained in the remainder of this section.

Node Reuse

As is already mentioned before, the reusability of certain nodes and memories
causes the Rete algorithm to be more efficient than a naive implementation
without node reuse. Considering the wizards production given earlier, there
are three prerequisites with the same kind in the rule. So, instead of building
three different filter nodes to test on this kind, those filter nodes can be grouped
together in one single filter node that has several children. Even for this simple
rule, less memory needs to be allocated, as can be seen in figure 3.3.

Modifications at Runtime

This paragraph discusses the addition and removal of productions that can take
place at runtime. These changes are partially supported by OPS5 [35]. How-
ever, for the addition of a production, it does not entirely support the wanted
behaviour: the existing working memory elements in the working memory are
not matched with those new production, resulting to inconsistencies. Only the
working memory elements that are added after the addition of the production
are matched with this rule.
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Figure 3.3: Rete network with reuse of filter node

The removal of an existing production uses a bottom-up approach to update
the Rete network. First, the production node is removed, and the memories
of its ancestors are also updated (tokens are removed), and the link to that
production node is removed from their set of children. The cleaning up of the
tokens in the memories can only be done when this memory is not shared for
other nodes, which is typically the case when nodes are being reused to save
memory. When the nodes are being removed the memory space that was used
can be deallocated.

3.3.3 Details of the Basic Rete Algorithm

A first detail we discuss here is the introduction of one or more negated patterns
in the conditions that form the prerequisites of a production. This section first
discusses the use of a single negation, followed by the negation of a combination
of patterns.

Single Negation

Suppose the wizard rule is changed as below.
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( wizards
h a s a t t r i b u t e (?name , magic wand ) ,
not gender (?name , woman)
ha s a t t r i b u t e (?name , rabb i t ) ,
a r t i s t name (?name)
=>
i s w i z a r d (?name ) )

Listing 3.13: Wizards rule with second prerequisite negated

The second pattern is proceeded with a not symbol. So according to this new
production all wizards are not known to be female. A negative node or not
node which is a new kind of Rete node – beside the filter, join and production
node that were already discussed in a previous paragraph 3.3.1 –, is needed for
testing the negation in the second prerequisite.

This negative node takes a token < + wme1 > from the left, and propagates
this token further to its children unless there is a working memory element whose
variable binding is consistent with that of wme1. The negated node resembles
a join node, but differs in the way matched tokens are calculated. When the
right memory contains tokens that match with the tokens inserted from the left,
the inserted token is not be passed to the children of the negation node. This
can be explained because the tokens in the right memory of the node all have a
second attribute which equals woman.

The Rete network for this production is depicted in figure 3.4. In this figure
we see that instead of a join node which is shown by a single lined rectangle,
a negated join node is introduced, which is shown by a double lined rectangle.
This negated join node’s left parent is the filter node for magic wand, and the
right parent is the filter node for woman. The network in figure 3.4 uses a working
memory that contains the following working memory elements:

wme1 : h a s a t t r i b u t e ( Merlin , magic wand)
wme2 : h a s a t t r i b u t e ( Merlin , hat )
wme3 : h a s a t t r i b u t e ( Merlin , r abb i t )

So, there are no tokens in the right memory of the not node and the hence tokens
in the left memory of that node are all passed to the children of the node. When
the working memory element gender(Merlin, man) is added to the working
memory, because there are no tokens in the left memory. So, the token <
+ has attribute(Merlin, magic wand) > are passed to the children of the
negated node. The other tests of all the join nodes below this node are satisfied,
and the production node ensures the addition of a fact is wizard(Merlin).

When the following working memory elements are added,

wme4 : h a s a t t r i b u t e ( Al ice , magic wand)
wme5 : h a s a t t r i b u t e ( Al ice , hat )
wme6 : h a s a t t r i b u t e ( Al ice , r abb i t )

the addition of gender(Alice, woman) – referred to as wme7 – to the working
memory causes the addition of a token in the right memory of the negation node.
The left memories of the not node and the join nodes of the beta network are also
updated: wme4, wme5, and wme6 are added in the appropriate node. Note that
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Figure 3.4: Rete network with the second pattern negated

the addition of wme4 up to wme7 happens atomically. Now, there is a match
between wme4 and wme7, and in this case the token has attribute(Alice,
magic wand) is not propagated through the network.

Conjunctive Negations

Conjunctive negations test the absence of several working memory elements.
The implementation of these negated conjunctive conditions resembles the one
when only one pattern is negated. Consider the block world example that was
already used earlier, and the production given below:

co l ou r ( block1 , red )
co l ou r ( block2 , green )
co l ou r ( block3 , b lue )
p o s i t i o n ( block1 , beneath , b lock2 )
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po s i t i o n ( block1 , bes ide , b lock3 )
p o s i t i o n ( block2 , on , b lock1 )
p o s i t i o n ( block3 , bes ide , b lock1 )

( o n f l o o r
p o s i t i o n (?x , on , ?y ) ,
p o s i t i o n (?y , bes ide , ? z ) ,
not { po s i t i o n (? z , on , ?a ) ,

co l ou r (? z , green ) }
=>
on f l o o r n o t b e s i d e g r e e n (? y ) )

Listing 3.14: Block world example with negation

The variable binding for ?z inside the not subexpressions refers to the variable
binding for ?z outside that subexpression. The usage of new symbols braces,
around the not subexpression supports the nesting of such expressions. This
makes it possible to nest arbitrary combinations of for each (∀) and there exists
(∃) quantifiers.

The on floor production searches for a block, ?y, that has another
block on top of it and stands beside another block, ?z, that stands on
the floor and hasn’t got a green colour. Given the working memory ele-
ments listed above, the first block – block1 – satisfies all the conditions so
on floor not beside green(block1) is added to the working memory.

The use of conjunctive negations is crucial since ordinary conditions have the
semantics ∃xP(x), requiring ∀xP(x) to be rewritten as ¬∃x¬P(x). For example
to check whether every red block has a blue block on top of it can be reformulated
as that there is no red block that does not have a blue block on top of it. So,
the conditions of the rule for that formulation look like [21]:

not { co l ou r (?x , red ) ,
not { po s i t i o n (?y , on , ?x ) ,

co l ou r (?y , ? blue ) } }

Listing 3.15: Example: nesting conjunctive negation

3.4 Jess

Jess is a high-performance symbolic reasoning engine for the Java platform
[25]. This languages makes it possible to write Java software, for the domain
where knowledge is represented by rules. Jess supports some special features
that other reasoning engines do not so fully support: the language supports
both backward and forward chaining, allows queries to the working memory,
can manipulate and reason about Java objects and is also a Java scripting
environment. Jess uses the Rete algorithm described in section 3.3.1 as its
inference engine. The rules can be specified in two formats: the first format is
a pattern based language, the Jess language, the other is by using XML, called
jessML.
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3.4.1 Jess Rule Language

The Jess rule language primitive data elements consists of constants, lists, and
variables. Moreover, Jess allows functions to be used in rules. These functions
encode an imperative control glow using if, while, for, foreach and try. All facts
are specified by a template consisting of a name and attributes, also called slots.
This closely resembles a class from an object oriented language. The working
memory contains several facts and the rules of the reasoning engine can have
an addition, removal and modification of those facts as their actions.

Jess supports three kind of facts: unordered, shadowed, and ordered. Un-
ordered facts support named attributes, for example:

( automobi le (make Ford ) ( model Explorer ) ( year 1999))

As can be seen in the example from the Jess users manual, the syntax of the
Jess rule language is the same as CLIPS [27] which is s-expression based. The
template for this fact can be defined as follows (example from Jess users manual):

( de f template automobi le
”A s p e c i f i c car . ”
( s l o t make)
( s l o t model )
( s l o t year ( type INTEGER))
( s l o t co l our ( d e f au l t white ) ) )

Listing 3.16: Jess: automobile template

As this template shows, it’s possible to specify the type of the value of a certain
slot as well as a default value for it. The second type of facts are shadow
facts. These facts are a special kind of unordered facts: they serve as bridges
to the Java objects. Shadowed facts make it possible to put Java objects
in the working memory and reason about them. Just as the unordered facts,
these shadow facts need a template which in this case should just refer to the
corresponding Java class. So, reconsidering the car example given above, we
might be using Car objects that look like the following excerpt of code:

pub l i c c l a s s Car {
pr i va t e St r ing brand ;
p r i va t e St r ing model ;
p r i va t e In t eg e r year ;
p r i va t e S t r ing c o l ou r =”white ” ;

// some add i t i o na l methods
}

Listing 3.17: Jess: Car object

The template for a shadowed fact car is

( de f template Car
( d e c l a r e ( from−c l a s s Car ) ) )

Listing 3.18: Jess: shadowed fact car
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This from-class declaration creates slots that correspond to Java beans prop-
erties. When including the include-variables declaration the public member
variables of the class are used to define some extra slots:

( de f template Car
( d e c l a r e ( from−c l a s s Car )

( inc lude−va r i a b l e s TRUE) ) )

Listing 3.19: Jess: define extra slots

The last kind of facts are the ordered facts. These are used when the slot names
are redundant and there’s no point in naming the attributes. For example a fact
that is representing a single number could be written as (number 42) instead of
(number (value 42)). The template for ordered facts uses the specification that
the fact should be ordered: (declare (ordered TRUE)).

Jess also supports the use of modules. A module defines a namespace for
rules and the templates for the different kind of facts. By grouping rules and
templates together in modules, complex systems become easier to write, to
debug and to maintain. Besides the managing of large quantities of templates
and rules, these modules also introduce a control mechanism: the rules of a
module are only fired when this module is active (we say the module has the
focus). There can only be one module at a time that has the focus. When no
module is explicitly specified, the constructs are considered as belonging to the
MAIN namespace, that forms the current one at that moment.

3.4.2 Salience and Conflict Resolution

The Jess rule language uses salience and conflict resolution to determine the
order in which rules must be triggered. Every production/rule has a salience
property which resembles a priority for that rule. Rules with a higher value
for this property are triggered before rules with a lower salience-value. These
values for that property can be integers, global variables and even function
calls. Besides this salience property, Jess also uses a conflict resolution strategy
to impose an order on rules with the same salience that can be depth-first
or breadth-first. When using the depth strategy, the most recently activated
rules are triggered before other rules that have the same salience value. The
breadth conflict resolution strategy causes the triggering of the rules with the
same salience in the order that they are activated. All activated rules which
are not yet triggered are grouped together in an agenda. The agenda applies a
resolution strategy on the triggered rules. To make this more concrete consider
the example shown below, here two rules are declared. One to call fire assistance
when a building is on fire, another rule is for calling the ambulance in case
when somebody is hurt during a fire. Normally it is not deterministic which
rule would fire first, however by specifying the salience, the AlarmHurt rule fires
first because its salience value is higher.

( d e f r u l e FireAlarm
( de c l a r e ( s a l i e n c e 10) )
( burning ( bu i l d i ng ?name ) )
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=>
( c a l l ” F i r e As s i s tance ”)

)

( d e f r u l e AlarmHurt
( d e c l a r e ( s a l i e n c e 50) )
( burning ( bu i l d i ng ?buildingName ) )
( Hurt (name ?name ) )

=>
( c a l l ”Ambulance , burning wounds ”)

)

Listing 3.20: Jess: Fire alarm rules

3.4.3 Features

As was already mentioned, Jess supports some very special features. First of
all, both backward chaining and forward chaining can be used for the inference
engine. Furthermore, it is possible to use Java code from Jess and to embed
Java in a Jess application. Jess also supports multiple rule engines: one
program can have several engines. Each of these engines, Rete objects, have
their own agenda, rule base and working memory, and all functions can be called
in a separate thread. Jess can be used in multithreaded environments by using
several synchronised locks – the most important lock is the one on the working
memory.

Extending Jess

Jess allows users to define their own functions. This can be done by extend-
ing an available Java class, Userfunction, and implementing two methods:
getName and call. This first method returns a string that represents the name
that the Jess code uses, and the latter one is the actual method that is called.
This call method has two arguments, the first argument is a vector representing
the Jess code that called this function, the second one is the context. Listing
3.21 presents an example from Jess users manual:

import j e s s . ∗ ;

pub l i c c l a s s ExMyUpCase implements User funct ion {

pub l i c S t r ing getName ( ) { r e turn ”my−upcase ” ; }

pub l i c Value c a l l ( ValueVector vv , Context context )
throws JessExcept ion {

St r ing r e s u l t = vv . get ( 1 ) . s t r ingVa lue ( context ) . toUpperCase ( ) ;
r e turn new Value ( r e su l t , RU.STRING) ;

}
}

Listing 3.21: Jess extension
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When the following excerpt of Jess code is executed, the method call re-
ceives a ValueVector containing (RU.SYMBOL)my-upcase as its first argument
and (RU.STRING)"foo" as its second argument.

( load−f unc t i on ExMyUpCase)
(my−upcase foo )

3.5 DJess

The first distributed reasoning engine described in this dissertation is DJess,
for distributed Jess, which is an extension of Jess allowing it to be used as a
lightweight middleware for sharing contextual knowledge [12]. Figure 3.5 depicts

Figure 3.5: Relation between Jess and DJess [12]

the relation between the languages DJess and Jess itself.
Besides the transiently sharing of facts, which represent the contextual in-

formation, the sharing of reactive behaviours, rules, is also supported by the
language. By using a shared global memory DJess supports both temporal
and spatial uncoupling. Its shared memory resembles the tuple spaces, intro-
duced by Linda [8]. the tuple space.

3.5.1 Architecture

DJess connects several inference systems by a web of inference systems (WoIS)
that has a shared working memory (SWM). This web of inference systems is
maintained by a WoIS manager which manipulates the list of WoIS members
(list of all the inference systems that are joined) and the SWM. This shared
working memory contains facts of several inference systems, and the rules of
the different inference systems react and manipulate as being local facts of the
inference system itself. Actually, every inference system in DJess has a local
copy of the shared facts in its own working memory. The transparency of this
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shared memory can be explained because the Jess primitives for manipulating
facts of a working memory are reused in DJess. As was already explained in
section 3.4 which describes the Jess rule language, Jess supports three kind of
facts: unordered, ordered, and shadow. The latter type of facts are used to build
the shared working memory for the web of inference systems. Shadow facts make
it possible to use Java beans as if they were normal facts of a working memory.
These facts are dynamically linked to those objects, so those shadow facts serve
as mirrors between the fact and these Java beans, also called proxies. All proxies
of a certain fact are grouped together by a ghost fact, which is implemented as
a Java remote object. Ghost facts enable DJess to reuse the implementation
of the Rete algorithm of Jess. Jess’s modules, that were already explained
in section 3.4.1, are used to support namespaces for the different kind of facts.
The programmer can choose at assertion time whether a fact should be private
or shared.

Figure 3.6 represents how facts are synchronised. As can be seen on the
figure, three Java virtual machines (JVM) are used for storing local copies of
the shared working memory. fi represents a shared fact whereas pi are the
according proxy objects and g is the ghost fact that is used for the actual
synchronisation. When the second inference system leaves the web of inference
systems, the inference system should be removed from the list of members in the
WoIS. Furthermore, this removal results in copying that ghost fact on the other
Java virtual machines and copying the references of the ghost facts whenever a
copy of the shared facts is wanted.

Figure 3.6: DJess facts synchronisation [12]

DJess prohibits problems caused by the distributed multitasking environ-
ment such as deadlocks and starvation, by means of a two-phase locking process:
the firing of a rule is preceded by the locking of the acquisitions and after the
actual execution the locks are released.

The locking mechanism obtained by DJess has some crucial problems: if a
fact is locked by a certain process and that process dies, the fact remains locked
forever. Furthermore, current research of DJess is concerned about handling
network failures in order to maintain consistent shared memory. Moreover,
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DJess does not handle intermittent disconnections which are inherent to a
mobile environment.

3.6 UbiES

UbiES is another example of a distributed reasoning system [39] .

This expert system, proposes a method to automatically detect and
utilise users’ context data for expert systems using the ubiquitous
computing technologies. [39]

3.6.1 Architecture

The different components of the ubiES architecture are depicted in figure 3.7.
ubiES consists of four parts: the context subsystem, the database subsystem,
the dialogue subsystem and the knowledge base subsystem. The first subsystem,
the context subsystem, is divided in four parts namely the contextual database,
the context inference nodule, the action request module and the events acqui-
sition module. There are two possibilities to derive context: a first technique is
letting the user define knowledge beforehand. The second approach to get the
context by various sensor mechanisms, such as for example RFID. This context
is saved in the context database. The database management subsystem pro-
vides hooks for supporting distributed access to the stored data. The dialogue
subsystem provides a customisable user interface, which changes the contents
it displays according to the whereabouts of the user. The knowledge base sub-
system dynamically changes the knowledge base according to the context of the
user. These changes are propagated to the dialogue subsystem which presents
them to the user.

3.7 Truth Maintenance Systems

Truth maintenance systems were introduced by Doyle in 1979 [22] as a solu-
tion for the problems that knowledge representation systems encounter. Those
systems don’t guarantee the absolutely certainty: an inferred fact (a fact that
is derived from other facts) could possibly be retracted when additional infor-
mation is added to the system, consider for instance the use of negation in
rules.

3.7.1 Truth Maintenance

This belief revision, truth maintenance or reason maintenance, revises its set of
beliefs when new information is added or retracted about a fixed world. Whereas
belief update forms a combination of belief revision together with the reasoning
about changes. Belief update reacts on changes in the world (set of beliefs)
itself, so no additional information is needed for updating this set of beliefs.
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Figure 3.7: Overall framework of ubiES [39]

Suppose the knowledge base contains a fact A, and the negation of fact
A should be added to the knowledge base as well. This should simply cause
the retraction of that fact A from the knowledge base. However, all derived
sentences that were derived from A should also be retracted, for example when
a rule A => B is available, the fact B is derived from A and added to the
knowledge base. The retraction of A should also lead to the retraction of the
fact B, assuming there is no other justification for believing B. Suppose that
beside the rule A => B another rule C => B resides in the system, and the
knowledge base contains both the fact A and C. The retraction of the fat A
form the knowledge base in this situation, does not lead to the retraction of fact
B as it is still justified by the fact C.

3.7.2 Truth Maintenance Systems

A truth maintenance system revises its set of beliefs and guarantees to avoid
contradictions. A very naive truth maintenance system could order the facts
from F1. to Fm Whenever a fact is retracted the system should be reversed to
the previous state Fn−1. This reversal causes the removal of the fact as well as
all its derived facts. Afterwards, all facts can be added again to the knowledge
base. This process is illustrated in figure 3.8.

This process guarantees a consistent knowledge base. However this approach
is very naive and inefficient because the retraction of one fact cause the retrac-
tion and reassertion of all facts after the insertion of fact n together with all the
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operations to be consistent with the derived facts.

Figure 3.8: Retraction of fact Fn by a naive TMS

A truth maintenance system works together with the inference engine that
acts as a problem-solver. The implementation of a truth maintenance system can
be either implicitly, in the application itself, or explicitly in the problem-solver
tool. As figure 3.9 shows, the truth maintenance system forms the connection
between the inference engine and the working memory. The working memory
contains facts that represent problem states, so this is dynamic data, whereas
the knowledge base contains static data that represent the initial state for the
problem solver. The truth maintenance system is revised whenever the context

Figure 3.9: Architecture for search problem-solving tool and application [61]
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changes, which can be caused by the addition of a new assumption or retraction
of one that was already believed. An assumption is believed to be true although
there’s a lack of evidence for the contrary; So assumptions allow reasoning
about incomplete information. The context of a truth maintenance system is
uniquely determined by its environment, the set of assumptions, as well as all
the derived data. Besides the belief revision, the truth maintenance system is
also responsible for handling contradictions.

3.7.3 Justification-based Truth Maintenance System

This type of TMS uses justifications, which represent the dependencies between
propositions [61]. For example consider the following rule:

( d e f r u l e p r o f i l e
( room entertainmentRoom )
=>
( p r o f i l e loud ) )

This rule sets the profile of a mobile phone to loud while in the
entertainmentRoom. When this is the case, the JTMS, keeps track of
the justification to set the profile on loud. { (room entertainmentRoom)
justifies (profile loud) }. These justification are used to make retrac-
tions faster. When the person walks out the entertainmentRoom, the JTMS
only needs to check these justifications where (room entertainmentRoom) is
a member of. So in the example this means that the JTMS must check the
justification, { (room entertainmentRoom) justifies (profile loud) }.
Because there are no other justifications for (profile loud), this fact may
be removed. Suppose that there was another justification, { (user-setting
loud) justifies (profile loud) }, then the fact (profile loud) may not
be removed, because it is still supported.

JTMS are usably used in a setting where facts have a high chance of being
re-inserted. The idea is to mark a removed fact as being out, instead of delet-
ing it. { (user-setting loud)out justifies (profile loud) } When the
fact is reinserted later, the fact is marked as in again and the justifications are
used to find which facts must be active again. { (room entertainmentRoom)in

justifies (profile loud) } Note that all the justifications of a certain fact
must be marked in, for example when we only want to set the profile on
loud during the weekends during the week this results in the following justi-
fication: { [(room entertainmentRoom)in (̂weekend true)out ] justifies
(profile loud) } In this situation when the user walks into the entertain-
mentRoom the profile is not set to loud because the fact (weekend true) is
marked out. Using this marking mechanism, the system builds a chain of infer-
ences, and does not need to rederivate everytime a deleted fact is reinserted. It
only needs to keep track of the justifications.
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3.8 Conclusion

This chapter discussed logic programming as this forms the core of the Fact
Space Model we propose in chapter 5. Subsequently we highlighted the Rete
algorithm which optimises pattern matching for a forward-chained inference
engine. Reasoning engines that are most related to our work, were presented
and their use in a distributed environment has been evaluated.

The principles of declarative programming combined with a forward chain-
ing reasoning engine, described in this chapter, offer a suitable abstraction for
reacting on events. Hence, logic programming solves the problem at hand of
the coordination language Lime that was described in chapter 2. Furthermore,
the Rete algorithm and the use of a justification based truth maintenance sys-
tem increase the efficiency of a forward-chained production system to deal with
systems where the knowledge base changes frequently. This algorithm is used
in the Fact Space Model that is described in chapter 5. The next chapter de-
scribes context-aware systems which are the domain of the Crime middleware
presented in this dissertation.
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Chapter 4

Context Systems

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development
of context-aware applications. The previous chapter gave an overview of how
a reasoning engine can be used in order to infer new contextual information
by means of some predefined rules. This enables the user to write the desired
behaviour in a declarative manner. This chapter highlights the use of context-
aware systems to acquire such contextual information. Some of these systems
use reasoning engines similar to those explained in the last chapter. This allows
those systems to directly respond to complex changes in the context specified
by rules. Context acquisition can be realised based on event channels or by
using a logic language. In chapter 5 we advocate the use of a separate logic
language to reason about the context since this allows the programmer to make
a clear distinction between reasoning about the context and acting upon the
context. This is in contrast with the channel based approach where a similar
distinction can not be made because the context reasoning is incorporated in
the computation of the application itself.

This chapter first gives a short introduction to context in the light of context-
aware systems. Subsequently, some frameworks are presented: we begin with
frameworks based on the event-based approach, namely Context Toolkit,
JCAF, and WildCAT. The subsequent frameworks, Chisel, Gaia and COR-
TEX are all based on a logic language. The last part highlights Cocoa which
is based on Stigmergy. To conclude, an evaluation of all those frameworks is
given.

4.1 Context

While context is a commonly used word, and the every day meaning is clear, its
definition from the Merriam-Webster dictionary1

1http://www.m-w.com
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”The interrelated conditions in which something exists or occurs.”

is too vague to be applicable in the design of context-aware applications. Beside
having an indistinct vague definition, context is also used in a variety of different
branches of computer science.

Therefore various proposals have been made to give a more usable definition
of context in the light of mobile applications. Most of these proposals fall
into two categories, namely enumeration and categorisation of context. A first
definition of context was given by Schilit and Theimer [57] which states that
context is

”The location of use, the collection of nearby people, hosts, and
accessible devices, as well as the changes to such things over time”.

Other similar definitions – proposed by Brown [9], Ryan [54], and Dey [17] –
extend this enumeration with the notion of time, identity, focus of attention,
and even emotional state. Although these definitions were meant for practical
use, they do not specify how to deal with information they exclude.

Schilit address this problem by proposing a categorisation of context as fol-
lows [56]:

1. Computing Context : the devices in earshot like mobile phones, displays,
the connectivity and the available network resources.

2. User Context : who is working with the application, which other users
are nearby, and their current activity like for example participating in a
meeting.

3. Physical Context : weather conditions, battery levels, lighting , or even the
rotation of the display.

Chen and Kotz [13] remark a great absence of time, in this categorising
definition, and propose the addition of time as a fourth category. Another
useful context is retrieved when storing context during a certain period of time,
referred to as the context-history. This context-history is often overlooked by
context-aware applications [13].

We conclude our survey of context definitions with Dey [2], who proposes an
operational definition which makes it easier for designers to determine whether
information can be regarded as context or not.

”Context is any information that can be used to characterise the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an appli-
cation, including the user and the applications themselves.”
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4.1.1 Context Acquisition

Direct Hardware Sensor Access

In this scenario the assumption is made that the application reads the infor-
mation directly from the sensors, converts the raw data into context and reacts
upon it. This approach has some disadvantages, for instance when trying to
extend an application to let it also take into account additional context pa-
rameters, the acquisition procedure must be rewritten. As the application is
almost hardwired to the sensors, this discourages code reuse. An additional
disadvantage comes from the fact that this implementation strategy is unsuit-
able for a mobile environment as some sensors need to be accessed by multiple
context clients. In order to manage the access to the sensor at least some kind
of locking manager is needed to coordinate the access to the sensor. Note that
when working with very limited devices it might not be possible to provide a lot
of abstractions as the size of the memory to contain the program might be to
small for this. Furthermore, in time critical applications the time overhead of
a complex abstraction might not be justified. For example applications written
for the chips controlling an airbag.

Facilitated Middleware Infrastructure

This approach prescribes the use of middleware to encapsulate the low level
sensor access and typically transforms the sensor data to a meaningful value.
In contrast with the direct sensor access, this approach improves modularity as
the application itself does not need to be rewritten anymore when additional
context parameters are added.

Additionally, the code written for data acquisition can easily be reused for
a similar hardware setting. A middleware infrastructure is not always suitable
as the hardware for running the applications on, is in most cases very limited.
However, systems such as the Context Toolkit which is described in section
4.2, illustrate that only a minimal amount of support needs to be provided
by the sensor nodes provided that they can communicate with more than one
device.

A disadvantage when all devices perceive the environment themselves, comes
from the possibility of poor sensor data, when different sensors are used or when
malfunctioning sensors provide wrong information, co-located devices perceive
the same context differently and conflicting information may be propagated
through the network. Therefore some middleware architectures use a context-
server as explained in the next section.

Context Server

Rather than having to perceive the context themselves, applications can rely
on a context server. This server can then be accessed concurrently by multiple
applications and improves the reusability of sensor data. The server removes
the burden of each device having to perceive the context itself, and since the
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resources of these devices are rather limited, this may sound like an excellent
solution. However, this strategy is in direct violation with the nature of mobile
ad hoc networks because the server must always be accessible and have a com-
plete picture of every possible situation in the world, something that can only
be applied in a confined setting.

Widgets

Context widgets extend the abstraction of a device driver in order to hide the
complexities involved with providing access to sensors. The basic idea behind
widgets is to abstract over the type of context information, rather then over de-
vices. By making the abstraction at the context side, similar hardware devices
can be replaced without needing to change the applications using them. Com-
munication with devices is then replaced by message passing to the widgets and
callbacks. These widgets are controlled and preconfigured by a widget manager.

4.1.2 Context Sharing

For the second important aspect of context-aware applications, we turn to Wino-
grad [67] who describes three different context sharing models.

Centralised

In a centralised architecture devices do not need to be concerned about the
detection of other devices. Instead, they connect to a centralised server which
tracks the context of all devices. When devices need to know who is located in
their environment, they query the central server. An advantage of a centralised
architecture is its easy implementation as all information is kept in one place.
However, as all devices need to connect to this centralised service, the scalability
of this approach is limited.

Peer-To-Peer

In a peer-to-peer network devices establish a connection with devices in the
proximity. Because these connections are established between the mobile de-
vices themselves, without the need of a known server as was the case for the
centralised architecture, the scalability increases . The communication form is
always, as the name suggests,“from peer to peer”, assuming that a sender must
know the receiver which does not cope with the ambient environment where
unknown devices pop-up as it goes. This is in contrast with the blackboard
model explained in the next paragraph.

Blackboards

This technique shifts the focus from a process-centric view to a data-centric
view. Information among processes is distributed through a distributed shared
associative memory. Processes can subscribe to this shared memory waiting for
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a special event to happen (encoded as a message). Communication is performed
asynchronously, and so both space and time uncoupling is provided. For a more
in to depth overview of this model see chapter 2.

4.1.3 Common Structure

Many context-aware systems use the same distributed components for reducing
the complexity of context-aware applications. The common components of the
architectures are discussed by means of an example application.

Example

Consider an example application where a user wants the profile of his mobile
phone to be switched to silent whenever he enters a room where a meeting is
taking place in order to not disturb any of the participants.

So, first of all there is a sensor needed for detecting whenever a person enters
a room. Furthermore, some additional sensors can be required to determine the
activity that is taking place in that room. This could for example be realised by
using RFID, an upcoming technology which can be seen as an advanced barcode
scanner but without the need to have visual contact with the scanned objects.
For instance, a sensor that measures the sound could be useful to determine
whether there’s a meeting going on or not. A sound and location widget produce
contextual information according to the sensed data. The produced context
information of both widgets is stored by the room context service. Additional
to the storage of context information, the context service is also responsible for
providing access to this information. Context clients are applications that adapt
their behaviour according to the sensed context. Clients obtain their context
information by querying the context service. Beside querying context, a context
client is also able to register his interest in certain context and whenever changes
occur to this interesting context information, the context client is notified.

This common structure is depicted in figure 4.1.

4.2 Context Toolkit

The first context-aware framework finds its roots in the GUI widget [18]. The
aim was to apply the experience gained from the GUI widget design in order
to create the context widget. A first useful property of the GUI widgets is
that they hide the hardware being used from the programmer. For example,
it does not matter to the programmer what type of brand the user’s mouse
has. By hiding this information, the hardware devices can be interchanged
with a minimal impact on the application. Furthermore GUI widgets also hide
the interaction with the user itself: most of the time the application has to
implement a single callback to be notified of the user’s interaction with the
widget. Another important advantage of the GUI widget is its reusability which
stems from the fact that it can be used as a black box. All those advantages
formed the inspiration for the development of the Context Toolkit.
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Figure 4.1: Common structure used by context-aware frameworks

First of all we explain how context is modelled by this framework. Then a
description of the different components compromising the Context Toolkit
is given. Subsequently the communication between the context client and the
context service is discussed. To conclude, some advantages and disadvantages of
this framework are highlighted. This is done in respect to the common structure
of the framework, discussed in section 4.1.3, and the Fact Space Model, we
discuss in chapter 5.

4.2.1 Context Toolkit’s Context Model

The context model provided by the Context Toolkit consists of all the out-
put produced by the widgets. The user can be notified by changes to the context
or can actively retrieve the state of the context. Because the representation of
the context given by a widget might be too low level for the application at hand,
the Context Toolkit also provides abstractions which allow to combine the
output of several context widgets to derive a higher-level context. For example
the output of a location widget and the output of a calendar widget could be
combined to detect a ongoing meeting. A more in to depth description is given
in the next section.

4.2.2 Context Toolkit’s Architecture

The Context Toolkit’s architecture perceives the physical world by making
use of sensors. The context acquired by these sensors can be collected and
transformed in the framework to derive higher-order information. This section
describes the different components of the architecture and their relation to the
common structure discussed in section 4.1.3. First of all, the architecture is
briefly explained by making use of an example application, followed by a more-
detailed description of all its components.
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Example

In this section we revisit the example application shown in section 4.1.3 and
explain how the Context Toolkit’s framework can be specialised for its im-
plementation. When someone enters a room where a meeting is taking place on
a weekday, the profile of his mobile phone should be switched to silent.

The overall architecture of the Context Toolkit for this example ap-
plication is depicted in figure 4.2. The connections between the components
represent the interactions between them.

First of all two sensors are needed for retrieving the context information.
Location information is gathered by the RFID sensor which detects when some-
one enters the room. The output of the RFID sensor is passed to the location
widget, which is able to determine the person’s name by using the RFID to
name interpreter. Similar to the location widget, the calendar widget uses the
day of the week interpreter to determine if the actual date, that is retrieved
by the iCal sensor, is a weekday or a day of the weekend. The location and
calendar widget are combined by the Profile aggregator. This aggregator stores
the information of both widgets and makes this information available for the
Profile context client. The context client needs a context service for perform-
ing the actual executions, namely the switching of the mobile phone’s profile.
This is realised by the Profile actuator.

Figure 4.2: Context Toolkit’s architecture [18]
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Widget

A first component of the architecture is the widget : it separates the specific sen-
sors used from the contextual information they provide. Introducing widgets
in the framework results in hiding the complexity of the hardware that models
the world for the actual applications. Furthermore, widgets enable reusabil-
ity for context sensing as several context clients can reuse the same widget.
Context widgets don’t only encapsulate the context information, they also pro-
vide methods for accessing the contextual information they retrieve from their
sensors. Context clients are able to request the context information, query at-
tributes of the widgets or they can be notified by the widgets when significant
context changes occur.

Aggregator

Sometimes, the contextual information provided by one widget is part of the
information needed by a context client to react upon it. Aggregators collect
multiple pieces of contextual information that is logically related and make
it available for context clients in one software component. Using aggregators
decreases the complexities of context delivery to the context clients that use
this context information, as the context client doesn’t need to query each of
those widgets, but only the single aggregator that combines the output of those
widgets. These aggregators can be reused between several applications that
are interested in the same context information. An aggregator has the same
capabilities as the widget: it can notify context clients of relevant changes, it
can be queried for updates, and its stored context can be accessed by the context
clients.

Interpreter

Interpreters transform context information to higher-order context information
by taking one or more context sources and producing new context information.
For example, when there are a lot of people in a room who are all seated around
a table and most of the time there’s only one person talking. By combining these
contextual sources, one could guess that there’s a meeting taking place in that
room. The combination of several context sources and deriving a higher-order
context information is realised by interpreters. By introducing interpreters, this
derivation of higher-order context information doesn’t need to be realised by
the application itself, and other applications that need the same derivation can
reuse the interpreter. Note that an aggregator is only capable of combining
several widgets and is unable to interpret these combined context sources.

Context Service

The previously described components of the architecture of the Context
Toolkit are responsible for the actual context acquisition and delivering it

73



to the interested context clients. The fourth component, context service, exe-
cutes the actions on behalf of the application. The context service controls the
changes in the environment by using an actuator that can be regarded as an
output.

Actuator

Actuators are abstractions with the opposite intention of widgets: whereas wid-
gets retrieve context information, actuators actively change the context by per-
forming an action. This action is triggered by a certain contextual state. The
actuator perceives the context by using a context client. When the contextual
state to act upon is perceived by the context client, it informs the actuator
which executes its actions.

Discoverer

The last component of the architecture is the discoverer that controls a registry
of all the capabilities in the framework e.g. the available widgets. A discoverer
can be used by context clients for finding a particular context component that is
interesting for them. When any of the previously described components starts,
it should notify the discoverer of its presence and how it can be contacted. For
example, a widget notifies the discoverer of what kind of context information it
provides.

4.2.3 Conclusion

The architecture of the Context Toolkit maps very well on the general archi-
tecture used in most context-aware systems described in the previous sections.
The Context Toolkit architecture and the components used in it are used
as a reference to explain the subsequent context-aware systems.

4.3 JCAF

The Java Context Awareness Framework (JCAF [4]) allows programmers to
build context-aware applications. As with most context-aware frameworks, the
focus of JCAF is to provide the ability to react on changes in the environment.
Moreover, applications should be able to register their events of interest. For
example, on a change in context, so that they can be notified when such events
occur. JCAF is an example of an event-driven framework which supports dis-
tributed context services. These distributed context services are connected with
eachother in a peer-to-peer network.

4.3.1 JCAF Context Model

JCAF allows modelling relational context between an entity and other entities
residing in their environment. Entities abiding in one another’s environment are
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called context items. Consider the example to express that “Alice” is located
in the conference room. This expression is modelled in JCAF as follows: Alice
is modelled as an entity that has a relation, namely “is located”, with the
conference room. The conference room in his turn is modelled as an item in the
context of Alice. Note that an entity can also be a context item, for example
when we reformulate the previous example to: the conference room is populated
by Alice. Then we see that Alice is a context item of the conference room.

4.3.2 JCAF Architecture

In order to model relational context, abstractions of an entity, relation and con-
text item map directly to interfaces provided by JCAF. An apparent difference
with the Context Toolkit is the direct abstraction of an entity. Whereas
context in the Context Toolkit is indirectly captured as output of all context
widgets, here the context is logically attached to an entity.

Context services in JCAF provide access to the context of a group of entities.
The context of an entity can be changed through the context service it is part
of. In JCAF everything that reads or changes the context by accessing the
context service is called a context client.

Widgets, which are called context monitors in JCAF, update the context
of a certain entity. For example a location widget uses a RFID scanner for
updating the “located” relationship of the scanned entities.

Context actuators are registered to a specific relation of the context service
and the actuators allow to react whenever that relation has changed. For exam-
ple, to implement an in-out board, a context actuator could register itself to the
relation ”location” of a context service. The context service then informs the
context actuator when the ”located” context of a certain entity has changed.
The actuator then changes the in-out board according to this context change.

Another difference in functionality of the context service is how access to
context is facilitated. Whereas in the Context Toolkit context widgets can
be accessed directly, the widgets in JCAF must be accessed through the context
service.

The remainder of this section highlights the components of JCAF’s archi-
tecture.

Entity

An entity models some real world object, for example a cellphone. Entities are
modelled in JCAF by implementing the GenericEntity interface. Entities
are notified of changes in the context by the contextChanged method.

An example of a cellular phone entity that changes its location when a con-
text change is triggered, is shown in listing 4.1. When a user enters a conference
room, the contextChanged method is invoked and changes the profile of the cell-
phone to silent, when the user enters any other room the method changes the
profile to loud.

public class CellPhone extends Gener icEnt i ty {
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Figure 4.3: JCAF architecture [4]

public void contextChanged ( ContextEvent event ) {
try {

this . l o c a t i o n = ( ( Locat ion ) event . getItem ( ) ) . ge t Id ( ) ;
i f ( this . l o c a t i o n == conferenceRoom ) {

P r o f i l e . setMode (SILENT ) ;
}
else {

P r o f i l e . setMode (LOUD) ;
}

}
catch ( ClassCastExcept ion e ) {

System . e r r o r . p r i n t l n ( ”Unknown event , Exception ” ) ;
}

}
}

Listing 4.1: JCAF: entity example

Context Service

Whereas in the Context Toolkit the context service acts as a repository for
context, the context service in JCAF is extended to accommodate entities. This
is realised by letting entities register themselves to a context service. Context
services provide access to their entities and allow these entities to change their
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context. The registration of a cellphone entity to its local context service is
shown in listing 4.2.

First, a new mobile phone called myPhone is created. Then this entity
is added to the context service with the addContextEntity method. The
last line of code retrieves the myPhone entity from the context service by us-
ing its id. Other methods to retrieve entities from a context service include,
getAllEntities and getAllEntitiesByType. Those additional methods re-
spectively return all the entities a context service accommodates or only those
of a specified type.

CellPhone myPhone = new CellPhone ( ) ;
ge tContextServ i ce ( ) . addContextEntity (myPhone ) ;
ge tContextServ i ce ( ) . ge tEnt i ty (myPhone . ge t Id ( ) ) ;

Listing 4.2: JCAF: registration of a cellphone to a context service

The context service includes a functionality to change the context of a cer-
tain entity. Changing context of an entity by making use of the context service
is shown in listing 4.3. The second line in the code excerpt makes a new rela-
tion, namely “location”. Then by making use of the addContextItem method
we set the “located” relationship of myPhone to conferenceRoom. The entity
is informed of this change by the contextChanged method, as shown in the
previous section.

Locat ion conferenceRoom = new Locat ion ( ”conferenceRoom” ) ;
Located l o ca t ed = new Located ( ) ;
ge tContextServ i ce ( ) . addContextItem (myPhone . ge t Id ( ) , located , conferenceRoom ) ;

Listing 4.3: JCAF: changing context by using context service

Widgets

Widgets in JCAF can be accessed either asynchronously or synchronously.
Asynchronous widgets report changes as they sense it. For instance, a push
button sends an event everytime it is pushed. Synchronous widgets can be
queried for their state because they do not notify the context clients whenever a
change occurs. Instead of being notified, context clients must query the state of
the widgets. For example a synchronous switch does not send an event whenever
it is switched, but when a query is sent, it responds its status (on/off).

A widget for tracking the location of entities by making use of bluetooth is
shown in listing 4.4.

public class conferenceRoomWidget extends AbstractMonitor
implements BlueToothListener {

public conferenceRoomWidget ( S t r ing s e r v i c e u r i ) {
super ( s e r v i c e u r i ) ;
l o ca t ed = new Located ( ) ;

}

public void blueToothEvent (BEvent event ){
i f ( event .ENTERROOM) {

getContextServ i ce ( ) . addContextItem (
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event . ge t Id ( ) ,
located ,
newLocation ( ” conferenceRoom” ) ) ;

}
}

Listing 4.4: JCAF: widget for tracking the location of entities

Actuators

Two types of actuators exist in JCAF. One type of actuator, a context event,
performs an action whenever a certain relationship has been altered. The other
type, the entity listener, performs an action whenever a certain context item of
the entity it is listening for, has changed.

4.3.3 Peer-To-Peer Communication

Context services can be connected in a peer-to-peer network. Remote context
service can be added and removed at runtime by specifying their address. The
main purpose of setting up such a network is to allow the lookup of entities
which reside on a remote context service. Entities can be searched by making
use of the lookupEntity function of the context service:

pub l i c void lookupEntity ( S t r ing id ,
i n t hops ,
RemoteDiscoveryListener d l ) ;

The first parameter, id, of this method specifies which entity to search for. The
number denoted by hops indicates the distance from the originating context
service to search for that entity. The RemoteDiscoveryListener is notified
when a new entity has been found.

4.3.4 Conclusion

The JCAF architecture allows to search context services residing on other de-
vices by making use of an identifier. However these context services must be in
connection with a known context service. The framework also does not give any
support when context clients disconnect from their context service, therefore
assuming a stable connection with the context service.

4.4 WildCAT

WildCAT is a Java toolkit for building context-aware applications. Its inno-
vative feature stems from the fact that it proposes a hierarchical structure to
model context information which facilitates querying and dynamically discover-
ing of context information. Moreover, since this structure is merely an overlay
structure over existing widgets, it ensures that their output can be introduced
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in the correct place in the context model. Access to the context information
can be either synchronously or asynchronously, as is described in section 4.4.3.

Recall that context-aware applications typically exhibit three characteris-
tics. First of all, the applications should support dynamic discovery of context
information. Secondly, the applications should be able to reason about that con-
text information. Finally context-aware applications should be notified when
interesting events – changes to the context – become available. Those three
characteristics are fulfilled by WildCAT’s API.

4.4.1 WildCAT Context Model

Context in WildCAT is modelled as a set of widgets represented in a tree
structure. This structure is important because it provides the programmer with
an easy and deterministic way to specify a widget. The hierarchical structure
needs not to be reflected by the widgets, but only in the information that they
provide. The information provided by widgets in WildCAT is represented by
widget attributes, that are key-value pairs.

Domains group widgets which provide related contextual information, so a
domain separates the different aspects of the context. This separation enables
specific implementations for these aspects. As specified in [16], some example
domains provided by WildCAT are:

• sys: hardware resources, these may represent storage devices or input
devices like a mouse or a touchpad.

• net : topology and performance of the network like the number of dropped
packages or the available bandwidth.

• geo: geophysical information, this information may include the typical
physical ones, like the GPS coordinates and weather conditions, but are
not limited to these. Under this domain are also physical environments
included, like for example a classroom.

• user : user preferences, characteristics and current state. Examples include
being in a meeting, having class which is different from being located in
a classroom, or wanting to be informed about the changes of the weather
condition.

4.4.2 WildCAT Architecture

Beside providing a hierarchical structure to model context information, the
WildCat framework also contains an extension interface and a data acquisition
framework. The extension interface enables the specification of new domains.
The data acquisition framework is responsible for acquisition of data via wid-
gets, which are referred to as sensors. Widgets in WildCAT can be active or
passive: an active widget runs in its own thread and provides the information
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asynchronously. Passive widgets are also asynchronous for the programmer’s
point of view, but is queried by the framework at regular intervals. Both kind
of widgets are explained in more detail in the remainder of this section.

Sensors

Sensors, or active widgets, run in their own thread and announce their informa-
tion as it comes available. An example of an active widget is shown in listing
4.5. The Java class RoomSensor implements the Sensor interface provided by
WildCAT. The RoomSensor implements the BlueToothListener interface in
order to be updated about the current location. All active widgets must notify
changes to their context by using a samples listener. In the example this is
myListener. When the user walks into a room, the blueToothEvent method
is called with a BEvent. If the event is triggered by the entering of a room, the
key-value attribute is changed. Specifically the key “location” is modified to
the new room which we read from the BEvent by calling the location method.
When we do have changed our SampleSet, we inform the listener myListener
of this change.

public RoomSensor implements Sensor
implements BlueToothListener {

SamplesLi s tener myListener ;
SampleSet mySet ;
. . .
public void blueToothEvent (BEvent event ){

i f ( event .ENTERROOM) {
mySet . put ( ” l o c a t i o n ” , event . l o c a t i o n ( ) ) ;
myListener . sampleChanged ( ) ;

}
}
. . .

}

Listing 4.5: WildCAT: active widget

Passive Sensors

Passive sensors, or passive widgets, do not inform changes to their environment
directly, instead they keep track of their context and return the state of their
context when asked. A passive version of the RoomSensor is shown in listing
4.6. Instead of implementing the Sensor interface, the PassiveSensor interface
is implemented. Again the BlueToothListener interface is implemented to
be informed about the detected bluetooth devices in the proximity. Instead
of directly informing a SampleListener of the change in location when the
blueToothEvent method is called, this information is stored in mySet until the
method sample is called.

public RoomSensor implements Pass iveSensor
implements BlueToothListener {

SampleSet mySet ;
. . .
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public void blueToothEvent (BEvent event ){
i f ( event .ENTERROOM) {

mySet . put ( ” l o c a t i o n ” , event . l o c a t i o n ( ) ) ;
}

}

public SampleSet sample ( ) {
return mySet ;

}
. . .

}

Listing 4.6: WildCAT: passive widget

Extension Interface

In order to inform the framework of widget extensions, we have to register these
to a domain. This is done by making use of a XML configuration file. An
example where we register the passive RoomSensor to the geo domain under the
name room is shown in listing 4.7. Because the RoomSensor is passive widget
we can specify whenever samples should be taken from it. In this example,
WildCAT probes the sensor every half second.

<context−domain name=”geo”>
. . .

<r e s ou r c e name=”roomSensor”>
<pass ive−widget name=”roomSensor” c l a s s=”RoomSensor”>

<schedu le> <p e r i o d i c per iod=”5000”/> </ schedu le>
</ senso r>

</ r e sou r c e>
. . .

</ context−domain>

Listing 4.7: WildCAT: extension

Events

WildCAT uses events to represent changes to the context: these changes can
be caused by the addition, removal or modification, of a widget attribute, or
the occurrence of a certain condition which can be specified by an expression.
All these changes occurring to the context are observable, and correspond to
primitive changes in the data model of WildCAT.

Paths

In order to use the context model provided by WildCAT, the programmer must
be able to address a certain widget or widget attribute. The addressing scheme
adopted in the WildCAT framework finds its roots in the Uniform Resource
Identifier [7]. Thereby making a separation between the addressation scheme of
a widget and its implementation. This abstraction is called a path, and can be
used to denote a widget, a widget attribute or a collection of these.
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Some examples of such paths are shown in listing 4.8. The first path in
listing 4.8 represents the access to the GPS widget, whereas an example path
for representing the coordinates attribute of the GPS widget is given by the
second path. The two last paths are collections: the first one is a collection
of widget, and the last one is a collection containing all attributes of the GPS
widget.

geo :// l o c a t i o n / input /gps
geo :// l o c a t i o n / input /gps#coo rd ina t e s
geo :// l o c a t i o n / input /∗
geo :// l o c a t i o n / input /gps∗

Listing 4.8: WildCAT paths [16]

4.4.3 Communication

In WildCAT, communication with widgets can be performed both syn-
chronously as asynchronously. Communication is performed through the Java
Context class that is shown in listing 4.9. The first five methods of the Context
class form the synchronous interface, whereas the three last ones allow the
registration of asynchronous listeners.

public class Context {
St r ing [ ] getDomains ( ) ;
Path [ ] ge tChi ldren (Path r e s ) ;
Path [ ] g e tAt t r i bu t e s (Path r e s ) ;
boolean e x i s t s ( Path r e s ) ;
Object r e s o l v e (Path r e s ) ;

long r e g i s t e r ( ContextLi s tener l i s t e n e r , int eventKinds , Path path ) ;
long r e g i s t e rExp r e s s i o n ( ContextLi s tener l i s t e n e r , int eventKinds , S t r ing expr ) ;
void un r e g i s t e r ( long r eg Id ) ;

}

Listing 4.9: WildCAT context interface [16]

As is already mentioned, both synchronous and asynchronous requests are
supported by WildCAT. A synchronous request allows the discovering of the
structure of the context as well as querying the value of a certain widget at-
tribute. For instance to discover all input devices concerned about location, the
following code – listing 4.10 – retrieves all paths to such resources. This allows
the programmer to discover hardware resources at runtime, and possibly change
its behaviour depending on the available resources.

context . ge tChi ldren (new Path (” geo :// l o c a t i o n / input / ∗” ) ) ;

Listing 4.10: WildCAT pull operation

Asynchronous requests enable the notification when some interesting events
occur as specified by the provided path expression. These requests follow the
publish-subscribe pattern: the user first specifies his interests in some events by
registering them such that the middleware sends its notifications whenever the
specified event occurs. An example of such an event subscription is given below
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in listing 4.11. This example showcases the behaviour necessary to inform the
deviceListener every time the roomSensor detects a new room.

context . r e g i s t e r ( dev i c eL i s t ene r , RESOURCE CHANGED,
new Path ( geo :// roomSensor#l o c a t i o n ) ) ;

Listing 4.11: WildCAT push operation [16]

4.5 Conclusion

WildCAT is based upon events provided by the widgets it incorporates. The
focus of WildCAT is to provide a hierarchical structure to easily access the
widgets provided by the framework. There is no predefined mechanism for
devices to communicate, therefore the communication must be performed ad
hoc.

4.6 Chisel

Chisel [37] is a framework for Java which enables applications to adapt their
behaviour in response to changes in the context by using a policy driven ap-
proach. Adaptations can be performed at runtime using reflection, and in par-
ticular the use of meta-types in order to control the non-functional requirements
of the application. Therefore, the design of mobile applications, implemented
using the Chisel framework, should only implement the core functionalities
and cotter the non-functional requirements using a meta-type, which can be
plugged in at any moment. The remainder of this section highlights how these
meta-types are plugged in and how this effects the design of the applications.

4.6.1 Chisel’s Context Model

Contextual information is gathered by separate widgets and made accessible
through the use of an event-driven programming language. Changes in the
context are notified to the context client under the form of events. These events
can come from the widgets themselves or can be predefined in a policy script.
For example the triggering of an event wakeUpTime, every day at eight. Events
can also be triggered by widgets, for example an event locationChanged. This
policy language and how it can be used is explained by means of the architecture
of Chisel.

4.6.2 Chisel’s Architecture

Binding meta-types to specific classes is performed by the meta-level adaptation
manager which takes input from a policy scripting language and from managed
services. The architecture of Chisel is shown in figure 4.4. As we can see in this
figure, the framework itself consists of three building blocks. In this section we
focus on the innovative approach to use reflection as an adaptation mechanism
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for context-aware applications. Note that adaptation of the application itself
is distinct from the general architecture described in section 4.1.3. First an
overview of reflection is given and how this can be used in order to adapt
applications, then the policy scripting language is highlighted.

Figure 4.4: Chisel’s architecture [37]

4.6.3 Meta-Types

Computational reflection is the ability for a program to reason about and alter
itself. Reflection is achieved by reifying the program’s state as meta-data. This
allows the program to change its own behaviour at a very fundamental level.
Examples of such changes include modifying the way variables are looked up,
or how functions are called. For class-based object-oriented languages, Shäfer
[55] proposed the concept of a meta-type as a scoping technique for adaptation
spanning. Only those objects assigned to this meta-type behave differently than
other objects. Meta-types can be assigned to an object at runtime. The inter-
faces between these meta-types and the object level are referred to the as the
meta-object protocol (MOP). This MOP allows the user to change the program-
ming language itself by for example changing the way method invocations must
be performed. The key concept is to group the non-functional requirements
in a meta-type, such as for example logging or the choice of network medium.
These meta-types can be implemented by meta-classes providing non-functional
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behaviour for the class. It’s the power of this meta-type that has been exploited
to make runtime adaptations. The system used by Chisel is Iguana/J [28]
which extends the JVM using the JIT interface to provide a meta-object proto-
col for Java.

4.6.4 Policy Driven Adaptation

Central in the Chisel approach is the usage of an adaptation manager. This
manager controls the adaptations which must be performed in response to
changes in the context. The choice between different adaptations is driven by a
policy, which is defined as ”a rule governing the choices in behaviour of a man-
aged system” [15]. Beside the policy, the adaptation manager also receives input
from various context resources. The design of the context manager consists of
seven components which are depicted in figure 4.5. The rest of this section
highlights the functionality and the interaction between these components with
the running example.

Figure 4.5: Chisel: adaptation manager [37]

Policy Manager

The policy manager is provided with a policy script, it constantly keeps track of
changes to this file in order to reflect these immediately into rules and events.
This ensures that the policy script can be adapted at runtime. The events are
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passed to the event service in order to be processed by the context manager.
The rules are passed to the rule manager.

Chisel incorporates a description language to specify the policy, this lan-
guage consists of a series of simple if-then rules which specify which adaptations
must be triggered according to the current context. Beside the rules, the lan-
guage also allows the specification of new events dynamically.

The rule listed below specifies the adaptation of a cellphone when the
LocationChange event is triggered and the location is the meeting room. This
location change is triggered by a location widget. When a new Event is trig-
gered, all the rules are checked and the appropriate rules are evaluated. When
a rule is satisfied, the behaviour manager is instructed to perform the change in
behaviour. In the example shown below, the change in behaviour is to assign
quiteMetaType to the CellPhoneIncomingCall class.

ON LocationChange :
Cel lPhoneIncomingCal l . quiteMetaType

IF LocationWidget . p o s i t i o n = meetingRoom

Listing 4.12: Chisel: switch profile example

Context Manager

The context manager monitors widgets which can be compound to form more
complex widgets, very much like the aggregation component of the architecture
of the Context Toolkit 4.2. Widgets can trigger events or can be queried
directly by the scripting language. When relevant context changes occur, the
context manager in conjunction with the rule manager identify the rules affected
by this context. When there is a rule which is triggered by this context change
this results in an adaptation performed by the behaviour manager. The location
widget is a simple widget which is connected directly to the context manager
and the event service. When the location changes, it triggers a LocationChange
event. This informs the Event Service that a new event has been triggered.

Behaviour Manager

The behaviour manager performs the actual context adaptation by making these
changes according to rules, by associating a different meta-type to one of the
objects it manages. It keeps a repository of the available meta-types and can
load new meta-types dynamically at runtime. For example in the switch profile
example it keeps track of the CellPhoneIncommingCall objects, and changes
their meta-type to quiteMetaType when being located in the conference room.

Rule Manager

The rule manager receives input from the policy manager and from the con-
text manager. It combines this information and triggers new adaptations by
informing the behaviour manager of a particular adaptation that needs to be
performed, given the context and the policy.

86



4.7 Conclusion

The focus of the Chisel framework is the adaptation of the programs by making
use of meta-types.

4.8 Gaia

Gaia is a framework for building context-aware applications [50]. The focus of
Gaia lays in the derivation of higher-order context by using rules, or machine
learning techniques which have the advantage that no rules should be explicitly
specified by humans.

The remainder of this section is organised as follows. First the modelling
of context is discussed. Subsequently the architecture of Gaia is explained,
followed by a discussion about the deduction of new context. Thereafter the
communication between context service and context client is discussed and as a
conclusion we compare Gaia to the other frameworks discussed in this chapter.

4.8.1 Gaia’s Context model

The basic structure for the modelling of context is the context predicate. The
name of the first-order predicates represents the kind of context that is be-
ing modelled, like for example location or time. An example of a predicate
of type location is location(Alice, enters, room F134). It is also allowed
to have relational operators in this predicate as is exemplified by the predi-
cate time(Brussels, "<", 05/06/07 23:59), which states that the time in
Brussels is earlier than 05/06/07 23 hours 59 minutes.

Operations

Gaia allows writing more complex expressions by using boolean operations,
like for example a conjunction. Listing 4.13 contains examples of those boolean
operations. The first example uses the and operation and represents the context
that Alice is entering room F134 and that there’s a meeting taking place at
that location. The second line of the listing refers to the context that there is a
meeting going on in room F134 or that there’s no activity at all in that room.
The last example uses the not operation and refers to the context that Alice is
not in room F134.

l o c a t i o n ( Al ice , enter s , room F134 ) AND a c t i v i t y ( meeting , in , room F134 )
a c t i v i t y ( meeting , in , room F134 ) OR a c t i v i t y ( none , in , room F134 )
NOT l o c a t i o n ( Al ice , in , room F134 )

Listing 4.13: Gaia: using boolean operations

Furthermore, Gaia also enables the use of existential and universal quanti-
fiers. Example of context expressions using quantifiers are given in listing 4.14.
The first expression of listing 4.14 refers to the context that there’s at least
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one person who’s in room F134. The context that is represented by the other
expression is that all the people are present in room F134.
∃person l o c a t i o n (p , in , room F134 )
∀person l o c a t i o n (p , in , room F134 )

Listing 4.14: Gaia: using quantifiers

4.8.2 Gaia’s Architecture

This section describes the different components of the architecture of Gaia’s
framework. Each component is highlighted and compared in relation to the
components of the other context-aware frameworks discussed previously.

Example

Reconsider the example application where the user’s mobile phone should be
switched to silent whenever he is entering a room where a meeting is taking place
on a weekday. There are two widgets needed for retrieving both the location
and date contextual information. The context provided by the location and
iCal widgets can be combined by an aggregator. An interpreter can be used for
deducing higher-order context information based on the context information the
aggregator has combined. Both functionalities of the aggregator and interpreter
are realised by Gaia’s context synthesiser. The Profile context client adapts its
behaviour according to the current context, retrieved by the widgets. Context
can be obtained by querying the widgets or by listening for events that are sent
by them. The architecture for this example application is depicted in figure 4.6.
The remainder of this section explains all the components of the architecture in
more detail.

Figure 4.6: Gaia context infrastructure [50]
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Context Provider

A first component of the Gaia’s architecture are the context providers, which
is modelled by widgets in the architecture explained in section 4.1.3. Widgets
collect several types of context information and allow context clients to access
them. How this access can be realised is explained in section 4.8.4.

Context Synthesiser

Another component of the architecture is the context synthesiser, which is a
combination of both the aggregator and interpreter of the common structure
that are components of the Context Toolkit’s architecture. First of all,
this component is responsible for inferring higher-level context based on sensed
context. This sensed context information can be retrieved from several widgets
and combined by an aggregator. There are two approaches for the derivation of
higher-level context that can used, namely rules or machine learning techniques.
Both approaches are discussed in section 4.8.3.

Context Provider Lookup Service

The context provider lookup service of Gaia’s architecture represents the dis-
coverer that is a part of the architecture of the Context Toolkit (discussed
in section 4.2.2). The discoverer allows finding widgets and advertising the set
of context those widgets provide. When a context client queries the discoverer,
the discoverer tries to find a widget that provides the context the client needs
and returns the results to the appropriate context client.

Context Consumer

Another component of the architecture is the context consumer which models
the context client that is discussed in section 4.1.3. Context clients retrieve
several types of contextual information and adapt their behaviour depending
on this context. The actual retrieval of this context information is explained in
section 4.8.4.

Context sensitive clients are built by defining a set of rules that govern the
behaviour of the context client according to changes in the context. Context
clients have an interface which enables the changing or addition of new rules
dynamically. Context sensitive behaviour can be specified in a configuration
file. Listing 4.15 is an example of a configuration file that specifies different
actions to be taken when someone enters a room. Each context client has such
a configuration file that associates a specific context situation with a set of
methods that are invoked whenever that context situation is detected.

The configuration file in listing 4.15 specifies the behaviour when someone
is entering the room. A first scenario says that when someone is entering a
certain room a welcome message should be displayed on his mobile phone. The
method ShowWelcomeMessage that is specified in the configuration file should
be implemented by the application developer. This context is associated with
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a priority equal to one, as can be seen in the configuration file. The second
context specifies that whenever someone enters a room where the light is turned
off, a welcome message should be displayed as well as the turning on of the
light in that room. The priority associated with this context equals two. So,
for example when someone is entering a room and the light is turned of, the
welcome message is only displayed once, because only the actions of the context
with the highest priority are executed. The last context specifies that whenever
someone enters a room where a meeting is taking place, a welcome message
should be displayed and the profile of that person’s mobile phone should be
switched to silent. This context is associated with a priority equal to three.

∃Personp ∃Room r l o c a t i o n (x , enter ing , r )
ShowWelcomeMessage ( )
P r i o r i t y 1

∃Personp ∃Room r l o c a t i o n (x , enter ing , r )
AND l i g h t n i n g ( r , o f f )

ShowWelcomeMessage ( )
TurnLightOn ( )
P r i o r i t y 2

∃Personp ∃Room r l o c a t i o n (x , enter ing , r )
AND a c t i v i t y ( meeting , in , r )

ShowWelcomeMessage ( )
SwitchToSi lent ( )
P r i o r i t y 3

Listing 4.15: Gaia: example configuration file specifying different behaviours

Context History

Gaia enables context clients to not only using the current context but also to
past contexts. Context is stored in the context history by using a timestamp
that indicates when this context was used. It is possible for context clients to
query the context history about such past contexts.

4.8.3 Context Synthesiser

The architecture of Gaia resembles the one of the Context Toolkit. This
section discusses Gaia’s context synthesiser because it differs from the inter-
preter used by the Context Toolkit for inferring higher-level context. As was
already mentioned before, this component of the architecture is a combination of
both the aggregator and interpreter of the Context Toolkit. This component
is able to infer new context by either using rules or machine learning techniques.
We explain both approaches but emphasise the part of inferring higher-level con-
text by using rules. This relates to the Fact Space Model, described in chapter
5, because it also uses rules for deriving new context information.
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Infer New context Using Rules

Using rules for deriving higher-order context is quite simple by using the first-
order predicates and its operations that are described in section 4.8.1. Listing
4.16 shows an example rule. The first one deduces that there’s a meeting taking
place in a certain room when the mobile phone’s profile of all the persons in
that room is silent.

∀Personp ∃Room r l o c a t i o n (p , in , r )
AND p r o f i l e (p , s i l e n t )
=> a c t i v i t y ( meeting , in , r )

Listing 4.16: Gaia: inferring new context using rules

Sometimes it might be the case that several rules can be true at the same
time and that multiple answers are returned. For example, it is possible that
the activity in that room can be either meeting or none at all. Both rules are
presented in listing 4.17.

In case only one answer is preferred, conflict resolution is applied. This
can be realised by giving each rule a certain priority and only deducing the
higher-level context of the rule with the highest priority.

1 . ∀Personp ∃Room r l o c a t i o n (p , in , r )
AND p r o f i l e (p , s i l e n t )
=> a c t i v i t y ( meeting , in , r )

2 . ∀Personp ∃Room r l o c a t i o n (p , in , r )
AND p r o f i l e (p , s i l e n t )
=> a c t i v i t y ( none , in , r )

Listing 4.17: Gaia: using rules with an identity

Infer New Context Using Machine Learning Techniques

The previously described approach for inferring higher-order context is based on
using logical rules. Using rules for deducing new context has the disadvantage
that these rules must be specified by humans. Introducing machine learning
techniques results in a flexible way for adapting on changes of context.

For example, the sound of the profile of a user’s mobile phone is context that
can depend on several contexts, like the mood he is in, the location where he
finds himself and possible some other context information as well. Gaia allows
the prediction of what sound the person wants to hear at a certain moment by
making use of machine learning techniques as the Bayesian algorithm.

4.8.4 Communication

Context clients can obtain context information either synchronously by using
the query-answer protocol, or asynchronously by using the subscribe-notify pro-
tocol. The first method for the context retrieval is used by context clients that
want to obtain the current context and perform services for the user adapted
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to that current contextual information. The latter approach is suitable for con-
text clients that want to perform certain actions on context changes. Both
approaches are highlighted in this section.

Query-Answer Protocol

Context clients can obtain context information by sending a query to the widget.
The notation of a query resembles the one Prolog uses [62]: one or more fields
of the context predicate is a variable. In Gaia variables are denoted with
a question mark in front of the variable’s name, so for example the variable
person is notated as ?person. For instance, when a context client wants to
know what activity is taking place in room F134, it could send the query that
is shown in listing 4.18 to the widget that provides context of type activity.
This approach for retrieving context is suitable when the context clients want
to adapt to the current context.

a c t i v i t y (? a c t i v i t y , in , room F134 )

Listing 4.18: Query to widget that provides context of type “activity”

Subscribe-Notify Protocol

The second approach for retrieving context information is by letting the context
client subscribe to those widgets that produce interesting context for that client.
So, whenever such a context is sensed by the widget, it notifies the registered
context clients. Each widget produces its own events, so every context client
can listen to the events of the widgets in whose context it is interested.

4.8.5 Conclusion

Gaia uses a powerful mechanism to coordinate by using first order logic. How-
ever it fails to provide this mechanism to the application in order to react
asynchronously on context changes.

4.9 CORTEX

CORTEX is a research project – from 2000 until 2004 – which states the fol-
lowing as general objective, as stated on their homepage 2:

”The CORTEX project will investigate appropriate architectures
and paradigms for the construction of applications composed of col-
lections of what may be called sentient objects – mobile intelligent
software components that accept input from variety of different sen-
sors allowing them to sense the environment in which they operate
before deciding how to react.”

2http : //www.dsg.cs.tcd.ie/dynamic/?category id = −12
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4.9.1 CORTEX Architecture

This section explains the CORTEX architecture. First of all, we reconsider
the example application and present the architecture CORTEX uses for im-
plementing this problem. Thereafter the components of the architecture are
described in more detail.

Example

Reconsider the switch profile example application that is already used before,
the profile of a user’s mobile phone should be set to silent whenever he enters
the meeting room at a weekday. So, the location and iCal sensor are needed
for providing the accurate context information. This contextual information is
retrieved by the sentient object which is able to combine both sensed contexts
and to infer higher-order contexts from the current context information. This
new context is then sent to the Profile actuator which switches the profile
of the mobile phone to silent. The architecture used by CORTEX is depicted
in figure 4.7. The remainder of this section describes the components in more
detail.

Figure 4.7: CORTEX: sentient object model [60]

Sensor

A first component of CORTEX’s architecture is a sensor which refers to the
widget that is discussed.

Sentient Object

The sentient object is the core of the CORTEX architecture. It takes input
from the widgets and steers the actuators. The benefits of introducing this
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extra layer is that an inference engine is encapsulated in this component, which
derives valid higher-order context by combining input retrieved by the sensors.
How this is performed is shown in section 4.9.2.

Actuator

The last component of the architecture of Cortex is the actuator that is re-
sponsible for consuming the retrieved context.

4.9.2 Sentient Object

As is already mentioned, the sentient object combines the functionalities of the
aggregator, interpreter and context service that are components of the archi-
tecture of the Context Toolkit (which are discussed in section 4.2.2). The
sentient object itself exists of three subcomponents that provide the functional-
ities of the according components of the Context Toolkit’s architecture.

Sensory Capture

The first subcomponent of the sentient object is the sensory capture that de-
duces higher-order context based on the sensed contextual information. Fur-
thermore, this component performs sensor fusion for managing the uncertainty
of the sensed data. The sensor fusion that is used by CORTEX is based upon
Bayesian networks which enables a probabilistic measurement of derivations
of context from possibly noisy sensor data. So, this subcomponent refers to
both the interpreter component of the Context Toolkit’s architecture, and
the aggregator component that combines the context of different widgets. The
input of a sentient object can be another sentient object. Note that the sen-
tient object itself can be seen as an aggregator combining different widgets and
passing further this derived context to another sentient object.

Context Hierarchy

Context hierarchy forms a second subpart of the sentient object which encap-
sulates the current context derived from the sensory capture component. This
encapsulation is based on the context-based reasoning paradigm that states that
context determines the actions to be performed. So, the behaviour of the sen-
tient object is influenced by the context it retrieves from the sensors widgets.
This subcomponent, explicitly keeping track of the current context, isn’t repre-
sented in the architecture of the Context Toolkit.

Inference Engine

The last subcomponent of the sentient object is the inference engine. This part
of the sentient object ensures its context-awareness by using conditional rules.
This subcomponent is responsible for the changes in the behaviour due to the
currently sensed context information. So, it can be regarded as a context service
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that is explained in the common structure (section 4.1.3). When comparing it
with the components of Gaia’s architecture, the inference engine maps to the
context synthesiser which could infer higher-order context by using rules or ma-
chine learning techniques, as is explained in section 4.8.3. The inference engine
is based upon CLIPS [27] which uses the Rete algorithm that is described in
chapter 3. This algorithm is also used for the implementation of Crime that is
explained in chapter 6.

A example rule for switching the mobile phone is shown in listing 4.19. The
Switch-Phone action is called when the user is in the conference room during a
weekday. The Switch-Phone action is an extension specified by the programmer
and is not part of the CLIPS language itself.

( d e f r u l e r u l e
( l o c a t i o n (room conferenceRoom ) )
( day (weekday true ) )

=>
( Switch−Phone s i l e n t )

Listing 4.19: CORTEX: switch profile rule

4.9.3 Conclusion

CORTEX proposes the use of a sentient object which transforms the input from
widgets to actions performed by actuators easing the development of mobile in-
telligent software components by providing a declarative language for the deriva-
tion of higher-order information. By making use of a declarative programming
language the flexibility increases as the logic itself must not be implemented.

4.10 Cocoa

This framework, Coordinated Context Awareness [5], is inspired by biology and
more precise by the phenomenon Stigmergy [29]. A first observation is that in-
sects in a colony can communicate with eachother by using the environment, and
thus they do not need direct contact with eachother in order to communicate.
A second important observation is the fact that the communication between
two local insects can have a large propagation through the entire population re-
sulting in a global change of behaviour. Holland [3] noted that the state of the
environment and the entities in this environment determine the future changes
of the environment and the entities within. The idea of using Stigmergy as a
coordination mechanism has been adapted in various projects [10], [36]. In the
Cocoa framework the idea of Stigmergy has been formalised in the following
equation [5]:

CVen
(t) = {Cei(t) : Cei ∈ CG(t) ∧ L(ei, en) = true} (4.1)
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4.10.1 Cocoa’s Context Model

Equation 4.1 defines the contextual view of a single entity en in the environment
at a particular time t. Not the entire available context is important for this
entity, therefore only a subset from the global context CG(t) is relevant, namely
the contextual views of all entities ei within a certain proximity of en defined
by the proximity function L.

Now that the contextual view for an entity en is defined, the entity should
also be able to change its behaviour according to CVen

. This mapping between
a certain context and a powerset of the set of behaviours B is defined by the
function S [5]:

S : CVen → P (B) (4.2)

4.10.2 Cocoa’s Architecture

The Cocoa architecture is split up into two large parts, namely context acqui-
sition and the stigmergy runtime which uses this context.

Stigmergy Runtime

The stigmergy runtime is driven by a Yabs script, this language is defined in
various files, together making a hierarchy. This hierarchy is defined by extending
existing objects.

woman extends person { /∗ body ∗/ }

Listing 4.20: Yabs script

The language has three primitives, namely the proximity function L, behaviour
set B and the mapping function S. The behaviour of an entity can be modelled
in Yabs using these three primitives.

Proximity Function L Yabs can handle proximity in three different ways:
A first possibility is to define a circular proximity (line 1). This means that the
context of entities that reach within a certain distance is shared among those
entities. This might not suit every application: for example, rooms are most
likely not to be circular. Therefore, another way for defining the proximity is
to describe it by specifying a polygon (line 2), this allows the programmer to
clearly define the boundary of a certain environment. A third possibility is the
abstraction of the environment by using a symbolic name (line 3), this allows
the programmer to shield the application from entities which are close by, but
which do not participate in the current context. The different specifications of
the proximity function are shown in listing 4.21.

1 proximity (10)
2 proximity (−1 , 1 , 1 , 1 , 1 , −1, −1, −1)
3 proximity (PROG LAB)

Listing 4.21: Yabs proximity function
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Behaviour Set B The definition of a behaviour can not be implemented in
the scripting language itself, however the Cocoa framework specifies an API
which can be used to implement a specific behaviour. In the script a mapping
between the Java implementation and the behaviour used in the rest of script
can be realised as is shown in listing 4.22. This binding can of the behaviour
onto a specific Java implementation can then later be used in the mapping
function.

behaviour r ing on = ”edu . vub . example . ringOn”
behaviour r i n g o f f = ”edu . vub . example . r i ngOf f ”

Listing 4.22: Yabs behaviour definition

Mapping Function S The mapping functions is responsible for the mapping
between a certain conceptual view and a behaviour. Before such a mapping
can be established, both the context and the behaviour must be specified. The
specification of the behaviour is already explained in the previous paragraph.
The specification of context is realised by the specifying a number of predicates
as shown below in listing 4.23.

context in meet ing
l o c a t i on w idg e t . l o c a t i o n = ”conferenceRoom”
t ime widget . time = weekday

Listing 4.23: Yabs context definition

In the example in listing 4.24 we specify a context where the location widget
indicates that we are in the conference room and the time widget indicates that
it’s a weekday. Now that we have specified a certain context, we can use this
context to specify a mapping.

map [ in meet ing ] onto {
r i n g o f f ( )

}

Listing 4.24: Yabs mapping function

This mapping ensures that our mobile phone does not ring when we are in
the conferenceRoom during a weekday.

4.10.3 Conclusion

The context model of Cocoa defines the conceptual view as union of all con-
textual views of the entities in within a well defined distance. The ability to
share contextual information between entities and react upon these by specify-
ing the reactions in a scripting language provide by Cocoa make it a powerful
framework. However, like CORTEX, it does not give a meaningful semantics
to the retraction of information.
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4.11 Conclusion

The classic coordination frameworks such as the Context Toolkit, JCAF,
and WildCAT are all based upon the notion of event channels. None of these
toolkits allow reacting on the retraction of information. The sophisticated adap-
tation mechanisms adapted in the Chisel framework ’s even-driven approach
lacks support to adapt in respect to a combination of events. It’s also not clear
how context should be distributed. Gaia uses a powerful mechanism to coordi-
nate by using first order logic, however it assumes that connections are stable
which is in conflict with the nature of a mobile setting. CORTEX extends
Gaia by using instead of first order logic, a production system CLIPS that
is based upon forward chaining. However, they do not provide a meaningful
semantics to the retraction of information. Cocoa uses the idea of Stigmergy
for coordination. Coordination is driven by a scripting language but like COR-
TEX fails to give a meaningful semantics to the retraction of information. An
overview of the different systems discussed is shown in table 4.1.

Context System Context Model Architecture Context acquisition
Context Toolkit Widget outputs Based on GUI Event channels
JCAF Relations Context services Event channels
WildCAT Widget outputs URI Event channels
Chisel Widget outputs Meta-Types Logic Language
Gaia Predicates MVC Predicate logic
Cortex Sensor outputs Sentient object Logic language
Cocoa Contextual view Stigmergy Stigmercy

Table 4.1: Context systems: summary
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Chapter 5

Fact Space Model

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development of
context-aware applications. Previous chapters have given an overview of the
tuple space model, reasoning engines, and context-aware systems.

This chapter proposes the Fact Space Model, a model which combines the
latter three concepts in order to provide fine-grained support to deal with the
effects of disconnection and allow reactions to be specified on multiple events.
Coordination in the Fact Space Model is based on the use of the federated space
known from Lime [44], however in our model it is conceived as a distributed
knowledge base.

Entities in the Fact Space Model perceive the environment by available tran-
siently shared facts which can be used to adapt an application’s behaviour ac-
cordingly. The conditions to adapt an application are described by making use
of a logic coordination language whose rules record the causal link between facts
and the conclusions that may be drawn from them. Fact spaces differ from tu-
ple spaces as the latter do not record causal links. These links are used in the
Fact Space Model to reverse the effects a fact had on the system, when the fact
is retracted. Whereas in the Tuple Space Model only the presence of a tuple
is relevant, in the Fact Space Model both the assertion and the retraction of
facts have consequences. As facts are retracted when a device that published
them disconnects, the Fact Space Model offers fine-grained support to deal with
the effects of disconnection. By making use of rules which define a logical rela-
tionship between several facts residing in the fact space, reactions on multiple
events can be expressed more naturally than in Lime where there is a one-to-one
mapping between the events and reactions. Reactions in Lime are triggered by
the change of only one context event. In order to react on multiple tuples in
Lime, multiple event handlers must be installed and the combination logic must
be hard-coded into these event handlers.

The remainder of the chapter is organised as follows: the next section gives
an overview of the different components of the Fact Space Model. Subsequently,
section 5.2 describes Crime (Consistent Reasoning in a Mobile Environment),
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a prototypical implementation of the Fact Space Model in which we have con-
ducted our experiments. A selection of these experiments is then presented in
section 5.3, among others a smart jukebox application.

5.1 The Fact Space Model

The Fact Space Model is a coordination model for mobile applications commu-
nicating over a mobile ad hoc network. It offers mobile applications a consistent
view on their environment which can be used to provide additional or smarter
behaviour. The view of an application on its environment consists of facts
published in a federated fact space. Concretely, facts are locally published by
applications and transparently shared between nearby devices as long as they
are within communication range. Applications have the ability to react upon
the appearance of facts, by making use of rules specified in the logic coordination
language offered by the Fact Space Model. These rules can be seen as a mapping
from (a combination of) facts onto a conclusion. Conclusions may consist of the
addition of new facts to the fact space or the execution of application-specific
actions. In contrast to Lime, the Fact Space Model gives applications the ability
to react upon the retraction of an action which is achieved by the specification of
a compensating action which is triggered when the fact is retracted. As the view
of an application’s environment is kept consistent by automatically retracting
the facts of nearby devices when they disconnect, the Fact Space Model provides
fine-grained control over the effects of disconnection. The remainder of this sec-
tion provides a more detailed explanation of both the federated fact space and
the logic coordination language.

5.1.1 Federated Fact Spaces

The view an entity has of its environment consists of all published facts by all
entities within reach. Facts can be used to represent various types of information
ranging from physical information over the availability of certain services up to
task scheduling information. The transparent distributions of these facts is
ensured by making use of a federated space, as originally proposed in Lime [44].
The difference with Lime’s federated tuple spaces lays within the perception of
the federated space as a knowledge base containing facts. As a consequence of
this difference in perception, not only the assertion but also retraction of facts is
a meaningful event which may be used as an indicator to adapt the application
at hand.

The Fact Space Model equips applications with at least two fact spaces, a
private fact space, and one or more interface fact spaces. Facts residing in the
private fact space are not shared, whereas facts residing in an interface fact
space are exchanged with other applications in connection range. Consider the
switch profile example used in previous chapters, where the main concern is to
change the profile according to the user’s location. In this example the facts
modelling the user preferences could be located in the private fact space, as
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Figure 5.1: A federated fact space

this information is only used by the application itself. Detecting the location
of a mobile phone is typically derived from the information published by a
device in earshot, for example a RFID scanner. Facts providing the location
information must be published into an interface fact space (and thus shared)
as shown in figure 5.1. All interface tuple spaces are aggregated into a host
level fact space which provides applications with the ability to use contextual
information derived by other applications. For example one application could
derive the location information, which then can be used by all applications on
the same device. Moreover, coordination between applications residing on the
same devices can also be modelled by making use of the host level fact space.
The host level fact spaces of devices which are currently in range are aggregated
into the federated fact space.

The discovery mechanism of the Fact Space Model is adopted from Lime:
when two devices discover eachother, their host level fact spaces are atomically
and transparently merged into a federated fact space. As facts are exchanged
and asserted during this merging process, applications can possibly adapt them-
selves to their newly sensed environment. As the sharing mechanism of the Fact
Space Model is based upon connectivity, when a device disconnects all facts that
where shared by this device are retracted from the host level fact spaces of the
devices it was previously connected with. Again, the coordination language
offered by the Fact Space Model provides mechanisms to provide fine-grained
control over these disconnections as is explained in the next sections.

101



5.1.2 Logic Coordination Language

The federated fact space described in the previous section ensures that the view
of an application on its environment is kept consistent by translating changes
in the environment into the assertion or retraction of facts shared by co-located
devices. Here we present a minimal logic coordination language giving appli-
cations the ability to react on changes in their environment by making use of
rules.

Consider an example rule which collects all online printers residing in the en-
vironment into a list of available printers, furthermore those printers should have
a dpi which is at least 300. The rule written in the logic coordination language
offered by the Fact Space Model is illustrated in listing 5.2. The rule must be
interpreted as follows: trigger the application-specific action addToPrinterList
if and only if the public federated fact space contains a printer fact whose
dpi is at least 300.

trigger action addToPrinterList (name , ip) if
pub l i c f a c t p r i n t e r (name , dpi , ip) and
dpi >= 300 .

Figure 5.2: Rule to add printer functionality to an application

Like the Tuple Space Model explained in chapter 2, the Fact Space Model can
be implemented in a variety of languages. In order to make a clear separation
between the model and our implementation of the Fact Space Model, namely
the language Crime, pseudo code is used to explain the logical coordination
language provided by the Fact Space Model itself. As can be seen in the example
rule of figure 5.2, logic variables are written in italics. Actions are written in
the base language implementing the Fact Space Model, e.g. in the language
C this could be a function addToPrinterList expecting two variables. In a
class-based object-oriented language this could be a method activate from the
addToPrintList object. Finally, as can be seen in the example, facts can be
quantified to denote the fact space in which they should be found or asserted.
This quantification allows the use of multiple fact spaces similar to the multiple
tuple spaces as seen in dialects of Linda, however in the Fact Space Model fact
spaces are not first class. The intention of this design decision is to avoid the
problematic semantics of first class tuple spaces as discussed in chapter 2.

The distinction between the rule specified above and a similar reaction in
Lime, is that the former implicitly provides a hook to respond to the dis-
appearance of a fact. This is achieved by the enforcement that any custom
actions also provides a compensating action. For example the compensat-
ing action for addToPrinterList in C could be implemented by a function
addToPrintList Compensate. In a class-based object-oriented language this
could be the invocation of a deactivate method. Note that compensating ac-
tions are not required to restore the application’s state prior to the execution
of the activate method.

Consider the example to switch the profile of a cellular phone depending on
its location. One solution for this example by making use of the Fact Space
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pr i va t e f a c t room(meetingRoom , s i l e n t ) .
p r i va t e f a c t room( o f f i c e , g ene ra l ) .

trigger action switch (? p r o f i l e ) and p r o f i l e (? p r o f i l e ) if
pub l i c f a c t l o c a t i o n (myID, ?room) and
pr i va t e f a c t room(? room , ? p r o f i l e ) .

trigger action switch ( d e f au l t ) if
not p r o f i l e (?p ) .

Figure 5.3: Fact Space Model: facts and rules to change the profile of a cellular
phone

Model is shown in Figure 5.3. In this example, the preferences concerning
the wanted profile are modelled by making use of a set of private room facts.
Concretely the user in the example wants his profile to be silent in a meeting
room and general in an office room.

Furthermore, the example consists of a rule which specifies to execute the
switch application-specific action as well as adding a private profile fact when
the rule is triggered. The rule is triggered when the cellular phone enters a par-
ticular room for which the user has made his preferences clear, in the example,
a meeting room and an office. To finish the example, a rule is provided which
switches the profile of the cellular phone to default when no explicit profile
is prescribed1.

As the rule reacts on the presents of both a room and location fact, the
same implementation in Lime would require the and condition to be hard-
coded in the reactions. The latter exemplifies the strength of using a separate
coordination language concerned about the contextual knowledge, where the
reaction on multiple events is incorporated in the language itself.

5.2 Crime

This section gives an overview of the logic coordination language Crime (Con-
sistent Reasoning in a Mobile Environment) which is an experimental imple-
mentation of the Fact Space Model. Crime has been used to gain experience
into modelling and building context-aware software using the Fact Space Model
for its coordination. We start this section by first giving an overview of the
basic syntax of the language. Subsequently, some of the key points of the im-
plementations design are highlighted, before presenting some typical examples
using accumulation techniques borrowed from Prolog.

1One may have notice that this rule is not strictly necessary, the same behaviour can also
be achieved using the compensating action of switch.

103



5.2.1 Crime Syntax

This section describes the syntax used by Crime which resembles the syntax
adopted by the logic programming language Prolog. The basic language con-
structs of the Crime language are facts and rules, for respectively representing
and reasoning about context information. The remainder of this section is or-
ganised as follows: first of all, the syntax of the facts is presented, followed by
those of rules.

Crime’s Facts

A Crime fact consists of a type and one or more arguments. Facts represent
contextual knowledge and reside in the fact space of the application. The type
of a fact is used to specify the meaning of the fact, similar to the name of a class
or method in class based object-oriented languages. Consider the fact shown
on the first line of listing 5.1, the type of this fact is userInfo. This specifies
that the information, expressed by the fact’s arguments, represents user infor-
mation. The second fact, location(75773, Kitchen), represents contextual
information of a person’s location.

As is already mentioned in section 5.1.1, Crime allows facts to be ascribed
to a specified fact space, called quantified facts. Whenever a fact is not quanti-
fied, it is considered to belong to the default fact space, which is private. Facts
belonging to this private fact space are not exchanged between co-located de-
vices. Consider the two facts shown in listing 5.1: the first fact isn’t ascribed to
any fact space so it belongs to the private one. The second fact is to be placed
into the public fact space and is therefore shared with all applications residing
on co-located devices. Note that this includes other applications running on the
same device as the application that asserted the fact.

1 u s e r I n f o ( Al ice , 75773)
2 pub l i c −> l o c a t i o n (75773 , Kitchen )

Listing 5.1: Crime’s facts

Crime’s Rules

Crime provides rules in order to reason about the current context which is
represented as facts maintained in a federated fact space. A rule consists of
several prerequisites and consequences. A rule is triggered whenever all its
prerequisites are met, when this occurs the rule’s consequences are executed.

The prerequisites of a rule consist of facts possibly containing one or more
variables. Variables are denoted as a string preceded with a question mark.
Consider for example the rule starting on line 1 in listing 5.3. This rule has two
prerequisites that must be fulfilled in order to execute the rule’s consequences.
The first prerequisite, public − > location(myID, ?room) represents that
a fact with type location and with a first argument equal to myID should
be part of the public fact space. There is no constraint on the fact’s second
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argument. The second prerequisite of the rule describes that there should be a
fact of type room in the private fact space. No other constraints are specified
for this second fact. However, an implicit constraint is expressed by using the
same variable ?room in two prerequisites which state that the variable bindings
in those prerequisites must be consistent.

The consequences of a rule consist of one or more actions, which can even be
user-defined. A colon prefix is used to differentiate between application-specific
actions and logic facts. Whenever the consequence is represented as a fact, the
implicit action is to add the fact to its denoted fact space, when no fact space is
specified it is added to the private fact space. A consequence can also be a user-
specific action to be executed. For instance the consequence on the first line
in listing 5.3 is a user-specific action that implements the switch operation on
the user’s cellular phone. The user-specific switch action from the rule denotes
implicit method invocations on the switch class. This custom action switch
is enforced to inherit from the abstract class Action. Subclassing from this
class implies that the switch class must implement an active method which
is invoked when the action is derived, as well as a deactivate method which
describes a compensating action to be performed when the action is retracted.
The implementation of this switch action is shown in listing 5.2. When the
activated method is invoked it sets the profile of the mobile phone by making
use of the arguments passed to it, whenever the deactivate method is called,
it switches the profile back to the default profile.

public class Switch extends Action {
public stat ic MobilePhone phone ;

public void ac t i va t ed ( Vector args ) {
P r o f i l e p r o f i l e = new P r o f i l e (
args . elementAt ( Attr ibuteValue .PROFILE) ) ;
phone . switch ( p r o f i l e ) ;

}

public void deac t i va t e ( Vector args ) {
phone . switch ( P r o f i l e .DEFAULT) ;

}
}

Listing 5.2: Crime: application-specific action

Consider the two rules shown in listing 5.3. The first rule, which starts on line
1, switches the profile of a user’s cellular phone whenever the user has a preferred
profile specified for the room where he’s located at the moment. Furthermore,
the second consequence of the rule publishes a fact of type profile in the user’s
private fact space. The second rule (line 6-7) is triggered when the user has no
private fact profile. In that case the profile of his mobile phone is switched to
the default profile.

1 : switch (? p r o f i l e ) ,
2 p r o f i l e (? p r o f i l e ) :−
3 pub l i c −> l o c a t i o n (myID, ?room ) ,
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4 room(? room , ? p r o f i l e ) .
5
6 : switch ( d e f au l t ) :−
7 not p r o f i l e (?p ) .

Listing 5.3: Crime: switch rule

5.2.2 Federated Fact Spaces

Crime’s implementation of the federated fact spaces that is described in section
5.1.1 is achieved by a distribution architecture similar to the one used by Lime,
which is discussed in chapter 2. Recall that Lime uses three primitives as its
interface tuple space, namely read, in and out. Lime’s read operation reads a
tuple from the tuple space, whereas its in operation also removes the read tuple
from the tuple space. These operations are omitted by Crime as every fact in
the fact space is implicitly read when using prerequisites in a rule: this makes an
explicit read operation in Crime obsolete. The out operation of Lime publishes
a tuple in the tuple space, while this behaviour is supported by Crime’s assert
operation.

Example

In this subsection we explain the use of the federated fact space in Crime by
means of an example. Consider an application where a user wants his mobile
phone to be switched to his preferred profile when entering a certain room.
Alice doesn’t want to be disturbed when she’s participating in a meeting, so the
fact space residing on her cellphone contains a fact room(meeting, silent).
Furthermore, the fact space contains some other non-quantified facts, as other
preferred profiles and her user identifier. This fact space is depicted in figure
5.4(a). Alice’s mobile phone has a Crime application running which performs
the profile switching. The rule of this application is also depicted in the figure.
The second part of the picture represents the fact space of a computer standing
in the meeting room.

Suppose Alice enters that meeting room. Her presence is detected by a
widget and the computer in the room publishes a fact dedicating that the
person with user identifier 75773 is present: public − > (location(75773,
meeting). This is depicted as step (1) in figure 5.4(b). The detection of users
is explained in more detail in section 5.3.1. As Alice’s cellphone is co-located
with the computer in the meeting room, all quantified facts are exchanged
between the two devices. So, as step (2) represents, the published fact is added
to the fact space residing on Alice’s phone.

The addition of the fact public − > location(75773, meeting) triggers
the rule of Alice’s application. The rule’s prerequisites are all met and the
consequences are executed. First the application specific action :switch is
executed, which changes the profile on Alice’s mobile phone. The second action
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(a) Initial configuration

(b) Alice enters meeting room

Figure 5.4: Fact spaces of switch profile rule (1)

asserts a fact profile(silent) to the fact space residing on her phone. These
steps are depicted in figure 5.5(a)

Now, when Alice leaves the room, the context widget detects her absence
and the fact public − > location(75773, meeting) is retracted from the
fact space of the computer in the room. As Alice’s mobile phone and that
computer are no longer in earshot, the exchanged facts are retracted which
causes the retraction of that fact in the fact space residing on Alice’s mobile
phone (step (2) in figure 5.5(b)). The retraction of these facts is caused by
the disconnection of the two devices, namely Alice’s cellular phone and the
computer. Furthermore, the prerequisites of the Crime rule are no longer met
and all consequences must be retracted. So, as step (3) in the picture indicates,
the published fact profile(silent) is retracted from the fact space as well.
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(a) Profile is switched to silent

(b) Alice leaves meeting room

Figure 5.5: Fact spaces of switch profile rule (2)

Persistent Facts

Persistent facts are facts which remain in other fact spaces, even in case of dis-
connections. Crime does not have native support for persistent facts, however
a custom action :persistent can easily be written. The idea is that the acti-
vate method of this action inserts a private fact into the local fact space of the
application. However the deactivate method of the persistent class does not
retract this fact. This behaviour ensures that this private fact is not removed
when the device that published the public fact disconnects.

: p e r s i s t e n t (? args ) :−
pub l i c −> f a c t (? args ) .

Listing 5.4: Crime: switch rule implementing persistent fact
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5.2.3 Logic Coordination Language

The Fact Space Model of Crime provides a logic coordination language for rea-
soning about context information that is represented as facts in a federated fact
space. This logic language uses the forward chaining strategy for deriving new
conclusions as this data-driven technique is very suitable for the event-driven
nature of Crime. A first paragraph of this section discusses both derivation
strategies and addresses the choice for using forward chaining for Crime’s im-
plementation. A second important implementation choice of this logic coordina-
tion language is maintaining the truth. Truth maintenance is very important in
mobile environments as stable connections can not be taken for granted and dis-
connections are frequently occurring. When two devices go out of earshot, not
all derived conclusions and exchanged facts are guaranteed to be true. The prob-
lem of maintaining the truth is discussed in a second paragraph of this section.
A third paragraph introduces extra constructs borrowed from the declarative
language Prolog.

Inference Engine

Backward chaining is a resolution strategy which can be used to allow applica-
tions to reason over a stable distributed knowledge base describing the infor-
mation for one application. This restriction is due to the fact that taking into
account new information implies that the inference engine must be restarted
explicitly and the derivation process must be restarted from scratch. Restarting
the derivation process everytime a new fact is asserted to the fact base is costly
and time-consuming. Therefore, the use of backward chaining inference engines
should be restricted to the case where the facts in the distributed knowledge
base are related to a single application. In these cases, it is most likely that
a change in the knowledge base is reflected in the outcome of the reasoning
process.

The use of a forward chainer on the other hand is useful when applica-
tions need to reason over a fluctuating distributed knowledge base. Forward
chaining is a data-driven reasoning strategy, this implies that, in contrast with
the backward chaining strategy, the inference engine is triggered automatically
when changes to the knowledge base are made. The main difference with the
backward chaining strategy is the behaviour when new data becomes available.
Instead of starting from scratch, the inference engine builds its proofs bottom-
up, resulting in a rederivation of only those parts affected by the appearance
of the new data. The benefit of using this strategy in a distributed context is
that unrelevant changes to the knowledge base are filtered out in the first step
of reasoning: Filtering is done by checking the prerequisites of the rules, if none
of these prerequisites match with the new information, this can be dismissed.

Truth Maintenance System

The Fact Space Model provides a logic coordination language for reasoning
about a perceived environment. As this environment is a mobile ad hoc network,
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devices can go out of range due to the transient connectivity of the network.
Such disconnections result in the retraction of facts, namely the quantified facts
of the other device. As the connectivity of a mobile ad hoc network is transient,
it is very likely that those devices’ communication is restored and all quantified
facts need to be exchanged and reasserted. These changes to the fact spaces
can not be delayed as context-aware applications depend on the facts residing
in it.

In order to overcome this, Crime adapts the behaviour of the Rete algo-
rithm in order to more efficiently support retractions and reassertions of facts.
The basic Rete algorithm, that is described in chapter 3, handles retractions
of facts by propagating the negation of the token through the network – instead
of inserting a positive token to the root node, a negative token is inserted and
propagated. By propagating this dual token through the Rete network, the
match operations of the join nodes, that perform consistency variable checks,
need to be recomputed. This technique is rather costly as all previous com-
putations need to be recalculated. Furthermore, when the fact is reasserted,
those computations need to be recomputed twice. So, instead of deleting this
information a second cache is introduced in the basic Rete network. This cache
keeps track of all tokens derived from a fact which is no longer present in the
fact space. Whenever the fact is reasserted, its corresponding tokens can be
reinserted in the normal memories of the network. The dependencies between
an asserted fact and its corresponding tokens is realised by using forward ref-
erences. This technique is called scaffolding and is explained in more detail in
chapter 8.

Extending Primitives

Crime provides some extra statements which enable writing more complex
rules. Those statements are borrowed from Prolog [62], namely findall, bagof
and length. The remainder of this section highlights these constructs by means
of an example rule.

The first Prolog construct we introduce is findall. The findall statement
consists of three arguments: a variable, a query and a variable for accumulating
bindings. The first argument denotes the values of the query to be accumulated
in the last argument. Consider the rule shown in listing 5.5, every occurrence of
the variable ?person in the query is accumulated in a list ?persons. The rule
determines all users that are located in an office.

1 pre sent (? persons ) :−
2 f indal l (? person ,
3 ( l o c a t i o n (? person , o f f i c e ) . ) ,
4 ? persons ) .

Listing 5.5: Crime: rule using findall

Consider the facts shown in 5.6 which are part of Crime’s working memory.
The findall rule of listing 5.5 adds a new fact to the working memory, namely
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present([ 76539, 79783 ]). The fact that is added to the working memory
has one argument which is a list containing the user identifiers of all the persons
that are located in an office.

1 l o c a t i o n (75773 , meeting ) .
2 l o c a t i o n (76539 , o f f i c e ) .
3 l o c a t i o n (72398 , meeting ) .
4 l o c a t i o n (79783 , o f f i c e ) .
5 l o c a t i o n (83417 , k i t chen ) .

Listing 5.6: Facts in Crime’s working memory

Another useful Prolog construct is bagof. Bagof has a syntax similar to the
syntax of the findall statement. Whereas findall is able to collect occurrences of
a certain variable into a list, bagof is able to collect these variable occurrences
according to the unbound variables in the query. So, in the example rule of
listing 5.7, the variable ?person is accumulated according to the ?room he is
located.

1 pre sent (? persons , ?room) :−
2 bagof (? person ,
3 ( l o c a t i o n (? person , ?room ) . ) ,
4 ? persons ) .

Listing 5.7: Crime: rule using bagof

Reconsider the working memory shown in listing 5.6. The bagof rule adds
new facts for each room, so three facts are added to the working memory:
present([75773, 72398], meeting), present([76539, 79783], office), and
present([83417], kitchen). For each room the user identifiers are accumu-
lated, these lists are the first argument of the present-facts that are added.

A last construct determines the length of the lists that are used by a findall
or bagof statement. For instance, listing 5.8 shows an adapted version of the
bagof rule. This rule determines the number of persons in a certain location.

1 pre sent (?number , ?room) :−
2 bagof (? person ,
3 ( l o c a t i o n (? person , ?room ) . ) ,
4 ? persons ) ,
5 length (? persons , ?number ) .

Listing 5.8: Crime: rule using length

The facts in the working memory that is shown in listing 5.6 cause the addition
of three present-facts, namely present(2, meeting), present(2, office),
and present(1, kitchen).

The introduction of these Prolog constructs enables Crime to solve
the multiple rd problem that is addressed in chapter 2. Recall the ex-
ample where a user wants to retrieve all tuples of a customer with id 42:
< Leased, ?CarId, 42 >. In Linda an rd operation can block an entire pro-
gram, namely when performing a (n + 1)th rd operation and there are only n
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tuples of type Leased residing in the tuple space. Crime doesn’t suffer from
this problem as the findall construct cashes all matched facts in the Rete net-
work and returns all the occurrences of the variable ?CarId in one accumulated
list. Listing 5.9 shows a Crime rule which retrieves all car identifiers leased by
the customer with id 42.

1 l e a s ed (? ca r Id s ) :−
2 f indal l (? carId ,
3 ( l e a s ed (? carId , 4 2 ) . ) ,
4 ? ca r Id s ) .

Listing 5.9: Crime: solution for multiple rd problem using findall

5.2.4 Crime’s Contributions

Crime is based upon the federated tuple spaces provided by Lime. These tuple
spaces form a consistent way to share information which supports both space
and time uncoupling, as is discussed in chapter 2. However, Lime does not
provide direct support to react on a combination of tuples residing in the tuple
space. Furthermore, the language doesn’t support a mechanism to undo the
reactions on tuples, when they are no longer present in the tuple space. Crime
overcomes these shortcomings as it uses a logical inference engine for reasoning
about combinations of facts residing in the fact space. The use of a logical
inference engine is also supported by other languages like for example Gaia
that is described in chapter 4. As for Gaia, the rules of this logic language
allow to keep track of causal links between the current context and possible
reactions on that context information. However, there’s no support for redoing
the actions whenever the context is changed. Reacting and reversing the actions
based on the sensed context is possible in Crime as the retraction of a fact in
the fact space can cause the prerequisites of a rule to fail and the consequences
of that rule are made undone if it is specified.

5.3 Building Context-Aware Applications

This section gives an overview of the most representative context-aware appli-
cations developed in Crime. As all these application rely on location based-
information, first an overview is given how location detection is conceived in
Crime. This location detection system is used in the rest of the applications
presented. Then two light-weight applications, an in/out board and a messen-
ger service [19] are presented. Subsequently we explain the implementation of
a slightly more involved application, namely a context-aware jukebox [49, 6].

5.3.1 Detecting a User’s Location

Recently many new detection mechanisms have been proposed to derive a per-
son’s location. A common factor of many of these new technologies is that
indoor location positioning is mostly realised by some sort of tracking device
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which individuals must carry in order to know their whereabouts. This device
can be used to actively send through the location of the person in question
or can be passively scanned when entering an area. Two popular technologies
are infrared signals (as used in the Active Badge system [65]) and the recently
developed RFID tags [45].

The choice of tracking technology for an industrial application can be cru-
cial, as the accuracy and the power consumption of these technologies can be
significantly different. However the impact on the development of these appli-
cations is rather minimal. We have therefore opted to use a rather conservative
stance, by using the available bluetooth technology of the Mac mini (the devel-
opment platform) in order to detect the users of the system by means of their
bluetooth-equipped cellular phones.

Concretely, our setup consists of an event-driven application detecting all
reachable bluetooth devices. Upon the detection of a new device, it asserts a
private fact (e.g. observed("Alice’s Phone")) by making use of the API of
the Crime engine. The application further uses a trivial rule in order to map
these facts upon location facts, as we have used in previous examples in this
chapter. The rule performing this mapping is shown in listing 5.11.

thisRoom (LivingRoom ) .

pub l i c −> l o c a t i o n (? id , ?room) :−
thisRoom (? room ) ,
observed (? id ) .

Listing 5.10: Location detection rule in Crime

5.3.2 In-Out Board

The in-out board application developed in Crime gives an overview of a person’s
location. The board also gives information about the phone number of the room
where the person is located. This information could be used in a basic phone
forwarding system.

The application uses the public location facts that are asserted to the
fact space by the location detector as is described in section 5.3.1. Beside this
information, it also makes a mapping from a user identifier, ?id, to the user’s
name. Furthermore, facts representing the mapping between rooms and their
corresponding telephone number are also kept in the public fact space.

pub l i c −> person (76539 , Bob , student ) .
pub l i c −> person (75773 , Al ice , s tudent ) .
pub l i c −> phone ( LivingRoom , INTERN 0042 ) .

: SetBoard (?name, ?room , ?number ) :−
l o c a t i o n (? id , ?room ) ,
private −> person (? id , ?name, ? occupat ion ) ,
private −> phone (? room , ?number ) .

Listing 5.11: In-out board application in Crime
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The user-defined action SetBoard refreshes the GUI shown in figure 5.6.
In this screenshot we see that Alice is currently in the living room, whereas
Bob’s location is unknown at the moment. However, the in-out board provides
information telling that Bob was last seen in the living room at 16h25. This is
achieved by the compensation action of the SetBoard class as defined by the
programmer. When this compensating action is executed, for instance when
Bob left the living room, the compensating action records the time and updates
the GUI.

Figure 5.6: In-out board in action

5.3.3 Messenger Application

The messenger application consists of viewing and sending messages exchanged
between certain persons. Viewing the messages is performed by special boards
which display the messages for the persons residing the room. Sending messages
is realised by making use of a Crime application. The rules steering this ap-
plication are shown in listing 5.12. It makes use of special message facts which
are inserted by making use of a GUI. When such a fact is asserted, a trivial
mapping is made for attaching the sender’s name to the message. The example
shown in listing 5.12 consists of a fact base and the rule needed to attach the
user’s name to his messages. Given this fact base and the rule, a public fact
message(Bob,Alice,"Hello Alice") is published.
private −> myName(Bob ) .
private −> message ( Al ice , ” He l lo A l i c e ” ) .

publ ic−> message (? from , ? to , ?message ) :−
private −> message (? to , ?message ) ,
private −> myName(? from ) .

Listing 5.12: Messenger application in Crime

In order to display the messages, a message board must detect those messages
intended for a person located in the same room as the board. Furthermore, when
a person leaves that room, the messages intended for this user must be removed
from the board. Also when moving the board itself from one room to another
room, the board of the messenger application must adapt itself to display the
messages of the new room it is located in. The rule which assures all of the
above requirements is shown in listing 5.13.
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By making use of the location detection mechanism described in section
5.3.1, the board detects the room it is located in. As a direct consequence of
the retraction mechanism of Crime, the board adjusts itself when it is relocated.
The rule specifies that in order to show a message, the receiver of the message
must be located in the same room as the board displaying the message. This
achieved by using the same variable name, namely ?room. Making sure that the
board retracts the messages when a user leaves the room is realised by executing
a compensating action when the location(?id,?room) fact is retracted.

th isBoard (BOARD IDX42 ) .

: showMessage (? from , ? to , ?message ) :−
message (? from , ? to , ?message ) ,
l o c a t i o n (? board , ?room ) ,
th isBoard (? board ) ,
person (? id , ? to , ? occupat ion ) ,
l o c a t i o n (? id , ?room ) .

Listing 5.13: SetBoard application in Crime

5.3.4 A Context-Aware Jukebox

Alice and Bob are two students at the Vrije Universiteit Brussel and they spend
quite a lot of time together. When they are not studying, a great part of their
life is all about music. In the students home, where they live during the week,
an entertainment room is available. This room is used for relaxing and most of
the time a jukebox is playing. Each person has a different taste when it comes
to music: Alice, Bob and their friends each have a favourite genre. No arguing
of who’s in charge of the jukebox is needed, neither is reminding to turn off
the jukebox when leaving the entertainment room as the last person. This is
a direct consequence of the fact that the jukebox is in fact a small computer
(a Mac Mini in our setup). The jukebox combines the location information it
receives from the location detectors and the musical preference of Alice and Bob
to construct an acceptable playlist for all users residing in the room. Moreover
when friends come over their taste in music can be taken into account as well.
Therefore the jukebox knows exactly what his users like and plays just the songs
they prefer. When nobody is in the room, the jukebox even stops playing.

In order to implement the scenario presented above we have identified four
important issues. A first important issue is the detection of the users currently
located in the room. Secondly when friends come over they should be able to
deploy the applications needed to inform the jukebox of their personal taste in
music. Thirdly, when users walk into the entertainment room the jukebox must
be able to perceive their musical preferences and possibly switch itself on. And
finally, the jukebox must compile the playlist according to the various tastes of
the users present in the room.

The first requirement, namely the detection of users in a room is imple-
mented as already presented in section 5.3.1. We discuss the rest of the necessary
building blocks for this setup in the remainder of this section.

115



Figure 5.7: Components of jukebox application

In order to implement the scenario described above, several components are
needed. These components are depicted in figure 5.7. The jukebox is simulated
by the iTunes application running on a Mac Mini. Alice and Bob’s cellular
phone with bluetooth connectivity is needed for detecting when they are in
communication range with the Mac Mini. A last component is a computer that
can be used for specifying a user’s taste of music: for instance, when friends come
over, they can select their favourite kind of music on that computer in order
to inform the iTunes application of their musical preference. This computer is
not always needed, as friends can deploy a Crime application which enables
selecting their favourite music on their own devices.

Deploying Applications

One issue of the scenario described in the previous section is the deployment
of applications, in this concrete scenario an application to specify one’s musical
preferences. In order to be able to provide this kind of service a minimum
infrastructure is needed. Therefore a small application in Crime is developed
to keep track of the available applications depending on the users’ location. The
user which runs this application is informed of all the available applications he
can deploy. Listing 5.8 illustrates how the GUI is updated by making use of the
offer action. Downloading and running the applications when the user opts to
deploy it is realised by the underlying application.

A remarkable property of this application is that it dynamically takes into
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: o f f e r (?name ? u r l ) :−
app l i c a t i o n (?name ? u r l ) .

a pp l i c a t i o n ( jukebox , ” http :// prog . vub . ac . be/amop/ crime/ jukebox . z ip ” ) .

Figure 5.8: Supporting the advertisement of available applications

account the available applications depending on the user’s context. This is a
direct consequence of using public facts in order to represent the available
applications. As these public facts are shared according to the connectivity of
the device offering them the user only perceives those applications offered in his
approximation.

When a fact that represents an available application is retracted, the
deactivate method of the offer action is invoked. In the current implementa-
tion this deactivate method removes the available application form the list. One
possible extension of the deployment application could be to treat a previously-
deployed application differently. This could be achieved by asserting a private
fact everytime an application is deployed, hence the rule described previously
could incorporate this fact in order to behave differently.

Music Selection

The use of a coordination language implies that the coordination and distribu-
tion aspect of an application can be strictly separated. This separation implies
that by making use of a coordination language one can enable non-distributed
applications to take into account contextual information, with the limitation
that this non-distributed application must provide the adequate hooks to change
it behaviour. This observation has led us to the adaptation of an existing juke-
box application that takes into account the contextual information provided by
Crime. The jukebox application adapted is the iTunes music player2 which is
an established software artifact providing the appropriate set of hooks in or-
der to implement our scenario. The Crime rules in order to steer the jukebox
application and determining which music to play are shown in listing 5.9.

The first rule triggers the context event handler Toggle when a user is
detected in the room, which in turn starts the music player. Similarly, when no
users are present in the room, the deactivate method of that application spe-
cific action ensures that the jukebox stops playing music. Again the detection
mechanism used for this application is based upon the location facts which
were generated by the location detecting application described in 5.3.1.

Besides detecting the users present in a room, the jukebox application must
attribute the ratings of a particular genre depending on the current number
of users in the room and the number of users preferring that specific taste of
music. The second and third rules, shown in figure 5.9, calculate these values by

2Copyright 2000-2006 Apple Computer Inc.
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making use of the findall and bagof constructs presented in section 5.2.3. The
findall of the rule starting on the fourth line, accumulates all persons present in
the room into the list ?persons. Analogue to findall, the bagof construct used
in the rule (line 10-15) accumulates all persons in the room according to their
preferred genre. Finally the last rule uses the user-defined action updateRating
to change the rating of a particular genre using the information provided by the
two previous rules. The updateRating action uses this information in order
to compile a playlist where highly rated music is featured more often. This is
sufficiently to ensure that the music played by the jukebox is appreciated by
most users present in the living room.

1 : t o gg l e ( ) :−
2 l o c a t i o n (? person , ” Liv ing Room” ) .
3
4 t o t a l (? quant i ty ) :−
5 f indal l (? person , (
6 l o c a t i o n (? person , ” Liv ing Room” ) ) ,
7 ? persons ) ,
8 length (? persons , ? quant i ty ) .
9

10 category (? genre , ? quant i ty ) :−
11 bagof (? person , (
12 l o c a t i o n (? person , ” Liv ing Room” ) ,
13 p r e f e r s (? person , ? genre ) ) ,
14 ? persons ) ,
15 length (? persons , ? quant i ty ) .
16
17 : updateRating (? genre , ? r a t i ng ) :−
18 category (? genre , ? abso lu t e ) ,
19 t o t a l (? t o t a l ) ,
20 r a t i ng i s ? abso lu t e / ? t o t a l .

Figure 5.9: Crime: rule set to customise jukebox playlist

5.4 Conclusion

This chapter describes the Fact Space Model and its experimental implementa-
tion Crime. This coordination language is based on the tuple spaces provided
by Lime and introduces new mechanisms to solve the problems at hand in a
mobile ad hoc network, namely disconnections. As the Fact Space Model treats
the federated tuple spaces of Lime as a fact base for storing contextual infor-
mation where every change is reflected in an appropriate action. When context
becomes available by asserting facts, this assertion adapts the behaviour of the
applications depending on this sensed context. When the facts are retracted,
as context becomes unavailable, the context sensitive application’s behaviour
is adapted according to this loss of information. So, both the assertion and
retraction of facts are important for the adaptation of the applications.
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Crime provides a logic language to reason about a combination of facts
and their consequences. By keeping these causal links, context adaptations can
be performed when context becomes available or unavailable. Crime handles
disconnections of context providers in an elegant way: when context information
becomes unavailable, the corresponding facts are retracted from the federated
fact space possibly resulting in the retraction of actions that were previously
executed.

The next chapter describes the implementation of Crime in more detail and
highlights the design choices we have made
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Chapter 6

Crime

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development
of context-aware applications. While in the previous chapter we have discussed
how applications can be written by using the Fact Space Model and subsequently
in the experimental language Crime, this chapter is more technical and gives an
overview of the various aspects of the implementation of this language. Crime
is a direct translation of the Fact Space Model and incorporates an inference
engine which is forward-chained by making use of a Rete network.

The language we have chosen for the implementation of Crime is Java.
The decision of Java is justified as it’s one of the few languages which is widely
supported by mobile devices. The aspects of the implementation which we
highlight in this chapter can be divided into three large parts: A first important
aspect of our implementation involves the translation of source code into Java
objects. This translation is implemented by making use of the ANTLR tool.
After this translation, the resulting parse tree is processed and transformed
into a Rete network. A second important aspect of our implementation is the
inference engine. This engine uses the Rete network that is built by the parser
and propagates tokens trough this network in order to derive the effects of the
assertion or retraction of a fact. The implementation of the various nodes and
how they propagate tokens is highlighted in section 6.2. The third large part of
our implementation is the network layer which ensures that facts are exchanged
when two devices are in reach.

6.1 Parsing

Parsing is the process to translate a sequence of tokens into a datastructure
for further processing by using the rules specified by a grammar. This process
can be highly automated and various tools for realising this are freely available.
The tool used for the implementation of Crime is ANTLR, which transforms
the input of a file into an abstract syntax tree given a grammar in an Extended
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Backus-Naur form. Furthermore, the tool provides the means to traverse the
tree in order to transform this abstract syntax tree into the various datastruc-
tures used for further processing, in the case of Crime we translate this tree
into a Rete network when parsing a rule.

6.1.1 Parsing Rules

A simplified version of the Backus-Naur form of the grammar of a Crime rule
is shown in listing 6.1. This grammar specifies that a rule consists of a number
of actions followed by the inference symbol (:-) and several conditions. Actions
consist of an action possibly followed by more actions, where an action can be
either a user-defined action or a logical fact to be asserted, called pattern. Such
a user-defined action is a pattern proceeded with a colon. Conditions consist
of a pattern, a findall construct or a bagof statement possibly followed by more
conditions and ending with a dot symbol. The Patterns expression consists of
several patterns which all have a type and attributes surrounded by parenthesis.
Attributes consist of several attributes, which can be a variable or a constant.
Variables consist of a name proceeded with a question mark.

<ru le> : := <act ions > ’ :− ’ <cond i t i ons >
<act ions > : := <act ion> ’ , ’ <act ions > | <act ion>
<act ion> : := <use r a c t i on > | <pattern>
<use r a c t i on > : := ’ : ’ <pattern>
<cond i t i ons > : := <pattern> ’ , ’ <cond i t i ons >

| ’ f i ndAl l ’ ’ ( ’ <var i ab l e > ( <patterns> ) <var i ab l e > ’) ’ ’ , ’
<cond i t i ons >

| ’ bagof ’ ’ ( ’ <var i ab l e > ( <patterns> ) <var i ab l e > ’) ’ ’ , ’
<cond i t i ons >

| ’ . ’
<patterns> : := <pattern> ’ , ’ <patterns> | <pattern>
<pattern> : := <type> ’ ( ’ <a t t r i bu t e s > ’ ) ’
<a t t r i bu t e s > : := <a t t r i bu t e > ’ , ’ <a t t r i bu t e s > | <a t t r i bu t e >
<a t t r i bu t e > : := <var i ab l e > | <cte>
<var i ab l e > : := ’? ’ <name>

Listing 6.1: Syntax of the Crime rules in Backus-Naur form

With the specification of the rule grammar shown in listing 6.1, ANTLR
can parse and transform rules into a parse tree. Consider the example shown
in listing 6.2, this rule collects the names of all persons residing in the kitchen
and passes them to the user-defined action LocatedInKitchen.

: LocatedInKitchen (? persons ) :−
f i n d a l l ( ?name ,

( l o c a t i o n (? id , Kitchen ) ,
u s e r I n f o (?name , ? id ) ) ,

? persons ) .

Listing 6.2: Crime: located in kitchen rule

The resulting syntax tree is shown in figure 6.1. Traversing the tree in a
depth first manner and collecting all the leafs results in the original rule. The
ANTLR tool provides the facilities to transform such a tree into Java objects,
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during this phase various checks are executed. For instance verifying whether
all variables used in the consequences of a rule are provided by the body of the
rule. This allows the inference engine to transform the resulting parse tree that
is represented by Java objects (at that moment in time), into a Rete network
without the need to perform these checks during that phase.

Figure 6.1: Parse tree of located in kitchen rule

6.1.2 Transforming the Parse Tree

A parse tree could be used in order to represent and reason about the rules
in the system, however this representation is far from suitable. This section
explains how this parse tree is further transformed in order to compile the parsed
rules into a Rete network. As shown in the uml diagram depicted in 6.10, all
expressions of the parse tree are modelled by extending from the abstract class
Expression. This class ensures that all expressions in the system implement
the buildLayer method. This method forms the core of how the Rete network
is built. By incorporating the buildLayer methods in the expressions, new
expressions can be added easily.

A buildLayer method receives three arguments: the reasoning engine, the
last produced node by previous expressions, and all subsequent expressions. The
reasoning engine is used in order to access transformations which are used by
more than one expression form. The last produced node is needed to extend the
Rete network built so far, with the nodes needed for representing the current
expression. The third argument is provided as the previous expressions are
needed in order to make consistency checks between several prerequisites in the
body of the rule. Note that not all prerequisites contribute to the extension of a
token during its propagation through the Rete network: for instance variables
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in a not expression are not bound with variables in subsequent conditions.
For example the body of a rule: not foo(?a),bar(?a), does not express

that the negation of the foo fact must have a same variable at position 1 as
the subsequent bar fact. It only expresses that in the absence of a fact which
binds with foo(?a) the rule is able to be triggered, therefore the variable ?a in
the precondition bar(?a) is free.

After the parsing phase by ANTLR, the rule represented in listing 6.2 is mod-
elled by an object Rule. This object contains prerequisites and consequences,
representing respectively the body and the head of the rule. This object is
passed to the reasoning engine by invoking its deploy method which is shown
in listing 6.3.

The deployment of a rule consists of iteratively calling the buildLayer meth-
ods of all the expressions residing in the prerequisite of the rule. During every
iteration of this process, the lastEnd node, is set upon the result of this method
call. Furthermore, the vector which contains all the previous expressions must
be updated by the expression itself. By leaving this update to the expression
itself, expressions that do not pass additional information, like for instance the
not expression, can be implemented more conveniently. When all expressions of
the prerequisites are handled, the consequences of the rule are initialised, this
involves the lookup of the user-defined actions and transforming the facts in the
consequences to an assert action provided by Crime. When these consequences
are initialised, a production node is made and attached to the end of the Rete
network. In the rest of this section an overview of how expressions are converted
in order to build a Rete network is given.

deploy ( Rule r u l e ) {
. . .
for ( I t e r a t o r p r e I t r = p r e r e q u i s i t e . i t e r a t o r ( ) ; p r e I t r . hasNext ( ) ; ) {

Express ion pre = ( Express ion ) p r e I t r . next ( ) ;
lastEnd = pre . bu i ldLayer ( this , lastEnd , lPre r eq ) ;

}
i n i t a l i s eCon s equ en c e s ( r u l e . getConsequences ( ) , lPre r eq ) ;
ProductionNode pNode = NodesFactory . productionNode ( ru le , this ) ;
lastEnd . addChild (pNode ) ;

}

Listing 6.3: Deployment of a rule by the reasoning engine

Prerequisite

Pseudo code for the buildLayer method of a parsed fact is shown in listing
6.4. For every prerequisite in the rule which is represented as a Fact object,
its buildLayer function is responsible for filtering out those facts that have a
wrong type by using a filter node. This is realised by invoking the root node’s
insertChild method, which returns a filter node filtering on the right type.
This root node only creates one filter node for each type so that these kind of
filter nodes can be reused by different rules.
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Another filter node is created to filter out constant checks and checks on
intra-elements which is performed by calling the engine’s buildFilterNode
method that instantiates a filter node with the right filters for that prerequisite.
This is accomplished by iterating over the attributes of that fact and creating
an AttributeFilter for every constant. This method also creates filters to
test on intra-elements. This is realised by making a VariableFilter for every
variable which occurs more then once. This filter ensures that only those tokens
are passed that have the same attributes on the corresponding place of the
variables residing in that fact. This last created filter node is subsequently
added as a child to the filter node responsible for checking the fact’s type.

To finalise, a join node is instantiated which combines the last node built by
previous prerequisites in combination with the one performed by transforming
this prerequisite. The making of a join node requires that there are made join
node filters for every variable occurring in the fact and in one of the prerequisites
handled before. Subsequently, it adds itself to the prerequisites and returns the
join node or the right end in case the prerequisites were empty.

class Fact {
method ReteNode bui ldLayer ( CrimeEngine engine , ReteNode

lastEnd , Vector p r e r e q u i s i t e s ) {
Fi l terNode f i l t e rNod e = rootNode . i n s e r tCh i l d (myType ) ;
ReteNode endNode = Engine . makeFilterNode ( this ) ;
ReteNode rightEnd f i l t e rNod e . addChild ( endNode ) ;
JoinNode joinNode = makeJoinNode ( this , lastEnd , rightEnd , p r e r e q u i s i t e s ) ;
p r e r e qu i s t e s . add ( this ) ;
return joinNode or RightEnd ;

}
}

Listing 6.4: BuildLayer method for Fact expression

To summarise, we recapitulate the different steps that must be performed
for transforming a rule’s prerequisite:

1. a filter node must be instantiated or updated as the root node’s child in
order to filter on the prerequisite’s type

2. for all constant attributes of the fact a new Filter is created

3. group all those filters (needed for constant tests and intra-elements) to-
gether in a second filter node

4. this last filter node forms the child of the first one which is used for filtering
on the fact’s type

5. the previously built network – caused by building another prerequisite –
must be joined with this last filter node

6. this join node is the last node of the Rete network built so far
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Findall

Building the Rete network for a findall expression is very similar to that of
building a prerequisite. However, as a findall statement has a list of expressions
as its second argument, this subexpression contains a list of statements that
must be built also. Pseudo code for the buildLayer method of the findall
statement is shown in listing 6.5. As can be seen, first the Rete network of the
expression list is built. Then the output of this newly built network is joined
to the previously built network of the previous prerequisites. In case that the
findall expression is the first prerequisite of the body, this step can be omitted as
there are no previous prerequisites. The resulting joinNode or to the rightEnd
in case that there where no previous prerequisites, is then extended with a findall
node.

class Fact {
method ReteNode bui ldLayer ( CrimeEngine engine , ReteNode

lastEnd , Vector p r e r e q u i s i t e s ) {
ReteNode rightEnd = buildReteNetwork ( this . e xp r e s s i o nL i s t ) ;
JoinNode joinNode = makeJoinNode ( this . e xp r e s s i onL i s t ,

lastEnd , rightEnd , p r e r e q u i s i t e s ) ;
p r e r e qu i s t e s . add ( this ) ;
ReteNode f i n d a l l = makeFindallNode ( accumulator , makeAttr ibutePicker ( ) ) ;
attach f i n d a l l to the joinNode or to rightEnd
return f i n d a l l ;

}
}

Listing 6.5: BuildLayer method of findall expression

Recapitulate the different stages for transforming a findall statement:

1. transform the query which is the findall’s second argument

2. join the resulting network of step one with the Rete network that was
built by transforming previous expressions

3. the last node of the current Rete network is then is attached with a findall
node

The transformation of a bagof expression only differs from the one that was
just described as a bagof node is attached in the last step of the buildLayer
method instead of a findall node.

Example

Recall the example rule from listing 6.2, its transformation into a parse tree is
already shown in section 6.1.1. Here we show how this parsed rule is transformed
into a Rete network.

The first step of the process invokes the engine’s deploy method with
the parsed located in kitchen rule. The prerequisites of this rule consist of
only one expression, namely a findall expression for which the engine calls its
buildLayer method . Transforming a findall statement starts by building the
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network of the subexpressions residing in it. In this example there are two facts,
namely location(?id, Kitchen) and userInfo(?name, ?id). Executing the
buildLayer method of this first prerequisite results in the addition of one filter
node checking on the type location.

Thereafter the buildLayer of the second fact is invoked which first cre-
ates a filter node checking the type userInfo. Moreover, this method ensures
that that the filter node created by the previous expression, is joined with this
newly created filter node. Recall that the previous prerequisites are needed
for keeping track of used variables, for which variable consistency checks might
be performed. When the second fact creates a join node to connect the filter
node location and the filter node userInfo, these previous prerequisites are
searched for variable bindings occurring also in the second fact. As the previous
prerequisite location(?id, Kitchen) already contains a variable ?id the join
node’s responsibility is to check this variable binding. This join node is returned
for the building process of the findall which simply adds a findall node to this
join node.

To finalise, the engine builds a production node from the rule’s consequences
and attaches this to the returned findall node. The various steps of this process
are depicted in figure 6.1.2.

Figure 6.2: Building Rete network for the located in kitchen rule
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6.2 Inference Engine

6.2.1 Assertion and Retraction of Facts

Whenever a fact is asserted, it is added to the working memory of the reason-
ing engine. Furthermore, the fact is converted to a corresponding token and
propagated into the Rete network. In case of a retract operation, a corre-
sponding negative token is created and propagated through the network. The
propagation of tokens into the network is implemented by the insert method
implemented by all nodes in the network as shown in figure 6.3. This method
has one argument, namely the token to be propagated, and every node in the
network performs a specific test in order to determine whether the token should
be propagated to its children or not.

The propagation begins in the root node which recursively passes the token
to its children nodes until the token is inserted into a production node or one of
the nodes decides to stop the propagation. In the next section we give a detailed
overview of how this propagation works for the various nodes in the network.

Figure 6.3: Uml diagram of the Rete nodes’ structure

6.2.2 Functionality of the Nodes

An overview of the various nodes in the network is shown in figure 6.3, all
these nodes derive from the class ReteNode which in turn derives from the class
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Node. The Node class implements the general functionalities of a node having
one parent, e.g. accessing and mutating its children. The ReteNode class has
one abstract method, insert which must be implemented by all its subclasses.
This section gives an overview of how this propagation method is implemented
for the various nodes.

Filter Node

Recall that filter nodes form the alpha part of the Rete net-
work, as is described in chapter 3. There are two different kind
of filter nodes: the first one performs checks on the type of fact
whereas a second one performs tests to check everything else,
like for example constant tests and intra-element tests (vari-
ables occurring more than once in the same condition).

The difference between these kind of tests is reflected by using different
Filters. An uml diagram of the various filters is shown in figure 6.4. All filters
derive from the abstract class Filter and must implement the pass method.
This method expects a token as argument and returns a boolean indicating that
the filter allows the token to be passed or not.

Each filter node contains one or more filters performing the needed tests.
The filter nodes that check the type of fact only have one filter, FilterKind,
which only passes tokens containing a fact of the right type. Note that the
type of a fact not only consists of the actual type name of the fact, but also
the arity of the fact is taken into account. For example the type of the fact
type(?varOne,?varTwo) is type2 and not type. Using the arity as well allows
the programmer to use facts having the same type name but with a different
arity. The reason to split up the test for type checking is done in order to reuse
the nodes checking for the same type.

Filter nodes that perform all other tests can have several filters: one for
each test to be performed. The current implementation of Crime supports
three kinds of filters to accomplish these tests. Testing that a certain attribute
of a token equals a constant is achieved by making use of the FilterAttribute
filter. A special kind of filter is responsible to filter out only those facts from a
specific fact space, namely the FilterSpace. A last filter is used to perform the
intra-elements tests and is called FilterVariables. This filter uses a variable
checker for storing the indices of the attributes that must be compared, and
performs this comparison by using this stored information. The VarChecker
class is explained in more detail in the paragraph explaining the functionality
of the join node.

The propagate method of a filter node applies all filters to the propagated
token, when all filters pass the token, the filter node propagates the token to
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all its children. Filter nodes do not behave differently for a positive or negative
token.

Figure 6.4: Uml diagram of the filters

Negated Filter Node

This node implements the filter process of a rule whose first
fact is negated, as for instance the rule in listing 6.6. This rule
is triggered whenever a new person – someone whose detailed
information is not known – enters the campus. In that case,
the person must subscribe himself.

The first prerequisite of the rule, not userInfo(?name, ?id), is negated
and hence the first node of the Rete network for this rule is a negated filter
node. When no tokens are added to this node, a dummy token is passed to its
child, a join node in the example rule below. From the moment that at least one
token is inserted in this node, the dummy token is removed from its child and no
token is passed. These passed tokens are kept in order to detect their retractions
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by the propagation of a negative token. When such a negative token is inserted
the corresponding positive token kept in a cash is deleted, when this cash is
empty the dummy token is propagated again. In order to avoid floundering we
have opted to not allow free variables in negated facts. As variables can only be
bound by previous facts, the first prerequistes in a rule can not have variables.
Therefore, we can use a simple negated filter node for these prerequisites, for
other negated prerequistes not at the first place in a rule we must use a join
node with a special filter as seen in the next section.
: Subscr ibe (? id ) :−

not u s e r I n f o (?name, ? id ) ,
l o c a t i o n (? id , campus ) .

Listing 6.6: Rule with first fact negated

Join Node

A join node is a special kind of Rete node as it combines
two nodes by performing variable consistency checks. The join
node is implemented by using two inner classes, namely a left
node and a right node. Those nodes each have their own mem-
ory for storing the tokens retrieved from the corresponding
parent node.

An outline of this Java class is presented in listing 6.7. By introducing these
two inner classes, a join node may never be attached directly to another node,
but only through its left or right node, which ensures that the join node knows
if it is activated from right or left.

1 public class JoinNode extends ReteNode {
2 private Vector f i l t e r s ;
3 private LeftNode l e f t ;
4 private RightNode r i g h t ;
5 private Combiner combiner ;
6
7 private class LeftNode extends ReteNode {
8 private MemoryTable memory ;
9

10 public void i n s e r t (Token tkn ) {
11 . . .
12 }
13 }
14
15 private class RightNode extends ReteNode {
16 private MemoryTable memory ;
17
18 public void i n s e r t (Token tkn ) {
19 . . .
20 }
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21 }
22
23 public void i n s e r t (Token tkn ) {
24 throw new RuntimeException ( ” . . . ” ) ;
25 }
26 }

Listing 6.7: Outline JoinNode class

Whenever a token is inserted to the left or right node, this token is inserted
in the corresponding memory and a match operation must be performed by
the join node. This matching process is performed by the join node’s combiner
(line 5 of the code excerpt in listing 6.7). Depending on whether the second
fact is negated or not, a JoinCombiner or NegationCombiner is used.

Figure 6.5: Uml diagram of the combiners

A join combiner is used for combining a new inserted token with the tokens
in the other memory which have a consistent variable binding. In case of a
left activation the tokens in the right memory are all checked in order to test
their consistency: when a right token satisfies all the filters of the join node, the
token is said to match with the newly inserted token, and the combination of
both tokens is sent to the join node’s children. Same reasoning holds for right
activations.

A join node uses a special kind of filters for testing consistency of variable
bindings, namely JoinFilters. These filters are used to check that some at-
tribute of a fact of a certain token is the same as an attribute of another token’s
fact. So, for each variable check that needs to be performed, a new join filter is
added to the join node.

A variable checker keeps track of four indices as is illustrated in table
6.1. For each fact the index of the attribute that must be checked is kept,
as well as the position index of that fact in the token. The second column
of the table represent a left and right token whose variable consistency check
is satisfied and their combination may be passed to the children of the join
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index pass not pass
factLeft = 0 location(75773, Kitchen) location(75773, Kitchen)
attributeLeft = 1 Kitchen Kitchen
factRight = 0 location(76539, Kitchen) location(76539, Living room)
attributeRight = 1 Kitchen Living room

Table 6.1: Indices used by a variable checker

node. The variable check fails for the tokens represented by the last column of
the table, as the value in the right token equals Kitchen whereas those of the
left token is Living room. Hence, these tokens do not match and are not passed.

Whenever a rule contains a negated prerequisite that isn’t the first condition
of that rule, a join node with a negation combiner is needed for combining the
tokens of that join node in a special way. An example of such a rule is given
in listing 6.8, which is a modification of the previous rule as both prerequisites
are exchanged. The join node that combines these two prerequisites uses a
negated combiner. A negation combiner works by checking the matches of the
left memory with those of the right memory. The token residing in the left
memory is passed to the children when there are no matches. Because it’s
possible for a token from the left memory to have multiple matches with tokens
in the right memory, every token keeps a number indicating how many matches
it has. When a token is inserted into the left memory – by a left activation –,
all tokens in the right memory are checked and for every match the number in
the token is increased. When a token from the right is inserted, the tokens in
the left memory are checked and all matches from that memory are increased
by one. Removing a token from the right memory decreases every match with
the tokens residing in the left memory.
: Subscr ibe (? id ) :−

l o c a t i o n (? id , campus ) ,
not u s e r I n f o (?name, ? id ) .

Listing 6.8: Rule with a fact negated

Findall Node

A findall token accumulates all occurrences of a certain variable
in one or more prerequisites. Consider the located in kitchen
rule given in listing 6.2: in this case the names of persons
located in the kitchen are accumulated in a list, the variable
?persons.

A findall node contains a cache which stores these values according to the
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variable bindings of preceding prerequisites. In the example rule, there’s only a
findall statement, hence there are no such variable bindings.

When a new token is inserted to the findall node, the needed attribute can be
selected by using the known variable picker. The cache of the node needs to be
updated with this new attribute: in case of a positive token, the corresponding
entry must be extended with this argument whereas the list is shortened in case
of a negative token. The correct entry of the cache is found by shortening the
inserted token such that the token no longer contains the variable bindings of
the findall statement itself.

Whenever the cache is updated, the previously sent token to the children
must be retracted. For instance, consider a working memory that contains the
facts that both Alice and Bob are located in the kitchen. Whenever Carol
enters the kitchen as well, a new token < + location(72672, Kitchen) >
is inserted into the findall node, and two tokens must be sent to the chil-
dren: namely the tokens < - locatedInKitchen( [Alice, Bob] ) and
< + locatedInKitchen( [Alice, Bob, Carol] ). The retraction of this
first token is needed as the accumulated list is modified and truth must be
maintained. The insertion of a negative token is handled similarly.

l o catedInKitchen (? persons ) :−
f indal l ( ?name,

( l o c a t i o n (? id , Kitchen ) ,
u s e r I n f o (?name, ? id ) . ) ,

? persons ) .

Listing 6.9: Crime: rule using a findall construct

Bagof Node

A bagof node acts very similar to a findall node, only the struc-
ture of the cache is different. As a findall node groups his ac-
cumulations by previous variable bindings, a bagof construct
accumulates them according to the free variables in the query
of the bagof statement.

Conceptually the cash used by the bagof node maps a group of unbound
variables onto TokenValues objects. This class acts as a buffer for keeping track
of the accumulated variables of a certain group of tokens. When a positive token
is propagated, the bagof node looks up the corresponding TokenValues object
and first propagates a negative token containing the accumulated variables of the
tokens residing in that object. Subsequently, it adds the attribute that must
be accumulated to the TokenValues object and propagates a positive token
containing the additional variable. For the propagation of a negative token the
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procedure is similar, except that the token is removed from the TokenValues
object instead of added.

Consider the example shown in listing 6.10. When the token
< + location(76539,kitchen), userInfo(Bob, 76539) > is added to the
bagof node, it first propagates a negative token with the current accumulated
attributes for persons present in the kitchen. Then it propagates the token
< + ..., persons( [Bob, ...] ) > where Bob is added to the list of
persons.

locatedInRoom (? persons , ? room) :−
bagof ( ?name,

( l o c a t i o n (? id , ?room ) ,
u s e r I n f o (?name, ? id ) . ) ,

? persons ) .

Listing 6.10: Crime: rule using a bagof construct

Length Node

A length node is responsible for calculating the length of a list,
for instance an accumulated list returned by a findall state-
ment. A length node has a variable picker for selecting this
list from the inserted token. Furthermore, the node consists of
a string representing the name of the new fact that must be
added to the token.

Consider a slightly modified rule represented in listing 6.11. The
length statement determines the length of the list, the variable ?persons,
and adds a new fact with type equal to number to the inserted token.
For instance, when the token that is inserted in this length node equals
< + persons( [Alice, Bob] ) >, the token that is sent to the children of the
length node is < + persons( [Alice, Bob] ), number(2) >.

l o catedInKitchen (?number ) :−
f indal l ( ?name,

( l o c a t i o n (? id , Kitchen ) ,
u s e r I n f o (?name, ? id ) . ) ,

? persons ) ,
length (? persons , ?number ) .

Listing 6.11: Crime: rule using a length construct
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Production Node

A production node forms the last node built by parsing a single
rule. This node is responsible for executing the corresponding
consequences of that rule. The execution of these actions is
explained in more detail in section 6.2.3.

6.2.3 Executing Consequences of Rules

All consequences of a single rule are stored in an activation which can be ex-
changed between several devices. When a new activation is added by the pro-
duction node, it is kept in an agenda which executes the stored activations by
using some conflict resolution strategy.

Whenever an activation is added, the agenda first checks if this activation is
useful: this means that no conflicting activation is present. Two activations are
said to be conflicting when the execution of both activations has no effect and
could as well be neglected. When such a conflicting activation is already added
to the agenda, this one is removed from the agenda and the new activation is
not added.

Each agenda is initialised with a scheduler for determining the order in
which the activations must be executed. For instance, an agenda using a
FifoScheduler executes the activations in order of their addition. As a prior-
ity can be ascribed to the activations, another possible scheduler could execute
activations in order of decreasing priority.

Figure 6.6: Uml diagram of agenda classes
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6.3 Federated Fact Spaces

This section describes the communication necessary for the exchanging of facts
residing in fact spaces of several devices. The previous section presented the
working of an inference engine, in order to understand how applications work
internally. Here we explain how such an inference engine can be extended in or-
der to co-operate with other applications. We based the implementation of this
distribution on the client-server architecture. Each application is represented
by a client and must be connected with a local server. This server is introduced
to allow the transiently sharing of facts between both clients residing on the
same device and clients residing on different devices. The remainder of this sec-
tion highlights the implementation of the communication layer implementing
the federated fact space provided by Crime.

6.3.1 Exchanging of Facts

Using One Server

As is already mentioned, all quantified facts are exchanged between Crime
applications. Consider an example configuration shown in figure 6.7(a): a client
application and server are running on the same device. When they connect, all
quantified facts residing in the client’s fact space are sent in one activation to
the server. The message receiver of the server is responsible for receiving this
activation and distributing it to other connected clients, which are kept in a
client pool. While the message receiver is taking care of receiving sent messages,
the server sends an activation to the newly connected server which contains
all quantified facts that are residing in the fact space before the connection is
established. So, in the example setting depicted in the figure, the server’s fact
space contains all quantified facts of clients A, B and C. These quantified facts
are sent in an activation to client D in order to be asserted to its local fact
space. The messages receiver of client D receives this activation and adds it to
the agenda of that client.

When client D and the server disconnect, the exchanged facts must be re-
tracted as is depicted in figure 6.7(b). First of all, all quantified facts of client
D must be retracted as this exchanged context information is no longer guar-
anteed to be true. This retraction must take place in the fact space residing
on the server, as well as on the fact spaces of all connected clients. The mes-
sage receiver receives this messages and adds a new activation representing the
retraction of these facts in each of their agendas. Furthermore, the quantified
facts exchanged with the server after connecting must be retracted from client
D. This are the facts of the other connected clients A, B and C. Performing
these steps guarantees the truth in the context information represented by facts
residing in the fact space.
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(a) Client D connects with server

(b) Disconnection between client D and server

Figure 6.7: Communication with one server

Between Several Servers

The previous paragraph discussed the communication between an activation and
a server. When moving towards a distributed environment, several servers are
needed as at least one server must be running on each device. This paragraph
discusses the communication and facts that need to be exchanged between two
servers, assuming that the client-server communication is performed the same
way as described in the previous paragraph.

Consider two servers possibly residing on the same device as is illustrated
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in figure 6.8(a). This figure presents the communication performed when two
servers connect. Note that the connection mechanism itself is not important for
understanding the communication, the mechanism itself is discussed in section
6.4. When server A and server B connect, the quantified facts residing in their
fact spaces must be exchanged. We explain the several communication steps
only in one way, namely for server A receiving the quantified facts of server B.
The same reasoning holds for server B.

First of all, the message receiver of server A receives a new activation from
server B. This activation contains all quantified facts of server B that must
be asserted to the fact space of server A. Hence, the peer receiver of server A
instantiates a new activation and adds it to the agenda. When this activation
is executed by the engine residing on server A, this activation is propagated
to all clients and servers residing in the server’s client pool. This client pool
contains the following connections: a connection to its connected clients A, B
and C, as well as a connection with server B. Hence, the activation is sent to all
three clients and the connected server B. As server B is the server who originally
sent the activation, it won’t add this activation to its agenda in order to prevent
looping. Server B is able to detect and prevent looping as the name of the server
that has sent an activation is sent together with the activation.

The performed communication when two servers disconnect is presented in
figure 6.8(b). Here again, we do not discuss how the disconnection of two servers
is detected as this is explained in the next section. We only consider server A,
as the communication is identical for server B.

When the two depicted servers detect their disconnection, all exchanged
facts must be retracted in order to maintain the truth as is explained in chap-
ter 5. First of all, server A retracts all quantified facts from its fact space.
Subsequently, an activation is sent to all connected clients which performs the
retraction of the quantified facts of clients D, E and F.

6.3.2 Network Layer

The classes implementing the exchange of activations are shown in figure 6.9.
As receiving messages on the client side and the servers side are very similar,
we have opted to combine the common functionality in a Receiver class. When
inventing new common functionalities it is sufficient to implement these in the
Receiver class instead of implementing this two times for the server and the
client. As the communication between two servers is slightly different than
between a server and a client, a ReceiveMessagePeer is implemented which is
used to only receive messages from a connected server. The Server class keeps
track of all connected clients and servers by making use of the ClientPool class.
The Client class has private field engine in order to propagate the received
activations to the CrimeEngine.
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(a) Connection established between server A and server B

(b) Disconnection between the servers

Figure 6.8: Communication with several servers

6.4 Service Discovery

Crime applications need to start a server in order to be able to communicate
with eachother. Every Crime application residing on a device connects with
this local server and the connection with this server is assumed stable. This
assumption is not in contradiction with the ambient environment because it
does not involve other devices. As shown in the previous section, the quantified
facts of an application are sent to this server and transiently shared with other
devices in the approximation. In this section we zoom in how client-server and
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Figure 6.9: Uml diagram of network layer

server-server connections are established in the current implementation.

6.4.1 Client-Server Connection

The implementation of Crime uses sockets in order to perform communication
between the client and the server. In order to facilitate the startup routine
of the server a dedicated port is foreseen to establish a connection, which is
2040 in the current implementation. This port has been chosen randomly and
can be changed by supplying an other port number when starting the server
application.

The client in his turn is also aware of the default port to connect with,
again this port number can be changed by supplying another port number on
startup. When the client is started, it tries to connect to the server by using
a socket. When the server is not reachable, it starts to poll this port until the
server is reachable. One reason for the server not to be reachable is that the
server application has not yet been started. The polling mechanism has been
introduced in order to be able to start the server after the client application
has been started. This mechanism has proven to be extremely handy when
debugging.
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6.4.2 Server-Server Connection

In order to provide Crime applications with the necessary means to cope with
the ambient environment, servers within the approximation connect automat-
ically with eachother. As the used wireless technology is wifi a logical step
was to use the multicasting facilities provided by this technology in order to
detect other Crime servers. Therefore we ascribe each server with a multicast
object which sends out small packets containing the server’s port number to all
co-located servers, the ip address of the server can be derived from the packet
received.

Detecting and receiving these multicasted packages is handled by the
MulticastReceiver, which on the detection of a new package starts a connec-
tion with the associated server, in case that combination of the ip address and
port number is lower than its own. Note the necessity of a mechanism in order
to determine which server makes the connection. The MulticastReceiver
keeps track of all connected servers in order to avoid connecting multiple times
with the same server. In the case that they both connect to eachother this
would result in unnecessary traffic.

6.5 Example Applications

6.5.1 Implementing an Application

In order to ease the implementation of applications with Crime, some helper
classes are facilitated. A first class is the Main class which implements a main
method for starting up a Crime client and initialising an inference engine.
Furthermore, this class provides methods to assert and retract facts.

A second important class is the abstract Action class which must be used in
order to write user-defined actions. This class has two abstract methods, namely
activated and deactivated which both expect a vector of arguments. Con-
sider an example to create a user-defined action MyAction which prints Hello
World! when activated and Goodbye! when deactivated. The full implemen-
tation of this rule is provided in listing 6.12. Note that this action does not
expect any arguments, hence the argument vector is not used. More complex
actions use this argumentlist in order to provide more complex behaviour, for
instance a simple use of these arguments could be to display the users residing
in a room.

pub l i c c l a s s MyAction extends Action {
pub l i c void ac t i va t ed ( Vector arguments ){

System . out . p r i n t l n (” He l l o World ! ” ) ;
}
pub l i c void deac t i va t e ( Vector arguments ){

System . out . p r i n t l n (”Goodbye ” ) ;
}

}

Listing 6.12: Hello world action in Crime
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An example rule of the use of this newly defined MyAction action is shown
in 6.13. In order to use this action in Crime rules, it is sufficient to compile
this class. When the user-defined action is detected during the parsing phase,
it is dynamically loaded into the Crime application and triggered when needed.
Note that although the implementation of the action does not use the arguments
in the example rule, the ?bar variable is passed as an argument. We deliber-
ately chose not to test upon the number of arguments that an action expects.
This leaves the door open to implement actions which receive a variable size of
arguments.
: MyAction (? bar ) :−

f oo (? bar ) .

Listing 6.13: Using the hello world action

6.5.2 Bluetooth Detection

In the application presented in the previous chapter, we have used bluetooth in
order to detect the users in the system. This bluetooth detection mechanism
has been implemented by a Crime application, it constantly scans for bluetooth
devices in the approximation by making use of a Python script. Pseudo code
for this implementation is shown in listing 6.14. The detection widget simply
finds all new devices and asserts these devices as facts to the engine. It also
finds all devices which where lost and retracts these devices from the engine.
whi le ( t rue ) {

Main . a s s e r t ( detectNewDevices ( ) ) ;
Main . r e t r a c t ( l o s tDev i c e s ( ) ) ;

}

Listing 6.14: Bluetooth detection

6.6 Conclusion

In this chapter we have presented the most important aspects of the implemen-
tation. In a first step we have shown how rules are transformed into a parse
tree by making use of ANTLR. A second step involved the transformation of
this parse tree into a Rete network. We have ensured that the addition of new
expressions is easy by placing the responsibility of building the Rete network
by the parsed expressions. The only requirement for adding new expressions
is to extend from a provided class Expression and adjust the parser for that
new expression. Subsequently, we have explained how the nodes of this Rete
network propagate their tokens through this network. Again these node can
be easily extended by deriving from the ReteNode class and implementing the
propagate method. A third section showed how federated fact spaces are im-
plemented and how the communication between servers and clients is conceived.
By implementing this layer in a dedicated NetworkEngine which derives from
the normal CrimeEngine, we can reuse the CrimeEngine when porting our code
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to devices which make use of another communication technology. In a last sec-
tion we discussed which classes provide the functionality in order to extend the
Crime language with user-defined actions. The overall structure of our code is
made extensible and applications-specific actions can be written easily. The im-
plementation of context providers is eased by the Main class which provides the
programmer with abstraction for publishing and retracting facts easily. In the
following chapters we present specific extensions to the basic Crime language
to improve the ability to cope with the mobile environment.
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Figure 6.10: Uml diagram of the classes making up the parse tree
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Chapter 7

Crime Time

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development
of context-aware applications. In the previous chapter we have introduced the
Crime language which implements the Fact Space Model for reasoning about
context in a distributed environment where stable connections can not be taken
for granted and disconnections happen frequently. A limitation of Crime is
that it only allows reasoning about the current context, whereas past events
may contribute useful information to make decisions about the present situ-
ation. The extension to Crime presented in this chapter borrows techniques
from HALO, an aspect-oriented extension to CLOS which provides support to
reason about the execution history of a program, to permit Crime programs to
reason about past context information. The extension of Crime, enriched with
HALO’s temporal operators is dubbed Crime Time.

The first section of this chapter introduces an additional feature to the juke-
box example, used in the previous chapter to explain Crime, that motivates the
need to be able to reason about past events. Subsequently, we discuss existing
approaches from aspect-oriented programming that incorporate such support.
First of all Reflex is presented: this is a framework that allows implementing
context-aware aspects. These implement functionality expressed in terms of the
past program context. Next HALO is presented which is a logic-based aspect
language enriched with temporal operators enabling a declarative implementa-
tion of context-aware aspects. Since HALO builds upon a Rete network and
Crime has a similar overall structure, the introduction of a subset of its tempo-
ral operators facilitates Crime with the same expressive power HALO exploits
concerning these temporal operators. To conclude an overview of future work
is given.
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7.1 Motivating Example

Reconsider the jukebox application described in chapter 5. The jukebox in
the apartment of Alice, Bob and Carol has a playlist containing the musical
preferences of all present persons. The jukebox is smart enough to arrange the
playlist so that songs acceptable for all three students are played. In order to
avoid playing the same songs over and over again, the jukebox should remove
tracks that persons have heard while they were previously in the room.

This extra functionality of the jukebox example can be written in Crime
by keeping track of past events manually. In order to eject previously heard
songs, three extra rules are needed. First of all, for each person in the living
room the played songs should be stored in order to be able to delete them from
the playlist whenever the user enters the room again. This can be realised by
adding facts played(?person, ?song) to the working memory for every song
that is played during the time a person is present in the living room. The
Crime rule shown in listing 7.1 implements this behaviour: the application-
specific action UpdatePlayed is responsible for asserting these facts. Note that
a user-defined action is needed as those asserted fact may not be retracted when
the user leaves the living room. So, when a fact location(?person, Living
room) is retracted, the asserted fact played(?person, ?song) must reside in
the working memory as this fact contains information that contributes to the
composition of the playlist when that person enters the room again. This can
be realised by not implementing the body of the deactivate method of the
application-specific action.

: UpdatePlayed (? person , ? song ) :−
playSong (? song ) ,
l o c a t i o n (? person , L iv ing room ) .

Listing 7.1: Crime: rule for keeping track of heard songs

A second rule is needed in order to transform these asserted facts to
doNotPlay(?person, ?song). This transformation is needed for two reasons:
a first one relies in the fact that the jukebox must be informed that those
songs may not be played. Furthermore, the songs that were played when the
person was previously in the room should not be distinguished with the one
that are played when he has re-entered the room. Introducing this transforma-
tion resolves these problems as the previously played songs are represented by
doNotPlay facts – these songs may be played when the user enters the room
again – whereas the currently played songs that must be removed the next time
the person enters the room are kept in played facts.

Listing 7.2 contains a Crime rule responsible for performing this transfor-
mation. The activate method of the user-defined action DoNotPlay asserts
doNotPlay facts and retracts the corresponding played facts from the working
memory. This application-specific action also destructively removes those songs
from the playlist when the user enters the living room.

: DoNotPlay (? person , ? song ) :−
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played (? person , ? song ) ,
en t e r i ng (? person , L iv ing room ) .

Listing 7.2: Crime: rule for transforming facts

The songs that were deleted from the playlist may be played when the user
enters the living room a next time. So, a third rule is needed to retract the
doNotPlay facts from the working memory. This retraction is performed when-
ever the user leaves the living room. Here again, an application-specific action
RemoveNotPlay is needed as only its activate method may be implemented.
Listing 7.3 shows the Crime rule for this last constraint.
: RemoveNotPlay (? person , ? song ) :−

doNotPlay (? person , ? song ) ,
l e av ing (? person , L iv ing room ) .

Listing 7.3: Crime rule for retracting removed songs

Implementing this extra functionality in Crime is not straight-forward as
keeping tracks of the heard songs must be implemented manually: an explicit
rule is needed to assert facts for every song a person has heard while he is in the
living room. Furthermore, those facts must be transformed to avoid confusion
about songs that are currently deleted, and hence may be played again the next
time, and those that are just played and may not be heard the next time the
user enters the room. Extra care must be taken as application specific actions
are needed for asserting facts, as a normal assert would be retracted when the
prerequisites of the rule are no longer met, so for instance when the user is no
longer located in the living room.

In order to implement these functionalities in a more expressive way, new
primitives are added to the basic implementation of Crime. Before delving
into the extension of the language itself, we describe the approaches in aspect-
oriented programming we have based Crime Time on.

7.2 Related Work

The need to reason about past program state in order to correctly handle events
does not only manifest itself in distributed context-aware systems. An interest-
ing parallel can be made with the definition of business rules using aspect-
oriented languages. An example of such a business rule is a web-shop applica-
tion where the discounts a customer receives upon checkout should depend on
whether a discount was active when the user added the item to its shopping
cart. This strategy is to be preferred over taking into account discounts active
at the checkout, since customers respond badly when they notice that items
they have selected when a discount was active, have become more expensive
[64, 31].

Similar to the Crime language explained in chapter 6, aspect-oriented point-
cut languages allow responding to current active events (in this case in the
program execution) using a combination of execution and cflow predicates.
However, they fall short when events are considered relevant which are no longer
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active (i.e. they are no longer on the dynamic call stack). The remainder of this
section presents context-aware aspects, a framework to allow pointcut expres-
sions to be enriched with past context information. Subsequently we present
HALO, an event-based aspect language which builds upon the idea of context-
aware aspect, yet introduces them in a logic-based pointcut language to enable
a declarative programming style.

7.2.1 Context-aware Aspects

Context-aware aspects introduce an extensible pointcut language where context
information can be aggregated into a context snapshot. These snapshots can be
used to determine whether a pointcut occurs in a conceptual context which is
no longer necessarily tied to the dynamic call stack [64]. Whereas the frame-
work described by Tanter et al. seems very general, its imperative style is in
contrast with the declarative rules adopted in Crime. For instance, the need to
manually snapshot context at certain points in time imposes an imperative style
where programmers are actively considering how reasoning about past events
should be facilitated, whereas Crime promotes a declarative style to describe
context dependencies. In fact, one of the reason for its conception was precisely
to untangle the complex imperative code typically found in event handlers of
context-aware systems.

Consider the example of switching off the sound of a mobile phone while
being in a silent context. The implementation as a context-aware aspect is
shown in listing 7.4. In this code, a pointcut is defined which describes the
join points when the getSoundLevel method of a mobile phone is invoked and
the SilentCtx is active. In addition, an around advice is defined which simply
bypasses the method invocation and returns 0 instead. As defined by the point-
cut, only when the silentCtx is active the around advice is executed making
sure the cellphone remains silent.

aspect SilentMode {
po intcut c a l l ( ) : execut ion ( int MobilePhone . getSoundLevel ( ) )

&& inContext ( S i l entCtx ) ;
int around ( ) : c a l l ( ) {

return 0 ;
}

}

Listing 7.4: Reflex: SilentMode aspect

Note that being in a particular context does not bear any direct relation to
any event on the dynamic callstack. Such a context can be activated simply by
an event handler that activates a context. Despite the fact that the pointcut
described in listing 7.4 does not occur in the cflow of the activation the point-
cut is still influenced by it, as are all pointcuts until the context is explicitly
deactivated.

Context aware aspects include the ability to take into account context infor-
mation from the past. Consider the example to calculate the price of a phone

148



call conducted during “happy minute”. Phonecalls initiated during this promo-
tional time are half-price. The code implementing the HappyMinute aspect using
context-aware aspects is shown in listing 7.5. An aspect charge is defined which
describes the join points where the getPrice method of the PhoneConnection
class is called and the instantiated object was created when the HappyMinute
context was active. The defined around advice specifies to first invoke the
getPrice method, and then return only half of the price received from the
getPrice method.

aspect HappyMinute {
po intcut charge ( ) : execut ion (double PhoneConnection . g e tPr i c e ( ) )

&& createdInCtx (HappyMinuteCtx ) ;
double around ( ) : charge ( ) {

return proceed ( ) / 2 ;
}

}

Listing 7.5: Reflex: HappyMinute aspect

In this example the context HappyMinuteCtx no longer needs to be active
when the price is calculated, but instead it suffices that the connection was
created in this particular context. A downside of this mechanism is that all
context information needs to be snapshotted manually. For the above example
every time a new phone connection is made, a snapshot needs to be taken. The
framework provided by the context-aware aspects facilitate the programmer
with an aspect-oriented style for taking these snapshots as can be seen in listing
7.6.

1 CtxActive createdInHappyMinute = new CreatedInCtx (new HappyMinuteCtx ( ) , happyMinute ) ;
2 happyMinute . addAct ivat ion ( createdInHappyMinute ) ;

Listing 7.6: Reflex: snapshotting HappyMinute context

7.2.2 HALO

HALO is an event-based aspect language which build upon the idea of context-
aware aspects, yet introduces them in the context of a logic-based pointcut
language [31]. HALO uses logical facts to represent the context state of the
program and pointcuts are specified by making use of logical queries. Everytime
a join point occurs, facts representing this join point are asserted to the fact
base.

The logical rules representing the pointcuts are then checked against the fact
base. When a pointcut has a solution based on the available join points, the
advice body of the pointcut is executed. A pointcut can use logical variables in
their advice as can be seen in the pointcut shown in listing 7.7. This pointcut
intercepts invocations of the function call and prints out that someone called.

( at ( ( g f− ca l l ’ c a l l ? c a l l e r ) )
( format t ‘ ‘ someone c a l l e d ˜s ’ ’ ? c a l l e r )

Listing 7.7: HALO: Piece of advice for logging phone calls
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Instead of forcing an imperative programming style in order to keep track
of the contextual snapshots, HALO implicitly accumulates a history of join
points. This implies that the fact base consists not only of the current join
points but also records all past join points. Of course keeping these facts in
the fact base is not enough: HALO also facilitates primitives to query these
facts. These primitives, borrowed from metric temporal logic [11], were in-
tegrated into the pointcut language to allow aspects to reason about past events.

HALO incorporates the following subset of temporal operators:

• all-past operator
syntax: outer-pointcut (all-past inner-pointcut)
The functionality of the all-past operator is to collect all join points
matched with the inner-pointcut. Furthermore, these join points are
tested to have a timestamp smaller than the join points matching the
outer-pointcut. For instance the example shown in listing 7.8 collects
all buy calls of a user with a certain article as an argument that happened
before a buy call of a user for the same article.

( ( g f− ca l l ’ buy (? user1 ? a r t i c l e ) )
( a l l−past ( g f− ca l l ’ buy (? user2 ? a r t i c l e ) ) ) )

Listing 7.8: HALO: example using all-past operator [31]

• most-recent operator
syntax: outer-pointcut (most-recent inner-pointcut)
The functionality of the most-recent operator is to accumulate all join
points matched with the inner-pointcut. However, out of these accumu-
lated match points only those join points are returned having the highest
timestamp smaller than the join point of the outer pointcut. For instance
the example shown in listing 7.9 captures the last buy call of a user that
took place before a checkout call.

( ( g f− ca l l ’ checkout ?argsA )
( most−recent ( g f− ca l l ’ buy ? argsB ) ) )

Listing 7.9: HALO: example using most-recent operator [31]

• since operator
syntax: outer-pointcut (since inner-pointcut1 inner-pointcut2)
The first inner pointcut is evaluated against the join points matched by
the outer pointcut. Moreover, the second inner pointcut is tested against
the join points in-between the other join points – the one captured by
inner-pointcut1 and outer-pointcut. For instance, the code excerpt
show in listing 7.10 determines all articles a user has watched between the
time the user is logged in and the time the user buys an article.

( ( g f− ca l l buy ? user )
( s i n c e

( most−recent
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( g f− ca l l l o g i n ? user ) )
( a l l−past

( g f− ca l l watch ? user ? a r t i c l e ) ) ) )

Listing 7.10: HALO: example using since operator [31]

The temporal operators provided by HALO allows aspects to be written
which depend on a certain context as seen in context aware aspects. The code
excerpt in listing 7.11 is the implementation of the happy-minute example that
is also used in the previous section.

( at ( ( end−gf−cal l g e tPr i c e ? phoneConnection ? r e s u l t )
( most−recent ( c r e a t e PhoneConnection ?phoneConnection )

( happy−minute−context−active ) ) )
(/ ? r e s u l t 2 ) )

Listing 7.11: HALO: HappyMinute

The difference with the context-aware aspects proposal is that HALO auto-
matically provides mechanisms to keep track of the creation of the connection
rather than requiring the programmer to keep track of this manually.

Although HALO’s main concern are join points and aspects, HALO is
highly related to the context model of Crime where the context is modelled
by facts and reactions are written in a declarative way. One of the contribu-
tions of HALO is the interpretation of temporal operators into a Rete network.
The implementation strategies for the different temporal operators available in
HALO served as a base to extend the derivation engine of Crime to allow
reactions on contextual changes happened in the past, as is presented in the
following sections.

7.3 Crime Time

Crime Time is an extension to the Crime language introducing temporal op-
erators to reason about past context. The motivating example, given in section
7.1, can also be implemented more expressively by introducing these temporal
operators. The remainder of this section is organised as follows: first a discussion
about timestamping facts in a distributed environment is given. Subsequently,
each of the temporal operators are highlighted, as well as their implementation
in Crime Time. The last part of this section discusses the implementation of
the modified jukebox application in more detail.

7.3.1 Time Model

Crime is sculpted for operating in a mobile environment where applications on
co-located devices contribute to the shared view of the environment by asserting
facts into a federated fact space. A formalism for modelling time in a distributed
system needs to be described as the introduction of HALO’s temporal opera-
tors in Crime requires that facts are tagged with a timestamp. This section
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discusses how time can be modelled in a distributed system and explains the
implementation of the timestamping mechanism used in Crime Time.

Time in a Distributed Environment

At first it seems obvious to use the hardware clocks that are available in every
device in a distributed environment for timestamping. However, synchronis-
ing several computers in a distributed setting can not be realised based on their
hardware clocks. First of all, the synchronisation process itself takes an undeter-
ministic period of time as the distance between the computers must be bridged.
Moreover, this distance between the devices is generally unknown and causes
delays between the two communicating devices. Furthermore, hardware clocks
in a distributed system suffer from a phenomenon called clock drift. Clock drift
can be caused by a difference in speed, temperature or even earth gravitation.
When the hardware clock of a certain computer does not run in exactly the
same speed compared to another computer clock, this difference in speed is ac-
cumulated and those clocks should be resynchronised. As is already mentioned,
this synchronisation process is impossible in a distributed environment.

Even in case of one single computer, using the hardware clock of a computer
to determine the order in which events took place doesn’t guarantee a mono-
tonic increasing relation between all events. The time in a computer system
is updated after a predefined number of instructions, so it is possible that two
events are executed at the same time-interval and hence tagged with an equal
timestamp. As hardware clocks are not reliable for defining the order between
several events, another technique for timestamping is obtained.

A second approach for determining a chronological order is based on counters
and semaphores. Each computer has its own counter which is increased when
an event is executed. As this counter is a shared resource between several
applications on a single computer, semaphores are needed to overcome wrong
counter updates.

For instance, consider the example shown in listing 7.12 where two processes
want to attribute their events with a timestamp. Those processes are running
on the same computer and retrieve the value of the global counter (line 6-7).
The value of both local variables ctrA and ctrB equal 42 as at the moment
processB retrieves the value of the shared resource, processA hasn’t updated it
yet. This can be explained as the computer switches between several processes.
When the next instruction of processA is executed, the value of the global
counter is updated to 43 and eventA receives this timestamp (line 8-9). Hence,
after timestamp ten, the global counter has a value equal to 43 instead of 44.
Furthermore, two events are ascribed with the same timestamp.

By introducing semaphores [20], this shared resource is dedicated to one
process and other processes can only start using the resource when the first
process has finished.

1 i n t counter = 42 ;
2
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3 proce s s A proce s s B
4 −−−−−−−−−− −−−−−−−−−−
5 i n t ctrA ; i n t ctrB ;
6 ctrA = read ( counter ) ;
7 ctrB = read ( counter ) ;
8 counter = ++ctrA ;
9 eventA . setTime ( ctrA ) ;

10 counter = ++ctrB ;
11 eventB . setTime ( ctrB ) ;

Listing 7.12: Problems using a shared resource

In a distributed environment, using these counters is not sufficient as events
on different computers can be ascribed with the same timestamp. This problem
is recognised and solved by Lamport [40] who introduces a technique to overcome
these problems in a distributed system. Lamport clocks can be attributed to
events by keeping in mind the following rules:

1. Ascribing timestamps to events of independent processes doesn’t cause
any problems as these timestamps are assigned concurrently and they’re
not exchanged between the processes.

2. The timestamping mechanism on one single computer by making use of
the technique described above is correct as this process is executed se-
quentially.

3. When exchanging events between several processes, the event that is re-
ceived by the process should ascribe a timestamp which is the maximum
value of the counters on both processes. By taking this maximum value
guarantees that a relationship is determined between the events on the
computers and between the dependent processes, hence the order of the
exchanged and local events can be rederived if desired.

For instance, consider the timelines depicted in figure 7.1 which represent
the values of the counters for each process. As we can see the first process,
P1, and the second one are dependent as P2 receives events of the first
process. At the moment on which P2 receives the first event e1, the
value of its counter equals zero. So, this new event should be attached a
timestamp equal to one. However, as this event is sent by the first process
on timestamp 3, Lamport indicates that this event must be ascribed the
value four. This value describes the relationship that the event took place
after the event timestamped with the value three on P1.

For the second event that is exchanged between the first and second pro-
cess, the timestamp used on P1 is smaller than the one of P2, so the
timestamp that is attributed to e2 on the second process is the value of
its counter increased, namely seven.

Using Lamport clocks the values of the timestamps of the events on the
same process are discontinu, however this causes no problem as there’s
still a relation between these events and their order can be determined.
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Figure 7.1: Lamport timestamps for three processes

Notion of Time in Crime Time

As Crime operates in a mobile environment where devices share contextual in-
formation, introducing timestamps is based on Lamport. However, timestamp-
ing in Crime Time is more complicated as several actions can be exchanged in
one single activation. This way of transferring suites of facts between several
devices loses important information, namely the order in which those actions
must be executed. Hence, Lamport timestamping can be used for ascribing a
timestamp to the exchanged activations.

Crime Time increases its timestamp whenever a new activation is executed,
as this activation is considered as a new event even in case it was retrieved from
another device. All actions performed during that activation are attributed
with the same timestamp.

Recall that the exchanging of all qualified facts must be performed in one
single atomic operation, which is realised by giving all actions of that activation
the same timestamp. However, this way of ascribing timestamps introduces
some problems as the semantics of rules residing on different devices are no
longer guaranteed to be the same.

Consider an example which is depicted in figure 7.2. The first part of this
figure 7.2(a) depicts the fact spaces on two mobile phones and an application
that is running on each of them. This application has a Crime rule which
determines the printer that is last used by a person for printing his requested
job. When the two devices connect, the qualified facts are exchanged, so in
this example two public facts are received by the fact space residing on Bob’s
mobile phone. As the assertion of these facts is exchanged by using the same
activation, these facts are ascribed with the same timestamp 3. Figure 7.2(b)
depicts both devices after they’ve connected. Now, suppose Bob requests a
printing job by asserting the fact job(‘‘document.pdf’’) at timestamp 4.
The prerequisites of the rule are all met and the rule is triggered. However, as
both printerUsed facts that were exchanged have the same timestamp, the
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(a) Initial configuration

(b) Alice’s mobile phone and Bob’s mobile phone are connected

Figure 7.2: Different semantics caused by ascribing same actions of activations
with the same timestamp

behaviour of the rule is not predictable.

This difference between semantics of rules residing on different devices is a
problem which is not resolved in the current implementation of Crime Time.
This problem only arises for facts that were asserted to the federated fact
space before devices connect, after connection the semantics on both devices is
guaranteed to be the same, as activations are immediately exchanged between
co-located devices. However, this problem could be solved by ensuring to
maintain the order of the actions of an activation when these are exchanged.
Instead of ascribing the timestamp when the activation is executed, the times-
tamping process should then take place at the moment an action is performed.
The communication part of Crime Time responsible for the exchanging of
activations must be extended in order to overcome the problem that is described
in this section.
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Now that the timestamping mechanism used by Crime Time is explained,
we can delve into the extension by introducing HALO’s temporal operators
in Crime. Crime Time introduces the following set of temporal operators:
sometime-past, most-recent and since. Those operators can be used in the pre-
requisites of Crime Time rules. To support reasoning about past context,
Crime Time attributes every fact with a timestamp which is assigned when-
ever the Rete engine executes an activation. As a consequence, several facts
can have the same timestamp.

Note that the temporal operators are always implicitly parametrised by the
fact that precedes them. That is to say, they have implicit access to the times-
tamp at which this fact was triggered. For instance, f1, timeOperator(f2)
has one explicit argument f2, and one implicit argument, namely the fact f1
that preceded it.

7.3.2 Sometime-past Operator

The sometime-past operator takes one explicit argument that is timestamped
with t2. f1, sometimePast(f2) matches facts so that t2 < t1 where t1 is the
implicit timestamp at which the fact f1 is triggered.

Example

Consider the printer example rule shown in listing 7.13 that uses the
sometimePast operator. This rule is used for determining a default printer,
based on the number of times a user has used that printer before. This default
printer is proposed to the user for printing his new job. When the user rejects
this proposal, an other available printer is proposed.

The rule in listing 7.13 is triggered whenever a new printing job is scheduled.
For instance when Alice wants to print a certain paper, this results in the
addition of the fact job(Alice, paper.pdf), triggering the rule below.

1 : Print (? f i l e , ? usedPr inte r s , ? a v a i l a b l eP r i n t e r s ) :−
2 job (? person , ? f i l e ) ,
3 f indal l ( ? usedPr inter ,
4 ( sometimePast ( pr interUsed (? usedPr inter , ? person ) . ) . ) ,
5 ? usedPr in t e r s ) ,
6 f indal l ( ? ava i l a b l eP r i n t e r ,
7 ( p r i n t e r (? a v a i l a b l eP r i n t e r ) . ) ,
8 ? a v a i l a b l eP r i n t e r s ) .

Listing 7.13: Rule using sometimePast operator

The first findall statement on line 3 in the code excerpt, collects all printers
that were previously used by Alice in the variable ?usedPrinters. Determin-
ing which printers Alice has used in the past is realised by the sometimePast
operator (line 4). Recall that a temporal operator takes one implicit argument,
the fact job(Alice, paper.pdf) in this example, which is the point at which
the job was scheduled and acts like an upper bound for the points at which the
printers were used.
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The findall statement starting on line 6 calculates all the available print-
ers. In case Alice hasn’t used any printer before, she can pick her favourite
one from this set of printers. The implementation of that choice of printer is
implemented by the user-defined action Print. This action proposes Alice’s
default printer, namely the one she has been using the most. This printer
can be determined from the list of usedPrinters. When Alice agrees to print
her file on a printer, for instance printerA, this action also adds a new fact
printerUsed(printerA, Alice) to the working memory.

Consider the concrete scenario of the printer example that is depicted in
figure 7.3. This figure represents the facts that are added at a certain time
to the working memory. At timestamp one, the fact job(Alice, document1)
is added to the working memory. At that moment in time Alice hasn’t used
any printer before, as can be seen in table 7.1. So, the printer application can’t
propose any default printer and Alice chooses one of the available printers, for in-
stance printerB. This results in the addition of a new fact printerUsed(Alice,
printerB) at timestamp two to the working memory, as is depicted on the time-
line in figure 7.3.

When Alice requests a new printing job at time two, she already used
printerB which is proposed to her as the default printer. However, Alice rejects
this proposal and choses printerC for printing her second document which re-
sults in the addition of the fact printerUsed(Alice, printerC) to the working
memory.

The next time Alice requests a printing job (timestamp three), the de-
fault printer is randomly chosen between the printers she has used before, be-
cause they both have been used once. This behaviour is implemented by the
application-specific action Print. Another possibility could be to propose the
printer she has last used in case of a tie. At timestamp nine Alice wants an-
other document to be printed and her preferred printer is printerB which she
has used thrice, however the default printer the application proposed to her is
printerC although she has used that printer only once. This printer is proposed
to her because printerB is no longer available, for example due to a defect.

timestamp used printers available printers default printer
1 {} {A, B, C} none
3 {B} {A, B, C} B
5 {B, C} {A, B, C} B
9 {B, C, B, B} {A, C} C

Table 7.1: Used printers, available printers and default printer for printer ex-
ample with sometimePast operator
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Figure 7.3: Timeline for printer example

Implementation in Crime Time

The network for the rule in listing 7.13 is depicted in figure 7.4. The
sometimePast node in the network acts like a join node with an extra fil-
ter. First of all, the sometime-past node checks the variable bindings for the
variables that occur in both the left and right prerequisites, ?person in this
example. In addition to the consistency check, the sometime-past node also
filters based on the timestamps of the facts in the left and right memory of the
sometime-past node. Recall that these timestamps are assigned to the facts
whenever an activation is executed by the Rete engine.

Based on the network construction algorithm described in chapter 6, the
sometime-past construct is compiled to a join node with the past context events
stored in its right memory. Unlike a normal join node, elements in the right
memory are not removed when the corresponding fact is retracted. This allows
the right memory to serve as a cache of precisely those past events which may
still be used in future derivations. Extending the join node to keep track of past
context alone is not sufficient, since an additional check needs to be performed
to guarantee that the timing constraints are upheld.
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Figure 7.4: Network for printer rule with sometimePast operator

7.3.3 Most-recent Operator

This operator has similar semantics as the sometime-past operator discussed in
the previous section. A most-recent operator has an explicit restriction that
only the most recent matching fact can be returned.
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Example

A modified version of the printer example is shown in listing 7.14. The default
printer this rule proposes is the last one a person has used. This printer is
determined by the mostRecent operator on the third line of the code. Note
that there’s no need for a findall statement as the most-recent operator only
returns one single fact.

1 : Print (? f i l e , ? p r in t e r , ? a v a i l a b l eP r i n t e r s ) :−
2 job (? person , ? f i l e ) ,
3 mostRecent ( pr interUsed (? pr in t e r , ? person ) . ) ,
4 f indal l ( ? ava i l a b l eP r i n t e r ,
5 ( p r i n t e r (? a v a i l a b l eP r i n t e r ) . ) ,
6 ? a v a i l a b l eP r i n t e r s ) .

Listing 7.14: Rule using mostRecent operator

Reconsider the printing example where Alice requests several printing jobs.
When the application uses the rule with the most-recent operator shown in
listing 7.14, the default printers it proposes are changed. The proposed printers
are given in the fourth column of table 7.2. As the most-recent operator only
returns one fact, the default printer is always the printer Alice has last used.
However, at timestamp 9 there’s no default printer proposed by the application
as the last used printer, printerB, is no longer available. Hence the application-
specific action :Print doesn’t propose a default printer and lets Alice chose an
available printer for her printing request.

timestamp used printers last used printer available printers default printer
1 {} {A, B, C} none
3 {B} B {A, B, C} B
5 {B, C} C {A, B, C} C
7 {B, C, B} B {A, B, C} B
9 {B, C, B, B} B {A, C} none

Table 7.2: Used printers, last used printer, available printers and default printer
for printer example with mostRecent operator

Implementation in Crime Time

The network of the rule in listing 7.14 resembles the one depicted in figure 7.4 as
the sometime-past and most-recent operator have similar semantics. However,
there’s a small difference in the way tokens in the right memory of the node
are handled, as only the most recent one is passed to the children of this node.
Furthermore, this network hasn’t a findall node as the rule in listing 7.14 doesn’t
need a findall statement for accumulating all facts.
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7.3.4 Since Operator

The syntax of the since can be written as fact2 since(fact1, fact3). This
operator takes two explicit arguments, f2 and f3, and matches events f3 that
occurred between f2 and f1 – with f2 the fact that is implicitly taken as an
argument.

Example

Consider an example application where an employee wants to request calls he
has missed during the last time he wasn’t present in his office. The rule shown
in listing 7.15 determines those missed calls by using the since operator.

The rule is triggered whenever a person performs a requests for his missed
calls. At this point in time, the system recalls the last time when the person
entered his office (line 3 of the code excerpt). Recall that this line forms the
implicit stop condition of the since operator. The timestamp of this entering-
fact is used as the end of the since interval (line 4) of which the starting point
is the last time the user left his office (line 5). The facts being sought are the
telephone numbers which are accumulated by the findall statement of line 5.

1 : HandleCal l s (? numbers ) :−
2 reque s t (? person , ‘ ‘ missed c a l l s ’ ’ ) ,
3 mostRecent ( ente r (? person , ‘ ‘ o f f i c e ’ ’ ) . ) ,
4 s i n c e (
5 mostRecent ( away (? person , ‘ ‘ o f f i c e ’ ’ ) . ) ,
6 f indal l ( ?number ,
7 ( sometimePast ( c a l l (? number , ? person ) . ) . ) ,
8 ?numbers ) . ) .

Listing 7.15: Rule using since operator

To exemplify the use of the rule in listing 7.15, consider the example below.
The timeline depicted in figure 7.5 represents the facts that are added to the
working memory and their corresponding timestamp. When Alice performs a
requests for her missed calls, the fact request(Alice, ‘‘missed calls’’) is
added to the working memory at timestamp 11. This addition results in the trig-
gering of the rule, which code excerpt is shown in listing 7.15, and the findall
statement determines all calls Alice has missed while she was absent. The tele-
phone numbers that are passed to the user-defined function HandleCalls are
158 and 083.

Implementation in Crime Time

The network of the rule given in listing 7.15 is depicted in figure 7.6. The
since node resembles the join node of the beta part of the Rete network which
combines two tokens. Just as the sometime-past and most-recent node, the
since node performs an extra test on the timestamps of those tokens. The node
verifies whether the timestamps of the call-facts is greater than the timestamp
of the away-fact. As can be seen in the figure, the filter node that filters out
the enter facts is used twice, once in combination with the first argument of

161



Figure 7.5: Timeline for missed calls example

the since statement, and a second time for the last argument of that temporal
operator.

7.3.5 Implementing the Motivating Example

Recapitulate the jukebox application discussed in section 7.1 where users want
to avoid the repetitive behaviour of the jukebox’ song selection. This example
application can be implemented more expressively using the temporal operators
that are described in the previous section. The code excerpt in listing 7.16 is
a rule which implements the desired behaviour for the application. The rule is
triggered whenever a person enters the living room (line 2). At this point in
time, the system recalls the last time when the person left the living room (line
3). This timestamp is used as the end of a since interval (line 4), of which the
starting point is the previous time the user was spotted by the system (line 5).
The fact being sought for in this interval are the songs that are accumulated by
a findall statement (lines 6-8). These songs are then deleted from the current
playlist (using the DeleteFromPlaylist context event handler) as they should
not be repeated (line 1).
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Figure 7.6: Network for missed calls example at timestamp 4

1 : De le teFromPlay l i s t (? person , ? songs ) :−
2 l o c a t i o n (? person , ‘ ‘ L iv ing Room ’ ’ ) ,
3 mostRecent ( not l o c a t i o n (? person , ‘ ‘ L iv ing Room ’ ’ ) ,
4 s i n c e (
5 mostRecent ( l o c a t i o n (? person , ‘ ‘ L iv ing Room ’ ’ ) ) ,
6 f indal l ( ? song ,
7 ( sometimePast ( played (? song ) . ) . ) ,
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8 ? songs ) . ) . ) .

Listing 7.16: Jukebox: implementation using temporal operators

The network for this jukebox example is depicted in figure 7.7.

7.4 Conclusion

Crime Time is an extension of the basic Crime implementation that is dis-
cussed in chapter 6. By extending this basic implementation with temporal
operators, time-related declarative rules can be written as all facts are extended
with a specific timestamp. Crime Time introduces temporal operators for
reasoning about the past. This extension of Crime is inspired by the aspect-
oriented programming language HALO where reasoning about the past is re-
alised by implicitly keeping a context history. HALO introduces temporal logic
extending the Rete algorithm and hence enabling reasoning about the past in
a declarative way. The temporal operators of HALO are re-implemented in
Crime Time.

The current implementation of Crime Time only introduces operators for
reasoning about the past. A first extension relies in the introduction of tempo-
ral operators for reasoning about the future. The next chapter discusses Opti-
mal Crime, another extension of the basic Crime implementation. Chapter 8
presents a language where the basic Rete algorithm is optimised by a technique,
called scaffolding.
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Figure 7.7: Network jukebox example using temporal operators
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Chapter 8

Optimal Crime

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development
of context-aware applications. In the previous chapters we have introduced the
novel coordination language Crime which is sculpted to deal with the character-
istics of a mobile environment. One of these characteristics is that connections
are volatile, therefore intermittent disconnections happen frequently. Recall that
facts from a co-located device are retracted when the device is disconnected and
reinserted when it reconnects at a later time. Although care has been taken to
optimise the matching phase of the inference engine by making use of the Rete
algorithm, such removals and reinsertions of facts remain relatively costly.

This chapter presents an optimisation which is specifically geared towards
the way Crime deals with volatile connections. First we present a technique
known as “scaffolding the Rete network”, and show how scaffolding can be
incorporated into Crime. Subsequently we show the results of applying scaf-
folding to the Crime language.

Another source for optimisation are the temporal operators discussed in the
previous chapter. Currently, Crime automatically assigns timestamps to the
facts inserted into the working memory. This automatically timestamping of the
various events in the distributed systems results in a monotone increasing time
model as seen in chapter 7. When operating in this time model, optimisations
can be applied by extending the scaffolding algorithm with these operators.

Although the optimisations presented here greatly improve the computa-
tional aspect of the programming language, the network load can also be opti-
mised. In the future work section we present a possible optimisation to decrease
the information exchanged over the network. We end this chapter with the con-
clusions distilled from the conducted experiments.
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8.1 Scaffolding the Rete Network

The basic Rete algorithm introduces a first optimisation for the pattern match-
ing phase of Crime’s inference engine. However, the join nodes of the Rete
network perform a costly operation during this match phase. Each time an
activation takes place – that is when a token is inserted in one of the node’s
memories – , the join nodes perform a variable consistency check of the inserted
token with the tokens residing in the opposite memory as the token is inserted.
As demonstrated in chapter 3, the insertion of a token into the Rete network
does not only serve the assertion of new facts but also the retraction of facts.

In this section we improve the classic deletion algorithm described earlier
by presenting a technique to perform the retraction of a token from the Rete
network in constant time. This optimisation omits the match operations nor-
mally needed to perform the retract operation by making use of causal links.
Subsequently we discuss an extension of this optimisation which constructs a
parallel datastructure of deleted tokens in order to decrease their reinsertion
time as well.

8.1.1 Constant Time Retractions

The Rete algorithm uses a clever cashing mechanism to decrease the number
of matching operations required whenever a token is propagated through the
Rete network. The join nodes in this network perform variable consistency
checks when tokens are inserted. As retractions are modelled by the propagation
of a negated token, these variable consistency checks are performed twice; One
time when the fact is inserted and once when it is removed. The observation of
these redundant checks is what forms the base of the optimisation presented in
this section. Similar to the addition of a fact, the cost of a retract operation
depends on the number of partially instantiated tokens residing in the network.
For every join node, n matching operations must be performed, one for every
token residing in the opposite memory. The cost of a match operation itself
depends on the number of variable checks that need to be performed by the
join node.

Recall the various steps needed to remove a certain fact and the corre-
sponding tokens in the Rete network: First the fact is transformed to a token
and tagged with a minus sign so that the nodes know a retract operation is in
progress. When this token is inserted in the Rete network, it is propagated
through the filter nodes until it is passed to a join node. This join node
removes the corresponding token – with a plus sign as it was inserted – from
the parent’s memory that passed it on. Subsequently, the join node performs
a variable consistency check by matching all entries from the other parent’s
memory against that token. For every found match, it propagates a negative
token to its children. All these steps are depicted in figure 8.1.

The essence of the optimisation relies in the introduction of causal links
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Figure 8.1: Rete normal retract

between tokens. Every token keeps a set of links to all the tokens that were
derived from it. These links are used in order to omit the variable consistency
checks performed by the join nodes when a negative token is propagated. Instead
of performing a costly match operation, the join node can simply follow the
causal links of the negated token in order to determine which tokens derived
from it. This optimisation decreases the computations needed for the retract
operation in the join node to O(1). Note that the memory layout of the memories
kept in the network should also support constant time deletions. In order to
allow these constant time deletions, Optimal Crime uses a doubly linked list
where tuples can delete and insert themselves in time O(1).

An example of this optimisation is shown in figure 8.2. In this example two
causal links are drawn, one from the token <+ LX> to the token <+ LX, RX> and
one from <+ RX> also to <+ LX, RX>. In the first step of this example a token
<- LX> is propagated to the left node. This node simply passes this token to
the join node in step two. The join node instructs the left memory to remove
the token at hand, because this memory is organised as a doubly linked list
this deletion is performed in time O(1). In step four, the join node follows the
causal links of the removed token in order to construct the token that must be
propagated to its children. This is where the optimisation takes place, in the
normal Rete algorithm the join node performs a consistency check of the token
<- LX> with the entire right memory.
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Figure 8.2: Constant time retractions

8.1.2 Reinserts

Volatile connections are inherent to an ambient environment, as Crime is de-
signed for environments where connections can not be assumed stable, retrac-
tions and reinserts of facts are a recurring phenomena. While the previous sec-
tion extended the basic Rete algorithm to handle retractions efficiently, here
we discuss how the algorithm from the previous section can be improved to also
perform reinserts of facts efficiently. This optimisation is known as scaffold-
ing [47], which optimises both the retractions and deletions by incorporating a
justification-based truth maintenance system – as described in chapter 3 – into
Rete.

The aim of the optimisation is to decrease the cost of the reinsert opera-
tions by circumventing costly match operations in the join nodes of the Rete
network. This is achieved by moving tokens to a special memory, dubbed deac-
tivated memory, when they are retracted instead of deleting them. Whenever
a retracted token is reinserted, the token can be retrieved from the deactivated
memory and all the affected tokens can be recursively reactivated. Care must
be taken to ensure that when a token is reactivated, it is still matched with
all tokens inserted in the opposite memory after the token was deactivated. To
determine which tokens meet that requirement, a unique timestamp is associ-
ated with every token. These timestamps should not be confused with those
introduced for the temporal operators.

Listing 8.1 shows pseudo code for the retract operation performed by a token.
Every token has a counter named active which equals zero when the token is
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active and negative whenever it is inactive. When a token is retracted, its
active counter is decreased. Whenever the token was active – counter equal to
zero – before the retraction, the token removes itself from the active memory.
Subsequently the token updates its timestamp and the node in which the token
resides places it in the deactivated memory (line 5). Thereafter, the derived
tokens are informed of the retraction of their parent token by invoking the
retract method (line 6-7). When the tuple was already deactivated before its
retraction, no further operations must be performed.

1 public void r e t r a c t ( ) {
2 i f ( this . a c t ive−− == 0) {
3 this . removeFromMemory ( ) ;
4 this . setTimestamp ( ) ;
5 node . s e tToInac t i ve ( this ) ;
6 for ( c h i l d in this . c h i l d r en ) {
7 ch i l d . r e t r a c t ( ) ;
8 }
9 }

10 }

Listing 8.1: Inactive method

The propagation of the token < −LX > is shown in figure 8.3. The numbers
indicated in the second field of the token are the active counters. The tokens
with a dashed line are affected by the retraction, one is in the left memory above
the join node. This token < +LX > |0 is moved to the deactivate memory and
its counter is decreased. It subsequently invokes the retract method of its child
< +LX,RX > |0, resulting in the movement of its child to its deactivated
memory. Because the combining the removed token < +LX > with < +RX >
has already been performed previously and has been cached by making use of
causal links, the join node can be completely bypassed, as the functionality of
join node consists of the combining its left and right memory.

Re-insert operations can be optimised as tokens which were retracted previ-
ously are not thrown away and causal links are installed. Pseudo code for the
activate method that implements the reinsert operation is shown in listing 8.2.
Instead of inserting the token again in the Rete network, it reactivates itself by
increasing its active counter. First of all, the reinserted token verifies whether
all the supported tokens – tokens residing in one of the join node’s memories, so
a subpart of the reinserted token – are active. This can be realised by checking if
its active counter equals zero. When this test succeeds, the token removes itself
from the deactivated memory (line 3). Subsequently, the join node is informed
of this reactivation and performs match operations with the newly added tokens
from the opposite memory (line 4). These match operations are still necessary
in this optimisation, because tokens can be added in the other join node’s mem-
ory while the reinserted token was inactive. One of these newly inserted tokens
can contribute to a token that must be propagated to the join node’s children.
After performing the variable consistency checks with those newly inserted to-
kens, the timestamp of the reinserted token is updated (line 5). Subsequently,
the children of this token are informed of this reactivation (line 6-7).
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Figure 8.3: Constant time retractions

1 public void a c t i v a t e ( ) {
2 i f (++this . a c t i v e == 0) {
3 this . removeFromMemory ( ) ;
4 node . r e a c t i v a t e ( this ) ;
5 this . setTimeStamp ( ) ;
6 for ( c h i l d in this . c h i l d r en ) {
7 ch i l d . a c t i v a t e ( ) ;
8 }
9 }

10 }

Listing 8.2: Activate method

8.1.3 Negation

Negations can be scaffolded in much the same way as the normal conjunctions
performed by join nodes, however the semantics is different. Left memory acti-
vations are propagated the same way as with normal scaffolding, as is explained
in section 8.1.2. However, right activations are reversed: When a token is in-
serted or reinserted in a negated join node, it propagates a retract token – a
token with a minus sign – to its children. When right activations are retracted,
a positive token is propagated to the node’s children causing activations.

8.2 Scaffolding Crime

The extra constructs Bagof and Findall can also be optimised by using a tech-
nique similar to the one used for scaffolding join nodes of the Rete network.
Those extra statements that are provided by the Crime language, typically ac-
cumulate certain variables – which are part of the tokens passed by their parent
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– in one single list. Although these nodes only receive input from one parent, a
match operation is still needed to group those variables together. For the bagof
statement this accumulation is performed according to the values of unbound
variables, whereas for the findall statement this grouping depends solely on the
bound variables.

8.2.1 Bagof and Findall

The accumulation of facts depending on their unbound variables is just the
same as performing a match operation, as is done by the join node. In the
implementation of bagof, we use the same methods for determining whether a
fact belongs to the same group as for verifying the variable consistency checks
that are performed in the join node of the Rete network. Hence, scaffolding
a bagof statement results in optimising this match operation, as was also the
case for the scaffolding process conducted on join nodes. Instead of performing a
match operation each time a token is inserted or retracted, we can keep a forward
reference from that token to the datastructure keeping the accumulated list to
which the token belongs.

We explain this optimisation by making use of the rule shown in listing 8.3.
The rule collects all persons in a room by making use of the bagof operation.
In this example there is only one unbound variable, namely ?room. Recall
that the bagof statement accumulates according to the unbound variables of
the statement, hence the bagof on line 2 in the code excerpt accumulates all
persons residing in the same room.

1 GroupLocations (? persons , ? room) :−
2 bagof (? person ,
3 ( pe r son In fo (? person , ? id ) ,
4 l o c a t i o n (? id , ? room ) . )
5 ? persons ) .

Listing 8.3: Activate method

Consider the case where there are four facts inserted which indicate that Al-
ice and Bob are in the kitchen. When Alice leaves the kitchen this results in the
retraction of the fact location(75773, Kitchen). Normally, this would cause
the bagof node to match the variable binding Kitchen with all of the groups
that have been made previously, in this example also LivingRoom as can be
seen in the Bagof Memory shown in figure 8.4. Because the extended scaffold-
ing algorithm keeps forward references from the token < - location(75773,
Kitchen) > to the group Kitchen, this accumulated list is informed of the re-
traction. It subsequently sends out a remove of the previous values, and deletes
Alice from the accumulated list followed by an insertion of a positive token
where Alice is left out of the accumulated group. The various steps are shown
in figure 8.4.
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Figure 8.4: Optimisation of delete operation in bagof node
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8.3 Optimise Time

Chapter 7 introduced Crime Time as an extension of Crime enabling reasoning
about the past by introducing temporal operators. These operators that were
presented in more detail in the previous chapter, each have a strong resemblance
to the join node, as they can be considered as join nodes that perform extra
timestamp-related tests. Hence, beside the match operations the corresponding
nodes of the network also check time constraints.

8.3.1 Sometime-past

Recall that the sometime-past node, explained in chapter 7, is implemented as
a join node performing an extra time-related test. Whenever a token is inserted
in the sometime-past node, the node first performs a match operation as is
also performed by the join nodes of the Rete network. Subsequently, the node
verifies whether the left matched tokens have a timestamp strictly greater than
the timestamp of the corresponding right token.

Optimising a sometime-past node can be realised as these timestamp-related
tests can omit unnecessary match operations. Consider both memories of a
sometime-past node that are shown in listing 8.1. The timestamps of the tokens
are displayed at their last argument.

Whenever a new token is added, its timestamp is at least equal to the greatest
timestamp so far, which is three in this example. Recall that timestamps of
tokens are initialised and increased whenever a new activation is executed by the
Crime engine. So, it could be possible that the insertion of location(76539,
LivingRoom) and the addition of the fact personInfo(Bob, 76539) are part
of the same activation, and hence the timestamps of their corresponding tokens
are equal. Otherwise, the timestamp of the inserted token is strict greater, as
in this example it equals four.

Left memory Right memory
< +personInfo(Alice, 75773); 2 > < +location(75773,Kitchen); 1 >
< +personInfo(Bob, 76539); 3 >

Table 8.1: Left and right memory of a sometime-past node

The insertion of the token with timestamp four causes a right-activation,
but no matching operations should be performed by the sometime-past node.
As the time-constraint specifies that the time of the left fact should be strictly
greater than the timestamp of the inserted token, this constraint can never be
fulfilled. So, whenever a right-activation is executed, a sometime-past node can
omit any operation, because the time-related constraint is always violated.

However, in case of a left-activation the sometime-past node must per-
form match operations as the right-memory possibly contains tokens with a
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timestamp strict smaller and whose variables may be consistent. These left-
activations can again be scaffolded as seen in the previous sections.

8.3.2 Most-recent

This operator has similar semantics as sometime-past with the explicit restric-
tion that only one matching fact can be returned. In other words, a rule body
of the form f1(), most-recent f2() only matches a single fact f2 which oc-
curred before a matching fact f1. As the most-recent node, which is discussed
in the previous chapter, resembles the sometime-past node, the same optimisa-
tions can be performed. The matching operations performed by the node can
be omitted in case of right-activations, as is explained in section 8.3.1.

8.3.3 Since

The since operator takes two explicit arguments (respectively timestamped with
t2 and t3) and matches facts such that t1 > t3 > t2. In other words, a
rule body of the form f1(), since (f2(), f3()), matches events f3 which
occurred between f2 and f1. Here again the insertions of a fact f3 can never
result in a match because of the use of a monotonous time model.

8.4 Results

Here we present the result of the optimisation of the scaffolding technique pre-
sented in the previous sections. The stress test we performed consists of the rule
shown in listing 8.4. The Rete network of this rule consists of eight join nodes
and the match operation in every join node must check three variables in the
worst case. The test begins by inserting the facts a(1,2,3) up to i(1,2,3) re-
sulting in the triggering of the rule. The fact a(1,2,3) is removed an reinserted
every iteration. In every iteration a linear increasing amount of garbage facts
are inserted, these garbage facts are of the form b(x,y,z) up until i(x,y,z).
Because these garbage facts lack a proper fact a(x,y,z) no further matches are
generated. However the use of these garbage facts simulates that the user is
walking around and picks up information form various sources, however these
sources do not contribute to an interesting event.

output (?x , ? y , ? z ) :− a (?x , ? y , ? z ) ,
b (?x , ? y , ? z ) ,

. . . ,
i (?x , ? y , ? z ) .

Listing 8.4: Optimal Crime test rule

As can be seen in the figure 8.5 when increasing the “garbage” facts, the time
needed to check all these facts by the standard Rete algorithm is increased
quadratically. The x axis in the figure indicates the number of iterations while
the y axis indicates the time in ms. The scaffolding algorithm on the other
hand does not suffer from these “garbage” facts as it only needs to perform
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these variable consistency checks only once. The optimisation behaves linear
to the amount of garbage that is inserted into the Rete network. Taking into
account that the test is performed on a workstation and not on a mobile phone
the difference in performance is significant. In order to get a realistic outcome of
the stress test, the test has been performed 1000 times. The results are shown
in figure 8.5.

Figure 8.5: Stress test executed by optimised Crime

8.5 Future work

8.5.1 Network Optimisation

Volatile connections are inherent to an ambient environment, therefore in Crime
retractions and reinserts happen frequently. In this chapter we presented an op-
timisation which decreases the computational processor power needed for the
derivation engine of the Crime language. Here we discuss an optimisation tech-
nique that uses the cashing in deactivated memories to minimise the exchange
of facts between mobile devices.

The idea of this optimisation is to tag the tokens with a monotone increas-
ing identifier. These ids can then be used in order to reactivate facts from the
working memory. Because the size of the ids is smaller than the actual facts, the
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total amount of data needed to be sent over the network is decreased. The im-
plementation of this optimisation is mainly located in the exchanges of facts on
a reconnect. We explain one possible protocol to exchange facts on a connection
by means of figure 8.6.

When two client connect with each other, they first exchange the highest
fact id received from the connecting client (step one and two on the figure).
After receiving this id, the clients react by sending the ids of their active facts
up until the id received in the previous step. The clients reactivate the received
ids, which is step 5 in the figure. To finalise, the clients send their active facts
higher than the id received in step one and two.

Figure 8.6: Network optimisation

8.5.2 Garbage Collection

As most mobile devices do not have much memory to spare, it’s important to
use the available memory wisely. One aspect to keep in mind is to free mem-
ory when it’s not needed anymore, this can be implemented manually by the
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programmer or automated by the use of a garbage collector. Garbage collect-
ing is the process to identify and reclaim memory allocated by an application
which does not influence the output of the application by its removal. Tracing
garbage collectors operate by first identifying all objects accessible by the ap-
plication and then reclaim the memory allocated by all other objects. As these
object are not accessible for the application, their removal does not influence
the application at all. Java incorporates a sophisticated kind of tracing garbage
collector, and therefore in standard Crime tokens removed from the Rete net-
work are reclaimed by the garbage collector as they are no longer accessible by
the application itself. However, by the introduction of a deactivated memory
for the optimisations shown in the previous sections, retracted tokens can not
be reclaimed as they are still accessible by the application (via the deactivated
memory). This is acceptable as most of these tokens are used to boost the
performance of the application. However in certain cases, tokens residing in
the deactivated memory do not have the potential to be reactivated. As they
have the inability to contribute to the triggering of a rule in the system, their
removal does not influence the reasoning process of the Crime application and
thus these tokens are qualified as garbage. The same holds for certain tokens
kept into the nodes implementing the temporal operators.

HALO is a temporal logic pointcut language which like Crime uses the
Rete network for its derivation engine. HALO provides built-in garbage col-
lection for its temporal operators and hence this mechanism could be adapted in
order to identify the garbage produced by Crime. However as HALO does not
incorporate a deactivated memory, much garbage produced by these temporal
operators in Crime would not be recognised.

In the rest of this section we present the relevant parts of this garbage
collection mechanism of HALO applied to the rules of Crime and show how
this algorithm should be adjusted to take into account the deactivated memories.
For a full dissertation of the garbage collector of HALO we refer the interested
reader to [30].

One difference with the HALO garbage collector is that in HALO facts
themselves can be garbage collected, whereas in Crime only tokens residing in
the Rete network can be garbage collected. The reason for this is that facts
in Crime are exchanged with other entities in the network and thus can be
relevant for others. This is in contrast with HALO where facts expressing join
points are only relevant for the application at hand. Consider the rule shown
in listing 8.5: this rule produces lastPlayed facts representing the most recent
song played just before Alice walks into the room.

l a s tP layed ( Al ice , ? song ) :−
l o g i n ( A l i c e ) ,
mostRecent ( played (? song , A l i c e ) . ) .

Listing 8.5: Garbage collection rule

Assuming that the facts shown in listing 8.6 are subsequently inserted into
the knowledge base of Crime, we can then conclude that both tokens in-
serted at time one and two may be garbage collected. Token two is trivial as
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the lastPlayed rule does not have a prerequisite matching this fact and thus
can never be triggered by such a token. Note that the fact can not be re-
moved as it may trigger rules residing on other entities in the approximation.
Token one is also qualified as garbage as the existence of a more recent fact
played(‘‘songB’’,Alice) prevents it to contribute to the activation of the
lastPlayed rule.

In HALO the garbage collection procedure stops with the removal of this
fact. However, in Crime all tokens derived from fact one should also be deleted
as their parent can never be activated again. This could be incorporated into
Crime by a special destroy operation in the tokens which acts similar to the
activate method shown in listing 8.2. However, instead of reinserting the to-
ken, it is just dismissed. By removing all references to these tokens, they are
eventually garbage collected by the underlying garbage collector of Java.

1 played ( ‘ ‘ songA ’ ’ , A l i c e ) .
2 played ( ‘ ‘ song1 ’ ’ ,Bob ) .
3 l o g i n ( A l i c e ) .
4 played ( ‘ ‘ songB ’ ’ , A l i c e ) .
5 l o g i n ( A l i c e ) .

Listing 8.6: Garbage collection rule

8.6 Conclusion

Volatile connections are inherent to an ambient environment, therefore in Crime
retractions and reinserts happen frequently. In this chapter we presented an
optimisation inspired by this phenomena which tackles the most costly operation
of the derivation engine of Crime. This optimisation, known as scaffolding, is
extended to be used with the specific operators of Crime and its extension
Crime Time. Small scaled test have shown that this optimisation performs
significantly better than the normal Rete algorithm. Where the normal Rete
algorithm slows down when used extensively, the optimised version does not.
Future work includes the incorporation of a garbage collector for the temporal
operators and minimising the network load.
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Chapter 9

Conclusion

The focus of this dissertation was to provide mobile applications with a con-
sistent view on their environment by giving them fine-grained control over the
effects of disconnections. The Fact Space Model we have developed, is a model
finding its roots in the Tuple Space Model but differs from it in two ways: First
of all, the Fact Space Model is conceived as a distributed fact space were both
the assertion of facts and their retraction are considered as relevant events. Sec-
ondly, our proposed model provides the programmer with a logic language to
describe the mapping of context information to the actions to be performed.

To provide a model which is able to cope with the characteristics of a mobile
environment, the Fact Space Model combines a set of features distinguishing it-
self from existing work on coordination languages, distributed reasoning engines
and context aware middleware. First of all, context information is shared by
making use of a federated fact space rather than by a publish-subscribe mecha-
nism. This enables the immediate detection of information loss and subsequently
the ability to reaction upon this disappearance. As information deletion is a
direct translation of a disconnection between mobile devices, applications using
the Fact Space Model for its coordination benefit from the ability to compen-
sate the effects of these disconnections. Furthermore, the Fact Space Model
offers a fully reactive logic language based on forward chaining. This language
offers users with the benefits of reactive tuple spaces but extends this existing
model by allowing the reaction upon a multitude of events and the ability to
exploit the provided reversing mechanism. A feature which is, to the best of
our knowledge, currently not provided by any other coordination language for
mobile ad hoc networks. Finally the Fact Space Model differentiates itself from
existing distributed reasoning engines in that it does not rely on a centralised
architecture for its communication. We not only presented this model, but we
also provided a proof-of-concept implementation, dubbed Crime.
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9.1 Contributions

This dissertation advocates the use of a distributed reasoning engine in com-
bination with a truth maintenance system in order to ease the development of
context-aware applications.

We first give an overview of the important contributions:

• the Fact Space Model, a novel architecture for developing ambient and
context-aware applications, specifically tailored for dealing with frequent
disconnections

• proof-of-concept implementation of the fact space model, dubbed Crime,
which is a logical coordination language

• Crime Time, an extension of Crime, incorporating language support
under the form of temporal operators for reasoning about past context

• optimisation of the Crime query engine, with regards to its deployment in
pervasive environments

We next discuss these contributions in more detail with regards to Crime’s
deployment in pervasive environments.

Crime is based upon the federated tuple spaces provided by Lime. These
tuple spaces provide an imperative mechanism to share information in a decen-
tralised environment. Moreover as federated tuple spaces are based upon the
Linda tuple spaces, they also support both space and time uncoupling, as we
discussed in chapter 2. In order to react upon a certain tuple entering the tuple
space, Lime provides the notion of events, however these events are unable to
react on a combination of tuples entering the tuple space. Therefore, the tuple
space model provided by Lime suffers from the inability to react on a com-
bination of contextual changes. Furthermore, the language doesn’t support a
reversing mechanism to undo the reactions on tuples which are no longer present
in the tuple space.

Crime is an immediate instantiation of the Fact Space Model, which over-
comes these shortcomings as it uses a logical inference engine for reasoning about
a combinations of facts residing in the fact space. The use of a logical infer-
ence engine is also supported by other languages like for example Gaia which
is described in chapter 4. As for Gaia, the rules of this logic language allow to
keep track of causal links between the current context and possible reactions on
that context information. However, there’s no support for redoing the actions
whenever the context is changed. Reacting and reversing the actions based on
the sensed context is possible in Crime as the retraction of a fact in the fact
space can cause the prerequisites of a rule to fail and the consequences of that
rule are reversed, as specified.

The extension of CRIME with temporal operators adopted from HALO, is
a track that has not been followed by other context-aware frameworks. Most of
these frameworks provide a context history which can be queried to extract past
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information, although this results in similar semantics, the use of dedicated op-
erators significantly improves the expressiveness of the language. Moreover the
integration of these declarative temporal operators provide additional benefits
for mobile devices as the used past information that has to be kept is minimised
to that information used by the temporal operators.

The Rete algorithm on which the Crime query engine is built, has been
optimised for the use in a pervasive environment. In Crime, context sharing
is based upon connectivity: in a mobile environment, where intermittent dis-
connections occur frequently, inserting and removing context should be done
fast. The most costly operation of the Rete algorithm resides in the matching
phase performed by the join nodes. By incorporating of a justification-based
truth maintenance system into the Rete network of Crime, a large part of this
matching phase is omitted. Obviously, the specific optimisation of the Rete
network to deal with the characteristics of a mobile environment, has not been
done for other context-aware frameworks.

9.2 Future Work

This section gives an overview of possible extensions for the Fact Space Model
and Crime. These extensions stem from various research area which were not
investigated into depth but are worth exploring to produce a coordination lan-
guage usable for the production of industrial applications.

Visual Programming

The work conducted in this dissertation could be used build a visual program-
ming language, where the rules in the system are drawn. A large component
library should be available consisting of actions and widgets. This component
library should provide the most commonly needed actions used for mobile de-
vices. In this visual programming language, the user should only be concerned
about the adaptation of the application at hand. A good starting point to in-
vestigate this, could be the adaptations of Mac applications as these provide a
rich set of hooks through their applescript support.

Optimisation

One path of future research is to focus on the usability of Crime for small de-
vices by further optimisation of the language. On one hand, we should aim to
decrease the network load and on the other hand decrease the memory consump-
tion and processing power needed. As the processing cycles of mobile devices
are always reflected in the power consumption of these devices, it is worth the
effort to optimise as much as possible. For minimising the network load we
have already proposed the use of a more intelligent sharing mechanism inspired
by the optimisations shown in chapter 8. Decreasing the memory consumption
could be realised by the incorporation of a garbage collector similar to the one
used in HALO [30].
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Smarter Behaviour

Another path to follow is the extension of the existing model with machine
learning techniques in order to produce applications which learn their wanted
behaviour themselves. Not only could this open the doors for more intelligent
systems but also more adaptable systems which in time could take into account
new information which was unavailable at their production time. A technique
worth investigating in order to derive new rules from a set of examples is known
is called inductive logic programming and is described in the book Simply Logical
[23]. The catch when opting for this technique is to find a suitable way to collect
the examples.

Implementation

By gaining experience in the development of context-aware application, we
have already detected the need to support temporal operators. As extensions
to the language itself are endless, we limit ourselves to only the most relevant
and appealing features in mind.

The current implementation of Crime does not support the retraction of
rules, also when rules are added locally they only take into account the facts
perceived after their addition. The aim of the dynamic addition and removal
of rules is to provide more flexible and extensible applications. Extending
the inference engine and network layer of Crime in order to allow the ad-
dition and removal of rules both locally and remotely is thus worth investigating

Exception handling is an important research area of distributed pro-
gramming languages, therefore future research should concentrate on the
incorporation of an exception handling system into Crime in order to deal with
runtime errors. A premature idea is the use of specialised error facts which in
their turn could trigger specialised error handlers to deal with the error at hand.

The current implementation of Crime provides the user with multiple tuple
spaces as a basic abstraction in order to group related facts. As this method
allows Crime application to shield certain facts from eachother, there is no
mechanism that prevents a malicious user to read the tuples residing in the
tuple space. Therefore, applications written in the current implementation of
Crime are not suited for security critical applications. Concretely, this future
work would concentrate on providing an abstraction layer to secure the use of
the fact space by making use of encryption.
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peer-to-peer communication, 78
persistent facts, 108
physical context, 67
policy, 85
policy driven adaptation, 85
policy manager, 85
policy script, 83, 85
policy scripting language, 83
polling, 29, 140
port number, 140
positive token, 127
prerequisite, 123
prerequisites, 46, 47, 104, 123
printer example, 156, 160
private fact space, 100, 104
production, 42, 47
production definition, 45
production memory, 46, 48
production node, 49, 125, 135
production system, 41, 45
propagation rule, 36
proxies, 59
proximity function, 96
publish-subscribe pattern, 82
push button, 77

quantification, 102
quantified fact, 136
quantified facts, 104
query-answer protocol, 92

rd statement, 35
reaction, 102
reactions, 36
reactivated, 169
read statement, 21
reflection, 83, 84
relation, 74, 75
remote operations, 16
rendez-vous pattern, 27
resolution strategy, 109
Rete, 46
Rete algorithm, 47
Rete network, 122

Rete single negation, 52
retract, 127, 141
retracted, 107
retraction, 42
right activation, 49, 131, 132
right node, 130
ring propagation, 39
root node, 123
rule, 42, 121, 123
rule manager, 86
rules, 46, 91, 104

salience, 57
salience property, 57
scaffolding, 169
scheduler, 135
semaphore, 29
semaphore tuple, 29
semaphores, 25
sensor, 68, 93
sensors, 72, 80
sensory capture, 94
sentient object, 93, 94
service discovery, 139
shadowed facts, 56
shared working memory, 59
sharing variables, 22
since, 151, 161, 175
since node, 161
slots, 56
sometime-past, 156, 174
sometime-past node, 158, 174
space uncoupling, 21, 69
Stigmergy, 95
Stigmergy runtime, 96
strong reactions, 36
structural name, 20
subscribe-notify protocol, 92
switch profile example, 70, 75, 86, 88,

93, 95, 100, 102, 105
synchronous communication, 27

template, 56
temporal operators, 151
terminal node, 49
time uncoupling, 22, 69

193



timestamps, 151
token, 49, 127
tokens, 120
Tota, 36
Tota API, 38
transiently sharing, 34
triggered, 104
truth maintenance, 61
truth maintenance system, 109
truth maintenance systems, 61, 62
tuple, 17
tuple space, 17
Tuple Space Model, 17
two-phase locking process, 60

ubiES, 61
unification, 19
unifier, 19
unordered facts, 56
user context, 67
user-defined action, 121, 141

variable checker, 131
variables, 121

weak reactions, 36
web of inference systems, 59
widget, 69, 70, 72, 73, 81, 142
widget attribute, 81, 82
widget attributes, 79
widget manager, 69
widgets, 77, 79, 83, 86, 88
WildCAT, 78
wizards production, 46
wizards rule, 43, 44, 47–49, 52
WoIS manager, 59
WoIS members, 59
working memory, 46, 48
working memory elements, 46

194


