
FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Programming Technology Lab

Modularizing Language Constructs:
A Reflective Approach

Ph.D. Dissertation

Thomas Cleenewerck

Promotors: Prof. Dr. Theo D’Hondt and Dr. Pascal Costanza

July 3rd 2007

Abstract

Programming languages are in a continuous state of flux in order to keep up with
emerging needs of programmers. They are grown with new constructs so that pro-
grammers can express the problems from their domain within the language they
are using. Growing languages means to grow their implementations along with
them. To support this, we wish to preserve the decomposition of languages into
language constructs in their implementations. As the design of a language imple-
mentation directly reflects our intuitive decomposition, a developer can engage
in the natural process of developing a language.

We preserve the decomposition into language constructs by modularizing the
definition of language constructs in separate implementation modules containing
their syntactical representation and their translational semantics. In this setting,
growing a language boils down to writing or selecting the appropriate language
constructs and establishing the necessary interactions. As the language is con-
tinuously evolving during its implementation and future evolutions, the modular-
ization of the language constructs renders the implementation less susceptible to
the continuous changes.

The modularization of language implementations has been the subject of much
research in the domain of compiler technology. The complexity of this research lies
in the fact that language constructs intrinsically take into account other language
constructs and therefore compromise their opportunities for modularization. In-
deed, the mechanisms presented by the contemporary state of the art technologies
for separating a language implementation into modules do not suffice.

In this dissertation, we define a lightweight formal model for the modulariza-
tion of language constructs. From this model we deduce a new language imple-
mentation design in which languages consists of three kinds of concerns: the ba-
sic language concerns defining the language constructs, the language specification
defining the interactions between the basic concerns by using the special-purpose
concerns which define the mechanisms to implement the interactions.

As a solution for the above model, we present an open design for a new lan-

iii

iv Abstract

guage development technique: A language implementation is decomposed into a
set of interacting language modules called linglets. Each linglet defines in isola-
tion the syntax and the (translational) semantics of a single language construct
in terms of another (lower level) language. The mechanisms to establish the
necessary interactions among the language constructs are captured in interaction
strategies. Interaction strategies are defined as extensions of a specifically tailored
metaobject protocol (MOP).

Linglets and interaction strategies can be reused across language implemen-
tations. In addition, new linglets and interaction strategies can be defined, and
existing ones can be specialized to respectively establish the interactions with
other linglets and to meet and adapt the interaction strategy for the challenges
in a particular language implementation.

We validate our approach by developing a non-trivial family of domain-specific
languages using a shared pool of language constructs and interaction strategies,
and by implementing the necessary metalanguages.

This dissertation enables us to optimize language implementations with re-
spect to separation of concerns according to their language constructs.

Nederlandstalig Abstract

Programmeertalen zijn continu onderhevig aan veranderingen gestuurd door de
nieuwe behoeften van programmeurs. Hierdoor groeien ze omdat ze worden uit-
gebreid met nieuwe taalconstructies zodat programmeurs hun problemen van
een bepaald domein beter kunnen uitdrukken. Als talen groeien, dan moeten
uiteraard hun implementaties meegroeien. Om dit te ondersteunen willen we de
implementaties van talen structureren op dezelfde wijze als talen gestructureerd
zijn, namelijk volgens hun taalconstructies. Taalimplementaties die op die manier
gestructureerd zijn, kunnen makkelijker en op een natuurlijke manier ontwikkeld
worden.

Taalimplementaties worden volgens taalconstructies gestructureerd door elke
taalconstructie te modulariseren in aparte taalmodules. Iedere taalmodule be-
schrijft de syntax en de translationele semantiek (uitgedrukt in termen van een
andere taal) van één taalconstructie. Dit laat toe om talen en hun implemen-
taties samen te laten groeien door nieuwe taalmodules te ontwikkelen en/of
bestaande te selecteren en hun onderlinge interacties vast te leggen. Bovendien
maakt deze modularisatie taalimplementaties minder kwetsbaar voor de continue
veranderingen.

Modularisatie van taalimplementaties werd grondig onderzocht in het onder-
zoeksveld van compilertechnologie. De complexiteit van dit onderzoek ligt in
de intrinsieke verbanden tussen taalconstructies die modularisatie bemoeilijken.
We stellen echter vast dat de mechanismen aangeboden door de hedendaagse
spitstechnologieën voor taalontwikkeling niet volstaan om taalimplementaties te
structureren volgens de taalconstructies.

In deze verhandeling, definiëren we een formeel model van de modularisatie
van taalconstructies. Op basis van dit model leiden we een nieuw ontwerp af
dat een leidraad is voor de implementatie van talen en taalonwikkelingstech-
nologie. Het ontwerp schrijft voor dat talen opgebouwd worden uit drie soorten
bekommernissen: de basis bekommernissen die de taalconstructies definiëren, de
taalspecificatie die de interacties tussen de taalconstructies realiseren met behulp

v

vi Nederlandstalig Abstract

van speciale bekommernissen die op hun beurt de mechanismen definiëren om de
interacties te realiseren.

Als oplossing voor het formele model en het nieuwe ontwerp, stellen we een
open nieuwe taalontwikkelingstechnologie voor waarin talen gëımplementeerd
worden als een verzameling interagerende taalmodules die linglets genoemd
worden. Elke linglet definieert, in totale afzondering van de rest van de taal en de
andere taalconstructies, de syntax en de translationele semantiek van één enkele
taalconstructie. De mechanismen om de interacties tussen de taalconstructies te
realiseren zijn gedefinieerd in interactiestrategieën. Deze worden gemodelleerd als
uitbreidingen van een specifiek gecreëerd metaobject protocol voor taalontwikke-
lingstechnologieën.

Linglets en interactiestrategieën kunnen hergebruikt worden in verschillende
taalimplementaties. Daarenboven kunnen nieuwe gedefinieerd worden en kunnen
bestaande gespecialiseerd worden zodat linglets kunnen interageren met andere
linglets en zodat interactiestrategieën aangepast kunnen worden aan de uitda-
gingen die een concrete taalimplementatie stelt.

De nieuwe aanpak om talen te implementeren die we voorstellen in dit werk
valideren we door een niet-triviale familie van domein-specifieke talen te imple-
menteren gebruikmakende van een gedeelde verzameling van taalconstructies en
interactiestrategieën.

Met onze aanpak is het nu mogelijk om de opdeling van taalimplementaties
in taalmodules, die elk een taalconstructie definiëren, te optimaliseren.

Acknowledgments

The most thrilling aspect of doing research is to venture and to explore. The
Programming Technology Lab (PROG) has given me the freedom and the means
to do so. For this I want to thank prof. dr. Theo D’Hondt. I especially want
to thank him for giving me the opportunity to investigate my ideas, despite their
crudeness and sketchiness at times. Although this dissertation is longer than
others, Theo took the necessary time to review the text. Theo, I still owe you a
pencil.

My co-promotor dr. Pascal Costanza and myself crossed paths when I was
consolidating my work. It is no exaggeration to say that Pascal played a key
role in that process. In our technical discussions, he maintained the overview in
the midst of a pool of very diverse features and ideas and he was able to quickly
identify and grasp the interesting parts of my work. He is also the guy that
worked his way through elaborate drafts of my text. Thanks to him, I learned
the meaning of the sentence “less is better”. Working with Pascal is pleasant
as he likes technical details as well as the big picture of what is going on, but
most importantly he quickly knows how and what to contribute to a working
relation and to a person. Many thanks, Pascal and I hope we can continue our
cooperation in the future.

I thank Görel Hedin, Tom Tourwé, Wim Vanderperren and Wolfgang De
Meuter for finding the time to be on my thesis committee and for their insightful
comments and suggestions.

During my activities at PROG I closely worked with Johan Brichau, Dirk
Deridder, Johan Fabry and Elisa Gonzalez Boix. Johan Brichau helped me to
shape some of my initial ideas. I recall his rigor, and persistence and our vivid
discussions. Johan, thank you for this and for the proofreading at the end of the
ride. You certainly returned the favor. Dirk Deridder, thank you for saving the
day by helping me out when I was in need for a proofreader, and by offering a
listening ear. Johan Fabry is a swift, no-fuss and to the point worker. His direct
but fair style makes working with him rewarding and fun. Most importantly,

vii

viii Acknowledgments

Johan has always been a great supporter. Thank you for that. Elisa Gonzalez
Boix, both professionally and personally, you made a difference. I hope I can
return the many favors with the same enthusiasm and kindness. Many thanks to
the other members of my lab which also proof-read the thesis: Brecht Desmet,
Charlotte Herzeel, Coen De Roover, Ellen Van Paesschen, Jessie Dedecker, Kris
Gybels and Sofie Goderis. A thank you is also more than appropriate to all my
colleagues at PROG who provided me with the opportunity to focus entirely on
writing my dissertation.

Special thanks goes to my wife Veerle. She believed in me from the very start
on, and coped with me in all these years when I was wandering off figurative
and literally pursuing ideas. Last but not least, I wish to thank my parents and
parents in-law for unconditionally supporting me.

Contents

Abstract iii

Nederlandstalig Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Research Context . 1

1.1.1 Programming Languages 2

1.1.2 Growing Languages . 3

1.2 Growing a Compiler . 4

1.3 Problem Statement: Modularization 6

1.3.1 Major Challenges . 7

1.3.2 Modularization Problems in Contemporary Language De-
velopment Techniques . 8

1.4 Thesis Statement . 9

1.5 Approach of the Dissertation . 10

1.5.1 Modularization Model . 11

1.5.2 Modularized Implementation of Language Constructs . . . 14

1.5.3 Language Specification . 15

1.5.4 Language Implementation Interaction Strategies 16

1.6 Contributions . 18

1.6.1 Survey of Contemporary Language Development Techniques 18

1.6.2 Modularization of Language Constructs Model 18

1.6.3 Kernel Transformation System 18

1.6.4 Metafacilities for Defining Interaction Strategies 19

1.6.5 New Strategies . 19

1.7 Outline . 19

ix

x Contents

2 Language Implementations 23
2.1 Modularization of Language Constructs 24

2.1.1 Expressiveness . 24
2.1.2 Expressiveness Formalized 25
2.1.3 Modularization . 26

2.2 Language Development Techniques 27
2.2.1 Unifying Terminology . 27
2.2.2 Typical Architecture . 30
2.2.3 Implementation Approaches 33

2.3 Translational Semantics . 35
2.3.1 Granularity of Transformation Modules 36
2.3.2 Direction of Transformations 37
2.3.3 Scope of Transformations 39
2.3.4 Discussion . 44

2.4 Conclusion . 44

3 Language Development Techniques 45
3.1 Tree-Based Rewrite Rules . 47

3.1.1 Data Structures . 48
3.1.2 Transformation Modules 49
3.1.3 Traversals . 52
3.1.4 Scoped Dynamic Rewrite Rules with Rewrite Strategies . . 54

3.2 Graph Rewrite Rules . 57
3.2.1 Data Structures . 57
3.2.2 Transformation Modules 58

3.3 Macros . 62
3.3.1 Data Structures . 63
3.3.2 Transformation Modules 64

3.4 Template-based Approaches . 66
3.4.1 Data Structures . 67
3.4.2 Transformation Modules 69

3.5 Attribute Grammars . 72
3.5.1 Data Structures . 73
3.5.2 Transformation Modules 74

3.6 Compositional Generators . 79
3.6.1 Data Structures . 81
3.6.2 Transformation Modules 82

3.7 Ad-hoc Approaches . 84
3.7.1 Delegating Compiler Objects, JAMOOS and TaLe 85
3.7.2 Intentional Programming 87
3.7.3 Jakarta Tool Suite . 88
3.7.4 Functional Languages . 90

3.8 Discussion . 92

Contents xi

3.9 Conclusion . 95

4 Modularization of Language Constructs 97
4.1 Modularization Model . 97

4.1.1 Setting the Stage . 98
4.1.2 Phenomena Described by the Model 100
4.1.3 Compositionality Requirement (R1) 102
4.1.4 Multiple Inputs Requirement (R2) 107
4.1.5 Multiple Results Requirement (R3) 110
4.1.6 Representation Requirement (R0) 111
4.1.7 Formalization of the Valuation 114
4.1.8 Higher-Order Grammar Requirement (R4) 117
4.1.9 Conclusion . 119

4.2 Three Language Implementation Concerns 120
4.2.1 Basic Concerns . 120
4.2.2 Special-purpose Concerns 121
4.2.3 Language Specification Concerns 125

4.3 Separating Special-purpose Concerns 127
4.3.1 Challenges to Separate the Resolution of Compositionality

Conflicts . 128
4.3.2 Challenges to Separate the Handling of Multiple Inputs. . 128
4.3.3 Challenges to Separate the Handling of Multiple Results . 129

4.4 Evaluation of the Separation of Concerns 131
4.5 Interaction Strategies . 134

4.5.1 SOC of Language Implementations 134
4.5.2 A Definition of Interaction Strategies 137
4.5.3 Interaction Strategy Space 137
4.5.4 Interaction Strategy Shortcomings 138
4.5.5 Metafacilities . 141

4.6 Conclusion . 143

5 Linglets : The basic language concerns 149
5.1 A Running Example: T2SQL Language 150
5.2 LTS Architecture . 153
5.3 Linglets . 157

5.3.1 Linglet Declaration . 159
5.3.2 Linglet Data . 160
5.3.3 Syntactical Methods . 161
5.3.4 Semantical Methods . 166
5.3.5 Standard Namespace base 168
5.3.6 #-Construct . 169
5.3.7 Standard Part nonlocals 171
5.3.8 Specialization . 172

xii Contents

5.4 Language Specification . 175
5.4.1 Grammar . 176
5.4.2 Overall Language Semantics 181
5.4.3 LTS at Work . 184

5.5 LTS Requirements . 186
5.6 R0 - Program Representation . 186

5.6.1 R0a - Partial Program Fragments in Linglets 186
5.6.2 R0b - Completable Program Fragments in Linglets 188
5.6.3 R0c - Local Consistency in Linglets 189
5.6.4 SP0 - Concern-specific Logic: Cooperation and Coherence

in Language Specifications 190
5.7 R1 - Compositionality . 193

5.7.1 R1 - Compositionality in Linglets 194
5.7.2 SP1-SP2 - Resolving Compositionality Conflicts in Lan-

guage Specifications . 195
5.8 R2 - Multiple Inputs . 198

5.8.1 R2 - Declaring Multiple Inputs in Linglets 198
5.8.2 SP3-SP7 Acquisition of Multiple Inputs in Language Spec-

ifications . 199
5.9 R3 - Multiple Results . 200

5.9.1 R3 - Producing Multiple Results in Linglets 201
5.9.2 SP8-12 Handling Multiple Results in Language Specifications203

5.10 Conclusion . 212

6 The MetaObject Protocol for LTS 213
6.1 MetaObject Protocol . 215

6.1.1 Specifying Languages . 215
6.1.2 Specifying Linglets . 216
6.1.3 Specifying Programs . 217
6.1.4 Constructing Target Programs 218
6.1.5 Retrieving Information . 220
6.1.6 Consistency . 222
6.1.7 Putting It All Together . 224

6.2 Interaction Strategies . 224
6.2.1 Situating Interaction Strategies in LTS 224
6.2.2 Implementing Interaction Strategies 224

6.3 Experiments with Interaction Strategies 226
6.3.1 Existing Interaction Strategies: Structure-shy Queries . . . 226
6.3.2 Adjustment of Existing Interaction Strategies 230
6.3.3 New Interaction Strategies for Multiple Results 235

6.4 Advanced Experiments: Compile-time MOP 245
6.4.1 LTS in LTS . 246
6.4.2 Compile-time Strategies 249

Contents xiii

6.5 Strategies for Special-purpose Concerns 251
6.5.1 Special-purpose Concern - Compositionality 251
6.5.2 Special-purpose Concern - Multiple Inputs 252
6.5.3 Special-purpose Concern - Multiple Outputs 253

6.6 Discussion . 254
6.7 Conclusion . 257

7 Building a Family of Languages with LTS 265
7.1 Advanced Transaction Models . 266

7.1.1 ATMS . 266
7.1.2 KALA . 267

7.2 Domain-specific Transaction Languages 269
7.2.1 Case Study . 271
7.2.2 Incremental Development of Three DSTLs 272

7.3 Initial Language: Classical Transactions 272
7.3.1 DSTL Translational Semantics 273
7.3.2 The Tx Language Construct 274
7.3.3 The ID Language Construct 276
7.3.4 The Entire ClassicalTx Language 276

7.4 First Increment: Nested Transactions 277
7.4.1 Nested Transactions ATMS 277
7.4.2 Simple Nested Transactions DSTL by Example 277
7.4.3 DSTL Translational Semantics 279
7.4.4 Overview of the Language Implementation in LTS 281
7.4.5 The Extends Language Construct 281
7.4.6 The TxRegistration Language Construct 283
7.4.7 The Entire SimpleNestedTx Language 284
7.4.8 Root Transactions: Compositionality Conflict 285
7.4.9 Nested Transactions: Composition Deficit 286
7.4.10 Integration of Transaction Fragments: INR strategy 287

7.5 Second Increment : Sagas . 291
7.5.1 Sagas ATMS . 292
7.5.2 Saga DSTL by Example 292
7.5.3 DSTL Translational Semantics 294
7.5.4 Overview of the Implementation in LTS 295
7.5.5 The Saga Language Construct 296
7.5.6 The Step Language Construct 297
7.5.7 The Compensate Language Construct 298
7.5.8 The Entire Saga Language 301
7.5.9 Application-specific Interaction Strategies 302
7.5.10 Source-steered Integration 305
7.5.11 Resolving Duplicate Code Fragments 307

7.6 Discussion . 307

xiv Contents

7.7 Conclusion . 309

8 Conclusion 315
8.1 Research Context . 315
8.2 Summary . 315

8.2.1 Thesis . 317
8.2.2 Survey of Contemporary Language Development Systems . 317
8.2.3 Modularized Language Construct Model 318
8.2.4 Kernel Transformation System 319
8.2.5 Metafacilities for Defining Interaction Strategies 320
8.2.6 New Interaction Strategies 321

8.3 Limitations and Future Work . 321
8.3.1 Sandbox Isolation Model 321
8.3.2 Global Consistency Management 322
8.3.3 Incremental Language Development 323
8.3.4 Application in other Language Development Techniques . . 324
8.3.5 Interaction Strategy Library 324
8.3.6 Modular Interpreters . 325
8.3.7 Model-driven Development 326
8.3.8 Debugging . 327
8.3.9 Advanced Object-oriented concepts 328
8.3.10 Interaction Strategies for Aspects of the Semantic Behavior

of Compilers . 329
8.4 Perspectives . 329

A SOC of Language Implementations 331
A.1 Separation of Basic Concerns . 332

A.1.1 R4 - Higher Order Grammars 332
A.1.2 R0a - Partial Values Using the Bottom Value (⊥) 333
A.1.3 R0b - Completable Values 333
A.1.4 R0c - Semantics to Preserve the Local Consistency 334
A.1.5 R1 - Compositionality . 334
A.1.6 R2 - Multiple Inputs . 334
A.1.7 R3 - Production of Multiple Results 335

A.2 Separation of Compositionality Concerns 337
A.2.1 SP1 - Localized Interventions 337
A.2.2 SP2 - Global Interventions 338

A.3 Separation of Multiple Inputs Concerns 338
A.3.1 SP3 - Identification with Abstract Names 338
A.3.2 SP4 - Obtention of External Information 339
A.3.3 SP5 - Obtention of Information of Another Language Concern340
A.3.4 SP6 - Obtention of Distributed Information among Several

Concerns . 341

Contents xv

A.3.5 SP7 - Provision of Information 342
A.4 Separation of Multiple Results Concerns 342

A.4.1 SP8 - Identification via the Source Language Program . . . 342
A.4.2 SP9 - Identification via the Target Language Program . . . 343
A.4.3 SP10 - Scheduling . 344
A.4.4 SP11 - Integration - a Three-party Contract 345
A.4.5 SP12 - Integration - Context-dependent Integration 346

B Analysis of Interaction Strategy Applicability 347

C KALA Language Specification 351
C.1 Language Constructs . 351

C.1.1 Transaction . 351
C.1.2 Naming . 352
C.1.3 Grouping . 353
C.1.4 Significant Events . 353
C.1.5 Dependencies . 354
C.1.6 View . 354
C.1.7 Delegation . 355
C.1.8 Termination . 355
C.1.9 Autostart . 355

C.2 KALA Language Specification . 356
C.3 ATMS KALA Specifications . 357

C.3.1 Saga KALA Specification 357

Bibliography 359

List of Figures

2.1 A high-level overview of a typical architecture of a LDT. 30

2.2 The direction of a transformation. 38

2.3 A schematical overview of transformation terminology. 40

2.4 Scopes in target-driven implementations of local-to-local transfor-
mations. 42

2.5 Scopes in source-driven implementations of local-to-local transfor-
mations. 42

3.1 A simple tree language with tree-based rewrite rules. 48

3.2 An example of a rewrite rule . 48

3.3 A schematic overview of a rewrite rule 49

3.4 Incrementing the leaves of a tree. 53

3.5 A schematic overview of a rewrite rule equipped with traversals . 53

3.6 A schematic overview of a dynamically scoped rewrite rule 55

3.7 A schematic overview of a graph rewrite rule 59

3.8 A schematic overview of a macro 64

3.9 An XSLT transformation. 68

3.10 A schematic overview of a template 69

3.11 A schematic overview local-to-global transformations by template-
based LDTs. 72

3.12 A simple document definition language [Swi] defined with an at-
tribute grammar. 73

3.13 An example grammar definition in JastAddII 75

3.14 Type checking aspect in JastAddII 75

3.15 A schematic overview of an attribute definition 76

3.16 A schematic overview of a heterogeneous compositional generator 82

3.17 A schematic overview of a DCO 86

3.18 A schematic overview of JTS . 89

xvii

xviii List of Figures

3.19 A schematic overview of a functional language implementation us-
ing generic traversals and monads. 90

5.1 Illustration of the decomposition of the T2SQL language using the
new architectural style. 154

5.2 T2SQL using an object-oriented architectural style. 156
5.3 An instantiated Set linglet of the T2SQL language. 164
5.4 Snapshot of the transformation process for a T2SQL program in

its final stage. 185
5.5 Source dependent integration of Table nodes. 205

6.1 Diagram of LMOP. 259
6.2 Subprotocols of LMOP. 260
6.3 Diagram of the deployment of an interaction strategy. 261
6.4 Integration of the nonlocal Table node works on in example query 7.262
6.5 Conceptual Diagram of LTS in LTS. 262
6.6 Example AST of a left recursively and non-left recursively defined

grammar. 263
6.7 Example AST of a non-left recursively defined grammar using left

recursively defined linglets in LTS. 264

7.1 Context of the case study. 270
7.2 Translational semantics of the ClassicalTx DSTL. 274
7.3 Translational semantics of the SimpleNestedTx DSTL. 280
7.4 An overview of the deployment of the INR strategy in KALA. . . 310
7.5 Translational semantics of the Saga DSTL. 311
7.6 Execution of the Sibling strategy 312
7.7 Source-steered integration of the terminate nonlocals. 313

8.1 The four layered architecture of MDD 326

List of Tables

2.1 Classification of source and target scopes of transformation modules 39

4.1 The different degrees of separation of concerns 135
4.2 Tasks and challenges of language concerns. 136
4.3 Overview of the capabilities of each LDT to realize the tasks and

challenges of each language concern. 146
4.4 Overview of the interaction strategies offered by LDTs. 147
4.5 Overview of the metaoperations performed by interaction strategies.148

5.1 Context-sensitive integration of nonlocal Tables produced by the
relations in the listed queries. 208

6.1 Overview of the base-level calls corresponding to the respective
meta-level calls. 225

xix

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability
ACTA formal model for ATMS
AGG Algebraic Graph Rewriting
AMDD Agile Model-driven Development
AOP Aspect-oriented programming
AP Adaptive Programming
ASF Algebraic Specification Formalism
AST Abstract Syntax Tree
ATL Atlas Transformation Language
ATMS Advanced Transaction Models
BNF Backus-Naur Form
DCO Delegating Compiler Object
DSD Domain-specific Description
DSL Domain-specific Language
EBNF Extended Backus-Naur Form
ELAN A rewrite rule system
EUP Enterprise Unified Process
FORTRAN FORmula TRANslation
GPL General Purpose Language
HTML Hyper Text Markup Language
ICG Integrative Composable Generators
ID Identifier
IDE Integrated Development Environment
INR Incremental Non-local Results
IP Intentional programming
IS Implementation Strategies
ISC Implementation Strategy Control
ISI Implementation Strategy Interface
ISIM Implementation Strategy Implementation Model

xxi

xxii List of Abbreviations

JAMOOS A domain-specific language for language processing
JIT Just In Time
JTS Jakarta Tool Suite
KALA Kernel Aspect Language for ATMS
LC Language Construct
LDT Language Development Technique
LHS Left Hand Side
LISP List Processing
LL Linglet Language
LMOP Linglet Metaobject Protocol
LMP Logic Meta-Programming
LS Language Specification
LSL Language Specification Language
LTS Linglet Transformation System
MDA Model-driven Architecture
MDD Model-driven Development
MOP Metaobject Protocol
MPS Meta-programming systems
NAT Natural Number
OI Open Implementations
OID Open Implementation Design
OMG Object Management Group
OO Object Orientation
QVT Query/View/Transformation
RCS Relatively Consistent Schedules
RHS Right Hand Side
RUP Rational Unified Process
SDF Syntax Definition Formalism
SIS Semantic Implementation System
SOC Separation of Concerns
SOP Subject-oriented Programming
SQL Structured Query Language
SSQ Structure-shy Query
STS Software Transformation Systems
T2SQL Tuple Calculus to SQL
TAMPR Transformation Assisted Multiple Program Realisation System
TXL Tree rewriting Language
UI User Interface
URL Uniform Resource Locator
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT XSL Transformations

Chapter 1

Introduction

1.1 Research Context

We continuously use languages for expressing our thoughts. The Sapir-Whorf
hypothesis [Who56, KK83] states that there is a systematic relationship between
languages and our thoughts. The relationship is complex and a matter of much
debate as it touches the essence of being human. Thinking and more precisely the
use of symbolic representation is, what is generally believed, what separates us
from the animals [Dea97]. One of the questions regarding language and thought
which is important for this dissertation is, as Alan Ford has phrased the ques-
tion [FP88], ”Do we speak (have language) because we think, or do we think
because we speak?”.

It is like the chicken and egg question. Do we learn to think before we speak,
or does language shape our thoughts? Experiments [Gor04, Spe04] have shown
that both statements are likely to be true. In our early stages of development we
learn the distinctions present in the language given to us. Shortly after we are
born, after a couple of years we quickly become insensitive to what is irrelevant.
In other words we learn what to ignore.

An example of how languages shape our thoughts is the following categoriza-
tion experiment between Koreans and Americans [Gor04]. When Koreans and
Americans see the same everyday events e.g. an apple in a bowl, a cap on a pen,
they categorize them in accord with the distinctions of their languages. An Amer-
ican distinguishes between “in” and “on”, while a Korean distinguishes between
“tightly” or “loosely”. Another example, suggesting that language shapes human
thought is a counting study [Spe04] conducted with a Brazilian tribe whose lan-
guage does not define numbers beyond two. Hunter-gatherers from the Pirahã
tribe, were unable to reliably tell the difference between four objects placed in a
row and five in the same configuration.

Other scientists in the field raise some interesting critiques about the counting
study. Feigenson [Bie04] points out that there could be other additional reasons

1

2 CHAPTER 1. INTRODUCTION

why the Pirahã could not distinguish accurately between higher numbers, such as
not being used to deal with large numbers or such tasks. This critique suggests
that some external force to adapt is necessary. Indeed, through the ages it became
clear that languages have been growing with new words, new rules and new
semantics.

1.1.1 Programming Languages

The relationship between language and thought also affects the relationship be-
tween the programming languages and the programs we try to express in them:
programming languages shape our programs, and programming languages them-
selves get shaped by programmers. Note that from this point on in the disserta-
tion the term language refers to the term programming language unless explicitly
stated otherwise.

Programming languages shape our thoughts, often without us realizing it.
Consider for example a discussion [Jef] during the “Alternative Paradigms” ses-
sion at the “Simple Design and Testing conference” [BDKT03]. Some people
argued that Haskell and similar languages offer a way of programming that bet-
ter reflects what developers think. However, this statement is contested with the
argument that recursion is not part of how we naturally think: our brains are
really bad at pushing things down and having them still in shape when we pop
them back up. Although recursion is embedded in natural language, in program-
ming languages recursion is a mathematical concept which needs to be taught to
people.

Back in the 60thies Dijkstra reports in [Dij99] that 10% of his students had
the greatest difficulty in coping with the concept of recursive procedures. As it
turned out, those students had been priorly exposed to FORTRAN. The source of
their difficulties was their operational view of programming in FORTRAN. Those
students did not see how to implement recursion, so they could not understand it.
Dijkstra even goes a step further and doesn’t blame FORTRAN for not permitting
recursion, but rather blames the fact that they had not been taught to distinguish
the concept of recursion.

Languages get shaped as well. Many languages were designed and altered
to meet the needs of their users. Before the invention of the modern computer,
languages/formalisms were designed for providing mathematical abstractions for
expressing algorithms, such as lambda calculus and Turing machines. With the
advent of the first computer, the first languages used were different as they directly
reflected operations and concepts of the physical machine in order to operate the
machines. The second generation programming languages such as assembler,
quickly abstracted from the machine instructions so that code can be fairly easily
read and written by a human. On top of these languages, the very first so called
general-purpose languages such as Fortran, Cobol and Lisp were constructed.
There are many motivations for this move, but one of the underlying forces was

1.1. RESEARCH CONTEXT 3

the gained experience. As the experience grew, standard concepts and solutions
emerged and the desire and need increased for moving to a new language in which
these concepts could be used directly. Although it took a while, the translation
details became irrelevant for everyday programmers. These early general-purpose
languages are still used today. Lisp1, Fortran and Cobol underwent changes to
this very day to reflect the needs of their programmers.

Clearly, programming languages continuously interact with the programs that
developers try to express, and vice versa.

1.1.2 Growing Languages

The continuous interaction between programming languages and the programs
that developers try to express, causes an ongoing effort in language design. This
can be recognized in the tendency to raise the abstraction level of programming
languages by increasing the expressiveness of the language with new language
constructs.

Expressiveness of languages is the degree in which their language features
and constructs can effectively convey the intentions of the programmer. The
smaller the semantic gap between language concepts and the intentions of the
programmer, the easier it gets to produce software. To this end, languages have
been made more expressive. There are several informal ways to interpret the term
expressiveness. Therefore we will briefly introduce the term.

Language constructs that merely introduce syntactic variations of the same
intention are called syntactic sugar [Lan66]. In this dissertation we adopt the
formalization of Felleisen [Fel91]. A language construct F is said to be more
expressive compared to the language constructs G1, ..., Gn of a language L, if there
does not exist a recursive homomorphic mapping2 of G1, ..., Gn from L ∪ {F} to
L. A homomorphic mapping from L ∪{F} to L enforces that the translations of
the existing language constructs Gi are structure preserving. This means that the
existing constructs are mapped to constructs with exactly the same structure and
the same semantics. Hence, if there does not exists a homomorphic mapping from
L ∪ {F} to L, the translation of F has an effect on the semantics of the already
existing language constructs. So, programs written in a more expressive language
have a different global structure from the functionally equivalent programs (i.e.
the programs obtained by applying the non-homomorphic mapping) in a less
expressive language.

The conciseness conjecture [Fel91] states that programs in a more expressive
programming language that use the additional facilities in a sensible3 manner

1Lisp has been changed. An example of this are its scoping rules. However, overall Lisp has
been mainly changed from within the language.

2recursive homomorphic mapping φ from L ∪ {F} to L-phrases where φ(Gi(a1, ..., an)) =
Gi(φ(a1), ...φ(an)), with 1 ≤ i ≤ m

3Sensible in this conjecture informally excludes the use of more expressive constructs for

4 CHAPTER 1. INTRODUCTION

contain fewer programming patterns than equivalent programs in less expressive
languages. Programming patterns are code fragments needed to express an inten-
tion. The problem with patterns is that they are an obstacle to understand the
intention of the program. Moreover, as programs in an more expressive language
have different global structure, the intent of the program written in a less expres-
sive language is much harder to unravel. The use of a more expressive language
facilitates the development process and reduces the need for patterns by making
programs more concise and abstract [Fel91]. According to the conciseness conjec-
ture, an increase in the expressiveness of a language results in an increased level
of abstraction.

Language growth is not only visible in mainstream contemporary general pur-
pose languages such as Java [Ham], but also in languages operating in niche
markets. An example of such a language is Lua which has a strong emphasis on
embedded systems and games. Lua is a rapidly evolving industrial language. It
was first released in 1993 and ever since every year a new version of the language
has been released. Lua has which evolved from domain-speicific languages such
as DEL and SOL and has incorportated many features of other languages in order
to keep with the requirements of their developers [IdFC07].

With the advent of software development techniques such as domain-
specific language engineering [vDKV00] and more recently model-driven devel-
opment [TB03], increasing the level of abstraction of languages has become part
of the contemporary software development process in general [Cam97, Amb02].
Domain-specific programming languages (or models in the case of model-driven
development) are designed with appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a particular problem do-
main [vDKV00]. Moreover, the domains of these languages are so called E-type
systems [Leh96]. These systems are strongly connected to the real-world, and the
problem that is being described by those languages simply cannot be ‘completely’
specified. In addition, the languages are, by definition, in a state of constant
change to reflect the changes in the real world. An interesting example of such
a language is Lua. Although it is a general purpose language, conferences like
the Game Develpers Conference (GDC) dedicate entire sessions to discuss and
investigate how Lua needs to evolve for next generation hardware and sofware
architectures [Boi06].

1.2 Growing a Compiler

Growing languages means to grow their implementations along with them. It
is argued that languages should be designed with a plan for growth [Ste99] in
accordance with the language constructs in such a way that a minimum effort is
necessary to evolve the language. It is thus pertinent to provide sufficient means

non-observable behavior.

1.2. GROWING A COMPILER 5

for controlling and supporting that process. This statement captures precisely the
intent of this dissertation.

As languages are grown with new constructs so must their implementations be
grown. By preserving the decomposition of a language implementation in terms
of its language constructs, a language and its implementation directly reflect our
intuitive decomposition. In addition, a language implementation can be grown
similar to the way the language is grown. More precisely, a language imple-
mentation can be grown by incrementally adding and changing implementation
modules, each describing a language construct.

The advantages of preserving the decomposition of language constructs in
language implementations are legion.

• Understandability : The structure of a compiler mimics our mental picture of
a language, allowing language developers to quickly identify which module
implements a given language construct. This increases understanding and
facilitates reasoning about language implementations as language develop-
ers can then focus on one construct at a time [Dij76]. Examples illustrating
this are the language specifications which are used as a reference guide, lan-
guage tutorials which are used to explain a language and language courses
which are used to teach languages. All these documents discuss languages
according to their various language constructs: for each construct, its syntax
and its semantics is given.

• Evolvability: Languages and their implementations are easier to evolve and
to maintain as they can co-evolve in synch in terms of the same concepts,
i.e. language constructs.

• Extendibility: Extensions of language implementations boil down to the
addition of a separate module defining the new language constructs. Exam-
ples illustrating this are the documents explaining extension of languages.
These documents are structured in terms of the new language constructs
and their semantics e.g. extension of Java 1.4 [Mic].

• Reusability: Language constructs are reusable in various languages as the
implementation of the language constructs is described in separate modules
which can be used to construct other languages. An example illustrating
this is jMock [FP06], where the developers were confronted with a constant
stream of requests for new constructs. Most of them were not generic enough
to be useful for a generic audience, so for every application domain a set of
constructs is selected and new ones are designed in order to construct an
appropriate language with them.

Quite early on in the history of programming, macros facilities of extendible
languages like e.g. C, Lisp [Gra94], ML [GST01] preserve the decomposition of

6 CHAPTER 1. INTRODUCTION

language constructs in language extensions. More so, some pioneering language
development techniques like intentional programming [Sim95a, Sim96] and del-
egating compiler objects [BD, Bos97] that took initial steps towards preserving
the decomposition of language constructs in language implementations, have also
argued the benefits of such designs:

• Understandability : In extensible languages, the implementations of lan-
guage extensions mimic our mental picture of language extensions as the
various macros each correspond to a new construct. Language designers
can thus focus on one construct at a time.

• Evolvability: Extendible languages are successful because a language exten-
sion and its implementation are grown together as each macro both defines
a syntactical construct and the semantics of that new construct.

• Extendibility: Macro facilities showed that languages can be easily ex-
tended [CF04] as each macro extends the language with a syntactical con-
struct and extends the language implementation with the semantics of that
new construct.

• Reusability: Macros developed for one application context are reused in
other contexts in conjunction with other macros.

In this dissertation we focus on the question how to grow a compiler just like
languages are grown i.e. how to define a compiler by using modules where each
module implements a language construct. The work presented here is a platform
and a model to discuss and assess the improved understandability and reasoning,
the ease of extendibility and evolvability, the increased reusability, and even to
take a first step towards an iterative development process steered by successively
adding language constructs. However, a detailed study of these benefits is beyond
the scope of this dissertation.

Note that the decomposition of language implementations in terms of lan-
guage constructs does not necessarily exclude other decompositions for example
according to a functional phase like naming analysis. Such decompositions can
be modeled via a language extension mechanism on top of the decomposition into
language constructs similar to the way semantic aspects are defined in attribute
grammars [HM03, Swi, OdMS00, Paa95]. More details can be found when in one
of our directions of future work in Section 8.3.10.

1.3 Problem Statement: Modularization Accord-

ing to Language Constructs

In the previous sections we argued that in order to grow languages and their
implementations in terms of language constructs, we need to preserve the de-

1.3. PROBLEM STATEMENT: MODULARIZATION 7

composition into language constructs. We can preserve that decomposition by
modularizing the definition of language constructs in separate implementation
modules containing their syntactical representation and their (translational) se-
mantics of a single language construct in terms of another (lower level) language.
Language constructs are defined as the syntactical constructs of a language having
a distinguishable semantics with respect to the other language constructs of that
language. In this dissertation, aware of the different granularity of modules defin-
ing language constructs in [Paa95, Bos97], a language construct can range from
a single production to several non-terminals and the set of productions defining
them.

A language can then be defined as a set of interacting language modules. In
this setting, growing a language boils down to writing or selecting the appro-
priate language constructs and establishing the necessary interactions. As the
language is continuously evolving during its implementation and future evolu-
tions, the modularization of the language constructs renders the implementation
less susceptible to the continuous changes.

1.3.1 Major Challenges

Modularizing a language implementation according to its language constructs is
a challenging undertaking. The challenge is due to the fact that each language
construct must be defined in isolation with respect to other language constructs
from the language it will be used in. The three major challenges are:

M1 The first challenge lies in the grammar, where the syntax of the language
constructs should be described in terms of other language constructs. The
syntactical definition of the various language constructs must be modular-
ized to involve only a single language construct.

M2 The second challenge lies in the definition of the translational semantics in
terms of a target language. As described in Section 1.1.2, whenever the ab-
straction level is raised, the semantics of the language construct written in
terms of the target language cannot be expressed with a homomorphic map-
ping. Therefore a more complex mapping must be used for expressing the
translational semantics, which necessitates (by definition) the involvement
of other language constructs. In other words, such language constructs have
broadly scoped requirements. Consequently, in general, language constructs
intrinsically take into account other language constructs and therefore en-
danger their opportunities for modularization.

M3 The third challenge is the modularization of the mechanisms for establishing
the necessary interactions among the language constructs without breaking
the modularization of the language construct.

8 CHAPTER 1. INTRODUCTION

1.3.2 Modularization Problems in Contemporary Language
Development Techniques

The typical architecture of compilers [SWW+88] is subdivided in a set of func-
tional layers such as lexing, parsing, analysis, byte code generation, optimization.
Besides the architecture, common practices and techniques evolved in today’s de
facto standard such as the data structures for representing programs using ab-
stract syntax trees, tree annotations, tree walks (i.e. traversals) to name a few.
Language development techniques (LDTs) such as attribute grammars [Knu68,
Paa95], Backus-Naur Form parser generators (such as Yacc [Joh79]) and rewrite
rules [Klo92] evolved into formalized language development paradigms. These
paradigms boosted the development of languages, as they free us from tedious
tasks such as lexing, parsing, pattern matching, subsequent manipulation and the
transformation/the interpretation of an abstract syntax tree (AST) representing
a program undergoing a transformation.

Despite the significant progress in compiler technology, the impact of the pro-
posed modularization is significant as contemporary LDTs are not designed with
the extensibility of language constructs in mind. First of all, the dominant de-
composition of a compiler into small modules is functional. The modules capture
the various functional passes required to convert a program into a new program.
As a result, the implementation of the language constructs is scattered in these
modules.

In the dissertation, we consider the major LDTs such as: tree-based rewrite
rules, graph rewrite rules, macros, template-based approaches, attribute gram-
mars, compositional generators, and several ad-hoc approaches. Each of these
techniques is extensively discussed in Chapter 3. Upon evaluating the three mod-
ularization challenges M1, M2 and M3 against the LDTs we find that:

• The grammar formalisms lack the expressive power necessary for decoupling
the syntactical definitions of each language construct.

• The contemporary LDTs decompose language implementations into a set
of implicitly cooperating modules, and it is not always clear how to relate
these modules to language constructs.

• Language developers do not have the proper means for separating the in-
teractions among the language constructs.

In order to render the implementation of the more complex translational
semantics robust to changes, LDTs provide specific implementation mecha-
nisms called interaction strategies. Interaction strategies reduce direct and
explicit communication with other modules and as such, they provide a
means to design the language with a plan of growth in terms of changes

1.4. THESIS STATEMENT 9

in the set of language constructs. Examples of such interaction strate-
gies are among others: attribute propagation rules [OdMS00], forward-
ing [WdMBK02], structure shy queries [Whi02], traversals [VKV03] and
symbol tables4 [App98].

We observed though that LDTs only offer their own particular interaction
strategies. These contemporary interaction strategies do not suffice because:

S1 They are not generally applicable. Interaction strategies are designed
for reducing the coupling between the language constructs and their
semantics caused by a particular communication pattern. If the pat-
tern deviates from what can be captured in an interaction strategy,
the interaction strategy is useless.

S2 There is room for improvement. Interaction strategies can be optimized
and tailored for concrete coupling problems.

S3 There is room for new interaction strategies. There are certain cate-
gories of translational semantics which are not at all supported.

S4 There is no silver bullet interaction strategy. As interaction strategies
may have conflicting tradeoffs, it is unlikely to find an overall general-
purpose interaction strategy that combines all the merits of the existing
interaction strategies and eliminates their drawbacks.

Interaction strategies in contemporary LDT are actually embedded within
the techniques. This confines or even prohibits the introduction of new
interaction strategies or changes to an existing one. Because of this and
because of the shortcomings of existing interaction strategies, language de-
velopers do not have the proper means for separating the interactions among
the language constructs. Moreover, we observed that tailored interaction
strategies for specific language implementations hardly find their way into
general purpose LDTs.

We did not found any evidence that contemporary technologies for separat-
ing a language implementation into modules support the strict modularization
of a language implementation into language constructs because the modules do
not always relate to language constructs and the interaction strategies cannot
sufficiently reduce the implicit cooperations of modules.

1.4 Thesis Statement

In this dissertation, we present an open design of a new LDT through a metaobject
protocol which is capable of modularizing languages according to their language

4Symbol tables (also called environments) are usually used in compilers for semantic analysis.
They maintain mappings from identifiers to type and locations.

10 CHAPTER 1. INTRODUCTION

constructs.
The new technique separates the implementation of the various language con-

structs into discrete5 modules. The modules are defined in complete isolation
with respect to other language constructs, and meet the challenges M1 and M2.
They are responsible for representing a program fragment of a larger program
and define the operations on that program fragment capturing all the behavior
of that language construct throughout the compilation.

To establish the necessary interactions required by the complex translational
semantics, language designers rely on the open design for using and defining
their own interaction strategies. Interaction strategies are defined orthogonally
to the language constructs in a way that complex translational semantics can
be expressed without violating the modularization of language concerns. As the
language constructs, interaction strategies are described in a discrete module. As
such, we meet the modularization challenge M3.

Interaction strategies can be reused across various language implementations
and further specialized for accommodating any particularities of the language im-
plementation at hand. The open design is based on a metaobject protocol that
gives users access to (and control over) the run-time behavior of the LDT. Inter-
action strategies extend and specialize the metaobject protocol specifications.

With our approach it is now possible for preserving the decomposition of
language constructs in the language compilers and keep the interactions and the
interaction strategies for implementing the interactions modularized.

1.5 Approach of the Dissertation

We start the dissertation with an extensive study of existing LDTs. In the study
we reveal the strengths and weaknesses of the modularization mechanisms of each
approach, but more importantly we identify the successful interaction strategies
used for preserving that modularization.

In order to modularize the language constructs and their semantics, the archi-
tecture of their compilers is defined as the product of discrete language modules
each defining a single language construct. It does not suffice to separate a lan-
guage implementation into several files; the language modules are designed in
isolation from one another by completely parameterizing them. We present a
formal model for the modularization of languages constructs by imposing a series
of requirements (see Section 1.5.1).

In addition to the language modules, the language implementations use in-
teraction strategies which glue together the language constructs. The challenges
for modularizing interaction strategies are analyzed in detail. Each of the con-
temporary LDTs presented in the first part of the dissertation, are subsequently
subjected to a thorough investigation for determining the extent to what they

5individually separate and recognizable different

1.5. APPROACH OF THE DISSERTATION 11

adhere to the formal model and are capable of separating the interaction strate-
gies. The results of this investigation are further analyzed for distilling the design
challenges for a new LDT.

Based on our model and our design challenges we design and implement a new
LDT. First, the core of the technique capable of implementing the language con-
structs and their translational semantics is discussed. We detail how modularized
language constructs are implemented (see Section 1.5.2) and how the modules are
composed for establishing a coherent and consistent cooperative behavior in the
language (see Section 1.5.3). Second, the metafacilities (see Section 1.5.4) of the
system for implementing interaction strategies are detailed. Interaction strategies
ensure that the necessary interactions among the language modules for express-
ing more complex translational semantics do not break the modularity of the
language.

1.5.1 Modularization Model

Our model describes five requirements for modularizing language constructs: one
requirement on the syntax, three requirements on the translational semantics and
a fifth requirement on the program representation.

From this model we deduce a new language implementation design in which
languages consist of three kinds of concerns: basic language concerns defining
modularized language constructs, language specifications defining the interactions
between basic concerns by using special-purpose concerns which define the mech-
anisms for implementing the interactions.

The new language implementation design meets all the modularization chal-
lenges listed in Section 1.3.1: the basic language concerns meet the challenges to
modularize the syntax (M1) and the translational semantics (M2) of the language
constructs, and the special-purpose concerns meet the challenge to modularize the
mechanisms that establish the interactions among the language constructs (M3)
and in order to overcome the shortcomings S1 to S4 of the existing interaction
strategies.

Basic Concern

Each basic concern comprises a modular language construct which is defined in
isolation with respect to the rest of the language implementation. It is defined
by a syntactical definition and its translational semantics.

The first requirement modularizes the syntactical definition of a language
construct. As such, the syntactical definition of a language module no longer
directly refers to other syntax definitions belonging to other language modules,
rendering it composable with other language modules. For example, a grammar
production of an if statement in BNF [BBG+60] should be defined in terms of

12 CHAPTER 1. INTRODUCTION

a condition, a true and false branch instead of directly referencing the grammar
productions expression and statements.

The challenges for modularizing the translational semantics of language con-
structs are due to the more complex translational semantics which necessitate
the involvement of other language modules. We define three requirements that
modularize:

• requests for external information e.g. looking up the memory location of a
variable which was defined when the variable was declared.

• production of scattered code fragments e.g. integrating a piece of advice
code in a method

• compositionality problems e.g. in an optimized translation conditional ex-
pressions are mapped to conditional jumps, but these jumps must be con-
verted to a value when conditional expressions are used in the right hand
side of assignments.

In order to adhere to the three requirements we use another definition of the
translational semantics in which we distinguish between two concepts: definition
and effect. The requirements exile the part of the semantics of a concern which
involves other concerns to the language specification. We call this part the effect
of the translational semantics of a concern. The remainder of the translational se-
mantics in the concern merely defines the translational semantics. More precisely,
the definition of the translational semantics only :

• states what information is required, but does retrieve the information e.g.
the translation of a variable reference declares the need for the memory
location but does not define how to lookup this memory location.

• states which results are produced that need to be scattered throughout
the target program, but does not integrate them e.g. the translation of
an advice only produces the advice code but does not integrate it in the
targeted methods

• assumes that the semantics of the parts are compositional, but does not
resolve compositionality conflicts e.g. in an optimized translation condi-
tional expressions are mapped to conditional jumps, but when conditional
expressions are used in the right hand side of assignments, the semantics of
assignments assumes a value and does not convert these jumps to a value.

The fifth requirement enforces that the translational semantics of a language
construct can produce incomplete program fragments. As such, the translational
semantics can restrict itself to produce its equivalent target program only e.g. the
translational semantics of method declarations should not retrieve and integrate

1.5. APPROACH OF THE DISSERTATION 13

the pieces of advice code that must become a part of its method body. The
produced target language program fragments are completed by other language
modules. To complete them, the fragments need to be changeable. The trans-
lational semantics of every language module can be subjected to changes caused
by other language modules. Therefore, language modules must also enforce the
consistency of its equivalent program fragments as the invasive integration of two
program fragments may easily lead to unexpected and undesired structural and
behavioral conflicts, if the consistency of both generators is not ensured [Bri05].
Consistency enforcement is not additional in the sense that another concern pol-
lutes the language module. In fact, consistency is implicitly present in the trans-
lational semantics. The only additional requirement lies thus in its visibility. In
other words, consistency has to be explicitly formulated.

These five requirements ensure that the basic concerns meet the challenges
for modularizing the syntax (M1) and the translational semantics (M2) of the
language constructs.

Language Specification

The Language Specification concern or plainly the language specification com-
plements the definition of the semantics to effect the translational semantics i.e.
execute the part of the translational semantics which involves other language
constructs.

Special-purpose Concerns

The special-purpose concerns are the mechanisms which are used to effect the
translational semantics i.e. execute the part of the translational semantics which
involves other language constructs. There are three kinds of special-purpose con-
cerns, one for each requirement of the translational semantics. In order to effect
the more complex translational semantics one must execute the concern violating
behavior: compute its context information, scatter code fragments and resolve
compositionality against other language constructs respectively.

• Context information is effected by stating how that information should be
computed or retrieved.

• Scattered code fragments are effected by stating which other language mod-
ules should handle these results or by stating how to handle results from
other language modules.

• Compositionality is effected by stating a solution to cope with composition-
ality problems.

14 CHAPTER 1. INTRODUCTION

The special-purpose concerns are separated from the basic concerns in order
not to compromise the modularity of the latter. In other words, special-purpose
concerns may not change or require changes to be made in the basic concerns.

The special-purpose concerns meet the challenges for modularizing the mech-
anism that establish the interactions between the language constructs (M3) be-
cause they are defined in separate concerns. The separated interaction strategies
offers the opportunity for choosing the optimal interaction strategy and to over-
come the shortcomings S1 to S4 of the existing strategies .

1.5.2 Modularized Implementation of Language Constructs

For the modularization of the implementation of the language constructs into
discrete language modules we adopt a compiler architecture that is orthogonal to
the current process-oriented architectures provided by contemporary LDTs. Each
language module encompasses the definitions and the functionality of the various
functional layers of a single language construct. A language module encompasses
natively parts from the two basic functional layers: the concrete syntax definition
and the translational semantics. Other layers can be added to the language
module when required such as checking or pretty printing to name a few.

The language modules meet the challenges for modularizing the syntax (M1)
and the translational semantics (M2) of the language constructs because:

• The syntax is expressed with higher order productions i.e. productions that
take other productions as a parameter instead of directly referencing other
productions.

• The effect of the semantics of language constructs is dependent on and
expressed by changing the overall language semantics defined by other lan-
guage constructs. By omitting how to effect their semantics, we are able
to formulate the semantics solely in terms of the language construct itself,
thereby preserving their modularity. In order to express this restricted for-
mulation of semantics, the language modules are equipped with appropriate
mechanisms for only defining their translational semantics. In correspon-
dence to our modularization model (see Section 1.5.1), this boils down to

– a mechanism for stating what information is required e.g. the transla-
tion of a variable reference states the need for the memory location,

– a mechanism for declaring that results are scattered e.g. the translation
of an advice only states that the advice code must be scattered,

– a mechanism to define the semantics compositionally e.g. in an opti-
mized translation conditional expressions are mapped to conditional
jumps, but when conditional expressions are used in the right hand
side of assignments, the semantics of assignments uses the semantics
of the of its right hand side and assumes it is a value.

1.5. APPROACH OF THE DISSERTATION 15

This way their effect can be provided when a language using that language
module is defined.

The additional requirement of consistency, which is imposed by the formal
model, is enforced by a mechanism to support that changes inflicted by
other language modules do not corrupt the translational semantics.

We developed a new LDT and implemented a prototype transformation sys-
tem called the Linglet Transformation System (LTS). In LTS, linglets implement
the modularized language modules. This part of LTS is called the core or the
kernel transformation system.

LTS is based on prototype-based programming languages, which offer linguis-
tic support for elegantly capturing the definition of a language construct and offer
the ability for customizing the behavior of individual code fragments. The latter
is necessary for effectively modularizing the effects language constructs have on
other language constructs e.g. code fragments can ensure their consistency and
can integrate themselves in the target program.

1.5.3 Language Specification

Each individual linglet defines a single language construct accompanied by its
translational semantics. In order to construct a language, the linglets are com-
posed together in a Language Specification (LS). In order to define the overall
language semantics, a LS composes and customizes the language modules for es-
tablishing the necessary interactions among them. The language specification is
the sole place where language modules become aware of the existence of other
language modules and their composition. As language modules combine syntac-
tic descriptions with translational semantics, a composition determines both the
grammar of the language and the semantics of the overall language. In other
words, the language is defined via a single specification. Hence, a language defi-
nition are specified in single and separate concern.

The higher order productions, which describe the syntactical definition of
the language constructs, take other productions as parameters, aka syntactical
parameters. By binding the syntactical parameters of a language module to other
language modules in the language specification, they are syntactically composed
with one another.

Although the syntactical definition also determines the semantical composi-
tion, this is not sufficient in the case of the more complex translational seman-
tics. The translational semantics can only be partially specified in the language
modules for preserving the modularity of modules. The omitted effect of the se-
mantics on other language modules is specified in the language specification, as
the language specification is the only place where the whole language is known.
Language modules are extended with additional behavior that completes their
translational semantics:

16 CHAPTER 1. INTRODUCTION

• the computation of context information e.g. looking up the memory location
of a variable which was determined at its declaration site.

• the handling of scattered results e.g. integrating the advice code in the
targeted methods

• the resolution of compositionality conflicts e.g. in an optimized translation
where conditional expressions are mapped to conditional jumps, the con-
version of these jumps to a value when conditional expressions are used in
the right hand side of assignments.

Implementing that behavior is challenging as, by definition, that behavior
solely involves other language modules. A plain implementation would quickly
lead to a rigid and fragile language specification. For this reason, the imple-
mentation of that behavior is encoded via (tailored) language implementation
interaction strategies. These strategies reduce accidental coupling, avoid tangling
and scattering and consequently turn the language specification into a flexible
artifact.

1.5.4 Language Implementation Interaction Strategies

In order to effect the translational semantics of the language modules, context
information must be computed, scattered results must be propagated to other
language constructs, and compositionality conflicts need to be resolved. Interac-
tion strategies are implementation mechanisms that capture a common solution
pattern for implementing these effects such that accidental coupling, tangling and
scattering are reduced to a minimum. A well known example of such an inter-
action mechanism which is used for retrieving context information is traversals.
Traversals allow us to retrieve information which involves the entire hierarchical
structure of a program fragment (term) in a controlled fashion. They locally define
the actions that need to be applied to each encountered subterm e.g. rewrite the
term or collect information, and declaratively specify the properties of a traversal
i.e. the order, when the recursion should be continued or broken off, and the di-
rection. A traversal visits all the subterms, however only the subterms where an
action has to be performed are specified, hereby reducing the accidental coupling
with all the other subterms.

Interaction strategies meet the challenges for modularizing the mechanism
that establish the interactions between the linglets (M3) because they are imple-
mented as discrete language implementation extensions. By adding these exten-
sions to an LDT, the translational semantics of language modules can be com-
pleted in a language specification by the interaction strategies defined by these
extensions.

As each interaction strategy is captured in a discrete extension, interaction
strategies themselves are defined as a separate concern. As such, interaction

1.5. APPROACH OF THE DISSERTATION 17

strategies can be shared and reused across various language implementations.
But more importantly new interaction strategies can be defined, and existing
ones can be specialized in order to meet and tweak an interaction strategy for the
separation of concern challenge for a particular language implementation. By tak-
ing into account the specific language implementation, the language designer can
exploit specific characteristics or structural properties of the language. Although
this renders the interaction strategies dependent on the language, the result is
an implementation that is optimized in terms of separation of concerns. As the
optimal interaction strategy can be defined, interaction strategies approach the
silver bullet strategy (S4) by overcoming the limited applicability of the existing
interaction strategies (S1), through their improvement (S2) and the definition of
new interaction strategies (S3).

Interaction strategies are able to improve the implementation of languages
because they capture a common communication pattern between language mod-
ules. Any communication between language modules adhering to that pattern
can be expressed with that interaction strategy. Future changes to the language,
made in accordance with the communication rules captured by that pattern, do
not invalidate the effect of the translational semantics of the language modules
implemented by that interaction strategy. Hence, interaction strategies define a
plan for growth for the language. Changes that slightly disagree with the cur-
rent interaction strategy also benefit from interaction strategies as interaction
strategies can be easily customized to support the new communication pattern.

In essence, interaction strategies control the information flow during the ex-
ecution of the compiler. For example, an interaction strategy that provides in-
formation computed by or residing in one language module, to another language
module requesting that information, e.g. a request of information by a module
representing a code fragment where the request information resides in an ances-
tor of that code fragment. As the execution of the compilation process is entirely
driven by discrete language modules, interaction strategies require control over
the execution of the language modules. For example, intercept requests of in-
formation and redirect those requests to a language module which contains the
requested information, e.g. intercept a request of information by a module rep-
resenting a code fragment and redirect to an ancestor of that code fragment. To
this end, we apply the principle of open implementation design (OID) and design
a reflective layer on top the language modules. The resulting metaobject proto-
col, combines the benefits of two worlds: the modularized language constructs
together with the ability for extending the transformation system with interac-
tion strategies e.g. the module requesting information can remain modular as it
is oblivious to the strategy required to lookup the requested information and the
actual module containing the requested information.

We do not have to include new features in the core system, nor pollute the
language modules with additional responsibilities. Therefore the core remains a
system with a simple semantics. That kind of unanticipated control ensures the

18 CHAPTER 1. INTRODUCTION

separation of concerns of the interaction strategies and the basic concerns, and
ensures the necessary latitude for constructing appropriate interaction strategies.
In addition, the metaobject protocol supports the reuse of existing discretely
defined interaction strategies through specialization and customization.

1.6 Contributions

The following are the major contributions of this dissertation:

1.6.1 Survey of Contemporary Language Development Tech-
niques

We present a detailed and extensive study of the various approaches, formalisms
and techniques used for implementing languages. We include a wide range of
techniques including ad-hoc, generative, embedded, and compilation-based ap-
proaches. More precisely, we distill and discuss the characteristics that impact
the modularization of the transformation process into a set of transformation
modules: fine-grained granularity of transformation modules, and transformation
scopes. We introduce, together with their strengths and weaknesses, each mecha-
nism that the individual LDTs offer for modularizing their implementations and
handle the different scopes of transformations. We identify the successful mech-
anisms as interaction strategies.

1.6.2 Modularization of Language Constructs Model

We describe a new model for the design of compilers which is orthogonal to
contemporary approaches. The model modularizes the compiler according to the
language constructs of the language. We successfully meet the three challenges
for modularizing the grammar, the translational semantics and the interactions
between the language constructs which are listed in Section 1.3.1. These modules
form the basic concerns for constructing a language. Each module describes the
syntax and the translational semantics. The interactions and communications
among these basic concerns to effect their translational semantics are defined by
using special-purpose concerns. The special-purpose concerns are separated from
the basic concerns in order not to comprise the modularity of the latter.

1.6.3 Kernel Transformation System

We present a design of a new LDT as a solution for the requirements described
by our formal model. The LDT we present in this dissertation is called the Lin-
glet Transformation System (LTS). LTS modularizes the various basic language

1.7. OUTLINE 19

concerns into linglets. A linglet can be adapted to complete is translational se-
mantics with interactions with other linglets. To this end, LTS is implemented in
a prototype-based object-oriented style. As such, LTS offer the linguistic support
for elegantly capturing the definition of a language construct and also the ability
for customizing the behavior of individual code fragments. Hence, our transfor-
mation system meets the modularization of syntax and semantics of language
constructs (M1 and M2) stated in Section 1.3.1.

1.6.4 Metafacilities for Defining Interaction Strategies

We introduce and argue the need for a reflective layer for transformation sys-
tems so as to allow language designers for constructing and using the interaction
strategies that best fit. The reflective layer is realized through a well designed
metaobject protocol. Via that protocol, interaction strategies can exercise con-
trol over the language modules without requiring any changes to be made to
the language modules. As such, the modularity of the interaction strategies and
the basic concerns is guaranteed. In addition, the metaobject protocol supports
the reuse of existing discretely defined interaction strategies through specializa-
tion and customization. Hence, we have designed a transformation system which
meets the modularization of interactions among language constructs (M3) stated
in Section 1.3.1.

1.6.5 New Strategies

We conducted two experiments in which we presented the interaction strategies
not as a monolithic entity but rather as a family of interaction strategy extensions;
one experiment for retrieving context information and another one for declaring
and specifying the scattering of code fragments. The former is a variation of
an existing interaction strategy from another LDT, the latter is an entirely new
interaction strategy. We also indicate how the interaction strategies of other LDTs
can be implemented. Hence, we further illustrate the flexibility and extensibility
of the metaobject protocol for constructing and refining interaction strategies.
We have overcome the interaction strategy shortcomings (S1 to S4) listed in
Section 1.3.2.

1.7 Outline

The dissertation is structured as follows:

Chapter 2 introduces some basic terminology of language implementations. We
start by arguing that the modularization of language constructs is a com-
plex undertaking because language constructs in general do not compose.

20 CHAPTER 1. INTRODUCTION

Furthermore, we sketch the typical architecture and classify the various im-
plementation approaches. We then approach the translational semantics of
a language to the perspective of a modularized model.

Chapter 3 provides a study of the various kinds of LDTs. We focus on the
extent to what a language implementation can be modularized in these
LDTs. We highlight the mechanisms of the LDTs to separate a language
implementation into modules as well as its mechanisms to use and combine
the modules into a fully operational language implementation.

Chapter 4 presents a formal model that separates the language constructs and
their translational semantics by a series of requirements. We impose one
requirement on the program representation, three requirements on the val-
uation function and one requirement on the syntax of a language construct.
From this model we deduce a new language design consisting of three con-
cerns: the basic concerns, the special-purpose concerns and the language
specification concerns. The basic concerns capture a modularized language
construct. The special-purpose concerns are used for gluing together the ba-
sic concerns in the language specification concern. The challenges for mod-
ularizing the special-purpose concerns are analyzed in detail. We present a
summary of the investigation of the degree to what the LDTs adhere to our
modularization model. The results of this investigation are further analyzed
in order for distilling the design challenges for a new LDT.

Chapter 5 describes the core of a new LDT called the Linglet Transformation
System (LTS) which is based on our modularization model. In LTS, a
language is conceived as a set of interacting language modules called lin-
glets. Each linglet defines a modularized language construct consisting of
its syntax and its translational semantics. We detail how modularized lan-
guage constructs are implemented and how the modules are composed for
establishing a coherent and consistent cooperative behavior in the language.
Furthermore, we show that LTS fulfills the five requirements from Chap-
ter 4.

Chapter 6 describes the metafacilities on top of the core system for implement-
ing interaction strategies. Interaction strategies are used for establishing the
interactions among the language modules. Besides a detailed description of
the metafacilities, we also present a design rationale by discussing the char-
acteristics of open implementations. The metafacilities are implemented by
means of a metaobject protocol (MOP). The MOP in LTS is called LMOP.
We conduct two experiments in which we implement two interaction strate-
gies: one strategy for retrieving context information and the other one for
declaring and specifying the scattering of code fragments. We also indicate

1.7. OUTLINE 21

how the interaction strategies of other LDTs can be implemented. As such,
we demonstrate the potential of LTS.

Chapter 7 validates our approach by implementing a family of domain-specific
languages for transaction management. We incrementally develop the fam-
ily by starting with a small language and growing it into a number of differ-
ent languages. We have designed a set of reusable linglets and interaction
strategies based on the LMOP. The linglets define the modularized language
constructs while adhering to the five requirements postulated in Chapter 4.
Using the shared set of linglets and interaction strategies, we defined five
different languages by merely recombining the linglets. The interaction
strategies provide us the means for changing composition of the linglets
without having to re-implement all the interactions between them.

Chapter 8 concludes the dissertation and indicates directions for future re-
search.

Appendix A presents a thorough investigation of each of the contemporary
LDTs presented in Chapter 3, in order to determine the extent to what
the LDTs adhere to our formal model.

Appendix B presents a detailed analysis of the applicability of the interaction
strategies found in contemporary LDTs.

Appendix C gives a formal overview of the aspect language KALA for advanced
transaction management. KALA is used in our validation for implementing
a family of domain-specific languages for transaction management.

Chapter 2

Language Implementations

Programming languages provide a set of language constructs for describing a
solution for a problem e.g. an if-statement or an addition expression. Many
languages have been designed and altered in order to meet emerging needs of
programmers so they can express the problems of their domain within a language.

Our focus is on the increase of expressiveness of a programming language by
adding new or replacing existing language constructs. The goal of this dissertation
is preserving the modularization of language constructs in the implementation of
these languages.

As we will explain in more detail, increasing the expressiveness of a program-
ming language raises a challenging problem for modularizing its implementation
along its language constructs because new expressive language constructs require
changes to be made to the definition of other language constructs and they do not
compose in general. In the next two chapters we investigate the mechanisms and
the features which are offered by contemporary development techniques for mod-
ularizing a language implementation. In Chapter 3, each individual contemporary
language development technique is presented with its strengths and weaknesses.
This chapter serves as an introduction for that presentation.

We start by introducing basic terminology and sketch a typical implementa-
tion architecture of a language implementation. As languages have been imple-
mented since the dawn of computer science and have been thoroughly researched,
there are a lot approaches, formalisms and techniques for implementing languages.
This dissertation focuses on the semantics of languages in compilation-based lan-
guage implementations.

In order better to understand the kind of systems which we consider as
the background of this dissertation, we classify the various implementation ap-
proaches for implementing languages. The challenges we are facing in this dis-
sertation are the characteristics that impact the division of the transformation
process into a set of transformation modules. We distill and discuss the fine-
grained granularity of transformation modules and the scopes of transformations.

23

24 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

In the first section, we elaborate on the impact of extending a language with
new language constructs for raising expressiveness. Section 2.2 introduces the
terminology used in this dissertation and sketches a typical implementation archi-
tecture of a language implementation. The section concludes with a classification
of various implementation approaches for implementing languages. Subsequently,
Section 2.3 discusses the semantics of a language from our perspective of modu-
larized language constructs. We conclude this chapter in Section 2.4.

2.1 Modularization of Languages into Language

Constructs

Programming Languages are the primary tools developers use for constructing
software. Languages are in fact a crucial tool as they stipulate the concepts which
can be used for reformulating a problem into a solution/implementation. Lan-
guages are representational devices whose merits of should be judged according
to how generally, naturally, and easily problems and applications can be repre-
sented and can be reasoned about. Exactly how the notions “generally, naturally,
and easily” correspond or can be realized with language design notions such as
simplicity, expressiveness, consistency and completeness is a matter of common
sense and of much debate [Gab91, CDE+05]. For the purpose of this dissertation
we will take a closer look at the key enabler “expressiveness”.

In this section, we discuss the impact of increasing the expressiveness of a
programming language on the modularization of its implementation along its
language constructs.

2.1.1 Expressiveness

Expressiveness of a language is the degree to which its language features and con-
structs can effectively convey the intentions of a programmer. The smaller the
semantic gap between the intentions of a programmer and the language constructs
and features of a language, the easier it gets for producing software. To this end,
languages have been made more expressive. There are several informal ways to
interpret the term “expressiveness”. Language constructs that merely introduce
syntactic variations of the same intention are called syntactic sugar [Lan66]. For
example, in Lisp or Scheme, the let* statement is sometimes dismissed as syntac-
tic sugar for a let. Syntactic sugar is therefore not considered to be an expressive
extension of a language. This idea was further refined by Steele and Susman
who considered constructs that are expressible with a syntactical local structure
and that are behavior-preserving not as expressive language constructs. In this
dissertation we adopt the formalization by Felleisen [Fel91].

2.1. MODULARIZATION OF LANGUAGE CONSTRUCTS 25

2.1.2 Expressiveness Formalized

Felleisen defined a language L as a set of phrases which are a subset of all abstract
syntax trees (terms) constructed with a number of function symbols F1, ...Fn with
varying arities a1, a2, The function symbols are the syntactical constructs
defined by the grammar of L. The sentences (programs) of L are a recursive
combination of its phrases bounded by the rules stipulated in the grammar of
the language L. Furthermore let L′ be the language L stripped of a language
construct G of L.

Expressiveness is defined by using the concept of a homomorphic function
mapping. A homomorphism is a map from one algebraic structure to another of
the same type that preserves all the relevant structures and their operations. The
structure in a language are the tuples defined by its function symbols (a.k.a the
nodes of the abstract syntax trees), the operations are its function symbols.

A mapping is established between the language L and the language L′ without
a construct G. The properties of a mapping used between these languages, teaches
us about the semantics of the construct G in terms of the language without that
construct. In the case of a homomorphic mapping between L and L′, it teaches
us that the language construct G is translated into another language construct.

2.1. Definition. The language construct G is said to be expressive if there
does not exist a recursive homomorphic function mapping φ from L-phrases to
L′-phrases.

where

φ(F (a1, ..., an)) = F (φ(a1), ...φ(an)), for each F ∈ L′.

L′ = L−G

The homomorphic mapping φ enforces that the translations of expressive lan-
guage constructs are structure preserving. Indeed, every language construct of L
that is also in L′, is mapped to the exact same language construct of L′. The
language constructs of L′, do not have any effect on the already existing language
constructs. However, if there is no such a homomorphic mapping, the programs
written in a more expressive language L have a different global structure from
functionally equivalent programs in a less expressive language L′.

The conciseness conjecture states that programs in a more expressive pro-
gramming language that use the additional constructs in a sensible manner con-
tain fewer programming patterns than equivalent programs in less expressive lan-
guages. The term “sensible”, in this conjecture, informally excludes the use of
more expressive constructs for non-observable behavior. The problem with pat-
terns is that they are an obstacle for understanding the intention of a program.
Moreover, as programs in an more expressive language have different global struc-
ture, the intent of a program written in a less expressive language is harder to

26 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

unravel. The use of more expressive language constructs facilitates the program-
ming process by making programs more concise and abstract [Fel91].

2.1.3 Modularization

Growing a language can have a significant impact on the semantics of existing
language constructs, as the addition of a new expressive language construct re-
quires changes to be made to the definition of existing language constructs. The
impact of this on the modularization of a language implementation according to
its language constructs is that language constructs in general do not compose.

Consider for starters the following simple example of the addition of variables
to a pure expression language without variables. The semantics of a variable usage
or assignment is a value which is retrieved from, or assigned in, an environment.
The environment needs be treaded through the evaluation process: the seman-
tics of every language construct in the expression language need to be adapted
to take into account the environment. In general, language constructs do not
compose, unless they are designed to compose or unless they are complemented
with additional logic. The latter case has been proven by Mark P. Jones and
Luc Duponcheel in [JD93] where they show that monads (definitions of language
constructs) cannot be composed as such, but need additional auxiliary functions.
Later on, the idea to combine monads via monad transformers appeared in Mog-
gis work [Mog97]. Jones et.al. [JD93] illustrate their approach by showing that in
monadic programming the environment threading can be separated in an auxil-
iary function or transformer. These functions combine the monads that evaluate
the expression language constructs and the monads that evaluate the variable
usage and assignments.

Similar examples might be encountered in many practical scenarios as well.
The expressive language construct which Felleisen [Fel91] used to illustrate his
formalization of expressive language constructs was a construct for a transaction
counter. In an imperative language such as Scheme, one can bind the transac-
tion manager to a procedure which increments the counter variable defined in the
lexical scope of the procedure. In a functional language, the counting must be
realized in a different way as there are no destructive assignments. The trans-
action manager must return the new counter and the result of the transaction.
At every call site the paired result must be disassembled. So the addition of
the transaction counter requires an invasive change, distributed over the whole
program.

A similar situation occurs when exception handling is added to a functional
language. A single function in a program must be able to decide whether that
program will continue to execute or an error has to be thrown. For this, the
whole program has to be rewritten in continuation passing style. There are other
means to implement exception handling, but continuation passing style localizes
the semantics of whether to execute an error or not.

2.2. LANGUAGE DEVELOPMENT TECHNIQUES 27

In the remainder of this chapter we introduce the suite of contemporary language
development techniques and their terminology.

2.2 Language Development Techniques

Designing and implementing a language is an intellectual challenge of considerable
complexity. There are many ways for implementing languages and for structuring
their implementation. There is no consensus on the names that are used for
grouping them. In Section 2.2.1, we list the names and their connotations, and
conclude with a new term “Language Development Technique” (LDT). To be
able to discuss and introduce these techniques in a coherent fashion, let us briefly
sketch the typical architecture of a language implementation and its parts. The
typical language implementation architecture emerged from the construction of
the early general-purpose languages. To this very day, this early architecture
is the dominating architecture and is therefore omnipresent in literature and
practice. In order better to understand the kind of systems which we consider
as the background of this dissertation, we classify the various implementation
approaches for implementing languages. The various LDTs are classified by the
degree of support they offer for controlling and systematically implementing a
language.

2.2.1 Unifying Terminology

One very apparent manifestation of the non-consensus of a general technique
for language implementations is the number of names given to techniques, sys-
tems and formalisms. Some of these terms started out as very general terms but
were narrowed down as research progressed. Other terms underwent the oppo-
site evolution, as concepts of specific systems are getting better understood and
researched, these concepts (along with the early systems) were generalized. As a
result, terms are overloaded and a general name to denote a systematic approach
for the implementation of languages is no longer available.

Existing Terminology

The following list explains and sketches the background of the most common
encountered names. This list does not present an exhaustive overview of the
various techniques, systems and formalisms, but merely consists of the names that
are used for grouping them. A suitable classification of the various techniques,
systems and formalisms for this dissertation is given in Section 2.2.3.

Compiler Tools ([vDKV00]) and Language Technology (e.g. [BLS98])
A compiler is a computer program (or set of programs) that translates text

28 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

written in a language (the source language) into another language (the tar-
get language). The original sequence is usually called the source code while
the output is called object code. The most common reason for wanting
to translate source code is to create a highly optimized executable pro-
gram. The term “compiler” is primarily used for programs that translate
source code from a high level language to a lower level language (e.g. as-
sembly language or machine language). Compiler tools encompass a wide
range of implementation artifacts necessary for constructing a compiler.
However, the term is also used for code translations of contemporary high
level languages to lower level languages and from domain-specific languages
(DSLs) [vDKV00] to general purpose languages (GPLs) respectively.

Compiler-compilers [Paa95] Compiler-compilers, also called compiler writing
systems or translator writing systems, are systems that produce fully func-
tional language implementations based on higher level descriptions of a
compiler. The first to use that name was Tony Brooker [Paa95] in 1960.
The term was very popular in the 70ties with the advent of the first at-
tribute grammar implementations by Fang in 1972. In their early years the
systems produced compilers only, nowadays the term is also used for mere
parser generators such as Yacc [Joh79] (Yet another compiler-compiler).

Semantics-based compiler (Peter D. Mosses) Semantics-based compilers
are a special kind of compiler-compiler generators that take as input a for-
mal description of the semantics of a language. Peter D. Mosses was the first
to produce such a system in 1979, which he called Semantic Implementation
System (SIS) [Wan84].

Metaprogramming systems (MPS) [CI84] A metaprogramming system is
a programming facility (subprogramming system or language) whose basic
data objects include programs and program fragments of some particular
programming language, known as the target language of the system. Such
systems are designed to facilitate the writing of metaprograms, that is,
programs about programs. Metaprograms take as input programs and frag-
ments in a target language, perform various operations on them and possibly
generate modified target-language programs. Metaprogramming is a very
broad domain including language built-in facilities such as macros, external
systems such as OpenC++, compile-time and run-time implementations
such as Lisp macros and metaobject protocols. The common denominator
is that metaprogramming systems facilities make use, are defined and op-
erate using concepts of general purpose languages.

Software Transformation Systems (STS) [SLB+99] Software transfor-
mation systems, or more concisely, transformation systems, are the result

2.2. LANGUAGE DEVELOPMENT TECHNIQUES 29

of the merge of symbolic manipulation techniques with compilers. Trans-
formations take software as input and produce software as output. Software
transformation systems are tools which are built for such transformations.
They range from specific tools for one purpose, via simple pattern matching
systems, to general transformation systems which are easily programmed
to do any reasonable transformation.

Language Workbenches (Fowler) [Fow05] Language Workbenches are a
suite of tools such as Intentional Programming, JetBrains’s Meta Program-
ming System, and Microsoft’s Software Factories. These tools take an old
style of development which Fowler calls language-oriented programming and
use IDE tooling in a bid to make language-oriented programming a viable
approach. One of the strongest qualities of language workbenches is that
they alter the relationship between editing and compiling programs. They
shift from editing text files to editing the abstract representation of pro-
grams. Essentially the promise of language workbenches is that they provide
the flexibility of non-embedded DSLs without a semantic barrier between a
DSL and its target language.

Language Development Technique

Each of the above carry a connotation, which renders future discussions and
analysis subject to interpretation. In order to avoid this, we need to introduce
the new term Language Development Technique (LDT).

2.2. Definition. A language development technique is a systematic tech-
nique for the implementation of languages without assuming any technology, model,
architecture, or a particular kind of semantics.

We introduce the new term because the existing terminology we discussed does
not adhere to this definition for the following reasons: Language workbenches are
a class of LDTs which are embedded in IDEs. Those systems actually merge the
IDE capabilities with DSLs to lift programming to an abstract interactive and
customizable programming environment. Software transformation systems are a
specific class of LDTs which implement languages solely via a translation to an-
other language. Metaprogramming systems facilities make use, are defined and
operate with concepts of general purpose languages. Language implementations
are thus also written in terms of general purpose languages and not in a ded-
icated system or formalism. Compiler-compilers implement languages through
the compilation to a lower-level language or representation and thus excluding
optimization, restructuring, or mere translation. Compiler tools form a loosely
coupled suite of products each supporting only a specific part of a compiler.
In other words, there is no integrated or overall approach underpinning them.
Semantics-based compilation is based on the formalization of the meaning of

30 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

computer programs by constructing mathematical objects which are independent
of the representation and operational semantics of the programming language
(abstractness).

2.2.2 Typical Architecture

ParserLexer Semantic
Analysis

Semantics

GrammarLexemes

Result

Source
program

optimizations
post-processing

Figure 2.1: A high-level overview of a typical architecture of a LDT.

The typical architecture [SWW+88] (depicted in Figure 2.1) is based on the
dominant programming model of the 1960 and 1970ties, named the process-
oriented model. Process-oriented structured [FK92] methodologies were devel-
oped in the 1970ties for promoting a more effective analysis and design technique
based on structured design and programming from the 1960ties. Structured pro-
gramming was based on a series of separate program steps (processes) with re-
spect to data. Process-oriented modules focus on the immaterial1 flows of data
and information. They describe systems as a network of interacting processes,
including descriptions of data used by the processes. The architectural style of
those systems, reflecting the process-oriented methodology, is a pipeline architec-
ture [GS93].

The subsequent processes of a pipe-line language implementation architecture
are called phases or passes. Each phase consumes the input of the previous phase
and produces new input or modifies the received one. The first phase consumes
the whole program written in the language, the last phase emits the result. As

1The process-oriented architectures stem from Eli Whitney’s assemblies to create products
from parts in a repeatable manner (1739). The flow in these processes were product parts.
Hence the emphasis on immaterial information flows when this concept was transfered and
generalized by computer scientists.

2.2. LANGUAGE DEVELOPMENT TECHNIQUES 31

such, the program gets gradually transformed into a new semantical value or a
new syntactical structure.

Lexing and Parsing

The first stage of a language implementation is a lexer. Lexers (also known as
scanners) classify a series of input characters into a series of lexical tokens or
just tokens. Typical tokens are identifiers, operators, primitive values (strings,
bytes, integers, fractions) and keywords (while, begin, function, etc.). Lexers
can be formally described via finite state automata. Via these descriptions, lexer
generators can produce highly efficient code.

The second stage is occupied by parsers. Parsers implement a grammar spec-
ification of a language and is basically able to tell whether an input program is
a correct sentence in the language. BNF (Backus-Naur Form) [BBG+60] is the
most common notation used for expressing context-free grammars. Usually the
goal of a parser is to produce a derivation tree, called a syntax tree. After the
parsing phase (or sometimes coincident with the parser), the syntax tree is pruned
of all the concrete syntax elements and normalized into an abstract syntax tree.
The description of the abstract syntax tree data structure is described via an
abstract grammar.

There is a general consensus on the first two phases of a typical language im-
plementation being lexing and parsing. However, that does not imply that every
language implementation actually contains those phases. Those two steps are no
longer considered absolutely necessary. More so it is argued to be beneficial to
discard those phases [Sim95b, Sim96, Jet, Fow05] as it allows a tighter integra-
tion with the development environment for managing the vocabulary of DSLs.
The two phases are replaced by structure editors which directly manipulate the
abstract syntax tree representation of source code. More controversial are the
remaining phases such as semantical analysis, code generation and interpreta-
tion. A variety of formalisms and techniques have been presented for defining the
semantics of programming languages and for the automatic mapping from that
description to a complete and fully functional language implementation.

Subsequent phases

The absent consensus on the remaining phases (transformations/interpretation,
analysis, optimizations) is mainly due to a large number of formalizations and
mechanisms and due to the specific nature (and hence also its challenges) de-
pendent on the particularities of a concrete language implementation at hand
such as typing, register allocation, dead-code elimination, etc. The semantics
of a language can be expressed in various ways. There are mathematical for-
malisms such as axiomatic, denotational and operational semantics. Mostly a
non-mathematical approach is chosen. These can be divided into interpreters

32 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

and compilers/generators. Interpreters implement a denotational semantics in
the case of a purely functional language or operational semantics in the case of a
procedural language. Compilers implement languages using translational seman-
tics.

2.3. Definition. Translational semantics does not define the semantics in
the sense that the execution of a language is described directly, but rather preserves
its semantics by translating an expression to another language.

Regardless of the lack of consensus, the functionality in these remaining phases
are, to a certain extent, present in many LDTs. The phases are often cleanly
subdivided in a strictly ordered series of phases.

The common key operations performed in those phases are all based on infor-
mation flow. The input of these phases is usually an abstract syntax tree, which
is a recursive composition of the abstract representation of syntactical constructs
(a.k.a. abstract syntax nodes) bounded by the grammar. Analysis, optimizations
and transformations or interpretations often exceed the boundaries of a single
abstract syntax node. Hence, mechanisms are required which allow navigation
carrying information across various abstract syntax nodes. Well known examples
of analysis are type safety, of optimizations are function inlining and constant
propagation and of transformations are conditional rewriting. Exactly how these
operations are supported, and how these operations should be implemented is a
matter of much debate.

An important observation, with respect to the typical architecture, is that
these mechanisms offer varying degrees of data descriptions (which are an essential
part in pipeline architectures). In contrast to the detailed data descriptions in
the lexing and parsing phases by regular expressions and grammars, the data
descriptions in the later phases range from well-typed abstract syntax nodes to
tree or graph structures. There exists a tension concerning that matter. Firm
data descriptions often conflict with flexible implementation mechanisms, while
more generic data descriptions conflict with a well designed pipeline architecture.

Conclusion

Clearly the typical architecture is not organized according to the language con-
structs. Additionally, we observe that the implementation of language constructs
is scattered in these phases. It is even unclear how to interpret the various phases
as each phase consumes the whole program at some intermediate stage.

Despite the wealth of variation in the phases after lexing and parsing, the
common key operations performed in those phases are all based on information
flow. The implementation of that information flow among modularized language
constructs while maintaining their modularization forms the challenge in this
dissertation.

2.2. LANGUAGE DEVELOPMENT TECHNIQUES 33

2.2.3 Implementation Approaches

In order to organize the discussion of the various LDTs we subdivided them into
five categories according to the degree of support offered for controlling and sys-
tematically implementing the various phases of a language implementation. The
resulting classification based on these criteria is quite similar to the classifications
found in [vDKV00] and [Bri05]. The classification does not assign the systems
into distinct categories as the classification lists increasing degrees of control and
support.

Ad-hoc Ad-hoc implementations, such as tree traversals [KV01] or transforma-
tion tools [BLS98] consist of small tools or libraries which can be used for
implementing a single phase of a language implementation. In order to
combine the separated phase of a compiler or for implementing a phases
on top of some library functionality, one must interface with all the various
tools or libraries. This interfacing represents the bulk of a language im-
plementation. It is performed in a general purpose language and requires
significant insight in the inner workings of the tools and libraries. In other
words, ad-hoc implementations lack an overall systematic approach for im-
plementing languages and more importantly lacks control over the entire
language implementation process.

Preset With this kind of approaches, languages are implemented using a fixed
set of operations for composing code-fragments. The operations can ei-
ther be embedded in the target languages or provided by an external lan-
guage. Typical examples of the former are template languages. In the case
the operations are part of an external language, this language acts as a
kind of preprocessor. Subject-oriented programming [OKK+96] and Gen-
voca [BST+94] fall into the latter category. In these systems, a program
is an equation of a set of software components or fragments. Because of
the fixed vocabulary, the degree of control is limited to the back-end of the
language. At most, the vocabulary provides built-in constructs for creating
abstractions. These abstractions are the closest you can get to the front-
end of languages. So there is no possibility for constructing new language
constructs.

Embedded A very popular approach for implementing languages is by embed-
ding them into a general purpose language. Embedded languages come in
two forms. The first and most common form offers a (set of) additional
language construct(s) which allows you for expanding a syntactical expres-
sion by another one. A prime example of this subcategory are macros. The
syntactical latitude and the abilities for expanding code varies from one
implementation to the next. C macros only support two syntactical forms,
and are implemented by simple text substitutions. Lisp macros reside at the

34 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

other end of the spectrum and are the most powerful macro implementa-
tions available. The second form of embedded languages are constructed by
exploiting the flexibility available in a host language. Existing implemen-
tations range from functional binding, lambda abstractions, higher order
functions, type system extensions, to metaprotocols. Embedding lacks syn-
tactical control, when the syntax of a new language does not match the
syntax of the host language. But more importantly, its grammar cannot be
described in a declarative way and thus cannot be easily enforced. The code
fragments of a new language are intermingled with host language fragments.
Consequently, embedded DSL programming is more prone to errors, than
an interpreted or compiled language.

Interpretation Interpreters are often easier to write than compilers. Both the
front-end and back-end of a language can fairly easy be implemented with
no profound restrictions. The back-end of a language consists of its oper-
ational semantics. The operational semantics for a programming language
defines the meaning of a valid program in terms of how a program is pro-
cessed via sequences of computational steps. These sequences then are the
meaning of the program. In a functional style, an interpreter is basically
a recursive function over the abstract syntax representation of a program.
Interpreters do not allow post factum changes to be made to previously
computed values. So, although all the phases of a language can be im-
plemented in an interpreter approach, the typical order of the phases of a
language implementation has to be slightly changed in the case optimiza-
tions have to be applied and execution dependencies have to be resolved.
Although, JIT [Ayc03] compilation is said to be used to optimize inter-
preters, this technique does not invalidate the previous statement. The
goal of a JIT compiler is to combine many of the advantages of native and
bytecode compilation: expensive computations such as parsing the original
source code and performing basic optimization are handled at compile time.
Hence, prior to interpretation a compilation phase is used to implement the
basic optimizations. Upon the execution of the bytecodes, the bytecodes
are translated to machine code. Again this process is more like a compiler
instead of an interpreter.

Compilation Compilation is the most advanced language implementation ap-
proach available. Developers have full control over the implementation of
a language. No concessions have to be made regarding the structure of a
language implementation. Every language phase can be executed whenever
the input data for that phase is available and the phases can be subdi-
vided such that every phase only concerns itself with a particular task. The
main distinct enabler in compilers for this, in contrast with interpreters, is
that compilers preserve the semantics by producing an equivalent program.

2.3. TRANSLATIONAL SEMANTICS 35

We refer to this as translational semantics (Definition 2.3). The equivalent
program of a given source program gets gradually produced and/or refined
as the phases progress. Hence, compilers allow various phases to further
process the code before execution. As such, the implementation is more
comprehensible and more maintainable in terms of its tasks.

Although we primarily focus on compilation in this dissertation, there are two
reasons to include other systems as well. First, each of them has some bene-
fits and bring about some important insights appropriate for our work. Second,
compilation is the superset of other generative approaches. Therefore they are
interesting for their particular aspect of the compilation process. The ad-hoc ap-
proaches have diverse strengths, depending on which particular part of a language
implementation process they facilitate, e.g. a symbol table or a traversal library
for exchanging information in the compilation process. The preset approach is
known for its techniques for composing various software components and frag-
ments. The embedded approaches are known for the combination of syntactical
and semantical semantics of a language construct. In the next chapter, LDTs in
each of those categories are discussed.

In the next section we discuss the characteristics of compilation based ap-
proaches which impact the modularization of language constructs.

2.3 Translational Semantics

In this dissertation we consider compilation as an approach for language imple-
mentations, which includes besides the pure compilation approaches also the em-
bedded, preset and ad-hoc approaches. The semantic phase of each compilation-
based LDT consists of a set of modules which contain the translational semantics
for a particular source code fragment. The terminology used to denote these
modules is different in each kind of LDT as it is tied to a particular technology,
paradigm or formalism. To be able to cross these technological barriers we refer
to these models as transformation modules or simply transformations.

2.4. Definition. In its most general form, a transformation module con-
sumes a number of code fragments and produces a number of fragments. Depend-
ing on the LDT at hand, modules are restricted to consume one code fragment, to
consume several source language program fragments, to produce new fragments,
to change existing fragments, to produce only a single fragment, or to produce
several target language program fragments.

To get a better understanding of the challenges ahead, we investigate the im-
pact of the various features or characteristics of transformation systems on the
attempt to divide the transformation process into a set of modularized trans-
formation modules. There are many features or characteristics of transformation

36 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

systems2. There are two characteristics which have a direct impact on the division
into modules and these are granularity and scope. The direction of a transfor-
mation is significant as transformations rely on various mechanisms depending
which view is taken. However, as will be shown in this section, when considering
fine-grained transformation modules the direction becomes unimportant. The
complications due to the fine-grained transformation modules and the various
scopes are investigated in this dissertation.

The next three subsections discuss granularity, direction and scope.

2.3.1 Granularity of Transformation Modules

When writing a set of transformation modules, decisions on the granularity of
those modules must be made. The granularity of a transformation module is
the portion or pivot of a source tree which is transformed, ranging from a single
AST node (small granularity), or a large subtree of AST nodes (large granularity)
which are all transformed at once.

Let us illustrate the impact of granularity by implementing a DSL compiler
with rule-based transformation systems (see Section 3.1). Basically a rewrite rule
matches a code fragment in its left hand side and substitutes that code fragment
by a new fragment described in its right hand side.

Consider the following abstract syntax tree (AST) of an example program
which describes a multimedia article of a newspaper. The tree contains one
subject which contains an single article and a corresponding title. A title has two
parts, a main title and a subtitle.

subject(title("first title", "second title"),

article("The new council abruptly canceled ...")

Suppose we want to compile this AST into a HTML page. Titles must be
centered and printed above each other, centered at the top of the page. Subtitles
must be printed in gray and in font size 9.

As it is our intention to modularize language implementations along their lan-
guage constructs, it is clear that we opt for fine-grained transformation modules
where we divide the transformation process into small rewrite rules that capture
the smallest possible structure which they still can rewrite. This strategy max-
imizes the amount of reusable rewrite logic and minimizes the need to split up
existing rewrite rules. Any increase in variability requires a minimum amount

2Classifications capturing all the features or characteristics rapidly result in a multi-
dimensional blob describing syntactic separation between left hand side and right hand side,
bidirectionality, parameterization, typing of metavariables, patterns, granularity, scope, direc-
tion, source-target-relationship (new target, in-place destructive or in-place update), implicit
vs explicit rule invocation, staging or phases, automation, intention, paradigm, goal, and many
more [SD02, CH03, vWV03]

2.3. TRANSLATIONAL SEMANTICS 37

of implementation effort because of the reuse possibilities and avoids constant
refactoring of the existing rewrite rules.

The above example program contained two concepts: a title and a subject.
The implementation of its transformation yields (see below) a rewrite rule for
subjects (1), a rewrite rule for articles (2), and a rewrite rule for titles (3). Titles
are rewritten into a html structure rendering the main and the subtitle centered,
in the requested font and above each other. Since the subject merely contains a
title, subjects are rewritten as its title with a subtitle.

subject(title, article) = title br article

article(text) = text

title(text,text2) = center(text br font(text2, 9, "gray"))

The following two small evolutions can easily be incorporated in this im-
plementation of our example language. Adding articles to the subjects merely
involves changing the subject rewrite rule to incorporate more then one article
(1) and adding a variant of text requires only the addition of one new title rule
(2).

subject(title articles*) = title br articles*

title(text) = center(text)

Although this fine-grained division of a transformation into several rewrite
rules works perfectly well in this example, it also complicates matters. Firstly, the
smaller the code fragment covered by a rule is, the broader the scope that rewrite
rule can apply to. Hence, rules need to be additionally scoped and scheduled.
Secondly, the smaller the input or output code fragment is, the less information
is available for executing the transformation. So additional behavior is necessary
for compensating this loss of information. Thirdly, the smaller the code fragments
get, the more rewrite rules will depend on the results of other rules. A rule which
transforms a large code fragment, can simply transform the whole code fragment
at once and can produce a whole target fragment. As rules consume smaller code
fragments, then each of the code fragments produced by smaller rules have to be
combined to yield a whole target fragment. As such, rules depend on the results
of other rules. These additional dependencies were absent in a coarse-grained
modularization.

2.3.2 Direction of Transformations

The two mainly acknowledged and used directions in the implementation of trans-
formations are target-driven approaches and source-driven approaches.

38 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

In a target-driven approach (depicted in Figure 2.2 (a)), also called goal-driven
approach, the target program structure steers the execution of the transformation.
Transformation modules are responsible for a particular target program fragment
that needs to be created. As such, they produce and collect all the parts that
are needed for completing a target program fragment. Target-driven LDTs are
equipped with powerful query mechanisms to be able to compute and collect the
needed information and parts across a source program.

In a source-driven approach (depicted in Figure 2.2 (b)), also called data-
driven approach, the source program structure steers the execution of the trans-
formation process. Source programs are the data which triggers the transforma-
tion modules that need to be executed. A transformation module contains the
translational semantics of a source fragment and computes the information nec-
essary for executing its semantics. The amount of control determined by source
programs varies among LDTs. In its most basic form, target programs are con-
structed by traversing source programs and applying the correct transformations.

Source

Program
Target

Program

create

complete target

fragment using

find all

parts

Source

Program
Target

Program

translational

semantics

find

what is

needed

(a)

(b)

Figure 2.2: The direction of a transformation: (a) a schematic example of a
target-driven approach (b) a schematic example of a source-driven approach

In the next section we show that the direction of transformations changes how
their scope affects the division of the transformation process into fine-grained

2.3. TRANSLATIONAL SEMANTICS 39

modules, but does not change the essence of the impact of the scope.

2.3.3 Scope of Transformations

Fine-grained transformation modules transform only a small part of a source
program. As the amount of input is small, they produce only a small part of
a target program. Another characteristic of a transformation model, which is
related but not to be confused with the granularity of transformation module, is
scope.

The scope [vWV03] of a transformation module are the areas of a source and
target tree taken into account by a transformation module. It concerns the areas
of a program that are affected by a transformation and from which information
is used. A local scope covers a single portion or pivot of a tree. A local scope can
have a small or a large granularity, e.g. a single AST node or a large AST subtree
respectively. We distinguish between two kinds of scopes: local and global scopes.
A local scope covers a single subtree of the program. When there is more than
one disconnected subtree covered, the scope is global.

Van Wijngaarden [vWV03] classifies transformations by their input and out-
put scope. The input scope or source scope denotes the area of the source program
which is covered by the transformation. The output scope or target scope denotes
the area of the target program affected or produced by the transformation.

Joining the axis of source and target scopes with local and global scopes we
get the following transformation scopes:

• A local source scope takes a single portion or pivot of a source tree.

• A local target scope comprises a single portion or pivot of a target tree.

• A global source scope takes into account several additional source nodes next
to the pivot or portion of a source tree under transformation. These nodes
are not transformed by the transformation module, but merely necessary
as an additional information source.

• A global target scope comprises several portions or areas of a target tree
which are affected by a transformation module.

Joining the axis of source and target scopes each divided into a local and
global scope we get the four possible transformations listed in Table 2.1.

input/output local global
local local-to-local local-to-global

global global-to-local global-to-global

Table 2.1: Classification of source and target scopes of transformation modules

40 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

Figure 2.3 illustrates these basic terms in a schematical overview of a trans-
formation. The main input of a transformation is referred to as the pivot. The
main output of a transformation is called local result. Information required by
a transformation which is external to the pivot is called external or context in-
formation. The extra results produces besides the main or local result are called
nonlocal results.

Source Program Target Program

transformation

external
or context

information,
external to

the pivot

Pivot

nonlocal
result(s)

source

scope ta
rg

et
sc

op
e

global
source scope

local
source scope

local
target scope

global
target scope

local result

Figure 2.3: A schematical overview of transformation terminology.

In the remainder of this subsection we discuss the various kind of scopes of
transformation modules.

Local-to-Local Transformations

The local-to-local transformations are the most simple kinds of transformations
for constructing and for supporting the LDTs. The local input and local out-
put renders the transformations largely independent from one another. The only
dependencies that need to be taken into account are those among the transfor-
mations where one operates on a parent and the others on the children nodes.
The dependency lies in the fact that the results produced by transforming the
children must be composable in the result produced by transforming the parent.

In the case of a source-driven approach, the basic execution scheme boils down
to a recursive descent bottom-up traversal of the source program. In the case of

2.3. TRANSLATIONAL SEMANTICS 41

a target approach the execution scheme boils down to a recursive descent top-
down traversal of the target program. The prerequisite for these simple schemes
to work, is that the information in the local scope must suffice for constructing
a locally scoped target term. That prerequisite erects a dependency between the
transformation modules which must be taken care of by the language designers.
Although the dependency is of a different nature in a source or target driven ap-
proach, but nevertheless present in both of them. So, the choice between a source
and target driven approach does not affect the complexity of the implementation
of these transformations.

• In a source-driven approach, the source program is traversed, dictating the
target scopes (see Figure 2.5) i.e. the kind of output that is allowed to
be produced by a transformation and the location of the produced code
is determined so that it is composable with the results produced by other
transformations.

The goal of each transformation TA is the production of the translation
semantics A′ of the source term A. This transformation uses the seman-
tics B′ of the subterms B by invoking the transformations TB. These val-
ues are used for constructing the target term A′. The results B′ obtained
from TB must be suitable values for constructing the target term A′. So
a source-driven transformation dictates the target scope of the produced
target program fragments.

• In a target-driven approach, the target program is traversed, dictating the
source scopes (see Figure 2.4) i.e. the input for a transformation is deter-
mined and must suffice to produce the results.

The goal of each transformation TA is to produce a complete target term
A′, using the source term A. In order to construct the target term A′

a number of subterms B′ of A′ are necessary. The transformations TB

producing these subterms are invoked with a part B of the source term.
That part is determined by the transformation TA and has to be suitable for
the transformation modules TB. So a target-driven transformation dictates
the source scope.

Global-to-Global Transformations

The remaining three classes of transformations access multiple disconnected source
subtrees and/or affect/produce multiple disconnected subtrees in a target pro-
gram. These transformations discord with the goal of fine-grained modules. In
designing a language with fine-grained transformations we strive to limit the scope

42 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

A

B

A'

B'

TA

TB

Source
Program

Target
Program

Figure 2.4: A target-driven implementation of local-to-local transformations dic-
tates the scope of the source of the transformations.

A

B

A'

B'

TA

TB

Source
Program

Target
Program

Figure 2.5: A Source-driven implementation of local-to-local transformations dic-
tates the scope of the target of the transformations.

of transformations as much as possible, whereas we now see that transformations
may equally well depend on the whole input program and affect the whole output
program. To this end, LDTs offer special support in terms of implementation
mechanisms and techniques for facilitating the implementation of these transfor-
mations by fine-grained transformation modules. We discuss these techniques in
the next chapter.

Global-to-global transformations have a global source scope and a global tar-
get scope. They are the combination of the two classes global-to-local and local-
to-global transformations capturing a global source scope and global target scope
respectively. By dividing the global-to-global category up we can consider each
case separately from the other.

2.3. TRANSLATIONAL SEMANTICS 43

Global-to-local transformations need information from multiple disconnected
subtrees of a source program. Usually, one assigns different roles to the sub-
trees. The main subtree which is the trigger of the transformation is the
pivot [vWV03] (see Figure 2.3). The other subtrees are considered as con-
text information (see Figure 2.3). A typical example of such transformations
are those that compile variable usage sites in programs. A variable usage
corresponds to a memory address that was allocated upon its declaration.
So for translating a variable to a memory address its transformation needs
to lookup its declaration for retrieving the memory address.

As this is a common transformation, many LDT explicitly offer additional
mechanisms for supporting the retrieval of information ranging from code
walks to global accessible data structures. LDTs each provide their own
mechanisms and techniques. Hence, we will come back to this during the
more detailed discussion of LDTs in chapter 3

Local-to-global transformations produce/affect several disconnected subtrees
(aka results) in a target program. In order to implement these transforma-
tions, nonlocal results must be spread across the overall target program and
integrated with the existing parts of a target program. Clearly, scheduling
is an important issue here, as such a transformation can only be completely
executed when those scattered locations in a target program can be com-
puted. Only a couple of transformation techniques provide special support
for local-to-global transformations. But most of them treat the problem
of local-to-global transformation as the inverse problem of global-to-local
transformations. From a technical point of view, this is correct; spreading
the results throughout a target program can be achieved by looking for
the results from the subtrees where they belong. Like the global-to-local
transformations, the mechanisms and techniques for implementing local-to-
global transformations are part of the detailed discussion of each LDTs.
However, as we will discuss later on there are several problems associated
with the inversion solution.

The implementation of local-to-global transformation is performed in target-
driven approaches by querying a source program and invoking the right
transformation modules for obtaining target program fragments. Subse-
quently, these fragments need to be composed and integrated into a single
target program. In source-driven approaches, a target program is queried
for locating where to integrate nonlocal results. Subsequently, nonlocals are
integrated in the target program. Clearly, local-to-global transformations
require the same logic in both target or source-driven approaches.

44 CHAPTER 2. LANGUAGE IMPLEMENTATIONS

2.3.4 Discussion

Despite the technical differences used in target-driven approaches and source-
driven approaches, target-driven approaches do not cancel disadvantages of source-
driven approaches or vice versa. The implementation of local-to-local transfor-
mations, global-to-local transformations and local-to-global transformations is
largely the same in both source and target-driven approaches.

2.4 Conclusion

Growing a language can have a significant impact on the semantics of other
language constructs, as the addition of an expressive language construct requires
changes to be made in the definition of other language constructs. We have shown
that a set of language constructs does not in general compose, unless they are
designed to compose or they are complemented with additional logic.

We have given an overview of the suite of contemporary language development
techniques of which we will, in later chapters, determine the extent to what degree
modularization can be achieved.

There is a wealth of names given to techniques, systems and formalisms for
implementing languages. Each of those carry a connotation, which renders future
discussions and analysis subjective to interpretation. In order to avoid this, we
introduced the new term “Language Development Technique (LDT)”.

To get a better understanding of the challenges ahead, we analyzed the gran-
ularity, scope and the direction of a transformation. Granularity and scope are
two characteristics which have a direct impact. The direction of a transforma-
tion is usually considered significant, however, we showed that when considering
fine-grained transformation modules the direction becomes irrelevant.

In the next chapter, we present the mechanisms each individual contemporary
language development technique offers for modularizing their implementations
and for handling the various scopes of transformations.

Chapter 3

Language Development Techniques

In the previous chapter, we have introduced basic terminology and approaches
to implement languages. In this chapter, we present a detailed study of each
language development technique. The existing research tools we are about to dis-
cuss is extensive, including tree-based rewrite rule systems, graph rewrite rules,
macros, template-based approaches, attribute grammars, compositional genera-
tors and ad-hoc approaches.

The reason why we need to cover so much ground is due to the fact that we
pursue modularization through an appropriate separation of concerns. Separa-
tion of concerns [Par72] is a highly desirable property in software engineering in
general and in language engineering [Mos04] in particular. It is a concept that is
not a clear-cut property. Therefore each language development technique (LDT)
(see Definition 2.2) divides a language implementation into modules ensuring
some degree of separation of concerns according to some separation of concerns
dimension [TOHJ99].

The various phases in the typical compiler architecture (see Section 2.2.2)
such as lexer, grammar, parser, transformations, optimizations, pretty printing,
language constructs, analysis, etc. are the main sources for concerns. Many of
these, are further refined into specific concerns due to the particularities of the
source and target language such as typing, register allocation and dead code elim-
ination. In addition, compiler construction is a very diverse field, governed by
several compiler construction paradigms such as rewriting and attribute gram-
mars. Each paradigm abstracts and structures the compiler construction process
slightly different. As a result, the various technical concerns that explicitly arise
during compiler construction are partially dependent on that paradigm.

Our discussion focuses on the degree of separation that can be achieved by
contemporary development techniques. In Section 2.3.1, we have outlined the
complications due to the fine-grained division of a transformation. The more
fine-grained a module is, the smaller its source and target scope gets. As a con-
sequence, transformations need additional scoping and scheduling. In addition,

45

46 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

additional behavior is necessary for compensating the reduced amount of infor-
mation available for executing the transformation. In order to chart the impact
on the modularization of transformation modules, we detail the cohesion of the
various modules, how they cooperate with other modules, and their dependencies
and coupling with other modules.

Each LDT, provides useful insights in how to divide a language implemen-
tation and what mechanisms are necessary to maintain that separation. We
present the mechanisms to separate as well as the mechanisms to use and combine
the modules into a fully functional language implementation. Each mechanism
and property relevant for our discussion is briefly introduced together with its
strengths and weaknesses. These mechanisms and the properties of the systems
form the background knowledge we use and take into consideration in the next
chapter. That chapter presents a model for the modularization of language con-
structs and a summary of a thorough evaluation of the mechanisms of each LDT
against that model.

The discussion of each LDT is structured as follows:

• The definition and properties of the data structures that are used in each
LDT are important as they define the scope for the possible operations to
transform and manipulate the program representation. We take a look at
all the data structures that are used in a language implementation. This
includes the source program, the target program, and the auxiliary data
structures. We focus on:

– The structure and organization of source and target programs: tree,
graph, changeable or non-changeable data structures.

– The construction of target programs and auxiliary data structures:
implicit, explicit, complete or incomplete.

– The modification of these data structures: unconstrained vs constrained
and ownership.

• We determine the smallest possible semantic operation that can be cap-
tured in a single transformation and determine how the various scopes are
handled, so as establish the degree of fine-grained modularization. In order
to clarify the discussion of each LDT, we graphically depict the transfor-
mation modules they offer. The drawing also depicts the main properties
and mechanisms of each LDT, including their scope and access to source
and target trees. The drawing is based on a common illustration of the
various scopes of a transformation in Figure 2.3. So each figure shares the
same concepts and drawings, providing a common platform to compare the
various approaches. We investigate how:

– modules identify what to transform and the scope of that transforma-
tion;

3.1. TREE-BASED REWRITE RULES 47

– transformations are scheduled;

– local-to-local transformations are expressed;

– local-to-global transformations are expressed;

– global-to-local transformations are expressed.

• We conclude each discussion with its strengths and weaknesses. The former
are indicated with a ‘+’ sign and the latter with a ‘−’ sign.

Note that we refrain from a complete concrete technical overview of all the
systems currently available. The list of LDTs we are about to discuss is a repre-
sentative set of techniques to support the modularization of language constructs
and their semantics. In addition, the focus of our discussion lies on the tech-
niques LDTs offer to divide an implementation into modules according to the
language constructs of a language, and the techniques to preserve that modu-
larization when facing complex translational semantics. Our discussion is thus
conducted from that perspective only and should be read accordingly, it does not
contain a full evaluation including pros and cons of every feature offered by the
LDTs. We conclude with a couple of observations governing the field of language
implementations through compilation.

3.1 Tree-Based Rewrite Rules

Rewrite rule systems [Klo92] such as ASF+SDF [vDHK96], TXL [CDMS01] and
Stratego [Vis01b] can be counted as one of the most flexible formalisms for ex-
pressing program transformations. This dissertation covers rewrite rule systems
for three reasons: First, rewrite rules are fine-grained and highly modular. Sec-
ond, the ASF+SDF rewrite rule system offers traversals, which is a mechanism to
implement local-to-global transformations. Third, stratego allows developers to
explicitly control the scheduling of rewrite rules and to dynamically create rewrite
rules which can implement local-to-global transformations.

A rewrite rule (see Figure 3.3) basically substitutes a pattern of a code frag-
ment for another pattern, called the left hand side (LHS) and the right hand side
(RHS) of a rule respectively.

Consider the simple abstract tree language defined in Figure 3.1. The binary
trees of this language consist of three different node types f, g and h. The leaves
are just plain numbers (NAT). This specific example happens to be a complete
binary tree, which means all nodes have exactly zero or two child nodes. Trans-
forming all the f-nodes into h-nodes can be done by a simple rewrite rule shown in
Figure 3.2. The left-hand side matches every f-node. These nodes are rewritten
to h-nodes.

48 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Example
tree program

non-local
results

...
5

6
12

...

...

context-free syntax
 NAT -> TREE
 f(TREE, TREE) -> TREE
 g(TREE, TREE) -> TREE
 h(TREE, TREE) -> TREE

variables
 N[0-9]* -> NAT
 T[0-9]* -> TREE

Tree Language

Figure 3.1: On the left side a simple tree language is defined, on the right side
an example tree that can be constructed using that language is depicted.

f(T1, T2) = h(T1, T2)

Figure 3.2: An example of a rewrite rule

3.1.1 Data Structures

Structure and Organization The program under transformation is repre-
sented with an abstract tree, for example f(f(g(1,2),3),4). The trees are
constructed by composing terms with other terms and basic elements.

The tree structure is only captured by parent-children relations. This has
important consequences for the acquisition of information (see Section 3.1.2).

There is at all times, during the transformation process, a single set of con-
nected terms available. At the beginning of the transformation process, the terms
represent the source program. As the transformation progresses, the terms are
gradually rewritten until the terms represent the target program. So, during
the transformation process an intermediate tree intermingling source and target
program fragments exists.

The rewrite rules are used to implement the whole back-end of a compiler. In
other words, they are used for semantical analysis, translational semantics and
optimizations.

Construction The construction of a target program is explicitly stated in the
right hand side of rewrite rules. Every constructed term must also be complete
and correct. The correctness is enforced by a type system and through the term
constructors. The terms are constructed by composing all its required subterms.

3.1. TREE-BASED REWRITE RULES 49

Modification Terms are read-only. Their content can only be changed by
recreating them with different subterms as parameters. If their type and their
arguments are not sufficient, terms have to be recreated. A rewrite rule strictly
depends on the signature of a term, when the signature of a term changes (see
local-to-global) the rewrite rule is no longer is applicable.

3.1.2 Transformation Modules

A transformation module is a rewrite rule. Rewrite rules can be organized into
groups of rewrite rules. The transformation modules or groups of modules are not
organized according the structure of the source language defined by its grammar.

Intermediate Program Tree

transformation

context
information

=> coarse-grained rules

Pivot
local

source scope

local
target scope

initially the source program eventually the target program
Intermediate Program Tree

Figure 3.3: A schematic overview of a rewrite rule

Identification The left hand side pattern of a rewrite rule is, in its most basic
form, a term. These terms can be arbitrarily expanded by their subterms to allow
for more complex patterns. However, this simple form of expansion, as presented
here, has its limitations. As a term must always be fully expanded – there is no
room to abstract over a number of concrete terms or, in other words, to enable
a certain degree of variability. This variability is achieved by the addition of
variables. Such terms are then called patterns.

The patterns available in rewrite rule paradigms are matched against the
current tree under transformation. The variables in its left hand side act like
input parameters and in its right hand side like output parameters.

Variables enable only a limited form of variability as the structure of the
pattern remains statically fixed. As rewrite rules depend on the structure of
the tree, which may in turn be rewritten by other rules, rewrite rules implicitly
depend on each other. Extensions of the basic rewrite rule formalism discussed

50 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

in Section 3.1.3 and related approaches such as graph rewrite rules in Section 3.2
offer solutions with a varying degree of variability.

Scope The source scope of a rewrite rule is part of its definition. The scope
is determined by an additional condition attached to a rule and in its left hand
side. The left-hand side (LHS) statically binds the scope to a particular term
whereas conditions further specializes that and can take dynamic information
into account. As terms lack a child-parent relationship, a condition only applies
to the subterms of the matched term. Therefore, the term described in a LHS
must be a large enough subtree, such that conditions can be defined in terms of
its subtrees. So despite of this very modular and localized semantics, rules are
tightly coupled with their overall language context.

Scheduling In general, and conceptually, the process of term rewriting con-
tinues until no further rules can be applied (or for ever, in the case of a non-
terminating system). For rewrite rule systems to be reliable, the set of rewrite
rules must be confluent. When we reach a point where we can apply no more
rewrite rules, we have reached a normal form. If there is only one unique normal
form, then our system of rewrite rules is confluent. In general, determining if a
rewrite system is terminating and/or confluent is undecidable: fortunately there
are some useful rules to help us decide.

Changing a non-confluent system to a confluent system is done through proper
rule scheduling. Scheduling of rewrite rules is based on a built-in strategy deter-
mined by the reduction strategy, that is, the procedure used to select a subterm
for possible reduction. In ASF+SDF, the leftmost-innermost reduction strategy
is used. This means that a left-to-right, depth-first traversal of the term is per-
formed and that for each subterm encountered an attempt is made to reduce
it. Built-in reduction strategies have their limitations. To overcome these, the
conditions of rewrite rules can also be used to explicitly control their execution.
The conditional clause is a part of the definition of a rewrite rule, rendering it
dependent on its context [Cle03].

Rewriting complicates scheduling because rewrites may remove information
and rewrites can change information. Before a rewrite rule can be safely applied,
we must make sure that all other rewrite rules which also depend on that sys-
tem are either executed or make a copy of the information that is about to be
removed. Before a rewrite can be safely applied, we must make sure that pre-
vious computations based on that information are not invalidated. Enforcing a
schedule in these systems is done by changing the conditional clauses of rewrite
rules (cfr. the byte code generator example in [vdBK02]).

Effect Rewrite rules can only affect the matched term by replacing it with its
resulting term. In other words, it can only affect the term that is matched by

3.1. TREE-BASED REWRITE RULES 51

the left hand side, other terms cannot be affected. Hence, the target scope of a
rewrite rule (its right hand side) is restricted to the source scope (its left hand
side). In other words, rewrite rules can only affect a single subtree at a time using
information of that subtree. Consequently, transformations with global source
and/or target scopes are not explicitly supported.

Global-to-Local Due to the absence of child-parent relationships, the minimal
tree representation prohibits a straightforward way of accessing terms residing in
the context of a matched term. So the only way to be able to access context
information would be by matching its parent terms. The increased scope of the
resulting rewrite rules render them coarse-grained (cfr. Section 2.3.1).

Technically speaking, rewrite rules can access context information through
the mechanism of successive rewrites. The idea is to distribute information to
the terms by rewriting each of the encountered terms along the path where the
information is computed and made available to the term where the information
is required. This is not only cumbersome but also causes severe maintenance
penalties [CDMS02].

Local-to-Global As rewrite rules can only exhibit changes to the matched
subtree, implementing a local-to-global transformation is a hassle. The only way
to affect other subtrees is to gradually rewrite the tree until sufficient information
is available at those subtrees that need to be changed. There are two approaches
which can be taken: restructure the source tree or restructure the target tree.

In the first approach, the source-tree is restructured until there is enough
information available in the intermediate “decorated” source-tree to be able to
execute the rewrite rules that actually produce the target program. The drawback
of this approach is that the logic of the local-to-global transformation is scattered
in the rewrite rules that actually produce the target program. In [CDMS02], this
approach is “successfully” applied in the large to transform legacy Cobol programs
to Java programs. More than 70 intermediate stages are needed before a correct
Java program is reached.

In the other approach, first the rewrite rules that actually produce the target
program are executed. These rewrite rules produce an intermediate tree which
is “decorated” with nonlocal subtrees. In subsequent phases this intermediate
target tree is rewritten. Every successive rewrite restructures the tree and moves
nonlocal subtrees upwards or downwards in the tree, until the nonlocal subtrees
reach the subtrees in which they need to become a part of. As the target tree
is usually more verbose, less concise and less intentional (lower-level language),
the drawback of this approach is that the scattering of the subtrees can be more
complex to implement. We investigated this approach in [Cle05, CB05] and the
major critiques are the lack of integration semantics.

52 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Strengths and Weaknesses

− Rewrite rules are highly modular. It can only utilize the information stored
in a term and change the term that has been matched. But this modularity
has its price. Local-to-global transformations and global-to-local transfor-
mation are not explicitly supported and are cumbersome to implement.

− Rewrite rules are destructive. One must ensure that in case of global-to-
local transformations, rewrite rules that depend on external information are
executed first. Hence, rewrite rules increase the need to schedule.

− Rewrite rules do not distinguish between source and target programs. That
complicates reasoning and typing as intermediate trees may contain both
source and target program fragments.

− Rewrite rules can change every term, which may invalidate previously com-
puted information.

− Rewrite rules can only create complete terms. So prior to rewriting, all
necessary information must be present.

3.1.3 Traversals

Recall that the patterns in the left hand side of rewrite rules are partially ex-
panded terms. This expansion is statically described by nesting terms. The
variables in these patterns enable a certain degree of variability but they actually
only confine the expansion. An important consequence is that the structure of
patterns is statically fixed. As the program tree is continuously rewritten, the
patterns erect strong dependencies. In other words, there is no room for struc-
tural variability in patterns. With the advent of traversals, this shortcoming
can be tackled. Traversals (see Figure 3.5) have been added to the rewrite rule
paradigm to alleviate the programmer of the cumbersome programming needed to
distribute context information via successive rewriting. The techniques proposed
in [VKV03] allow a rewrite rule to descend into a subtree. During the descent,
information can be accumulated and/or nodes can be rewritten. The advantage
of that approach is that the terms that need to be visited can be formulated as a
normal rewrite rule.

Consider the following example where we need to increment the values of a tree
given a certain increment. The tree is defined in Figure 3.1. The implementation
is shown in Figure 3.4. The traversal function inc increments every number in
the given tree Tree with a given number N2. The traversal is declared by an
additional specification along with the definition of the term inc.

3.1. TREE-BASED REWRITE RULES 53

context-free syntax

inc(TREE, NAT) -> TREE { traversal(trafo,bottom-up,continue) }

equations

inc(N1, N2) = N1 + N2

Figure 3.4: Incrementing the leaves of a tree. For example, inc(f(g(1,2), 3),

10) results in the tree f(g(11,12), 13).

Intermediate Program Tree

transformation

context
information

with traversals

Pivot
local

source scope

local
target scope

initially the source program eventually the target program
Intermediate Program Tree

Figure 3.5: A schematic overview of a rewrite rule equipped with traversals

Scope The target scope of a rewrite rule with traversals is no longer confined
to the matched terms, more distant subterms (subterms of subterms and beyond)
can be reached and rewritten.

Local-to-Global and Global-to-Local Global-to-local transformations need
context information which is not locally available in a term. That additional in-
formation can now be provided by traversals. Consequently, only transformations
with global source scopes confined to subtrees and with local scope are explicitly
supported.

Traversals are extended over tree such that it distributes the data needed by
transformation rules. The disadvantage of these solutions is that the traversal
strategy becomes data heavy instead of just handling control flow. That is, all
traversal functions become infected with additional parameters carrying context
information.

Ancestors and siblings cannot be elegantly retrieved. In these cases, a
workaround must still be used which involves the rewriting of at least the term

54 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

that requires the context information, combined with two or more traversals start-
ing at a common ancestor. The additional rewrite rules necessary to implement
the workaround implicitly cooperate with one another.

Traversals do change how global-to-local transformations can be implemented.
Complete terms can now more easily be created as information can be retrieved
from subtrees. The traversals partially eliminate the severe technical and main-
tainability hazards due to term rewriting. The required information to construct
a term can now be more easily computed and retrieved from subtrees. Hence, the
number of incremental representations can be greatly reduced.

Strengths and Weaknesses

+ Traversals can collect information from subtrees to implement local-to-
global transformations, and as such reduce dependencies caused by suc-
cessive rewriting.

+ Traversals are type-safe.

- Traversals do not allow parent access and are thus limited to subtrees.

+ Traversals reduce the number of incremental representations when imple-
menting global-to-local transformations, and thus reduce dependencies among
rewrite rules.

3.1.4 Scoped Dynamic Rewrite Rules with Rewrite Strate-
gies

Scoped dynamic rewrite rules [Vis01a] (see Figure 3.6) are an extension of plain
rewrite rule systems which facilitate the implementation of local-to-global trans-
formations. In order to control the application of these rules, the technique is
embedded in programmable rewriting strategies. With programmable rewriting
strategies the application of rules can be controlled/scheduled. The scoped dy-
namic rewrite rules offer a mechanism to create and revoke during the execution
of the transformation process new rules. By creating such a rule, a rewrite rule
can have a global target scope.

Scheduling Exhaustive application of all rules to the entire abstract syntax tree
of a program is not adequate for most transformation problems as the system of
rewrite rules expressing basic transformations is often non-confluent and/or non-
terminating.

An ad hoc solution, that is often used, is to encode control over the application
of rules into the rules themselves by introducing additional function symbols. This
intertwining of rules and strategy obscures the underlying program equalities. It
also incurs a programming penalty in the form of rules that define a traversal

3.1. TREE-BASED REWRITE RULES 55

Intermediate Program Tree

transformation

Pivot local
source scope

local
target scope

initially the source program eventually the target program
Intermediate Program Tree

global
target scope

dynamically created rules
are able to change the tree

outside the local target scope

static
scheduling by

rewrite
strategies

Figure 3.6: A schematic overview of a dynamically scoped rewrite rule

through the abstract syntax tree, and disables the reuse of rules in different
transformations.

The paradigm of programmable rewriting strategies solves the problem of
control over the application of rules while maintaining the separation of rules and
strategies. A strategy is a little program that makes a selection from the available
rules and defines the order and position in the tree for applying the rules. Thus
rules remain pure, are not intertwined with the strategy, and can be reused in
multiple transformations.

Support for strategies is provided by a number of transformation systems in
various forms. In TAMPR [BHW97] the transformation process is divided into a
series of rewrite rule sets. A sequence operator between the sets applies these sets
successively. ELAN [BCD+00] provides non-deterministic sequential strategies,
but lacks the ability to combine strategies with term traversal. Stratego [Vis01b]
provides generic primitive traversal operators that can be used to compose generic
tree traversal schemas. In the remainder of this section we therefore limit our-
selves to a discussion of stratego.

A rewrite strategy is a program that transforms terms or fails at doing so. In
the case of success, the result is a transformed term. In the case of failure, there
is no result.

By combining the strategies with traversals we can control how and when
rewrite rules are executed. Consider for example the topdown strategy:

topdown(s) = rec x(s; all(x)) 1

1The recursive closure rec x(s) of a strategy s attempts to apply to the subject term the
strategy obtained by replacing each occurrence of the variable x in s by the strategy rec x(s).

56 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

The strategy expression rec x(s; all(x)) specifies that the parameter transfor-
mation s is first applied to the root of the current subject term. If that succeeds,
the strategy is applied recursively to all direct subterms of the term, and, thereby,
to all of its subterms. This definition of topdown captures the generic notion of
a pre-order traversal over a term.

Strategies statically describe the execution of rewrite rules. Rewrite rules are
still polluted in case where dynamic information of the source program must be
taken into account. Due to the limited source scope of rewrite rules only a limited
amount of context information into account. So to ensure a correct scheduling,
insight is required in all rewrite rules and in all strategies.

Local-to-Global Transformations The target scope of rewrite rules is limited
to its source scope. This clashes with the fact that local-to-global transformations
produce several subtrees which need to integrated in various locations in the target
program. However, recall that these nonlocal subtrees can only be correctly
injected into the target program when we can compute where they belong. In
other words, such a rewrite rule should delay that injection until “the time is
right”. The concept of scoped dynamic rewrite rules is an extension of rewriting
strategies that overcomes the limited target scopes of rewrite rules.

A dynamic rule is a normal rewrite rule that is generated at run-time and
that can access information from its generation context. For example, to define
an inliner, a rule that inlines function calls for a specific function can be gen-
erated at the point where the function is declared, and used at call sites of the
function. Dynamic rules can be used to implement local-to-global transformations
and basically allow you to produce multiple nonlocal results locally and delay their
execution.

The execution of dynamic rewrite rules must be carefully managed. This is
where programmable rewriting strategies enter the scene. Dynamic rewrite rules
can be applied in arbitrary locations (under control of the rewriting strategy).

Nonlocal subtrees produced by local-to-global transformations can be inte-
grated across the entire target program. In other words, arbitrary locations in
the target program must be reached which requires more complicated scope defi-
nitions and complex logic to control the execution of dynamic rewrite rules. The
basic scoping construct scopes dynamic rewrite rules according to particular sub-
trees. More complex scoping rules, than mere subtrees, are needed. However, it
is unclear how more complex scoping rules can be implemented.

Controlling the execution of dynamic rewrite rules can either be done via
rewriting strategies or by encoding additional logic in their left hand side. The
former is generally preferred over the latter for reasons of clarity, programming
reward, reuse (cfr. Section 3.1.4) and to avoid overly scoped and coarse-grained
modules (cfr. Section 3.1.3). However, in case the logic to control the execution of
dynamic rewrite rules is dependent on the context-information of dynamic rewrite

3.2. GRAPH REWRITE RULES 57

rules, then the control logic becomes part of dynamic rewrite rules.

Strengths and Weaknesses

+ Strategies explicitly support local-to-global transformations by allowing
rewrite rules to exercise effects outside its scope and as such avoid depen-
dencies caused by interacting traversals and rewrite rules.

− Strategies provide no features and constructs to integrate or modify without
invalidating previously produced terms.

− Strategies statically describe the execution of rewrite rules, and a such stat-
ically define the places where local-to-global effects are executed.

3.2 Graph Rewrite Rules

Graph rewrite rules (see Figure 3.7) such as Fujaba [FNTZ98], Progress [Sch91]
and AGG [ERT99] bear a lot of similarities to tree-based rewrite rule systems. The
shift in representation, and their strong mathematical background creates a lot of
opportunities that enrich the paradigm. Programs are stored in changeable data
structures, which can be freely changed and extended by any rule. Furthermore,
rewrite rules have large source and target scopes to support the implementation
of global-to-local transformations and local-to-global transformations.

In this section, only the differences with respect to the tree rewrite rule
paradigm are explained. Note that this discussion slightly deviates from the
outline in Section 2.3 to improve readability. An in-depth overview of graph
rewrite rules can be found in [BFG95].

3.2.1 Data Structures

Structure and Organization Unlike traditional rewrite rules, graph rewrite
rules operate on “open ended” record structures or containers that represent the
abstract syntax nodes. There is no predefined set of values that these containers
may hold.

The topology of the edges (connections) between the nodes is a graph. In
the context of MDA, where these systems are frequently used, the graph that
contains the AST nodes of a program is referred to as the model.

There is no restriction on the number of nodes that are built and they do
not need to be connected in a single graph. In other words, multiple subgraphs
may coexist during the transformation process. Naturally, there is at least one
(sub)graph representing the source program available to start the transformation
process. This (sub)graph can be gradually rewritten as was the case with tree-
base graph rewrite rules. Alternatively, a new (sub)graph can be created which

58 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

represents the target program. Auxiliary subgraphs or graph extensions are often
used to implement complex transformations, see Section 3.2.2.

Construction Records are less rigid data structures than terms. One of the
interesting possibilities is that upon creation, not all its neighbours need to be
known. In other words, the node being constructed can be incomplete. The
ability to create incomplete nodes increases the separation between rewrite rules
as rules can restrict themselves to connections they need without anticipating,
retrieving and handling all the neighbouring nodes.

Modification Containers are different from terms in that they can be easily
modified without being recreated. This seems only a minor difference, but the
separation among rewrite rules is improved as a rule can attach additional in-
formation, and its logic only needs to consider the information that is relevant.
This flexibility also has its price, as it renders the data structures more vulnerable
to inconsistencies upon multiple rewrites. A tree rewrite rule must consider all
the parts and thus forces the developer to take these parts into account upon
rewriting; in contrast a graph rewrite rule can ignore a part of the data structure
upon a change possibly cause inconsistencies.

3.2.2 Transformation Modules

Similar to tree-based rewrite rules, a transformation module in graph rewrite rule
systems is a graph rewrite rule, and transformation modules or groups of modules
are not organized according the structure of the source language defined by its
grammar.

Identification In graph rewrite rule systems, left hand sides are subgraphs
which are matched against the graph under transformation. As subgraphs can
arbitrarily include any set of connected nodes, a graph rewrite rule can also ignore
any edge or node. This flexibility facilitates incremental development and growth
of the graph, as each graph rewrite rule is only concerned with those edges and
nodes it really depends upon. However, being totally ignorant about certain parts
of a graph structure also endangers its consistency and correctness.

Subgraphs play a crucial role in the retrieval of context information. Like
the tree rewrite rules, the structure or topology of subgraphs, when described as
a collection of connected nodes, is statically determined. In the local-to-global
paragraph, more sophisticated mechanisms are discussed.

Scope Similar to tree rewrite rules, the target scope of graph rewrite rules is
also determined by the source scope. But in contrast to rewrite rules, the source

3.2. GRAPH REWRITE RULES 59

Source Program Graph

transformation
Pivot

global
source scope

local
target scope

Target Program Graph

global
target scope

+

implicit node
creation

when node
does not exist

implicit node
creation combines

already existing nodes

considering
a subset of
the nodes

morphisms
*-groups

considering
a subset of
the nodes

Figure 3.7: A schematic overview of a graph rewrite rule

scope is not limited to a mere subtree as any edge can be included in the subgraph
of the LHS of a rule.

By including child-parent edges in the LHS of a graph rewrite rule, it can
limit its applicability and as such control its scope. By including an edge and a
node in the subgraph that denotes, for example, the parent, container or super
component, the context information contained in those nodes can be used to scope
rules. Combining this with the ability to partially include a node in the LHS, we
get a specification which fewer dependencies on the source graph as compared to
tree rewrite rules, a graph rewrite rule only has to include those nodes and edges
that are relevant to narrow its scope.

Scopes can also be broadened, by leaving nodes or edges out of the scope defi-
nition.

Scheduling The scheduling of graph rewrite rules is largely the same as the
scheduling of rewrite rules. We refer to Section 3.1.2 for a detailed discussion.
The difference between the two formalisms emanates from the ability to produce
multiple (sub)graphs. Scheduling is less complicated when the source program is
not destroyed during the transformation process. At any time during the trans-
formation process, we can consult that structure. However, the ability to change
that structure and add information complicates matters. Rewrite rules implicitly
cooperate as they have to agree on the same underlying graph structure (source,
target, run-time information) as a prerequisite for a consistent implementation.

60 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Effect Graph rewrite rules explicitly support transformations with global source
and global target scopes. This is discussed in more detail in the subsections local-
to-global and global-to-local.

The effect of a graph rewrite rule is stated in its RHS. However, when only
taking the RHS into account, one cannot distinguish the nodes created at the
RHS. By comparing its RHS with its LHS, one can deduce which nodes are to
be created. The nodes that are not matched by its LHS, are new nodes. As its
LHS can also match nodes which are created by other rules, graph rewrite rules
implicitly depend on other rules.

In a graph rewrite rule implementation, it is often impossible to determine
which rule will be triggered in advance. Hence, it is also in general impossible
for transformation architects to determine which rule should explicitly create the
new node. With the ability to create partial nodes, one can shift from explicit to
implicit node creation. Implicit node creation creates a node when necessary. The
node in the RHS is first matched against already existing nodes. If no match has
been found, the node is created. This allows for a more fine-grained modulariza-
tion of graph rewrite rules in so-called aspect-driven transformations [DGL+03].
This mechanism avoids that graph rewrite rules are get polluted with scheduling,
and the semantics of other rules.

When nodes are matched either by the left hand side of a graph rewrite rule or
through the implicit creation of the right hand part, the partial definition needs
to be taken into account: rewrite rules only needs to consider those parts that
are relevant and can remain oblivious to the rest of the definition. Of course, the
same hazards of data corruption remain present.

Dealing with a completely defined node is easier than with a node that can be
arbitrarily incomplete. In the former case, it is easier to anticipate the neighbours
that can be found and how the modifications will affect the whole node. Moreover,
when nodes are partially complete, they sometimes temporarily represent incor-
rect code fragments of the target language. The correct procedure to complete
them and render a semantically and syntactically correct code fragment demands
a custom strategy codetermined by the code fragment. Unfortunately, there is a
lack explicit integration semantics in graph rewrite rules (see next paragraph).

Local-to-Global Broader source and target scopes of graph rewrite rules ease
the definition of local-to-global transformations. The LHS can match distant nodes
in the target graph and manipulate the target program. Local-to-global transfor-
mations remain dependent on the:

• the results produced by other transformations and their interactions ;

• the exact properties of the graph at a certain state of the transformation
process;

• a particular scheduling ;

3.2. GRAPH REWRITE RULES 61

• the semantics of the results produced by other transformations erected by
the interwoven compositions that encode the translational semantics. There
is thus a lack of explicit integration semantics.

Note that careful use of rewrite rules by a strict design scheme can reduce
some of these dependencies see Section 3.1.2 and Section 3.1.3.

Global-to-Local Graph rewrite rules have large source scopes which facilitates
the retrieval of context information. More precisely, left hand sides are subgraphs
which are matched against the graph under transformation. Such LHS subgraphs
allow the acquisition of any additional context information while transforming a
particular node. By including an edge and a node in a LHS subgraph (e.g. the
parent container or super component) the context information contained in those
nodes can be used to construct a RHS subgraph.

In order to access an ancestor of a node, one must include every intermediate
node along the path to reach that node. The subgraph matched by a rule is
thus highly dependent on the graph structure, which cripples its maintainability
and reusability. However, besides the engineering quality downsides in the case
the selection of a neighbour depends on the content of the graph, it is very
cumbersome, if not impossible to statically predetermine the path to the node as
there are, in the worst case, an infinite number of possibilities.

For the above reason, rules are extended to cope with certain variations in
the matched subgraph structure. The description of a subgraph is augmented
with annotations attached to individual edges and nodes. These edges and nodes
denote possible matching variations. As such, graph rewrite rules are able to
abstract over various static (fixed) paths. In general, the annotated edges or
nodes are isomorphic with a set of those edges and nodes. A popular example
of such annotations for edges are *. Edges annotated with a * coincide with a
chain of an arbitrary number of edges [HE92]. The * (of ∆-rewriting [KLG91]),
denote zero or more occurrences of annotated graph elements. These extensions
allow us to cope with more flexible paths. However, complicated logic cannot be
captured and needs to be handled by other rewrite rules. As such, rewrite rules
that compute context information implicitly cooperate with the rewrite rules that
consume this information.

In general, we can state that subgraph matching is accomplished by computing
a morphism between a subgraph and the graph currently under transformation.
As shown in the previous paragraph, subgraph matching is both a blessing and
a curse. The use of these general morphisms means that rewrite rules easily give
rise to unexpected matches. In order to compensate for these mismatches, the
definition of rewrite rules must be changed.

Although source scopes are larger, compared to tree rewrite rules, it is not
always easier to obtain context information. Every piece of information required
and the location of that information, needs to be described by the LHS. The

62 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

matching abilities in the LHS of graph rewrite rules are less powerful compared
to the traversals and generic tree traversal operators provided in extended rewrite
rule formalisms. Therefore, the retrieval of complex information is separated
often out of the rule requesting the information and must be provided by other
rules. Unlike typed tree rewrite rules where additional information requires the
rewriting of the term with a suitable arity, graph rewrite rules can simple add the
necessary information. Hence, there are less dependencies between graph rewrite
rules that add information to the same node, compared to tree rewrite rules.
The computation of the transitive closure for class inheritance illustrates this
concept. However, to determine what nodes and edges must be added to provide
the necessary context information, the graph topology of the source program must
be compared to the LHS of the rule. In other words the context information is
implicit. As there is very little or no control over the execution of rules and as
rules can change information, it is difficult to tell if the computed information is
in a valid state before other rules are applied.

Strengths and Weaknesses

+ Graph rewrite rules support implicit global-to-local transformations through
flexible data structures which can be incrementally changed and updated.

+ Graph rewrite rules have large source and target scopes to support the
implementation of both global-to-local and local-to-global transformations.

+ Graph rewrite rules with implicit node creation encode a symmetric model.
Local-to-global transformations merely produce multiple results. The fact
that some of these multiple results affect the results produced by other
(kinds of) transformations, is taken care of by the graph rewrite system.

+ Graph rewrite rules with morphisms facilitate the identification of local-to-
global transformations.

− Graph rewrite rules suffer from dependencies on intermediate graphs.

− Graph rewrite rules lack explicit integration semantics.

− Graph rewrite rules can change every term which may invalidate previously
computed information.

3.3 Macros

A macro (see Figure 3.8) can be understood as a function that accepts a param-
eterized code fragment as an argument and generates a new code fragment as
a replacement for the original code fragment. Compared to other approaches,

3.3. MACROS 63

the macro facility of a host language is a compile-time embedded rewrite rule
system using concrete syntax2. The major difference between macros and other
approaches described in this chapter is that only a part of a source program is
subject to rewriting, and that each macro contains its syntactical definition and
its translational semantics.

We focus on macro systems developed for Lisp dialects (i.e. Common Lisp and
Scheme) because most important advances in macro systems have been and are
still being made in those languages.

A standard example for a Lisp macro is with-open-file (see below). Its
purpose is to hide the program details ensuring that a file is opened so that it
can be processed within a block of code, and more importantly that it is finally
closed on return from that block. The unwind-protect function (which is the
Lisp counterpart of Java’s try-catch) ensures that the file is closed in case an
exception is thrown.

(defmacro with-open-file ((var filename) &rest body)

‘(let (,var)

(unwind-protect

(progn

(setq ,var (open ,filename))

,@body)

(close ,v))))

‘(let (,var)

3.3.1 Data Structures

Structure and Organization Lisp and Scheme typically represent a program
with an abstract syntax tree. Besides the program itself, there are additional
data structures. As macros are expanded at compile time, some compile-time
data structures are made accessible to macros.

Construction In Lisp, there are various ways to construct code because code
is merely a nested list.

Modification There is no equivalent to the modification and deletion opera-
tors that occurs in other approaches because macros are by nature applicative:
they map program fragments to program fragments without any side effect to an
abstract syntax tree.

2This comparison even holds for Lisp. In Lisp, code fragments are represented as lists.
However, these lists are also the syntax used for writing programs as a developer.

64 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

3.3.2 Transformation Modules

A transformation module is a macro. As a macro combines a syntax description
and a semantical definition, a language implementation is organized according
the structure of the source language.

Source Program Tree

transformation
Pivot

Target Program Tree

global
target scope

restricted to subtree

full access
to subtree

local
source scope

restricted to subtree
by dynamic

macro redefinition and
code transformations

context information by
dynamic macro redefinition

Figure 3.8: A schematic overview of a macro

Identification As macros operate at compile-time, the expression is treated as
a code fragment. The code fragment that is passed to a macro for expansion is
destructured. This is done implicitly in the parameter declarations of macros.

Scheduling Macros are scheduled automatically by the macro expander which
is built into the compiler of the host language. Unlike rewrite rules, macros do
not have a conditional clause in which restrictions on their applicability can be
described or in which the invocation of other macros can be explicitly triggered.
Macros which match the context needed by other macros are polluted with the
additional responsibility to define or provide the latter macros (see global-to-
local).

Scope The source scope of a macro is bound to a single expression. The pri-
mary source of information comprises the program fragments which are bound
to variables in the destructuring step. These can be further accessed by list op-
erations. As these program fragments may contain other macros, macros are
dependent on one another.

The compile-time data structures are made accessible to macros by extending
the local scope of macros. More details follow in the global-to-local paragraph.

3.3. MACROS 65

Effect The resulting code produced by a macro must be constructed from the
parts determined by the code destructuring step.

As already mentioned, a macro is passed a list representation of a code frag-
ment in order to produce another code fragment as a replacement. In principle,
list processing operations are sufficient to analyze and generate the code frag-
ments. Moreover, one implication of the fact that macros are functions that
transform code fragments is that the full (Turing-complete) language of the re-
spective Lisp dialect can be used for defining macros.

Global-to-Local There are two directions from which a macro can obtain con-
text information, either from the surrounding code or from the embedded code.

The most straightforward way of using information from the surrounding code
is to plainly use the names of the variables defined in the lexical scope (and also
dynamic scope in the case of Lisp). This is called intentional variable capturing.
The implicit dependencies between macros render the program that use them error
prone and hard to debug.

Due to the embedded nature of macros, information of the surrounding code
can be obtained by accessing the surrounding lexical environment of the macro
invocation. The result is again a macro definition containing implicit dependen-
cies

The problem to access information in the surrounding code is that the data
structure of macros is limited; macros cannot ascent from their parameters to
retrieve information from the surrounding code. Passing information from one
macro site to another macro site must be done explicitly by locally redefining
macros. This mechanism is similar to the dynamic rewrite rules of stratego (see
Section 3.1.4), but much weaker, as information can only be passed from a broader
scope to a smaller one (i.e. scope defined by the expansion process). So whenever
a macro requires context information, another macro (higher up in the program)
must be changed to redefine the macro.

Context information from the parts of a macro can be obtained by inspecting
the destructured code. Code is merely a list can thus be accessed with any list
processing function. However, traversal logic is not natively supported and must
be implemented with a library. As macros are resolved by a top-down traversal
and are expanded along that traversal, macros are able to access other macros
and change them. In that regard, macros are as problematic as rewrite rules,
with the addition that a macro can contain embedded implicit references to other
macros.

In order to access information from arbitrary locations, there is even an addi-
tional challenge. The challenge stems from the fact that not all source program
expressions are subject to expansion. In order to implement such global-to-local
transformations, a common ancestor is required for the source information and
for the target where context information is requested. At that common ancestor,

66 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

we can query for information and redefine the macro to inject that requested
information. If the common ancestor is not a macro, we have to create a new
macro. In case there already exists a macro, the definition of the existing macro
has to change.

Local-to-Global The implementation of local-to-global transformations in
macros is not possible, as only a single result can be produced. Moreover, a valid
code fragment must be produced, prohibiting the use of intermediate programs
with artificial constructs to contain both local and nonlocal code fragments. Tech-
nically speaking, a macro could emit another macro, say NL, artificially combining
local and nonlocal results. However, due to lack of control over the expansion pro-
cess, one cannot prohibit the full expansion. Consequently, the NL macro would
not always remain available. Certain cases of local-to-global transformations can
be facilitated by using local macro redeclaration: a local macro can transport
nonlocal results of a broader scope to a narrower scope.

Strengths and Weaknesses

− Macros can implement global-to-local transformations as long as the re-
quired information resides in the destructured variables. Otherwise, other
macros which provide the necessary information embed implicit references.

+ Macros can access compile-time information because they are well-integrated
in the compiler.

+ Macros support local-to-global transformations within the lexical scope
through dynamic creation of other macros. In general local-to-global trans-
formation cannot be implemented.

− Macros lack explicit integration semantics (see Section 3.1.2 on page 51,
and Section 3.2.2).

3.4 Template-based Approaches

Template-based transformation (see Figure 3.10) systems such as XSLT [Cla99],
Frames [SZJ02], LMP [Dev98] and Velocity [Vel03] are a very heterogeneous
group, as many of these systems are based on various technologies and paradigms.
However, they can be treated as a single group for the purpose of this discussion,
as we do not focus on technical implementation details.

One of the most characteristic features of template-based approaches is that
the transformation process is driven by the target language or target program.
This means that the focus of modularization is defined in terms of the target

3.4. TEMPLATE-BASED APPROACHES 67

program. More precisely, a transformation (or template) consists only of a right-
hand side that produces a program fragment. The transformation has the entire
source at its disposal to execute its right-hand side. In most approaches, they
can be combined and are able to cooperate by passing information from one
transformation to another.

Template-based languages are known for their powerful and robust query
mechanisms to implement global-to-local transformations. It is a common be-
lief that template-base approaches are better suited to implement local-to-global
transformations [vWV03]. We argue against that statement in Section 3.4.2.

The example shown in Figure 3.9 ranks authors by the total number of
books they sold, sorted in decreasing order. The XSLT fragment contains two
templates. The first template operates on the entire source and retrieves the
authors (...select="/publisher/authors/author"). These are then subse-
quently transformed. The call to apply-templates invokes the second template.
The select attribute acts as a parameter for the second template that further pro-
cesses the author. The result of this template is put inside a bestsellers-list

tag.

3.4.1 Data Structures

Structure and Organization Each technique uses a different structure to rep-
resent programs, hence there are hardly any commonalities on the representation
level. Like most transformation approaches, terms represent the abstract syntax
of a program and are organized in a tree. The tree is the result of composing the
structures with other structures. In some approaches [Vel03, Cla99], the struc-
ture and organization is even completely hidden. This is achieved by embedding
transformations in the target programs which need to be produced.

Creation As the transformation process is organized according to the structure
of the target program, each transformation produces a complete fragment of the
target program. All the information required to construct the fragment must thus
be derived from the source representation and must also be known upfront. The
impact of this becomes clear when dealing with local-to-global transformations.

Modification Modification of the already produced target program fragments
is, although technically realizable, very uncommon. The data structures are read-
only. Once produced, the structure can no longer be changed. Changeable data-
structures would clutter up the strict target-driven architecture of the process.
Moreover, modification can even be considered as an attempt to break the encap-
sulation of transformation modules, because there is no mechanism to control the
modification and ensure the functionality of the target program fragment [Bri05].

68 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<bestsellers-list>

<xsl:apply-templates select="/publisher/authors/author">

<xsl:sort select="sum(/publisher/books/book

[author- ref/@ref=current()/@id]/sold)"/>

<xsl:sort select="last_name"/>

</xsl:apply-templates>

</bestsellers-list>

</xsl:template>

<xsl:template match="author">

<copy>

<name><xsl:value-of select="last_name"/>,

<xsl:value-of select="first_name"/></name>

<total_publications>

<xsl:value-of select="count(/publisher/books/book[author-

ref/@ref=current()/@id])"/>

</total_publications>

<total_sold>

<xsl:value-of select="sum(/publisher/books/book[author-

ref/@ref=current()/@id]/sold)"/>

</total_sold>

<rank><xsl:value-of select="position()"/></rank>

</copy>

</xsl:template>

</xsl:stylesheet>

Figure 3.9: XSLT transformation to rank authors by the total number of copies
of books sold in decreasing order.

3.4. TEMPLATE-BASED APPROACHES 69

3.4.2 Transformation Modules

A transformation module is a template. Templates organize a language imple-
mentation according the structure of the target program.

Source Program Tree

transformation

Pivot

global
source scope

local
target scope

Target Program Tree

query engines
- XPath

- LMP

considering
a subset of
the nodes

course grained
local target scope

Figure 3.10: A schematic overview of a template

Identification Identification of the necessary parts of a source program is sup-
ported by a query engine. As Van Wijngaarden [vWV03] states, the availability of
a sufficiently powerful query mechanism is an important prerequisite for target-
driven transformations. Such a mechanism makes it possible to easily look up
information anywhere in the source, based on some conditional expression. In
LMP, the underlying logic engine is used to query the source program. XSLT
uses a combination of XPath and XQuery. Templates which contai queries are
dependent on the whole source language.

Scheduling In pure template-based approaches, the scheduling of templates
is completely handcrafted and embedded in them. This means that templates
explicitly invoke one another and combine the resulting programming fragments
into a larger one. These explicit invocations result in a very rigid and tangled
language implementation. However, modern template-based approaches are a
mixture of source-driven and target-driven. This means that the source program
is used to invoke the templates which are applicable. In XSLT for example,
the phrase <xsl:apply-templates select="/publisher/authors/author">

invokes all templates which can produce a code fragment for an author.

70 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Scope The source scope of a template is always an entire source language.
Templates may be parameterized by a source program node. For example, the
second XSLT template <xsl:template match="author"> is parameterized by
the author source program node. However, this mechanism merely parameterizes
source scopes, but does not restrict them as query languages in template engines
enable every template to access the entire source program.

The target scope is always local. It is up to the caller of a template to properly
and explicitly consume all its produced results.

Effect The resulting code can be constructed by basically using the entire source
program and by invoking explicitly or implicitly other templates. The target code
is usually constructed through composition. As change cannot be made once a
structure is produced, the target program structure must be complete and correct
(see modification).

Global-to-Local The retrieval of information plays a crucial role in template
approaches because target program fragments must be complete upon construc-
tion. The query mechanisms in XSLT such as XPath and XQuery are designed
to locate any node in the tree using a structure-shy path.

The background of structure-shy paths lies in structure-shy or adaptive pro-
gramming (AP) [Lie96]. It was introduced to more easily adhere to the law of
demeter [LH89]. In short, the law of demeter restricts the number of acquain-
tances of an object by prohibiting invocations of methods of a member object
returned by another method. The naive way of adhering to this principle is scat-
tering the logic in the application’s object graph. In response to the maintenance
problems introduced by this scattering, AP introduced the notion of structure-shy
behavior which allows visiting the objects contained within an application locally
without explicitly describing the structural relationships among these objects.
Structure-shy behavior is described by structure-shy traversals. As they describe
an abstract path through the object structure, hence the name structure-shy
paths. Although AP is described in an object-oriented setting, it can also be
applied on other data structures such as XML.

A structure-shy path does thus not detail the actual path to be followed.
Consequently, such paths reduce the dependencies between transformation mod-
ules and the source language rendering them more robust to changes than fully
specified paths. Despite the powerful query mechanisms, global-to-local transfor-
mations challenge a fine-grained modular design. Since a transformation has the
entire source program at its disposal to query for information, transformations
are often coupled with the source language.

Local-to-Gobal As templates are modularized according to their target pro-
gram fragment instead of the translational semantics of a source program node,

3.4. TEMPLATE-BASED APPROACHES 71

transformations that scatter code in the target program become a global-to-local
problem. As global-to-local problems can be handled quite well, templates do
not seem to have the additional problem of handling local-to-global transforma-
tions compared to source-driven transformations. In fact the contrary is true. In
Section 2.3.2, we showed that the direction of a transformation does not change
the impact of scope on the modularization of transformations. This position is
supported by Brichau in [Bri05] which introduces a technique to support local-to-
global transformations with integrative composition on top of the template-based
approach LMP.

Local-to-global transformations are a complex problem which can only be
tackled if all aspects are taken into account. Figure 3.11 schematically illustrates
the challenges local-to-global transformation pose in template-based approaches.
The figure depicts uses relationships which denote the information that is neces-
sary to construct target program fragments. The following four issues show that
the modularization of local-to-global transformations is broken due to scattered
management :

1. First, both source or target driven approaches need to transport nonlocals
to the correct locations. Templates query the source program to construct
nonlocals or query the templates to obtain nonlocals. So technically speak-
ing there is not much difference with source driven approaches. Further-
more, when nonlocals possibly can become part of different targets, then
the logic of the local-to-global transformation is duplicated (use2 in t3 and
in t1) and scattered (use3 and use2 in t3) over the different targets.

2. Second, the integration of nonlocals which stem from various translational
semantics has become the responsibility of a single target language con-
structor. The result is a super-transformation which knows how to compose
nonlocals produced by other transformations. These super-transformations
are tightly coupled and highly dependent on other transformations.

3. Third, nonlocals that need to become a particular part of another target
fragment must be easily identifiable. Note that only a small amount of pro-
gram fragments bear names. Moreover those names are not fully qualified
as they are qualified through their source contexts. Hence, in these cases,
qualification introduces strong dependencies with other transformations.

4. Fourth, the integration of nonlocals may depend on the source program or
on the target program context. Source program context dependencies are
embedded in templates and must be managed explicitly. Target program
context dependencies are even harder to implement as the target structure
is hidden (cfr. Section 3.4.1). These dependencies must be explicitly resolved
by every template, resulting in scattered management.

72 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Source

Program
Target

Program

use

use

s2

s1

s3

s4

t 1

t 2

t 3

1

2

3use

embedded

source

context
scattered

target

context

managment

Figure 3.11: A schematic overview of some of the challenges when implementing
local-to-global transformations by template-based LDTs. The uses relationships
denotes the information that is necessary to construct target program fragments.

Strengths and Weaknesses

− The integration logic of local-to-global transformations is duplicated and
scattered over the various templates that produce the targets in which the
nonlocals must be integrated.

− Embedded global access to source trees increases the dependencies among
transformation modules.

+ Structure-shy paths/queries are robust mechanisms to locate information.

− Templates cannot access the produced target program and thus cannot
change it once it is produced.

− Templates do not offer explicit integration mechanisms.

3.5 Attribute Grammars

An attribute grammar [Knu68, Paa95] is a context-free grammar augmented with
attributes, semantic rules and conditions. For each syntactic category X of N in
a grammar (see Definition 4.1), there are two finite disjoint sets of inherited and
synthesized attributes. Each attribute takes a value from some semantic domain
(such as the integers, strings of characters, or structures of some type) associ-
ated with that attribute. An attribute is defined (see Figure 3.15) by semantic
functions or semantic rules associated with productions.

Attribute grammars are known for their modular implementation of local-to-
global transformations by means of implicit copy rules, explicit copy rules and
templates.

3.5. ATTRIBUTE GRAMMARS 73

The basic program transformations are semantic functions or semantic rules.
The functions can access the values of attributes from their parent (inherited at-
tributes) and the values of attributes from their children (synthesized attributes).
In semantic functions, attributes are retrieved by value or by reference [Hed99]
and computation is expressed in an declarative style.

In Figure 3.12, a simple document definition language is presented that con-
sists of sections (Section) and text fragments (Pcdata). Its representation in
HTML is defined by the Doc attribute, which in case of a section prints its title
in bold and appends its body, and in case of a text fragment prints its contents
as a paragraph.

data Doc

| Section title : String body : Docs

| Pcdata string : String

Sem Doc

| Section lhs . html = "<bf>" ++ title ++ "</bf>" ++ @body.html

| Pcdata lhs . html = "<bf>" ++ string ++ "</P>"

Figure 3.12: Simple document definition language defined with an attribute gram-
mar (upper part). The Doc attribute (lower part) returns the HTML code.

3.5.1 Data Structures

Structure and Organization Attribute grammars operate on named terms or
read-only record structures that represent particular nodes of the abstract syntax
tree of the source program. As in other approaches, a term is defined through
the composition of a set of other terms, hence setting up a tree structure.

The source program tree and target program tree are immutable. The target
program is stored and constructed in a different data structure. The target pro-
gram data structure is not the only data structure that can be used during the
transformation process. Any other can be used and constructed when needed.

Construction An attribute is typed with a particular domain that denotes its
set of possible values. Plain attribute grammars only allow attributes to be typed
with a primitive domain, for example integers, floats, strings, etc. Those domains
appear to be too basic and in the case of strings too unstructured to represent
the target programs, but according to the basic attribute grammar school, the
primitive domains suffice. The reason for this is discussed in the local-to-global
paragraph in more detail.

With the advent of higher order attribute grammars [VSK89], this “limitation”
is removed by unifying the domain of parse trees and the domain of attributes.

74 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

In other words, the domain of an attribute can be a grammar of (another) lan-
guage. This is a particularly important feature in multi-phased compilers where
subsequent phases can continue computing on the results of the previous phase.

The grammar domain of attributes is represented with terms, just as the
source abstract syntax tree. The term needs to be complete [Hed92], so upon
creation, all the subterms must be computed in advance. The impact of this
becomes clear when dealing with local-to-global transformations.

Modification Attributes are computed and information that is necessary for
that computation is computed first. Hence, there is no need for an ability to mod-
ify the produced result afterwards. Therefore, the primitive attribute domains
such as strings and string concatenation are initially sufficient to represent and
construct programs. The absence of modification enables us to firmly rely on the
value of an attribute in other attribute evaluations. This simplifies the reasoning
of a language implementation and reduces scheduling complexities.

3.5.2 Transformation Modules

Modules in attribute grammars formalisms depend on the specification languages
used to describe them. Hedin pioneered in modular attribute grammar research
by designing object-oriented attribute grammars [Hed89], where modules are
classes which align with the syntactic categories of source language grammars.
With [Hed92], values (or objects) can be accessed by reference. Reference seman-
tics enables flexible attribute reevaluation in incremental semantic analysis and
facilitates the implementation of static analysis. She, Mernik [MuLA99] et.al.
and Grosch [Gro92] continued investigating the use of object-oriented techniques
like inheritance and multiple inheritance. Recently, she pursues more advanced
object-oriented concepts like aspect-orientation in order to further modularize the
implementation of languages in attribute grammars. Modules in attribute gram-
mar systems like JastAdd [HM03] but also in functional languages [Swi, OdMS00]
no longer necessarily align with the syntactic categories of the grammars. In this
setting, a module is defined as an aspect of the semantic behavior of a syntactic
category, e.g. name analysis, type checking, (intermediate) code generation, etc.
Each aspect contains several attribute definitions for several syntactic categories.
Hence, an aspect crosscuts the definition of a syntactic category.

Consider for example the grammar definition in JastAddII of a small expres-
sion language in Figure 3.13. The nodes in an AST are viewed as instances of
Java classes Expr,Add and Id. These classes are arranged in a subtype hierarchy
using the extends keyword: the Add and Id are subclasses of the Expr class. An
AST class is introduced with the ast keyword and corresponds to a nontermi-
nal (in case of the Expr class) or a production (in case of the Add and ID class)
and may define a number of children and their declared types, corresponding to
a production’s right-hand side. Aspects can be specified that define attributes,

3.5. ATTRIBUTE GRAMMARS 75

equations, and ordinary Java methods of the AST classes. An example specifying
a very simple type-checking algorithm as an aspect is shown in Figure 3.14.

// Expr corresponds to a nonterminal

ast Expr ;

// Add corresponds to an Expr production

ast Add extends Expr : : = Expr leftOp, Expr rightOp ;

// Id corresponds to an Expr production, id is a token

ast Id extends Expr : : = <String id> ;

Figure 3.13: An example grammar definition in JastAddII

// Declaration of an inherited attribute env of Expr nodes

inh Env Expr.env() ;

// Declaration of a synthesized attribute type of Expr

// nodes and its default equation

syn Type Expr.type()=TypeSystem.UNKNOWN ;

// Overriding the default equation for Add nodes

eq Add.type() = TypeSystem.INT;

// Overriding the default equation for Id nodes

eq Id.type() = env().lookup(id()).type();

Figure 3.14: Type checking aspect in JastAddII

Identification In plain attribute grammars, attributes are globally declared
and typed for the whole abstract syntax tree. Individual attribute computations
or definitions are attached to the abstract syntax tree nodes of source programs.
This way, attribute definitions could refer to attributes without having to stipu-
late where the attributes are computed. In modularized attribute grammars, at-
tribute definitions are declared per nonterminal. Although for example inherited
attributes are then declared locally without a definition, these local declarations
implicitly refers to an actual attribute which is declared and defined in other
non-terminals.

Scope The source and target scopes of an attribute computation are strictly
restricted to the abstract syntax node it is attached to. These small source scopes
render an attribute computation highly independent on the rest of the language.
The only dependency that remains is the choice that has to be made between
either an inherited or a synthesized attribute depending on the whereabouts of the
information. If contextual information is needed, then an inherited attribute is

76 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Source Program Tree

transformation

Pivot

local
target scope

Target Program Tree

explicit copy rules

first class

m
ultiple inheritance

inherited attribute

syntesized attribute

local
source
scope

forwarded

attribute

Figure 3.15: A schematic overview of an attribute definition

used. This erects a dependency because one assumes that the context is providing
this information. If other nonterminals in the context of a given nonterminal need
this information then a synthesized attribute for that nonterminal is used. This
erects a dependency because one defines a synthesized attribute to be used for
the other nonterminals.

There are attribute grammar extensions/implementations that extend the
small source scope such as (multiple) inheritance attribute grammars, forward-
ing and first class attribute grammars. The former (e.g. [Gro92, HM03]) allow,
orthogonal to the inheritance of attribute definitions along the alternatives of a
production in a context-free grammar specification, the inheritance of attribute
definitions along other design dimensions e.g. semantic aspects [Paa95]. Inheri-
tance is used for example to thread an environment attribute through an attribute
grammar. With forwarding [WdMBK02], attributes can be redirected to their
translational semantics. Another approach to extend the source scope is by turn-
ing the propagation of information via attributes into first class citizens. As such,
a single propagation scheme applies for multiple productions. These approaches
are discussed in more detail in the next subsections. Even with these extensions,
dependencies among attribute definitions do not increase as attribute definitions
remain unaware of them. In other words these extension operate implicit.

Scheduling The execution of a transformation described in attribute grammars
is driven by the need of information. Whenever information is required during the
execution of an attribute, the attribute containing that information gets computed
first. Attribute grammar compilers deduce an order of execution.

3.5. ATTRIBUTE GRAMMARS 77

Effect The computation of attributes is defined in terms of the information
contained in the production and in terms of inherited and synthesized attributes.
Hence, there is no need to ‘directly’ identify other parts of a source AST. It
suffices to simply request the information which is necessary. It would actually
go against the philosophy of the paradigm to directly identify particular nodes
of an AST, as it breaks the modularity of an attribute definition. We emphasis
on the word “directly”, because evidently the computation of an attribute may
yield another AST node. Note that this does not mean that direct references
to other AST nodes are not useful. In reference attribute grammars [Hed92],
attribute computations may lead to references to other AST nodes on which in
turn attributes may be requested. This is used to simplify the implementation of
semantical analyses.

Global-to-Local with plain attribute grammars The ability to access at-
tributes from other parts of a source tree is crucial to be able to implement
global-to-local transformations. By limiting the access to attributes of the par-
ent term and of the subterms, attribute definitions are modular as they do not
explicitly communicate with other language constructs in the source language.

Except in reference attribute grammars [Hed92], attribute computations are
simple functions which cannot be straightforwardly parameterized to render the
computation dependent on the “sender”. An attribute computation could request
another attribute that serves as a parameter which must be computed by the
sender. Although this enables interesting possibilities to adjust the parameter
depending on the context, the hazards of accidentally changing or capturing this
parameter outweighs the gained advantages of parameterization.

In order to be able to communicate attribute values across larger tree frag-
ments, all intermediate nodes must be explicitly aware of that value. This involves
copy rules for each intermediate node to either copy the attribute up to its parent
or down to its subterms. These implicit rules are produced by the attribute gram-
mar, providing that they can be deduced. Implementing more complex source
program queries than merely ascending or descending is a hassle (see queries to
analyze source code [Kel07]).

Global-to-Local with explicit copy rules Attribute grammar systems pro-
vide implicit copy rules so as to copy inherited attributes from ancestors or syn-
thesized attributes from descendants. Communicating values using implicit copy
rules is limited. More complex computations are necessary for instance in the
case of synthesized attributes. In response to that problem, schemes (with lim-
ited strengths) have been developed in attribute grammar implementations on
top of the formal specifications to alleviate the developer of those tedious rules.
Examples of such specifications can be found in First-Class Attribute Gram-
mars [OdMS00] and in Single Inheritance Attribute grammars [HM03], (Multiple)

78 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Inheritance Attribute Grammars [MuLA99].

First-Class Attribute Grammars introduce three new abstractions in an at-
tribute grammar specification: families, rules and aspects. Families model sets
of input or sets of output attributes. Rules map families of input attributes of a
production to a family of output attributes. Aspects3 map production names to
rules. As such, common attribute copy rules can be reused.

Single Inheritance Attribute Grammars [Hed99] allow attribute definitions to
be inherited along the alternatives of a production in a context-free grammar
specification. Additional nonterminals can be defined which are not motivated
by the context-free grammar, but from a reuse point of view. These nonterminals
are called semantic nonterminals. Productions that define semantic nontermi-
nals (i.e productions having such nonterminals on their RHS) are used to extend
the behavior of other nonterminals with the attribute definitions defined in the
semantic nonterminals.

Multiple Inheritance Attribute Grammars provide templates to express com-
mon attribute communication patterns. A template is a polymorphic abstraction
of a semantic function parameterized with attribute occurrences which can be
associated with many production rules with various nonterminal and terminal
symbols.

All these approaches facilitate the implementation of local-to-global transfor-
mations by allowing information to be more easily transported from one nontermi-
nal to another nonterminal without having to involve all intermediate nontermi-
nals. The attribute definition requesting the information does not has to change,
as such this external mechanism respects the modularization of the existing at-
tribute definitions.

Global-to-Local with implicit copy rules Forwarding [WdMBK02] is a
technique for providing default or implicit attribute definitions in attribute gram-
mars by redirecting requests to the translational semantics of language constructs.
The primary goal of this technique is to ease the extension of a language imple-
mentation with new modular language constructs. Extending a language with a
new language construct in attribute grammars requires that the new construct
provides the correct definitions for the attributes that are declared. As such, the
new language construct participates correctly in the already existing language
constructs.

As the semantics of new language constructs are defined in terms of its trans-
lation to an existing language construct, the redefinition of attribute definitions of
new language constructs would require detailed knowledge of all semantic aspects
of the base language. In order to avoid this, “copy rules” for all relevant attributes
are automatically generated by forwarding. As such, new language constructs can

3Aspects in First-Class Attribute Grammars are not to be confused with the concept of
aspects found in Aspect-oriented Programming [KLM+97]

3.6. COMPOSITIONAL GENERATORS 79

respond to attributes provided by their translational semantics without needing to
pollute the new language constructs with those definitions.

Forwarding is also different from typical object-oriented extensions of attribute
grammars since the construct to forward to is dynamically computed at attribute
evaluation time instead of statically determined via inheritance when the attribute
grammar is defined.

Local-to-Global Nonlocal results produced by local-to-global transformations
must be distributed over a target program. As the value of an attribute is im-
mutable once computed, all the parts of a new target program fragment must be
collected and combined, upon the creation of that target program fragment.

In case the necessary parts are not located in a subtree, the retrieval logic
is distributed over various attribute definitions. Attribute computations must be
altered also to retrieve and combine all the parts. Hence, attribute definitions are
no longer strictly concerned with translational semantics but are cluttered with
other concerns. The combination of various subtrees is a bit more problematic,
as attributes are immutable. The attribute could be reconstructed, but that
requires detailed knowledge about the program fragment.

Strengths and Weaknesses

− Attribute grammars force global-to-local transformations to be implemented
like local-to-global transformations. Hence, attribute definitions are no
longer strictly concerned with the translational semantics but are cluttered
with other concerns.

+ Attribute grammars modularize the implementation of local-to-global trans-
formations with implicit copy rules, explicit copy rules and templates.

+ Language extensions implicitly rely on attributes of the extended language
by means of forwarding.

3.6 Compositional Generators

Although, compositional generators (see Figure 3.16) do not define a language, we
do consider them in this dissertation because they provide interesting techniques
to compose various software components and fragments. These compositions are
important to implement local-to-global transformations. Furthermore, we will
adopt some of their techniques to modularize the implementation of languages
along their language constructs (see Section 6.3.3).

The approaches, discussed in the previous sections, are called transformational
generators. They transform a program in one language to a program in another
language. Programs written in a source language are transformed by constructing

80 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

for each expression of a source program the necessary new expressions written in
a target language in order to build up a semantically equivalent target program.

Compositional generators do not construct individual expressions, they rather
produce programs by composing several smaller programs or program fragments
together. The selection and composition of a number of smaller programs can
be considered as the source program, along with some additional configuration
information. The set of composition rules, constraints and selection primitives
form the source language in that respect.

Compositional generators advocate a symmetrical view on program fragments.
Each fragment is treated as a separate concern of the overall program which
can/need to be combined with other fragments. In other words, no distinction is
made between a local-to-global or local-to-local transformation.

Throughout this section, three techniques are used to illustrate compositional
generators.

GenVoca [BST+94] is a technique to produce software through the compo-
sition of abstraction layers. Each layer implements a particular feature
and consists of program parts native to some programming language (e.g.
classes, methods, functions, templates, mixins, etc.). A layer is a refine-
ment of some other basic application layer. Stacking layers onto each other
yields a complete application that contains the features implemented by the
respective layers. C++ templates [Cza98] and Java mixin-layers [SB98] are
commonly used to implement GenVoca layers. In each layer, mixins and
plain classes are the basic abstraction mechanisms.

Subject-oriented Programming (SOP) [HO93, OKK+96] is a technique
where software is built through the composition of subjects. Each subject
is a collection of program parts and the composition merges appropriate
parts so as to build the resulting program. There are many composition
rules and they are described separately from the subjects. This contrasts
with the mixin-implementation technique of GenVoca, where only one kind
of composition technique is used to compose program parts.

Integrative Composable Generators (ICG) [Bri05] produce software with
a set of program generators. A program generator essentially consists of
multiple generative programs that each produce a well-defined part of the
generated program. Some of the program parts are exposed through an in-
tegrative composition interface and can be integrated in another generated
program. Such an integration is specified using an integration specification.
The program generators can automatically adapt their generated programs
to achieve an integrative composition specified by an integration specifica-
tion so as to avoid composition conflicts. These conflicts are automatically
detected by the generative system and force the program generators to re-
solve them.

3.6. COMPOSITIONAL GENERATORS 81

3.6.1 Data Structures

Structure and Organization A basic compositional generator offers a prede-
fined set of operators to compose a target program with a series of smaller pro-
grams or program fragments. In essence, these operators also define the source
language. In advanced compositional generators (such as [Bri05]) the source lan-
guage is a configuration language for a set of target program fragments.

Construction Unlike transformational approaches, program fragments are con-
structed upfront by using the mechanisms and abstractions provided by the target
language. Each program fragment is, as the name already suggests, a partial pro-
gram specification. The only restriction is that each program fragment must be
syntactically correct and semantically sound. More concretely this means that a
program fragment cannot omit expressions that are essential or mandatory. For
example, an invalid program fragment is a function call with fewer arguments than
its formal parameters. Note that, this does not imply that program fragments
have to be complete.

The degree of parameterization in these approaches range from zero, via fixed
to unconstrained. The program fragments in subject oriented programming can-
not be parameterized. The mixins of GenVoca only parameterize the static super
class of a class, while C++ templates parameterize over any type that is used in
the program fragments. Integrative composable generators can parameterize any
part of a program fragment.

Modification Modification of program fragments is performed by composition
rules. When chosen carefully, the internal consistency and correctness of the
program fragments involved in a composition can be maintained. Composition
rules involve detailed knowledge about the inner workings and parts of a program
fragment. This hampers future evolutions and increases maintenance costs. It is
particularly the case for techniques like SOP where a large number of rules are
available which are separately described from the actual subjects. Even though
this separation promotes reuse of rules and subjects, it endangers consistency and
correctness as the subjects have no control over them.

Techniques, like GenVoca and ICG, have a very restricted set of composition
rules which need to be tightly coupled with program fragments. For example, a
GenVoca mixin class has a built-in composition technique, i.e. parameterizable
superclasses. Since the composition technique is part of the definition of a mixin
class, a higher level of consistency and correctness can be ensured. Note that
additional rules are still required to avoid semantic conflicts. Controlled modifi-
cation taken to the extreme is done in ICG. Modifications to generated programs
or program fragments can only be accomplished by talking to the integrative
composition interface of the generator. To obtain a high degree of reusability, a

82 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

well performed upfront design of the program domain of a generator is necessary
so as to anticipate the necessary compositions and conflicts with other generators.

Deletion Deletion or cancellation of program fragments is not possible. When
deletion of some part of a program fragment is necessary, it should have been
separated from the beginning into an another program fragment.

3.6.2 Transformation Modules

A transformation module is a program fragment generator. Similar to templates,
compositional generators organize a language implementation according to the
structure of a target program.

Target Program Fragments

ICG module : collection
of program parts

encapsulated in a composition
interface

+

+

+
+

SOP Subject :
target language

module

External SOP
Composition

rule

GenVoca module :
target language

module with

built in
composition
mechansims
of the target

language

built in
composition
mechansims

public
program

parts

private
program

parts

Figure 3.16: A schematic overview of a heterogeneous compositional generator

Identification The ability to uniquely identify the program fragments to com-
pose is indispensable. It furthermore defines to a large extent the way these
formalisms/systems operate: program fragments are statically identified and com-
posed. As a result the granularity of the program fragments is usually restricted
to named program entities like classes, or sometimes individual methods in class-
based object-oriented languages.

Scope A source language can only be defined in the advanced compositional
techniques. As the modularization in compositional generators is focused on
the target program, compositional generators can be classified as target-driven
approaches. In these approaches, transformation modules have unlimited and

3.6. COMPOSITIONAL GENERATORS 83

global access to the entire source program. ICG, offers a powerful query technique
to consult and retrieve the necessary information.

In most compositional techniques the target scope is limited to a single pro-
gram entity like a class. Recently however, in ICG the target scope is virtually
unlimited and can include various program entities.

Scheduling Scheduling is determined by composition rules that combine var-
ious program fragments into a single working program. In most cases composi-
tion is scheduled through the order of the compositions that combine program
fragments. However, in more advanced approaches such as ICG, scheduling is
controlled by an underlying constraint network.

Global-to-Local Compositional techniques can be classified as a target-driven
approach. For those in which a source language can be defined, we refer the
reader to our discussion of template-based approaches in Section 3.4.2.

Local-to-Gobal The implementation of local-to-global transformations is ex-
plicitly supported in program compositional generators. There are two major
challenges to implement local-to-global transformations: the distribution and the
integration of nonlocal results. Compositional generators have a symmetric data
model: all results are potentially nonlocal results, as every result might need to
be combined with another result.

Despite the explicit support of local-to-global transformations, compositional
approaches still share the problems of template-based approaches (see Sec-
tion 3.4.2).

Although the composition is statically described - through identifying the
fragments which need to be combined - there is still a need to distribute code
fragments. Recall that compositional generators operate on coarse-grained pro-
gram fragments consisting of several smaller program parts. The combination
of these coarse-grained fragments usually requires a more fine-grained composi-
tion mechanism to handle all the smaller program parts. Hence, the distribution
problem in a compositional generator is situated within composition.

Simple compositional generators avoid that problem by constraining or pre-
defining the compositions that can be expressed. As such, compositions can
be facilitated and complex distributions can be avoided. Examples of such an
approach are C++ templates and GenVoca generators. The latter offers param-
eterizable superclasses as the only way to compose programs fragments. The
semantics of a composition totally relies on the inheritance semantics of the tar-
get language. Other compositional generators face the distribution problem upon
composition. One of those techniques is SOP. SOP reduces the complexity by
offering a set of language dependent basic operators. These operators are intelli-
gent and take into account the complexities upon combination. Yet another kind

84 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

of compositional generators (such as ICG) do not restrict the operators but force
a design in which individual program parts are made identifiable. Concretely, the
integrative composition interface of ICG exposes a selected set of program parts
of a generator which may need to be identified by other generators.

The combination of results in composable generation is governed by compo-
sition rules, composition specifications or composition operators. Composition is
actually a third-party contract. There are the two program fragments that need
to be composed and there is an external actor dictating that composition. None
of the composition approaches assigns the proper set of responsibilities to each
party. There are basically two extremes. In SOP, composition is defined and
executed by externally defined rules. The parties which are being composed are
not involved in this process. In other words, the program fragments are treated
as data and serve as input for the external rules. At the other extreme of the
spectrum lies ICG. Program generators, which produce the program fragments,
offer through an integrative composition interface not only the parts but also the
rules (relationships) which can be established among these parts. The program
generators must effect these relationships during the generation and combination
process.

Strengths and Weaknesses

+ Compositional generators advocate a symmetric model.

+ Compositional generators explicitly support integration.

− Compositional generators do not balance the composition. They either treat
the program fragments or the composition as data.

− Compositional generators do not define an actual source language

− Compositional generators statically define the composition

3.7 Ad-hoc Approaches

Ad-hoc language implementations consist of small tools or libraries which can be
used to implement a single phase of a language implementation. In order to write
a compiler for a language, these separated phases are combined by interfacing
with the various tools or libraries. Interfacing is performed in a general purpose
language and requires significant insight in the innerworkings of the tools and
libraries. Ad-hoc approaches make use, are defined and operate with concepts of
general purpose languages. The language implementations are thus also written
in terms of general purpose languages and not in a dedicated system or formalism.

Ad-hoc implementations are a heterogeneous group of systems. We selected
five systems: Delegating Compiler Objects, Intentional Programming, Jakarta

3.7. AD-HOC APPROACHES 85

Tool Suite (JTS) and Functional Programming. Delegating compiler objects
demonstrate the need for an alternative architecture for compilers and illustrate
that this attempt in its preliminary stage raises more questions than answers.
Intentional programming is a language-less system such as macros and demon-
strates the use of a first class representation of transformation modules. JTS
is a prime example of a compiler using object-orientation to construct extensi-
ble languages. Functional programming has a long history in compilation and
interpretation of language, offering generic traversals and monads.

3.7.1 Delegating Compiler Objects, JAMOOS and TaLe

The main goal of delegating compiler objects (DCOs) [Bos97] (see Figure 3.17)
is to achieve modular, extensible and maintainable implementations of compilers.
The authors claim that

...existing approaches to compiler construction do not provide the fea-
tures required for application domain languages and extensible lan-
guage models. These problems are related to the complexity of com-
piler development, extensibility of compiler components and reusabil-
ity of elements of an existing compiler [BD].

Delegating compiler objects provide an alternative for the conventional, mono-
lithic approach of compiler implementations. Bosch [Bos97] suggests delegating
compiler objects (DCOs) as a means for DSL implementation. The philosophy of
DCOs is that next to the functional decomposition into a lexer/scanner, parser
and code generator, another decomposition dimension is offered, i.e. structural
decomposition.

Structure and Organization The source program and the generated code
(target program) are stored in a graph. It contains the abstract syntax trees of
both source and target programs. Additional edges establish other relations like
change and instantiation, which turn the tree structures into a graph. Change
relationships relate how a program fragment affects another program fragment.
Instantiation relationships relate an program fragment to its DCO.

Transformation Modules A transformation module in DCO boils down to a
small compiler for a portion of an actual language. It is unclear what constitutes
a DCO, in other words what is a typical DCO and how we recognize it. A DCO
defines the syntax and contains the translational semantics.

Syntax DCOs contain multiple lexers, multiple parsers. Portions of grammars
are reused through reuse of parsers i.e. by delegating to parsers of other DCOs.
The reusing parser can override/add productions of the reused parser. The reused

86 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

composition

interference resolution

Source Program Target Program

transformation

context

information

DCO

DCO

DCO

Figure 3.17: A schematic overview of a DCO

parser has access to the reusing parser to be able to give priority to the overridden
and added rules. The nonterminal and terminal symbols are globally known to
every DCO, and are used as a means to connect DCOs.

DCOs focus mainly, during the division of a monolithic compiler, on the parser
and lexer phases. We use deliberately use the term ‘division’, because the indi-
vidual DCOs are merely grammar and compiler parts which are put into separate
text files. More precisely, DCOs explicitly reference each other by sharing a set
of terminals and nonterminals.

With respect to the parser and lexer subdivision in DCOs, researchers working
on JAMOOS made an interesting observation. JAMOOS [JY01] and TaLe [JKN95]
dwell on the correspondence between OO types and BNF grammars. Their mo-
tivation and main objective was to carry out a unification of the concepts of
language processing and OO programming to the fullest possible extent. They
observed that: “It is not possible to restructure the abstract grammar. This
limitation proved to be annoying in the actual language definition.” [JY01]

Effect DCOs contain besides multiple lexers, multiple parsers also the ability to
execute compilation. Traditionally code generation follows a centralized approach
in which a function consumes the entire graph and produces a result. The code
generation process of DCOs follows a distributed approach where each parse node
is capable of compiling itself into a piece of the target (or output) graph.

Global-to-Local and Local-to-Global One of the major drawbacks, due to
the distributed approach is the lack of context information. No solution is pro-

3.7. AD-HOC APPROACHES 87

vided to compensate for this lack.
Another problem are interferences between changes and additions of multi-

ple source graph nodes to a common output graph node. The interferences are
categorized into 4 categories: shared unordered parent construct, shared ordered
parent construct, shared unordered construct, shared ordered construct. How
these conflicts are resolved, and the amount of effort required to do so, is not
further detailed by Bosch et.al. [BD].

3.7.2 Intentional Programming

Intentional programming (IP) [WdMS+01, Sim95b, Sim96, ADK+98] is an early
illustration of what is known as Fowlers Workbench. Recall that the emphasis in
workbenches lies on the advanced integration of tool suites and domain-specific
languages. The primary operating mode in those environments is a powerful
graphical user interface which is highly coupled with the idea of an open-ended
programming language. Programming in these environments involves the direct
manipulation through a (graphical) user-interface of an abstract data structure
which represents the program. The data structures are instantiations of program
constructs which can be chosen and extended at will. Intentional programming
is the embodiment of that idea.

Languages in IP contain an open-ended number of language constructs called
intentions. Each intension defines a (forward) transformation that implements
the semantics of the intention’s language abstraction by generating program code
for it, called a reduction. Intentions define much more than transformations. An
interesting aspect of IP is that a source program is not represented as text but
as active source, that is, as a data structure with behavior at programming time.
This means that besides the definition of a transformation, each intention defines
how it should be visualized in the program source (e.g. as a mathematical formula,
a UI spec, etc.), how it should behave in the debugger, how it behaves in the
version control system, etc. Each of these functionalities is defined by a separate
method on the intention module, much like methods of classes in object-oriented
programming.

There is not much technical information available about IP. As a result, a full
and detailed analysis is not possible, and a figure similar to the other approaches
we have described in this chapter could not be drawn.

Data Structures

Structure and Organization Source programs are captured in a graph. The
program graph contains the abstract syntax tree of a source program and its cor-
responding target program, and various relations like dependencies and instan-
tiations. One of the interesting things about the graph structure is the explicit
link between the nodes that represent a concrete program and the intentions that

88 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

describe them. This link can be used in various ways. Yet there is little evidence
that this first class representation of transformation modules is used to its full
potential. What is known, is these edges are used by the graphical interface to
depict the node graphically/textually on the screen.

The source graph is immutable. The target program is attached to the source
graph. That part of the graph is mutable.

Scheduling A language in IP is defined as a set of intentions. Whenever new
intentions are added, the schedule should be revised, requiring a detailed analysis
of the influences between intentions. This obviously requires detailed knowledge
of intentions. To overcome this, the reduction methods of all intentions in IP
have to adhere to a few basic principles such that the transformation schedule
can be determined by IP. The general premise is that the reduction method of
each intention can assume that the entire source/target graph is already in its
final state, except for the changes to be performed by the reduction method
itself. This does not imply that the source/target graph may not change. If
the information in a particular node is changed (e.g. by adding a new link to
the node), all methods that were already invoked on that node are re-executed
and the results are compared with the previous executions. When the results
have changed, the system rolls back to a point in the reduction process where
the methods were not yet invoked and tries invoking the methods in a different
order. This is monitored and enforced by the IP system. Again more details are
missing.

Global-to-Local and Local-to-Global One of the core technologies of inten-
tional programming is attribute grammars with forwarding. For more details on
how global-to-local and local-to-global transformations can be implemented we
refer to a discussion in Section 3.5.2. In addition, the intentional programming
system R.5, provides language features to deal with relative information more
easily. When a child intention requests information from its parent intention, the
parent can use the ’who is called’ parameter to distinguish between several kinds
of children or their properties.

3.7.3 Jakarta Tool Suite

Jakarta Tool Suite (JTS) [BLS98] (see Figure 3.18) or Jak is a DSL building
environment that is based on GenVoca generators. Each DSL-extension to a
language is a GenVoca component that can be composed with a base language.
From the grammar, a layer (mixin) is generated with a class for each nonterminal
(left-hand side of the productions) of the language. This extensibility is what
makes JTS interesting.

3.7. AD-HOC APPROACHES 89

Sourc Program Tree

transformation

context
information

with traversals

Pivot
local

source scope

local
target scope

Target Program Tree

context
information

by treading a
 symbol table

Figure 3.18: A schematic overview of JTS

Data Structures Source and target programs in JTS are represented by two
separate abstract syntax trees. The target tree is a mutable structure, allowing
changes to be made to it by several transformations.

Transformation Modules Transformations are written inside the classes which
correspond to the nonterminals of a language. As such, linking the semantics
of a language with its syntax. Transformation starts with the invocation of the
reduce2java(...)-method of the class corresponding to the toplevel production.
The parameter in this method may serve as a vehicle to pass around informa-
tion from one location to another, providing of course that the information flow
matches the recursive descent traversal of the source code by the generator.

Global-to-local JTS offers two mechanisms to implement global-to-local trans-
formations. The first mechanism is based on parameter passing through the
reduce2java(...) method. Parameter threading is one of the most rudimen-
tary mechanism to pass around information. When the parameters are reduced
to a single one, and the parameter value acts like a container to store and re-
trieve information, we end up with a symbol table. Symbol tables are one of the
first strategies to transport data from one location to another (see Section 3.7.4).
Note that, symbol tables may need to be constructed in a separate phase prior
to transformation, in case information flows from children to parents.

The second mechanism offers some basic primitives for tree traversals. Code
written using these traversals contains very detailed information about the struc-
ture of the traversed tree.

90 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

Local-to-global Global-to-local transformations are not supported in JTS. One
must revert to handcrafted solutions, similar to those used in rewrite rules (see
Section 3.1.2).

3.7.4 Functional Languages

Functional programming has a long history in compilation and interpretation of
languages. Most of them are equipped with a strong typing system and enforce
a strict separation between functional modules. For the purpose of this disser-
tation functional languages are important because of their strong typing, generic
traversals and monads (depicted in Figure 3.19).

Source Program Tree

transformation

context
information

with traversals

Pivot

local
source scope

local
target scope

Target Program Tree

M
on

ad
M

on
ad

M
on

ad

Monad Composer

Monad Composer

+

+

Figure 3.19: A schematic overview of a functional language implementation using
generic traversals and monads.

Structure and Organization Both source and target program are represented
with abstract data types. As all data structures in a functional language, the tar-
get program is immutable. Hence, upon the construction of a program fragment,
all its parts must be available. Needless to say that language implementations
in functional languages are very similar to attribute grammars in that respect.
Similar to graph and tree-based rewrite rules, the abstract data types do not
have a reference to their parent, and thus complicate information retrieval from
arbitrary locations.

Transformation Modules A transformation of a program is implemented
with a recursive function that computes a new target program fragment by com-

3.7. AD-HOC APPROACHES 91

bining the results obtained from the application of that function to the parts
of source program fragments. We refer to this function as the transformation
function.

Global-to-Local and Local-to-Global Functional language implementations
do not distinguish between global-to-local transformations or local-to-global trans-
formations. Both are resolved by changing the transformation function such that
information flows between its successive applications.

In order to access information which is external to a program fragment, the
signature of the transformation function needs to be changed. This way, infor-
mation can be passed from one application to the next. Changing the signature
is an invasive operation and thus expensive operation. In an attempt to limit the
impact of this operation, one usually uses a symbol table instead of opting for a
parameter per external information request.

Whenever information needs to flow against the recursive descent of the trans-
formation function, that information needs to be computed via an additional
traversal initiated at a common ancestor. This not only requires to change the
transformation function in various places, but also requires some generic traver-
sal over a typed tree. For this, implementations require a metastructure (e.g.
container - element structure) to facilitate these traversals and queries. Some
require developers to directly use these metastructures. The metastructures are
tree presentations containing generic nodes and leaves. With the use of metas-
tructures the grammar encoded in the types is lost. Due to this loss, syntactically
incorrect programs which can be constructed are not checked by the compiler.
Other approaches such as the strafunski [LV03] library for Haskell generate the
metastructures and as such provide typesafe generic traversals. Others [GdM03]
use a dual representation and use reflection to traverse and use base types to
implement the traversal actions.

Although the symbol table works it is only a part of the solution. Suppose
there are several information flows, then we need several symbol tables or a sym-
bol table of symbol tables. Anyhow, this change will need to be reflected in the
semantics of every language construct. Another reason is that every transfor-
mation still needs to be aware of the need for a symbol table. The solution for
this problem is a mechanism that would allow you to control the combination of
functions a.k.a. monads.

Monads [Wad92] allow the programmer to build computations using sequential
building blocks, which can themselves be sequences of computations. The monad
determines how combined computations form a new computation and frees the
programmer from having to code the combination manually each time it is re-
quired [New]. As such, the recursive application of the transformation function
can be controlled by a monad. One of the prime examples of monadic program-
ming is the state monad. The state monad propagates state information from

92 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

one function application to the next one. This way, the translational semantics of
language constructs can be made oblivious to state. The challenge with monads
lies in their combination. A monad transformer is needed, in order to compose
monads. Unfortunately and as expected, the construction of monad transformers
for complex monads is not trivial.

Monads are a vehicle, they do not provide a specific suite of operations and
an abstraction to construct language. The generic nature of monads is both its
strength and its weakness.

3.8 Discussion

In the discussion of the various kinds of LDTs the focus lies on the question to
what extent a modularized language implementation can be constructed. For
each LDT, we have detailed the data structures, investigated how transformation
modules identify what to transform and their scope, how transformations are
scheduled, how information is acquired to perform a transformation, and how
translational semantics is expressed for the various classes of transformations.
These are our findings.

Architecture As we said earlier, not all LDTs strictly adhere to the typical
compiler architecture. To a certain degree LDTs attack the monolithic nature of
the typical compiler architecture. In increasing order of defiance: Rewrite rule
systems are a prototypical implementation of the typical compiler architecture.
All the phases merely process data, changing it, adapting it, to yield the target
program. Compositional generators have a fixed vocabulary, fixing the parser
and lexer. Attribute grammars give each production rule of each nonterminal the
necessary attribute definitions to participate in global analysis and to produce the
target program. Delegating compiler objects divide the monolithic architecture
into a large a set of smaller compilers. Macros and intentional programming
designs languages using an open-ended set of macros or intentions.

The remainder of this discussion is structured similarly to the analysis of the
individual LDTs. We start by sketching the various data structure tradeoffs and
their operations, and we end with an overview of techniques and tradeoffs to
implement the various classes of transformations.

Datastructure Implications Programs are typically stored in abstract syntax
trees. However, more expressive representations such as graphs open opportuni-
ties to corepresent other structures and information. One example of an alter-
native structure is presented in Intentional Programming (Section 3.7.2), where
intentions are explicitly linked to the nodes representing source and target pro-
gram.

3.8. DISCUSSION 93

Tree-based rewrite rule systems use a minimal tree representation only storing
the recursive composition of terms. All other systems link terms/nodes via a
bidirectional navigable link. Although performance is lost, the ability to access
the parent facilitates the retrieval of information considerably.

The representations for source and target programs range from inert terms
to flexible record-like structures. At the one extreme, terms cannot be changed
once they are produced. In this setting, a local-to-global transformation must be
implemented as a global-to-local transformation where upon construction, all the
parts are be combined. Because the protocol to combine those parts is highly
dependent on the semantics of their producers, the semantics of a local-to-global
transformation gets distributed along several modules. As it is in general impossi-
ble to predict which transformation will be triggered and thus create a particular
target program fragment, it is difficult to assign the creational responsibility for
that construct to single transformation module. Implicit creation in graph rewrite
rules (see Section 3.5.1), or combination rules in compositional generators are a
step forward towards a more fitting implementation strategy for local-to-global
transformations. A similar (but limited) effect can be achieved by rewriting.
Terms produced by one rule, can be successively change by another rule.

At the other end, there are flexible record structures that can be partially con-
structed and modified. In that setting, local-to-global transformations change the
partial data structures produced by other modules. However, careful considera-
tion must still be taken in order to avoid data corruption and inconsistencies with
the rest of the code. Those considerations are not guaranteed as data containers
are passive and not encapsulated. Representations are thus primarily chosen to
structure data. An interesting approach is taken by ICG, where program parts
participate in a constraint network to enforce consistency.

LDTs with the most flexible data structures work with one data structure
initially representing the source program and gradually changing it to the target
program. LDTs with a more rigid data structure, store the source program and
the target program in different data structures. While systems with flexible data
structures have a uniform generation and optimization cycle, the systems with
rigid data structures reduce scheduling problems.

Source program and target program are most of the time stored in separate
data structures. Keeping them separate and stable ensures that a computation
remains valid throughout the compilation process. Attribute grammars strictly
enforce that policy by keeping data structures read-only.

Transformation modules In all LDTs transformation modules are fine-
grained. The source and target scopes are restricted to minimize their depen-
dencies. That tendency is even present in compositional generators and template
languages. Compositional generators such as ICG offer small program fragments
that can be subjected to change. Template languages equip their transforma-

94 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

tion modules with parameters in order to limit their source scope. As as result,
the primary modularization focus on the target program shifts a bit towards a
source focused modularization. Due to the restrictions on the source and target
scope, additional facilities are necessary in order to implement local-to-global and
global-to-local transformations. Such facilities cross the scope of the individual
transformations.

Global-to-local transformations. Nearly every LDT offers explicit support
for the implementation of global-to-local transformations. The support aims to
facilitate the retrieval of information outside of the source scope of the transfor-
mation modules. Some systems increase their source scope. Success stories of
such extensions have been made in attribute grammars extended with explicit
copy rules and multiple inheritance, and in graph rewrite rules with variability
in the subgraph structure. Besides explicit declarations, also implicit retrieval
information schemes exists such as forwarding (Section 3.5.2).

Explicit retrieval of information is in most cases embedded in the transfor-
mation module itself, rendering them dependent on the existence of other trans-
formations. Exceptions to this are ad-hoc approaches and attribute grammars.
In those approaches, information can be provide without having to change the
definition of transformation modules. There are also LDTs which allow modules
to compute information for other modules. The most prominent examples are
tree and graph rewrite rules. The drawback is that this approach generates more
modules which enable the operation of other modules. This rapidly results in a
complicated web of dependent transformation modules.

With graph rewrite rules, one can compute information and attach it to a
node, which in turn can be used by another rewrite rule. Because of partial
reasoning, computing additional information does not interfere with consumers
(cfr. Section 3.2.1). The same can be achieved by tree rewrite rules, but there are
more complications (cfr. Section 3.2.2).

Local-to-global transformations are rarely supported. Most LDTs regard
them as the inverse problem of global-to-local transformations. Even in rewrite
rules equipped with dynamic rewrite rules, the main idea is to capture information
in one site and use it in another site.

Moreover an explicit distinction is made between local and nonlocal results.
A nonlocal result requires that their is a local result present in which to add
the nonlocal. Graph rewrite rules equipped with implicit node creation offer a
symmetric model as one cannot predict which rewrite rule introduces the local
result and which one will produce the nonlocal results.

The unification and combination rules are fixed in implicit node creation.
Composition generators may offer some interesting perspectives in that regard.
The composition is governed by specific rules and constraints, so in other words,

3.9. CONCLUSION 95

arbitrary changes to produced program fragments are not allowed. However, as
composition rules are separated from the program parts, consistency and correct-
ness are still not entirely guaranteed. The other extreme, where program parts
are made up front responsible for the composition, clutters the translational se-
mantics. However, these approaches are static and therefore have trouble taking
into account complicated and context dependent control logic (Sections 3.1.4 and
3.6.2).

3.9 Conclusion

All LDTs divide a language implementation into a set of fine-grained transfor-
mation modules. The first observation is that it is not always clear how to relate
these modules to language constructs. The second is that the modularity of
modules is almost non-existing modules implicitly cooperate with one another.

This implicit cooperation is due to the fact that modules operate on a shared
representation. This shared structure dominates the execution of transformations.
Transformations are invoked to operate on a part of that shared structure and
their results are subsequently processed by other transformations. As long as the
transformations agree on the results produced by other invoked transformations
this schema works fine. However, as soon as transformations are more complex i.e.
they require more information than which is produced, or require different results
from other transformations, or when transformations produce more results than
others can use, then the modularity of language implementations decays. In
these cases, one can either change the dominant structure by using intermediate
representations or change the transformation modules. Changing the dominant
structure increases the implicit cooperation, as new modules are added that enable
the execution of other modules. Changing the transformation modules can also
increase the implicit cooperation when transformations are polluted with new
responsibilities in order to satisfy the needs of other transformations.

Clearly, there is need to change transformation modules so as to be able
to execute in case a transformation does not agree with the results produced
by other invoked transformations. However, only changes that do not add new
responsibilities to transformation modules, but merely complement and adjust
their semantics to their new environment, are allowed. Of the various LDTs we
examined, only attribute grammars and ad-hoc approaches are capable of chang-
ing transformation modules while not increasing their implicit cooperation. Both
kind of systems are implemented on top of general-purpose languages. We observe
that they rely on the modularization and adaption features of these languages to
define the transformation and to deploy the module in a concrete language im-
plementation respectively. They also rely on flexible data structures to access
information and to produce multiple results.

We encountered various mechanisms to reduce the amount of implicit coop-

96 CHAPTER 3. LANGUAGE DEVELOPMENT TECHNIQUES

eration. These successful mechanisms are scattered over the various LDTs.

• Tree-based rewrite rules offer traversals and dynamically scoped rewrite
rules with rewrite strategies.

• Graph rewrite rules offers flexible data structures, implicit node creation
and matching by morphisms

• Template-based approaches offer structure-shy queries

• Attribute Grammars offer implicit copy rules, explicit copy rules, templates,
inheritance and forwarding

• Compositional Generators offer explicit composition rules and enforce con-
sistency

• Delegating Compiler Objects (DCO) demonstrate the need for a new com-
piler architecture

• Intentional programming (IP) demonstrates the use of first class transfor-
mation modules

• Jakarta Tool Suite (JTS) offers symbol tables and uses general purpose
language features to increase extensibility.

• Functional languages offer generic traversals, symbol tables and monads.

Chapter 4 introduces requirements that avoid the problems of the discussed
related work, and describes a formal model for the modularization of language
constructs that adheres to these requirements. Chapter 5 and 6 discusses a new
LDT which implements our model. A validation is presented in Chapter 7.

Chapter 4

Modularization of Language Constructs
in Language Implementations

Languages are grown by adding language constructs. In the previous chapter,
we presented the contemporary language development techniques (LDTs) and
concluded that they decompose language implementations into a set of implicitly
cooperating modules. Furthermore, it is not always clear how individual modules
relate to language constructs.

In this chapter, we define a model to modularize language constructs by ap-
plying the principle of separation of concerns. In order to modularize language
constructs, we impose a number of requirements on the syntax and the trans-
lational semantics of the language. From this model we deduce a new language
implementation design in which languages consist of three kinds of concerns: basic
language concerns defining language constructs, language specifications defining
interactions between basic concerns, and special-purpose concerns which define
the mechanisms to implement interactions among basic concerns.

The first part of this chapter discusses the rationale behind our modularization
model (Section 4.1), the impact on the implementation of languages (Section 4.2)
and the requirements and challenges we impose on the design of a new LDT
(Section 4.3). We conclude this part in Section 4.4 with an analysis of the sep-
aration of concerns deduced from our model. In the second part, we conduct in
Section 4.5.1 an analysis regarding the inability to implement a language using
modularized language constructs with the contemporary LDTs. In Section 4.5
we analyze the reasons for this shortcoming and distill remedies. We conclude
this chapter in Section 4.6.

4.1 Modularization Model

The challenge in this dissertation lies in the modularization of complex transla-
tional semantics. At this point in the dissertation we define a complex transla-

97

98 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

tional semantics as a non-homomorphic translation or a global-to-global trans-
formation.

We pursue modularization by applying the principle of separation of concerns
(SOC). Separation of concerns is a powerful design principle for tackling the
complexity of a system. At its heart lies the divide and conquer strategy, which
has proven to be a very effective way to solve problems. The technique further
extends the divide and conquer strategy with the goal to decompose a system
into smaller modules each containing a single aspect of a subject.

Dijkstra [Dij76] primarily regarded separation of concerns as a technique to
order his thoughts and efforts, without a concrete design technique in mind. As a
result, techniques to separate concerns need to be conceived before the principle
can be used to structure implementations.

Separation of concerns allows developers to solve a given problem by focus-
ing on individual concerns, which should be identified and separated to cope
with complexity, and to achieve the required engineering quality factors such as
adaptability, maintainability, and reusability.

We decouple and parameterize the implementation of language constructs, in
order to separate and modularize the language along the dimension of its con-
structs. Whenever the language changes, the language constructs involved can be
modified and later on recomposed into a new version of the language. The result-
ing incremental language design approach has been described by Gholoum [Ghu06]
as a natural way to engage in its development. It allows us to easily restructure a
language and its compiler, a need which has been observed in other related com-
piler decompositions like JAMOOS [JY01] and TaLe [JKN95] (see Section A.1).

4.1.1 Setting the Stage

In order to present the formalization of the modularization of a language imple-
mentation according to language constructs, we must briefly introduce the defi-
nition of programming languages and its semantics defined in terms of another
language.

Programming Languages

Noam Chomsky defined a formal language L as a set of finite-length sequences
(sentences) of elements (vocabulary) drawn from a specified finite set of symbols.
We chose to specify a formal language using the type-2 grammars of the Chomsky
hierarchy, as it is the most widely used type of grammar.

4.1. MODULARIZATION MODEL 99

4.1. Definition. A context-free grammar [Cho56] is a tuple G = 〈T,N, S, P 〉
where

T is a set of terminal symbols,

N is a set of nonterminal symbols (syntactic categories),

S is an element of N called start (or initial) symbol,

P is a set of productions, i.e. rules of the form A ::= α, where A is an element
of N and α is a string of terminal and nonterminal symbols, i.e. an element
of (N ∪ T)*.

The representation of the sentences of a language is an important consider-
ation for the formalization of the semantics of a language. There exists a fairly
standard compiler decomposition into computations over trees providing an ab-
stract representation of a program [KW94]. In this dissertation we adopt trees as
a means to represent programs, whose structure is formally defined by a grammar.

4.2. Definition. A language L is a set of phrases defined by an algebra
〈E, F〉 [Jan96], given a grammar G = 〈T,N, S, P 〉. It consists of a set E con-
taining the elements of the language, and a set of functions F defined on the set
E and yielding values for E.

The set of phrases is a subset of the freely generated terms comprising a func-
tion symbol F ∈ F followed by a number of arguments αi ∈ E (i=1...n), n being
the arity of F . The terms represent the constructs in the language.

For all p ∈ P , of the form nt ::= αp1, ..., αpn, with nt ∈ N , a corresponding
function Fi(αp1, ..., αpn) is defined.

The set of primitive values LD ⊆ E is defined as the union of the domains of
the terminals T : LD = Dt1 ∪ ... ∪Dtn , where ti ∈ T, 1 ≤ i ≤ size(T).

The sentences (programs) of the language L are a recursive combination of its
phrases bound by the rules stipulated in the grammar of the language L and by
the set of primitive phrases of LD.

Translational Semantics

Let L1 be the source language and L2 the target language. We define the transla-
tional semantics of the source language L1 in terms of the target language L2 using
denotational semantics. The denotation maps syntactic objects of language L1

into objects of language L2. We use denotational semantics because of its familiar
and powerful mathematical objects, i.e. functions.

The domains of valuation functions may be constructed from primi-
tive domains using products, functions, and lists. Primitive domains are

100 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

formed by adjoining two finite or denumerable sets such as {true, false} or
{...,−2,−1, 0, 1, 2, ...}, with two special objects>,⊥ called top and bottom respec-
tively. ⊥ represents completely undetermined information1. We use it to denote
syntactically and/or semantically invalid expressions. > represents overdeter-
mined elements. The top element is not used in our formalization.

4.3. Definition. The denotational definition of the translational semantics of a
language L1 into L2 is defined as follows:

• The syntax of the languages L1 and L2 is defined through their corresponding
context-free grammar definitions G1 and G2.

• The semantic algebra is the target language L2.

• The valuation function C defines the translational semantics, which we refer
to as the compilation function. C : L1 → L2

The goal of our model is the modularization of a language implementation
into its language constructs. Language constructs are defined as the syntactical
constructs of a language having a distinguishable semantics with respect to the
other language constructs. In our formalization we do not formally define a
separate notion for a language construct. A language construct can be any valid
phrase of a language ranging from a terminal t ∈ LD, via a single function F ∈ F
to an arbitrary nested phrase like F (I(i1, ..., in), ..., J(j1, ..., jp)).

Language constructs often strictly correspond to the non-terminals of a gram-
mar of a language. More precisely, each non-terminal and its set of productions
defining it represent a language construct. However, such a definition merely
shifts the problem to the question what exactly constitutes a non-terminal and
the complexity of the production rules defining it. So, in our opinion, what con-
stitutes a language construct should be left to the language designer.

4.1.2 Phenomena Described by the Model

In order to modularize a language implementation according to its language con-
structs we must impose requirements on the valuation function C to ensure that
the definition of the syntax and translational semantics of each language con-
struct is solely concerned with that construct. We prohibit the presence of any
kind of dependency among the language constructs ranging from a direct ref-
erence to other constructs, to any implementation decision that is imposed by
another construct.

1The >,⊥ and bottom elements are also necessary to express the denotation of recursive
expressions. The denotation of recursive expressions is formulated as a the fixpoint in a series
of approximations of its semantics. For this, the domain must have a partial order, where ⊥ is
the smallest element and > the largest element.

4.1. MODULARIZATION MODEL 101

The five requirements address the following phenomena. The list of phenom-
ena is the result of an analysis of syntax and translational semantics descriptions
found in contemporary LDTs (see Chapter 3).

P0 The translational semantics of a language construct does not yield a correct
phrase in the target language.

P1 The translational semantics of language constructs does not compose.

P2 The translational semantics of a language construct requires information ex-
ternal to the language construct.

P3 The translational semantics of a language construct exercises an effect on the
translational semantics of other language constructs.

P4 The syntax of a language construct refers to the syntax of other language
constructs.

The phenomena and their corresponding requirements are organized into three
logical groups: program representation (P0), translational semantics (P1-P3) and
syntax (P4). We discuss them in a different order allowing us to better structure
our explanations.

• Phenomenon P1 is based on the principle of compositionality [Mon74,
Jan96], stating that the translational semantics of a phrase is formulated
in terms of the translational semantics of its parts. Requirement R1 en-
forces that the modularization is maintained even in cases when modular-
ized translational semantics of language constructs does not compose (see
Section 2.1.3).

• Phenomenon P0, P2 and P3 are based on the fact that the translational se-
mantics of (expressive) language constructs cannot be expressed by a mere
one-to-one mapping [Fel91]. Hence, in general, we cannot expect that the
translational semantics yields a correct phrase in the target language. This
phenomenon P0 is addressed by requirement R0. More complex mappings
in translational semantics have been classified in [vWV03]. In essence, one
distinguishes mappings which lack information to produce their transla-
tional semantics (P2) and lack the ability to affect the translational seman-
tics of other language constructs (P3). The modularization of the former
is addressed by requirement R2, and the modularization of the latter by
requirement R3.

• Phenomenon P4 is based on the observation that contemporary context-free
grammar description formalisms such as BNF [BBG+60], JAMOOS [JY01],
DCO [Bos97], SDF [HHKR89] formulate the syntax of a language construct
by directly referencing the syntax of other language constructs.

102 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

With these phenomena we can define the term complex translational semantics
more precisely.

4.4. Definition. Translational semantics is complex when it exhibits either of
the four phenomena P0 to P3.

Note that phenomenon P4 is not part of the above definition as P4 is about
the syntax of language constructs and not about their semantics.

The remainder of this section is divided into two parts. In the first part, we
start by motivating and informally describing the requirements R0 to R3 that are
imposed on the valuation function of a language. Afterwards, we formally intro-
duce modularized valuation functions. In the second part, we detail requirement
R4 to modularize the grammar specification. We conclude this section with a
summary of the five requirements.

4.1.3 Compositionality Requirement (R1)

As the goal of our model is the modularization of a language implementation into
its language constructs, valuation functions need to exploit the structure of the
phrases of a language. By exploiting the structure of the phrases, the semantic
definitions can be structured according to the syntax of the language, such that
individual language constructs can be analyzed and evaluated in relative isolation
from other constructs. Formally, this is achieved by imposing R1 which requires
that the valuation function is compositional (Tennent [Ten91]).

Compositionality implies that the valuation of a compound expression com-
bines the valuation of its parts according to a production (syntactic rule) e.g.
if statements consisting of a condition, a true and else expression are evaluated
using the semantics of the condition, the true and else expression. Suppose that
a phrase E comprises the parts E1 and E2. Then compositionality states that the
semantics C(E) of E can be found by finding the semantics C(E1) and C(E2) of its
subparts, and combining them (according to some semantic rule). The property
is recursively defined for all phrases E of the language.

The translation of an if expression written in L1 to a series of instructions of
a byte code language L2 can be defined by a compositional valuation function C
as follows:

C(N) = CONST N

C(N1>N2) = CJUMP(>,C(N1), C(N2), labeltrue, labelfalse)

4.1. MODULARIZATION MODEL 103

C(if(T1, T2, T3)) = C(T1)
labeltrue:

C(T2)
JUMP(labelend)

labelfalse:

C(T3)
labelend:

where

N1, N2, T1, T2, T3 ∈ E1

The above valuation function is defined for the basic phrases of the source
language by using the translational semantics of its parts i.e. for each terminal
and for each of the functions of the language algebra L1. Firstly, a number is
mapped to a CONST operation. Secondly, a comparison operation is mapped to a
conditional jump (CJUMP) expression, which jumps to a label in case its condition
evaluates to true and to another label in case its condition evaluates to false.
Finally, an if is mapped to a series of intermediate instructions placing labels
and jumps between its branches. Note that the labels to which the conditional
jump jumps are hard-coded in the semantics of a comparator. As this is not
desirable, nor usable in actual language implementation, these labels should in
fact not be hardcoded. We opted not to do this yet, as this is another phenomenon
in our model. In order to keep the discussion of the different phenomena clear,
each phenomenon is discussed separately.

Compositionality and Homomorphisms

Compositionality in denotational semantics requires the presence of a homomor-
phism (Montague [Mon74]) between the algebra of syntactic representations and
an algebra of semantic objects.

Intuitively speaking, a homomorphism from an algebra A to algebra B is a
mapping which respects the structure of A. If in A an element is obtained by
applying an operator f to ā2, then the image of f(ā) under the homomorphism
φ is obtained by applying an operator g (corresponding with f) to the images of
ai under φ.

φ(f(a1, ..., an)) = g(φ(a1), .., φ(an))

4.5. Definition. A homomorphism between two languages L1 and L2 is applied
as follows [Jan96]: Let A be the algebra L1 = 〈E1, F〉, let B be the algebra L2 =

2ā = a1, ..., an

104 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

〈E2, H〉. Let F ∈ F and H ∈ H, then a valuation C is a homomorphism between
E1 and E2 if:

C(F (a1, ..., an)) = H(C(a1), ..., C(an))

Compositionality and Granularity

Compositionality does not affect the granularity of a language construct, it merely
allows us to split up the semantics of a phrase into a combination of the semantics
of its parts. Suppose that for a given two phrases F (I(i1, ..., ip)) and J(j1, ..., jp)
their semantics are the same (equation 1). This assumption is reasonable as in
many programming languages it is the case that different source phrases are in fact
translated to the same target program. Due to the compositionality principle, the
semantics of the phrase J is a new phrase H constructed using the semantics of its
parts j1, ..., jp (equation 2). Given equations 1 and 2, the semantics of the phrase
F is thus a composition of the semantics of its nested parts i1, ..., ip. Clearly,
compositionality also applies in the case where nested phrases are considered a
single language construct.

(1) C(F (I(i1, ..., ip))) = C(J(j1, ..., jp))

(2) C(J(j1, ..., jp)) = H(C(j1), ..., C(jp))

(3) C(F (I(i1, ..., ip))) = H(C(j1), ..., C(jp))

Compositionality and Composition

The meaning of a phrase (e.g. F and H in Definition 4.5 of the translation homo-
morphism) cannot solely be determined by its parts, as it depends on a rule that
combines those parts into a phrase. Indeed, several phrases can be constructed
from the same parts, yielding different meanings [PtMW90]. For instance, com-
posing parts a and b in an assignment may lead to different meanings e.g. a := b
or b := a. Moreover, as compositionality does not affect granularity, the com-
position of parts can be more complex depending on the additional phrases that
are being constructed e.g. composing the parts b, a, into the assignment with an
increment yields b := a + 1. We encountered this in our example introduced in
the beginning of this section. The > construct is translated to a CJUMP containing
two extra phrases labeltrue and labelfalse.

We explicitly expose the composition of parts into semantic definition func-
tions D. For each syntactical construct F of L1 a semantic definition function DF

is a function of the meanings of the parts of F (and of the syntactical construct
F).

4.1. MODULARIZATION MODEL 105

Compositionality Conflicts

The definition function DF of a syntactical construct F expects a number of
specific target language constructs to be able to construct a syntactically and
semantically valid equivalent semantic target language construct. Consider for
example the following translational semantics of a let:

C(let(T1, T2)) = MOVE C(T1) C(T2)

where

T1, T2 ∈ E1

A let is mapped to a move instruction and therefore expects that the trans-
lational semantics of both its parts yields two memory locations. However, the
translational semantics of parts does not always suffice to construct its equivalent
target language expression. We call such situations compositionality conflicts.
In our example, a compositionality conflict arises when a comparison expres-
sion is used within a let between the translational semantics of a let and of
a comparator expression because the translational semantics of a comparator

expression yields a CJUMP expression instead of a memory location3.
In order to resolve a compositionality conflict, the valuation function needs to

anticipate the translational semantics of the subparts of a language construct and
convert it into a suitable value. In our example, a let must anticipate a CJUMP

and convert it into an expression that yields a memory location containing the
boolean result (-1 or 0) of its condition.

C(let(T1, T2)) = C(T2)
labeltrue:

STORE(R0 -1)

JUMP(labelend)

labelfalse:

STORE(R0 0)

labelend:

MOVE C(T1) R0

where

T1, T2 ∈ E1

Compositionality conflicts are not resolved by the definition functions D, be-
cause that would require the explicit involvement of other language constructs
and as such break their isolation.

3Changing the translational semantics of a comparator expression such that it yields a
memory location is not a solution, as this translational semantics would then trigger a compo-
sitionality conflict with if expressions.

106 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

Compositionality and Strict Separation

Definition functions DF consume a tuple b1, ..., bn which are the translational
semantics of the parts a1, ..., an of F . These are in turn tuple values represent-
ing program phrases of the language L2. The DF function consuming a tuple
b1, ..., bn has thus access to all the tuples nested within that tuple. Due to the
compositionality principle, the nested tuples are the translational semantics of the
language constructs a1, ..., an. Consequently, there is a breach of isolation when
DF accesses the nested tuples of the parts b1, ..., bn which have been produced by
another language construct.

Requirement R1

4.1. Requirement. (R1) To be able to define the translational semantics of
a single language construct in isolation, a valuation function must be compo-
sitional using separate functions D denoting the definition of the translational
semantics of a language construct such that the semantic definition of the
translational semantics of a language construct:

R1a has no access to the source language construct, more precisely the se-
mantic definition cannot access the parts of its language constructs but
consumes a tuple of target language values obtained from recursively ap-
plying the valuation function to the parts.

R1b does not need to cope with compositionality conflicts

R1c should have limited access to the target language constructs it consumes,
more precisely it should avoid directly accessing nested tuples.

Compositionality and Expressive Language Constructs

The plain application of compositionality via a homomorphism does not suffice
in the context of complex translational semantics for expressive language con-
structs. In the formalization by Felleisen [Fel91] (see Section 2.1.2) (expressive)
language constructs could not be defined using homomorphism. For this reason,
the translational semantics of languages requires a less restrictive application of
a homomorphism. This is due to the fact that a homomorphism divides the
semantics of a phrase in terms of its parts

• and therefore reduces the amount of information or parts available
to construct its semantics. This case is handled by requirement R2 and
requirement R0.

4.1. MODULARIZATION MODEL 107

• by expecting a series of target language values and therefore constrains
the semantics of its parts on the semantics of the whole. This case
is handled by requirement R3.

4.1.4 Multiple Inputs Requirement (R2)

Translation by a homomorphism is very strict because a homomorphism requires
that each language phrase F with a given arity n is mapped to a language phrase
H with the same arity, consisting of the translated parts. However, the arity of
phrase H may differ from the arity of phrase F e.g. in the translation of typed
expressions sometimes their types are available but not used, or sometimes their
types are not given and must be derived. In the construction of phrases with a
different arity we distinguish between two cases: the arity of H is strictly greater
or strictly smaller than the arity of F . The former is called an arity excess and the
latter an arity dearth of H. In the case of arity dearth, the information in F needs
to be selectively used or combined by DF to yield a proper set of parts in order to
construct H e.g. in the translation of variable declarations attributed with non-
primitive or user-defined types the actual type does not influence the translational
semantics. A less trivial situation arises when the arity of H exceeds the arity of
F e.g. an operation does not contain the type of its operands which is required so
that upon its translation the most appropriate implementation can be produced.
In that case, extra information, external to F , needs to be obtained e.g. upon
the translation of an operation, the types of its operands need to be computed.
Consider for example the following snapshot of a compositional valuation of an
functional language which supports the direct accessing and storing of information
in computer memory:

C(let(T1,T2,T3)) = STORE C(T1) C(T2)
C(T3)

C(T1 + T2) = ADD C(T1) C(T2)

C(ID) = S(ID)

where

V ⊆ E1 (storable values)

L (locations)

S = V → L

T1, T2, T3 ∈ E1

ID ∈ V

The above equations define the translational semantics of a let expression
to define variables as a STORE instruction, of an addition that uses variables
as an ADD instruction, and of identifiers (ID) as a memory location. In theory,

108 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

one could define a function S which maps each identifier to a unique memory
location, such that expressions which define and use the same variable use the
same memory location. From a practical point of view, if at all realistic, this
translational semantics performs poorly in terms of memory consumption. A
more realistic translational semantics exploits the lexical scope of variables in
order to reduce the memory footprint. For this, we need to keep track of the
scope of variables in the let expression and reuse their memory locations in
the translational semantics of variables as soon as their scopes are terminated.
In other words, the translational semantics of variables require a symbol table
containing a mapping between variables and locations. Clearly this table cannot
be constructed solely using the ID construct and is thus external information
required for the valuation of IDs.

As the meaning of a phrase may be codetermined by external factors, the
domain and co-domains of the most general semantic functions consisting of the
source language and of the target language respectively, in general do not suf-
fice. Therefore, the conception of translational semantics has to be enriched.
The domain and co-domains of valuations must be extended by composing the
syntactical domains and the semantical domains with other domains. As such,
information available in one construct can be passed to other constructs. The
following code fragment illustrates the use of auxiliary domains in our example.
A denotational function defining the meaning M of a sentence would look like:
(more details can be found in [Ten76].)

Example M : Exp → S → (E × S)
where
D (denotable values)
V (storable values)
L (locations)
S = L → V (stores)
E = D + V (the generic domain of all expressible values)

The symbol table S is passed from valuation to the next. As such, the let

expression can allocate and deallocate memory locations in the symbol table
which can then be used in the valuation of IDs.

Constraining Information

Requiring external information implies the involvement of other language con-
structs so as to obtain that information. With the prospect of separation of
constructs, that solution should be avoided as much as possible. In order to max-
imize separation of the constructs, only essential information can be requested.

4.6. Definition. In a mapping between a source language phrase say F to H,
parts required to construct H are considered essential if they are necessary to
reflect the semantics of the language construct F in a construct H.

4.1. MODULARIZATION MODEL 109

Preserving the Isolation of Semantic Definitions

In order to preserve the isolation of the semantic definition functions D, a function
DF for a given construct F must not involve other constructs for the:

Identification of External Information The valuation function consumes a
tuple which may consist of multiple language constructs. This is a direct
violation of the separation of translational semantics of each language con-
struct enforced by requirement R1. The successive applications of valuation
functions are therefore prohibited from exchanging source language phrases
among each other. Instead, the valuation functions must communicate de-
rived values among their successive applications. We hereby strictly exclude
the explicit involvement of other source language phrases in the semantic
definition functions D, in other words these functions can only consider one
program phrase at a time.

Obtention of External Information Language constructs requiring multiple
inputs can only be defined, the actual retrieval of the external information
by depending or altering other language constructs cannot be executed by
the semantic definition functions D, as the execution would by definition
involve other constructs.

Provision of External Information The valuation function must pass along
external information to the computation of the semantic definition function
D. So in other words, if the valuation of a construct requires external in-
formation, the valuation of another construct has to provide it. We cannot
allow that the valuation of other constructs is cluttered with computations
for information which is only required by other constructs, as that would
break the separation of the constructs. We therefore impose that semantic
definition functions may only produce and provide additional information
which is an essential part of the translational semantics of the source lan-
guage constructs.

110 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

Requirement R2

4.2. Requirement. (R2) To be able to depend on essential external infor-
mation that could contribute to meaning while preserving the isolation, the
semantic definition functions D of the language constructs:

R2a must be defined in terms of an arbitrary number of auxiliary domains.
The extension of the co-domain is equal to the extension of the domain,
as the auxiliary domains also serve as a carrier to pass information from
one application to the next as the function computes the meaning of a
phrase.

R2b only consider one language construct at a time.

R2c may only produce additional information which is an essential part of the
translational semantics of the source language constructs.

R2d do not retrieve the external information

The case where information is not essential, is handled by requirement R0 in
Section 4.1.6.

4.1.5 Multiple Results Requirement (R3)

Semantics expressed using homomorphisms requires that the target language
must have the same structure as the source language, so that a construct in
one language is expressible via a local equivalent construct in the other language.
These local constructs are then subsequently combined to form other constructs.
The translational semantics of language construct is thus constrained to play a
local role in the semantics of the overall program. So language constructs which
affect the whole rather than just a local part can no longer be expressed. An
example of such a construct is callcc [CFW85]. Callcc exposes the current con-
tinuation such that it can be explicitly used by the developer. However, in order
to do that, a CSP transformation [Rey93] needs to be applied which potentially
affects the whole program. By including the CSP as a part of the translational
semantics of callcc, we can apply the CSP selectively [Nie01].

Translational semantics exercise effects on multiple phrases of the target pro-
gram by injecting a new program fragment into a program fragment produced by
another construct. We call these injected fragments nonlocal results or plainly
nonlocals. In order to enable the production of those effects, we enrich the con-
ception of the valuation function with the product of the target language algebra.
As such, the translational semantics can produce multiple results.

4.1. MODULARIZATION MODEL 111

Preserving the Isolation of Semantic Definitions

In order to preserve the isolation of the semantic definition functions D, a function
DF for a given construct F must not involve other constructs for the:

Identification The nonlocal results can only be defined, the identification of
the location where the nonlocal into the proper program phrase cannot be
executed by the semantic definition functions D. As the execution would
by definition involve other constructs, this is prohibited.

Integration In analogy to the context information, if a construct produces non-
local results another construct must consume them. However, we cannot
allow that another construct be altered to consume those results and in-
tegrate them into their translational semantics. Only in case where these
nonlocals are essential, exceptions to this rule are allowed. This ensures
that the translational semantics of a language phrase is not cluttered with
the additional task of integrating program fragments produced by the trans-
lation of another language phrase.

Requirement R3

4.3. Requirement. (R3) A valuation function is able to exercise effects on
the translational semantics of other constructs if:

R3a the domain and co-domains of the semantic definition functions are de-
fined containing several times the target language domain.

R3b it only consumes external information or results which are essential for
defining the translational semantics of a source language fragment.

From requirement R3a and R3b we can deduce that the effect of the multiple
results is either defined externally to the semantic definition functions, or the
effect is provided by the semantic function of the producing language phrase.
The effects can be passed on as external information by using a complex domain
of so called integration functions Ξ. Ξ takes two target language phrases and
produces a new phrase containing the integration of both input phrases.

Ξ : L2 × L2 → L2

4.1.6 Representation Requirement (R0)

Recall from requirement R1 and R2 that for each syntactical construct its seman-
tic definition function DF is defined as a function of the meanings of its parts and

112 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

of essential external context information. In this section, we consider the case of
non-essential information.

As the source L1 and target language L2 might be very different, we cannot
assume that the translational semantics of a phrase of the source language is a
complete language phrase in the target language. Recall the example given in Sec-
tion 4.1.3. The translational semantics of the > construct is a CJUMP instruction.
The CJUMP is a 5-tuple consisting of a conditional operator, its two operands, and
a true and false label. If the condition evaluates to true, the instruction jumps to
the true label, otherwise it jumps to the false label. We oversimplified matters a
bit, as labels must refer to actual instruction indexes of the produced target pro-
gram. To this end, an evaluation function, say M , must consume an additional
value next to the language phrase denoting the index of the next instruction.

M(N , index) = (CONST N, index+1)

M(N1>N2, index) = (CJUMP(>,M(N1,index),M(N2,index),⊥,⊥),
index+1)

M(if(T1, T2, T3), index) = (ct1
ct2
JUMP(index3)
ct3,
index3)

where:
(index1, ct1) = M(T1,index)
(index2, ct2) = M(T2,index1)
(index3, ct3) = M(T3,index2+1)

where

N1, N2, T1, T2, T3 ∈ E1

Using two parts of the > construct, only the first three parts of the CJUMP

instruction can be computed as the > construct lacks information to provide
the CJUMP instruction with a true label and a false label. The two labels are
actually non-essential as the location where to jump is not necessary to reflect
the translational semantics of the > construct. More so, the true and false labels
are only known much later in the valuation process as the labels are part of the
translational semantics of other expressions like if. It is only after the translation
of its condition T1, its if-branch T2 and its else-branch T3 that the actual position
of the true and false labels is known. Hence, these labels cannot be computed
prior to the translation of the >. Therefore its translational semantics must yield
an incomplete CJUMP instruction. For this, we impose that the representation of
a program, given a definition of language L, must allow incomplete programs to
be used as an intermediate state during the translation. Using the ⊥ element

4.1. MODULARIZATION MODEL 113

of semantic domains, the translational semantics of a comparator expression can
than simply ignore the labels.

As it is possible to produce incomplete target language phrases, the transla-
tional semantics of a construct can be defined without violating of their isolation
and thus their modularization like:

• logic to handle every possible part that potentially may become a part of
its equivalent target language construct,

• logic to provide every possible value which may be requested as a result of
the above,

• dummy and non-essential semantic values that potentially may be required
by the semantics of other constructs

Consistency

The co-domain of valuation functions is a complex structure representing pro-
grams in the target language. Care must be taken upon changing the transla-
tional semantics of constructs to fill in the missing parts, in order to ensure that
the produced constructs remain syntactical and semantical valid. An example
illustrating this is given below. For reasons of simplicitly we use label names
instead of instruction indexes.

C
(

if((a>b | !(b<c))

& d > e), T2, T3)

)
= CJUMP(>, C(a),C(b),w,z)

z:

CJUMP(<,C(b),C(c),labelfalse,w)
w:

CJUMP(>,C(d),C(e),labeltrue,labelfalse)
labeltrue:

C(T2)
JUMP(labelend)

labelfalse:

C(T3)
labelend:

The above equation defines the translational semantics of a boolean expres-
sion consisting of and, or, not and comparator operators as a sequence of condi-
tional jumps and labels. The produced target language expression jumps to the
labeltrue and labelfalse label if the whole boolean expression evaluates to
true or to false respectively. Each conditional jump refers to a true and a false
label in case its condition encoded in the jump evaluates to true or to false respec-
tively. Notice that some conditional jumps jump, in case their condition evaluates
to true, to the labeltrue label and some of them jump to the label labelfalse.

114 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

Hence, filling the true labels and the false labels is not a straightforward search
and replace as the translational semantics of the boolean expression needs to be
taken into account in order to deduce which positions of the conditional jumps
need to be filled with either the labelfalse or labeltrue label.

Requirement R0

4.4. Requirement. (R0) The translational semantics is defined in terms of
the language algebra L2

>
⊥. Imposing this requirement has the following three

consequences on program phrases:

Partial (R0a): The bottom value ⊥ represents completely undetermined in-
formation. A phrase containing a ⊥ phrase is called a partial or incom-
plete phrase.

Completable (R0b): Partial phrases need to be completed during the trans-
lation.

Consistent (R0c): As translated values can be changed by any other con-
struct, we require that consistency is maintained under these changes.
More precisely, the phrase must remain syntactically and semantically
valid. Program phrases are complex and may contain internal depen-
dencies. The domain ∆ of consistency enforcers δ takes these internal
dependencies into account and ensures consistency upon changes.

4.1.7 Formalization of the Valuation

Defining the Semantics of Language Constructs

4.7. Definition. The definition of language constructs is denoted by a set
of semantic definition functions D which contain the part of their translational
semantics which is expressed solely in terms of themselves. These functions ensure
the modularity of the construct’s translational semantics.

D : (T)m ×D1 × ...×Dex → L2
>
⊥ ×D1 × ...×Dex (m is the maximum arity)

T : D1 × ...×Dex → L2
>
⊥ ×D1 × ...×Dex

∃Di ∈ {D1, ...Dex} : Di = L2

∃Dj ∈ {D1, ...Dex} : Dj = ∆

δ : L2
>
⊥ ×Dz → L2

D adheres to requirements R1c, R2b, and R3b .

4.1. MODULARIZATION MODEL 115

R0 - Program representation.

Partial or incomplete values can be constructed using the bottom value ⊥
which represents completely undetermined information (R0a). A language
phrase F (α1, ..., αn) with arity n, is called partial or incomplete when ∃i :
αi = ⊥ or αi is partial (0 ≤ i ≤ n)

Ppartial phrases can be changed by side effects or mapping state such that
they can be completed during the translation (R0b).

Consistency of values can be maintained under the changes (R0c, R1c). The
domain ∆ of consistency enforcers δ ensure consistency upon integration of
an element of an arbitrary domain Dz in a target language phrase. A
consistency enforcer is an additional result, next to the target program
phrase.

R1 - Compositionality

D functions denote the translational semantics of source language constructs
by consuming an m-tuple of target language constructs and uses these to
construct a new target language construct that is the semantic equivalent of
a particular source language construct. The m-tuple of target language con-
structs is obtained by using the T functions. These functions compute the
translational semantics of the parts of a source language construct. Hence,
D functions are compositional and allow us to define the translational se-
mantics of language constructs in relative isolation from other language
constructs.

As the translational semantics of a construct does not only depend on the
translational semantics of its parts, for each source language construct F a
function DF is defined so that depending on the source language construct
the translational semantics of its parts can be combined.

T functions prohibit direct access to the terms of the construct and thus
ensure R1b. They also support R1a because they can be designed such that
they only yield those values which can be consumed by D functions.

R2 - Multiple Inputs

In order to compensate for the lack of information available in language
constructs D functions also consume an ex tuple of additional information.
As such, D functions can consume the necessary information to be able to
define the translational semantics of language constructs (R2a).

T functions prohibit direct access to the terms of the construct and thus
prohibits the access of external information (R2d). However, they do allow
the D functions to control the recursive application of the evaluation. As
such, the semantic definition of constructs can affect the context information
(R2c). T functions not only return the translational semantics of a part of

116 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

a construct, but also a tuple of external information. As such, D functions
can control the information flow during the recursive evaluation.

R3 - Multiple Results

D functions also produce an ex tuple of additional information such that
the translational semantics of a language construct can produce multiple
results which need to be integrated in the translational semantics produced
by other D functions (R3a).

Effecting the Semantics of Language Constructs

4.8. Definition. The translational semantics of a language construct which could
not be expressed in its definition is called the effect and is denoted by a seman-
tic effect function E. It is the part of the translational semantics of a language
construct which involves other constructs.

E : L1 ×D ×D1...Dex → L2
>
⊥ ×D1...Dex

E effects the translational semantics of a language construct with the trans-
lational semantics of other language constructs by controlling the application of
semantic definition functions D on language constructs.

Upon the application a D function, the required target program parts nec-
essary to compute the translational semantics of a language construct with the
proper additional context information can intercepted in the T functions. As
such, E can resolve compositionality issues between what is expected by D func-
tions and what is produced by the valuation function (R1 - compositionality).
Also prior to the application of the D function, the necessary context information
can be computed to compensate for the lack of information residing the language
construct (R2 - multiple inputs). Anterior to the application of the D function,
the obtained target language construct(s) can be integrated with other already
produced constructs (R3 - multiple outputs). Also anterior to the application of
the D function, information necessary for the valuation of other constructs can be
prepared. Lastly, compositionality problems can also be anticipated and resolved
immediately.

4.1. MODULARIZATION MODEL 117

Modular Valuation Functions

4.9. Definition. A valuation function C modularizes the translational seman-
tics of a language into its language constructs if:

(1) C(F (a1, ...an)) = V(F (a1, ...an), d)

(2) V : L1 ×D1 × ...×Dex → L2
>
⊥ ×D1 × ...×Dex

(3) V(F (a1, ...an), x) = E(F (a1, ...an),DF , x))

with

(4) x, d ∈ D1 × ...×Dex

(5) d denotes the initial state of the additional information

A valuation function C that modularizes the translational semantics is defined
in terms of a compositional multiple in and output valuation function V and an
initial additional information d. In this function we combine the definitions of
the language constructs and their effects.

4.1.8 Higher-Order Grammar Requirement (R4)

The grammar of a language is defined by tree sets containing elements that de-
fine the set of well-formed sentences. The set T and N define the vocabulary of
symbols which can be used to construct phrases of the language. The set of pro-
ductions P contain rules defining the set of well formed phrases for the language.
With this definition languages are considered as a monolithic entity consisting of
symbols and rules.

In iterative language development, a small language is grown in the consecu-
tive phases. This growth is characterized by the vocabulary of the language and
its translational semantics. In this section, we focus on the vocabulary part of a
language.

Changing the vocabulary of the language means changing the set of produc-
tions of the grammar using the vocabulary part. As the productions directly
reference each other, the changes required to the rule set are not confined in a
subset of the grammar. In order to confine the syntactical definition of a subset of
the grammar, we impose the following requirement to context-sensitive grammar
definitions:

118 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

4.5. Requirement. (R4) The grammar Ḡ = 〈T,N, S, U, D〉 consists of:

T is a set of terminal symbols ,

N is a set of nonterminal symbols (syntactic categories) ,

S is an element of N called start (or initial) symbol ,

Uare the unbound variables,

D is a set of higher order productions, i.e. rules of the form K ::= β,

K ∈ N,

β ∈ (U ∪ T ∪N)∗,

Compared to a Chomsky type-2 grammar, the grammar Ḡ is defined by a set of
higher order productions D. The higher order productions differ from the Chom-
sky production in that they do not always directly refer to other productions, but
contain a number of free variables. A grammar complement is used to obtain a
Chomsky type-2 grammar.

Ḡ grammars have a set of unbound variables U . These serve as hooks which
are used to compose grammars.

4.10. Definition. A grammar complement Γ = 〈Ḡ1, ..., Ḡq, B〉 consists of:

B : (D1 ∪ ... ∪Dq)× P grammar generator ,

P is a set of productions, i.e. rules of the form A ::= α,

A ∈ N,

α ∈ (N ∪ T)∗,
N ⊆ N1 ∪ ... ∪Nq,

T = T1 ∪ ... ∪ Tq,

S ∈ (N ∪ T),

The generator B binds the variables from U1, ..., Uq to the actual symbols of the
grammar (T ∪N) in order to obtain the actual chomsky productions of the gram-
mar.

Example Consider a select statement in SQL [CAE+76]. The definition of
this statement and all other relevant statements used in this example can be found

4.1. MODULARIZATION MODEL 119

in Section 5.1. The grammar of a select statement Select = 〈T, N, S, U, D〉,
where:

T = {SELECT, FROM, WHERE},
N = {select, valuelist, sourcelist},
S = select,

U = {Value, Source, Condition},
D = {select ::= SELECT valuelist FROM sourcelist WHERE condition ,

valuelist := Value | Value "," valuelist ,

sourcelist := Source | Source "," sourcelist

}

Complementing the grammar Select with similarly defined grammars Expression,
Column and Table is defined by the tuple 〈Select, Expression, Column, Table, B〉
where:

B = {(select ::= SELECT valuelist FROM sourcelist WHERE condition ,
select ::= SELECT valuelist FROM sourcelist WHERE expression),
(valuelist := Value | Value "," valuelist ,
valuelist := column | column "," valuelist),
(sourcelist := Source | Source "," sourcelist ,
sourcelist := table | table "," sourcelist),
}

S = select

We do not foresee major difficulties in imposing the above requirement on
type-0 or type-1 grammars. We believe that the same reasoning can be used. A
thorough investigation lies outside the scope of this dissertation.

4.1.9 Conclusion

We imposed five requirements for modularizing the syntax and the translational
semantics of a language construct from other language constructs.

• The first requirement enforces that valuation functions can produce partial
program phrases. These phrases need to be completable. The consistency
of changes is controlled by local consistency enforcers.

• The second requirement enforces that valuation function operate on lan-
guage constructs rather than on whole language phrases. We applied the
notion of compositionality in denotational semantics. Compositionality is
refined in order to cope with the more complex translational semantics of
expressive language constructs and enforcing that their valuation does not
meddle with the semantics obtained from its parts.

120 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

• The third requirement additionally enforces that valuation functions only
depend on essential externally provided information. The external infor-
mation that codetermines the meaning of a language construct should be
inferred information and may only be provided by the translational seman-
tics of another language construct if it is essential to define its translational
semantics.

• The fourth requirement enforces that valuation functions can define effects
on language phrases produced by the translational semantics of other lan-
guage constructs. The effect can in general only be consumed by other
constructs if these effects are essential for their translational semantics.

• The fifth requirement enforces that the syntax of a language construct does
not refer to other language constructs.

4.2 Three Language Implementation Concerns

From the above model we deduce a new language implementation design in which
languages consists of three kinds of concerns: basic language concerns defining the
language constructs correspond to the semantic definition functions D, language
specifications defining the interactions between basic concerns by using special-
purpose concerns which in turn define the mechanisms to implement interactions,
correspond to the effect function E .

4.2.1 Basic Concerns

A basic language concern comprises a modular language construct which is defined
in isolation from the rest of the language implementation. It is defined by a
syntactical definition and a translational semantics.

The modularization is achieved by imposing a series of requirements R0 through
R4 on the specification of the program fragments, the translational semantics and
the syntax. These requirements prohibit the presence of any kind of dependency
among the basic concerns. Preserving this separation in the case of complex
translational semantics is a challenge. As each expressive language construct is
defined in a separate basic concern, isolated from other concerns, its semantics
consequently involves other concerns.

4.11. Definition. A modularized basic language concern LC = 〈Ḡ,D〉 is de-
fined by a grammar Ḡ and a set of semantic definition functions D, given the
main valuation function C. The definition of valuation functions C and func-
tions D are given in Section 4.1.7.

4.2. THREE LANGUAGE IMPLEMENTATION CONCERNS 121

4.2.2 Special-purpose Concerns

For each of the requirements R1 to R3, a special-purpose concern offering a mech-
anism to complete the translational semantics of basic concerns is required. Recall
that basic concerns only define the syntax and the translational semantics of lan-
guage constructs. The effect or the interactions required by the translational
semantics of a basic concern with another concern are not part of basic concerns
as these interactions violate their modularization. To elucidate this, let us revisit
our three sets of requirements R1 to R3: compositionality, multiple inputs and
multiple results. Note that the first requirement R0 and the fifth requirement R4
is completely handled by the basic concerns.

• The first requirement is compositionality. Compositionality enforces that
the translational semantics of a phrase must be determined by its parts
(requirement R1a). Because the algebra for expressing the translational
semantics is confined to the grammar of the target language, any value pro-
duced by the translational semantics must adhere to the grammar. There-
fore, the semantic values obtained from the parts used to construct a new
value must be appropriate for constructing the new value. Moreover, as the
value represents a program we also expect it to be semantically meaningful.
Because the language concerns are isolated from one another, one cannot
and should not anticipate all possible values of the parts to yield a valid and
meaning full program fragment (requirement R1b). Hence, the first kind
of special-purpose concern is a mechanism for resolving compositionality
conflicts.

• The second requirement enforces that the translational semantics can in
addition only depend on essential externally provided information (require-
ment R2a). The additional information required for the compilation of
a term resides with other concerns or may even have to be computed by
other concerns (R2d). Because the language concerns are isolated from one
another, the translational semantics containing this information cannot be
changed to accommodate for the needs of others (requirement R2c). Hence,
the second kind of special-purpose concern is mechanism for controlling
context information.

• The third requirement enforces that the translational semantics can define
effects on language phrases produced by the translational semantics of other
language concerns (requirement R3a). The multiple results produced by the
translational semantics of one concern need to be handled appropriately by
other the concerns such that the produced results get composed in the
correct part of the target program. Because the language concerns are iso-
lated from one another, other language concerns cannot be changed to cope
with the additional results and how they affect their translational semantics

122 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

(requirement R3b). Hence, the third kind of special-purpose concern is a
mechanism for handling multiple results.

4.12. Definition. A special-purpose concern describes a mechanism to establish
a particular kind of interaction among concerns.

A special-purpose concern does not implement the actual interaction between
two or more basic language concerns. It only contains a mechanism which is used
to implement the actual interaction. The three kinds of special-purpose concerns
need to be addressed for each language concern in order to successfully recompose
a set of language concerns into a language. We now further detail the three kinds
of special-purpose concerns.

The first kind of special-purpose concern resolves compositionality con-
flicts. Compositionality enforces that the meaning of a phrase gets computed
by its parts. A composition conflict arises when a new semantic value cannot
be computed using its parts, due to grammatical and semantical constraints. As
compositionality is embedded in the semantical function, the only way to resolve
these conflicts is by intervening in the composition of these language phrases.
Therefore, the interventions need to adjust the definitions the language constructs
and/or the compositions with other language constructs. Via such interventions,
semantic values can be adjusted to meet the necessary grammatical and seman-
tical constraints.

Non-destructive global interventions are for example supported by monads.
The monad determines how combined computations form a new computation and
frees the programmer from having to code the combination manually each time
it is required [New]. As such, the recursive application of the compile function
can be controlled by a monad. Hence, monads can intervene in the composition
of the program phrases without having to change their composition.

An example of a typical composition conflict is demonstrated in the compi-
lation of Tiger in [App98]. Consider the expression flag := (a>b). In Tiger,
boolean expression are compiled into a series of conditional jumps and not to a
value. This works fine when boolean expression are used in if or while con-
structs. However, as there is no value, an assignment cannot be performed. This
conflict is resolved by intervening in the composition of the assignment and the
boolean expression.

Other examples are explained in Section 5.7, Section 6.4.1 and in Section 7.4.8.

4.2. THREE LANGUAGE IMPLEMENTATION CONCERNS 123

The second kind of special-purpose concern handles multiple inputs.
The realization of these kinds of concerns consists of three parts: identification,
obtention and provision.

1. Identify context information. The special-purpose concerns issue the com-
munication with other concerns to access information outside the bound-
aries of the basic concerns.
Symbol tables for example are very effective as the requester of a value sim-
ply accesses the symbol table and retrieves a value by means of an agreed
upon key. The key abstracts the concrete location and whereabouts of
information.

2. Obtain context information. Information can be external configuration in-
formation for a given translation, can reside in other concerns or can be
the result of a computation spanning several concerns. In the first case, the
external configuration must be accessed and looked up. In the second case,
the concerns containing the information must be identified. In the last case,
the information is distributed among several concerns where each concern
relies on the information of another concern to compute its information. A
coordinated effort is required among the concerns to compute that informa-
tion.
There are many kinds of support for each of three cases. Firstly, global in-
formation is supported by a global variable in approaches which are close to
general purpose languages. Secondly, information residing in other concerns
can be obtained by queries e.g. traversals and structure-shy queries. Lastly,
information retrieval in attribute grammars is designed as a coordinated
effort.

3. Provide context information. The language concerns must be designed so as
to allow context information to be passed to it and the language concerns
must be able to identify that information. Naturally, information must be
computed when it is used in the computation of translational semantics.
Symbol tables are good examples for illustrating the provision of informa-
tion. They must be maintained by different language constructs and the
information must be available when required.

The best known example where context information is necessary is the dec-
laration of variables and the accompanying scoping rules. Upon using a variable
the correct declaration needs to be identified, retrieved and provided. This can
be performed by computing the declaration as in attribute grammars (see Sec-
tion 3.5). Another approach is to thread a symbol table (see Section 3.7.3).
Symbol tables are interesting as they raise the issue of providing the correct dec-
laration to a variable usage. The tables are maintained whenever a declaration
and scoping changes, and is consulted upon variable usage.

Other examples are explained in Section 5.8 and in Section 7.5.9.

124 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

The third kind of special-purpose concern handles multiple results.
The realization of these kinds of concerns consists of two parts: identification
and integration. We distinguish between local and nonlocal results according
to the terminology used in Section 2.3.2. The nonlocal results are the program
fragments that affect the results produced by other concerns and are scattered
over the target program.

Multiple results are very common in graph rewrite rules, as graph rewrite rule
can match any subgraph of the graph under transformation. The approach also
illustrates that both source and target programs can be used to identify where the
nonlocal term must become part of. The integration of the nonlocal boils down
to merely changing the node. That such a simple integration is not sufficient is
shown by the integrative composable generators approach.

1. Identify the terms of which nonlocals must become a part. In order to iden-
tify the term, one can either use the information encoded in the target terms
themselves, or use the basic concerns which produced it. Each possibility
has a number of distinguishing advantages. The first possibility is to iden-
tify the term by using the basic concerns. The advantage of using the basic
concerns lies in the level of abstraction provided by them. The identifica-
tion can be formulated without depending on the details of the valuation of
basic concerns. The second possibility is to identify the term by using the
target language program. The advantage of using the target program lies in
its independence of any particular language concern. In other words, iden-
tification depends thus solely on the availability of a target program term,
not the concern that created it. When the two possibilities are available
in the same system, a hybrid form combining the two possibilities can be
used.

As the term, in which nonlocal terms must be integrated, is an element of the
target language, the term is only available after the translational semantics
of the producing basic language concern has been executed. Therefore,
scheduling is of the essence when locating that term.

2. Integrate nonlocals with the identified terms. The integration of the nonlocal
must produce a grammatically and semantically correct target language
fragment. It must therefore respect the correctness of the nonlocal and the
identified term.

Most examples of expressive language constructs (see Section 2.1.1) require
changes to be made to the translational semantics of other language constructs.
Consider for example a language to produce a traversable tree implementation
(cfr. [Bri05]). It consists of language constructs that implement the tree imple-
mentation structure and a language construct that produces the traversal meth-
ods which need to be integrated in the tree implementation. First, one must

4.2. THREE LANGUAGE IMPLEMENTATION CONCERNS 125

identify the exact location where the methods need to be integrated in the tree
implementation. Second, upon integration some dependencies between the gener-
ated code of the various language constructs need to be established for an overall
correct implementation, such as methods or variables produced by one language
constructs that need to be referenced, or used, by the code produced by another
language construct.

Other examples are explained in Section 5.9, Section 5.9.2, Section 7.4.10 and
in Section 7.5.10.

4.2.3 Language Specification Concerns

We have defined the basic language concerns which define the syntax and the
translational semantics of language constructs. We also have identified three
kinds of special-purpose concerns which define mechanisms for establishing the
interactions among concerns. What remains is the composition of the basic con-
cerns and the special-purpose concerns in order to construct a language. This
composition is handled by the last concern, the language specification.

A language specification has two responsibilities: composing the grammar
and composing the translational semantics of the language concerns. In order
to simplify the definition we use abbreviations like ULC to denote a set U of the
definition of a language construct LC.

4.13. Definition. A language specification LS is defined by the tuple 〈S, M, B, C〉

where:

(1) S is the root LC,

(2) M is a set of LCs,

(3) B : D × P is a grammar generator,

(4) C is a valuation function (see Definition 4.9)

where

(5) ∀LC ∈ M, ∃d in DLC : LC ::= α, where α ∈ U∗
LC

(6) P is the set of glue productions

1. S is the root language construct of the language. It is the starting symbol
of the grammar.

2. M is the set of language constructs used in the language.

3. B is the grammar generator which composes the language constructs to-
gether into a language. The grammar generator composes the higher order
productions D to form the actual productions P . We refer to these produc-
tions as the glue productions because they glue the grammars of the various

126 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

language constructs together. The set of higher-order productions D con-
tain a higher order production for each language construct to be used in the
language (5). The variables of these productions are the unbound variables
of the language constructs ULC.

A language construct can have multiple occurrences within the language,
each occurrence composed with various language constructs. Therefore the
grammar generator is not a function but a relationship where each higher
order production can have multiple bindings, resulting in various productions
a.k.a. bindings.

4. C is the valuation function for the entire language. The function calls the
specific valuation functions DLC for each language construct. The valuation
function C acts as a central point of control to guide the evaluation process
and manages the interactions between the language constructs.

The first responsibility of a language specification is to compose the grammar.
It is defined by the language construct S and the grammar generator B. From
a language specification LS = 〈S, M, B, C〉 we can compose a chomsky grammar
G. The starting symbol of the grammar corresponds to the starting symbol of
the grammar of the starting language construct. The set of terminals contain
the language constructs without any unbound variables (the number of unbound
variables is denoted by /0). The remaining language constructs are the nonter-
minals. The set of productions of the new grammar includes the set of actual
productions of each LC and the set of glue productions. Formally:

G = 〈T, N, S, P 〉
where

T = {LC/0 | LC ∈ M}
N = M\T
SG = SSLC

P = {p | ∃LC ∈ M : p ∈ PLC} ∪ result(B)

Note that the translational semantics of the language C is a function that is
defined in the language specification LS, it is only used by the language constructs
to recursively obtain the translational semantics of its parts.

As the translational semantics of a language construct cannot fully effect its
translational semantics due to the set of requirements, the language specifica-
tion complements the semantical specification of a language. This is the second
responsibility of the language specification.

The language specifications rely on the three kinds of special-purpose con-
cerns to establish the interactions that were prohibited by the three requirements

4.3. SEPARATING SPECIAL-PURPOSE CONCERNS 127

imposed by our modularization model. Each concrete special-purpose concern
provides a specific mechanism to implement the interactions. As languages and
the necessary interactions vary, so do the special-purpose concerns. In the lan-
guage specification, a suitable set of special-purpose concerns are selected and
applied to establish the interactions among the basic language concerns.

In our formal description, the complement of the translational semantics and
the grammar of the basic language concerns is captured in the definition of the
valuation function E and in the grammar generator B respectively. The comple-
ments are realized by altering the valuation function E . Recall that this function
controls the successive application of the translational semantics of the language
constructs DF . For each language construct, control can be exercised over the
parts, over the external information and over the produced results. As such, com-
positionality conflicts can be resolved, external information flow can be set-up and
multiple results can handled correctly. The complements of the basic language
concerns are thus externally defined extensions to the language constructs. As
such, the entire translational semantics of a language construct has a local foot-
print situated around the language construct itself. This locality respects the
dominant decomposition of a language into language constructs, and preserves
the separation of concerns we set out in the beginning of this section.

4.3 Separating Special-purpose Concerns

The challenge we face in this dissertation is to capture the three kinds of special-
purpose concerns discretely in separate modules without breaking the separation
of the basic language concerns.

The goal of special-purpose concerns is to ensure that the interactions do not
require any invasive alteration of the basic concerns (requirement R1, R2, R3,
R4). Separating the special-purpose concerns from the basic concern is a dele-
gate process. The modularization of a special-purpose concern must respect the
dominant decomposition of a language into basic concerns. Semantics that is spe-
cific to a particular interaction must remain local to the special-purpose concern.
Semantics that is specific to a particular basic concern must remain local to that
basic concern.

We distinguish between two kinds of translational semantics that are added to
the basic language concerns: translational semantics complements and concern-
specific logic.

4.14. Definition. (SP0a) Translational complements effect the translational se-
mantics of basic language concerns.

4.15. Definition. (SP0b) Concern-specific logic is semantics that does not con-
tribute to the translational semantics. It is semantics on which other language

128 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

concerns are relying as required by the necessary interactions between the con-
cerns.

Let us revisit the special-purpose concerns and discuss the design challenges
raised by the three special-purpose concerns. It is not our intension to present
an exhaustive list of design challenges. This is in our opinion not possible. The
list we compiled is based on our extensive study of contemporary LDTs. So
each challenge has been addressed to a certain extent by these LDTs. This
becomes clear when we evaluate, in Section 4.5, these LDTs against the identified
challenges. Note that all challenges are illustrated by an example in Sections 5.5
to 5.9.

4.3.1 Challenges to Separate the Resolution of Composi-
tionality Conflicts

Compositionality conflicts can be resolved by interventions in the composition of
the language. The interventions change how a basic concern is composed with
other concerns. There are two challenges to resolve compositionality conflicts.

SP1 - Localized interventions One of the difficulties is to keep this change
local to the basic concern, because changes in composition may invalidate trans-
lational semantics complements based on other special-purpose concerns e.g. in-
formation obtention. An additional example of localized intervention is detailed
in Section 6.4.1 and in Section 7.4.8.

SP2 - Global interventions Another challenge is to solve composition prob-
lems which are not specific to a specific basic concern, but have a global impact
on a larger set of interactions between basic concerns.

4.3.2 Challenges to Separate the Handling of Multiple In-
puts.

SP3 - Identification with abstract names Context information is derived
from the source language (requirement R2b). The intention behind this informa-
tion serves as an identification mechanism in order to abstract from the location
of that information and in order not to pollute a basic concern with the seman-
tics of other basic concerns. In other words, the intentions enable communication
between the basic concerns without erecting dependencies between them. More-
over, the computation of derived information which is specific to a concern must
remain local to that concern, in order to respect the separation of a language into
basic concerns.

4.3. SEPARATING SPECIAL-PURPOSE CONCERNS 129

Obtention We distinguish between three sources of information, as each poses
its own challenge. An additional example illustrating SP5 is given in Section 7.5.9.

SP4 - Obtention of External Information This is the most simple form of
information obtention. It requires a mechanism to obtain information out-
side of the language definition.

SP5 - Obtention of Information of another language concern The chal-
lenge to obtain the information of another concern is the organization of
the flow between the language concern that requests the information and
the concerns that possess or influence the information. The definition of the
basic language concerns must not be altered in order to compute the neces-
sary information (requirement R2c). The challenge lies thus in separating
the flow of information of the basic concerns and minimizing the depen-
dencies with the basic language concerns. Note that, a concrete obtention
of information specific to a concern should remain local to that concern.
Only the mechanism for the obtention is separated into a special-purpose
concern.

SP6 - Obtention of information, distributed among several concerns
There is an additional challenge in the case of distributed information.
In the retrieval of distributed information, every involved concern per-
forms a part of the computation that is specific to that concern. These
computations are usually hierarchically organized, i.e. the computation
depends on the results of other participating concerns. While we stress that
separation, concerns should remain the dominant decomposition in the
language. So in case the information is distributed among terms, the logic
that is dependent on basic concerns may not be part of the special-purpose
concern. Hence, concerns should be externally modifiable or extendable
with additional logic once we use a concern in a particular language.

SP7 - Provision Offering the required information to the language concerns
should respect the modularization of the concern. This means that the infor-
mation has to be provided at the time it is requested by the concern without
changing its definition. The evaluation process must ensure that computation of
the information is scheduled before it has to be provided.

4.3.3 Challenges to Separate the Handling of Multiple Re-
sults

Identification The term in which to integrate the nonlocals is part of the target
program. We distinguish between two possibilities for identifying this term: either
identify the term via the source language program or identify the term via the

130 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

target language program. Each possibility has different tradeoffs and challenges
to overcome. In Section 5.9.2 the tradeoff is discussed more in detail and is
illustrated with an example. In that particular example, the target program is
the best choice. Another example illustrating that identification via the source
program is a better choice is discussed in Section 7.5.10.

SP8 - Identify via the source language program The first possibility to
identify the term is to use the input source language program. One should
be cautious not to violate the separation of concerns, because of several
reasons: First, the concerns producing the term in which a nonlocal ought
to be integrated, cannot be charged with additional responsibilities in order
to help identify or even actively search for nonlocals. Second, finding the
proper language concern may prove to be challenging. As each semantical
value is used by another language concern which recomposes with other
values, the ultimate role of the semantical value in the target program may
change during evaluation. It is often the role which codetermines in a target
program fragment whether a nonlocal should be integrated or not. Hence,
relying on the language concerns to determine the role a semantical value
fulfills in the target program may require detailed knowledge about all the
language concerns influencing the function of that semantical value. Such
dependencies penetrate the separation of the basic concerns.

SP9 - Identify via the target language program Another possibility is to
steer the identification based on the target language program. As the tar-
get program is produced by various basic concerns, identifying the term
erects dependencies between the semantical values produced by all the ba-
sic concerns along the path between the nonlocal and the term in which to
integrate the nonlocal. Due to the difference in abstraction level between
the source and the target language, the semantical values are more verbose.
As the intention (denotation) of the language constructs is spread over a
larger program fragment consisting of generic constructs, the identification
of the correct term requires more details about the semantic values. As
such, the increased risk of having more detailed dependencies compromise
the separation of concerns and renders the identification process more frag-
ile. This risk should be minimized as much as possible.

SP10 - Scheduling The last issue complicating the separation of this special-
purpose concern is scheduling. Basic concerns should be free to produce any
semantic value regardless of the fact whether other concerns producing the
identified term or influencing the integration have already been executed or
not.

Integration The integration of a nonlocal must produce a grammatically and
syntactically correct target language fragment. In its simplest form, integration

4.4. EVALUATION OF THE SEPARATION OF CONCERNS 131

is a three-party contract. More complex integrations are context dependent. A
well-balanced implementation of these challenges, that preserve the separation of
concerns is discussed in Section 6.3.3.

SP11 - A three-party contract The concerns producing the term in which
a nonlocal ought to be integrated, cannot be charged with additional re-
sponsibilities to integrate the nonlocals. A basic language concern must be
separated from the integration mechanisms. However, the basic language
concerns cannot be completely oblivious to integration. To this end, a com-
position is a third-party contract consisting of the two program fragments
that need to be composed and an external actor encoding that composition.
The parties which are being composed must be actively involved in this pro-
cess, in other words the program fragments may not be treated as mere data
and serve as input for the external rules. Otherwise, the integration itself
must remain external to the concerns.

SP12 - Context-dependent integration More complex integrations depend
on the enclosing terms. Successive applications of the valuation function,
recompose a semantical value with other values. The enclosing terms deter-
mine how semantical values are used within a target program. As the non-
local result is just one of the results of the semantical valuation functions,
the nonlocals are also subject to these successive recompositions. There-
fore, the integration of the nonlocal result may also be influenced by these
enclosing terms. We call such integrations context-dependent integrations.
The dependencies with the enclosing terms cannot be avoided, but should
be captured separately from the basic concerns that produced them.

4.4 Evaluation of the Separation of Concerns

We evaluate the formalization of the separation of language constructs in our
new language implementation design which consists of basic concerns and various
kinds of interactions a.k.a. special-purpose concerns.

Each concern necessary to implement a language has been made explicit:
basic concerns, special-purpose concerns and language specifications glueing these
together.

The separation into basic and special-purpose concerns is general and succinct.
The basic and special-purpose concerns contain the stable parts of a language
implementation, respectively a single language construct and a mechanism to
establish a particular interaction among the former. Each basic concern defines
the translational semantics of a language construct irrespective of the language in
which this basic concerns will be used. Each special-purpose concern is designed
to capture a particular interaction pattern among the basic concerns. The stable
and repetitive tasks of interactions are defined in the special-purpose concern.

132 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

The variable part is implemented via the special-purpose concerns in the language
specification.

Basic language constructs can be more easily certified because their definition
and their translational semantics can be studied in isolation. No other logic and
dependencies are tangled in the concerns that obstruct and complicate reasoning.
The same is true for special-purpose concerns. Each mechanism to establish a
particular interaction can be subject to extensive testing. Furthermore, special-
purpose concerns can access the concrete language specification and check some
preconditions on a concrete language upon compilation of the language specifica-
tion.

We evaluate the separation of concerns of a language implementation using
the following criteria:

Not tightly related The basic concerns are defined in complete isolation from
one another to the extent that their grammatical and semantical definitions are
restricted. In their respect, these concerns are completely orthogonal. Introducing
them into a language does not affect the translational semantics of other concerns.
However, the language specification complements the translational semantics of
these concern with logic that enables the necessary interactions among these
concerns. These interactions render the basic concerns not orthogonal in their
composition. The degree to which this logic is robust to changes depends on
whether changes to the language break the interaction defined by the mechanisms
provided by special-purpose concerns.

Cohesion At first sight, basic concerns may not fully adhere to this principle.
Basic concerns only define their translational semantics and have a higher-order
grammar. In other words, basic concerns only have a partial grammatical and
partial semantical definition. However, when basic concerns are used in a language
(see Section 4.2.3), they are further completed with semantic complements (see
Definition 4.14) and concern-specific logic (see Definition 4.15). As such, the
complete translational semantics of a language construct logically become part
of the basic concern that defines it. Changes or modifications specific to a basic
concern or its interactions with other concerns can be performed in the same
logical entity. (cfr. the challenges of the special-purpose concerns in Section 4.3
and the language specification in Section 4.2.3).

The complexity of separating concerns. Ernst et.al. [Ern03] formalizes the
concept of separation of concerns by means of a unary homomorphism. Assume
that we have a programming language L. Let P be the set of all programs written
in this language. Moreover, let S be the set of all possible semantic values for L,
such that every program p ∈ P has a semantics s ∈ S. Finally, let φ : P −→ S

4.4. EVALUATION OF THE SEPARATION OF CONCERNS 133

be the semantic function, such that φ(p) is the semantics of the program p.
Given P , S , and φ, and functions πsyn : P −→ P and πsem : S −→ S

• φ is a unary homomorphism from (P, πsyn) to (S, πsem) if ∀p ∈ P :
φ(πsyn(p)) = πsem(φ(p)).

• πsyn : P −→ P is a syntactic reduction function which removes the con-
cern from the program. Similarly, πsem : S −→ S is a semantic reduction
function removing the concern from the meaning of the program.

• φ(πsyn(x)) = πsem(φ(x)) ensures consistency between the syntactic and the
semantic level. In other words, the syntactic reduction function is used
as a tool to specify exactly what the concern looks like, and the semantic
reduction function is used to specify exactly how the concern works.

Ernst et.al. defines separation as a property of a reduction function, i.e., a
concern may be either syntactically or semantically separated from the rest of
the program. This analysis framework aids in deciding on how much separation
is implied by a given set of reduction functions. A syntactic reduction function
exhibits a high degree of separation if it is simple e.g. it deletes a single subtree
from the program. A semantic reduction function exhibits a high degree of sepa-
ration if it is simple i.e. has no other effect than skipping the initialization of one
or more variables (global/static variables, or instance variables) as well as some
operations on them.

The semantic reduction function to remove a basic concerns from language is
relatively simple given the fact that concerns are not orthogonal in their composi-
tion. The simplicity is mainly due to the use and the separation of the interaction
mechanisms into special-purpose concerns. The use of interaction mechanisms
guarantees a certain degree of robustness to changes which do not break the in-
teraction mechanisms. Because the interaction mechanisms are separated, the
complex logic of the interaction mechanism does not have to be considered in
detail when removing a basic concern from a language.

In order to remove a particular language construct LC from a language speci-
fication LS = 〈S, M, B, C〉, the language specification is altered into a new spec-
ification LS ′ such that:

• The new set of language constructs M ′ no longer contains the language
construct LC

• The grammar generator B rebinds the abstract productions D that were
bound to the language construct LC to another language construct.

• The new valuation function C ′:

– fixes the information flow which is broken due to the structural change
or because an information source is missing.

134 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

– fixes the distribution of nonlocal values which are broken due to struc-
tural change or because the semantic value to integrate the nonlocal
value is missing.

– fixes the compositionality conflicts due to the new language construct
compositions Bnew

LS ′ = 〈S, M ′, B′, C ′〉
where

M ′ = M\{LC}
B′ = Bunchanged ∪Bnew

Bunchanged = {(d, p(a1, ..., an))|ai ∈ M ′}
Bnew = {(d, p(a′1, ..., a

′
n))|a′i ∈ M ′

and ∃(d, p(b1, ..., bn)) ∈ B with bi = LC}
C ′ is the new valuation function

The syntactical reduction function is similar to the semantical reduction func-
tion due to the cohesion of the basic language concerns in the language specifica-
tion. Naturally, a concrete implementation must ensure this property.

4.5 Interaction Strategies

Based on our analysis of the contemporary language development techniques
(LDTs) (see Definition 2.2) presented in Section 4.5.1, we find that the LDTs
lack the ability to effectively modularize the basic language concerns and the
special-purpose concerns. However, our evaluation revealed a number of mech-
anisms which indicate that LDTs offer special mechanisms to implement a par-
ticular task or challenge of a special-purpose concern. We call these mechanisms
interaction strategies (see Section 4.5.2). In a thorough evaluation performed in
Section 4.5.3 and Section 4.5.4 of these mechanisms, we explore four interaction
strategy shortcomings. From these shortcomings we distill in Section 4.5.5 the
necessary design requirements for a new language development technique in which
these shortcomings can be tackled.

4.5.1 Separation of Concerns in Contemporary Language
Development Techniques

Each contemporary language development technique provides its own abstractions
and techniques which can be used to implement languages. In this section, we
present a summary of the investigation of the degree to which the LDTs adhere

4.5. INTERACTION STRATEGIES 135

to or are capable of keeping the identified concerns separate. The full analysis is
described in Appendix A.

The investigation of each concern in a particular language development tech-
nique is structured according to the major tasks and major challenges identified
in the previous section. There are two questions we answer in the discussion of
each task and challenge. First, is it possible to separate the various concerns.
Second, to what extent are the mechanisms offered by the systems sufficient.

An overview of the analysis is shown in Table 4.3. The table lists the vari-
ous kinds of LDTs which are presented in Chapter 3. We discuss them against
the task and challenges required for the effective separation basic concerns and
special-purpose concerns. The task and challenges are the columns. The list
of abbreviations used in those columns are explained in Table 4.2. The various
entries of the overview table are listed in Table 4.1.

Observe that some LDTs are discussed as a group (such as template-based
approaches) if they do not have distinct properties which are relevant to the
goal of this investigation. Other groups of systems (such as ad hoc systems or
compositional generators) are discussed in more detail for exactly the opposite
reason.

Symbol Explication

-
The task or challenge is not applicable or cannot be defined for that
system, because the entry represents a heterogeneous group
The entries in the table which are left blank indicate that the task
or challenge cannot be realized.

· Indicates that a solution is possible but in practice not feasible.

◦ Indicates that a solution is possible, however it is not or ill sup-
ported by the LDT.

• Indicates that the solution supports a degree of separation of con-
cerns.

?
Indicates that a LDT offers special mechanism to implement a par-
ticular task or challenge of a special-purpose concern.

Table 4.1: The different degrees of separation of concerns

Table 4.3 contains varying degrees of separation of concerns offered by the
contemporary LDTs. The results of our investigation are promising but unsatis-
factory. The promising part is that there is always a LDT which has a • for each
column of the table. This means that for each requirement, task and challenge
there exists a LDT which offers at least a degree of separation of concerns. Most
columns even are marked with a ?, which indicate that an LDT offers special
support. Hence, it is safe to say that each of requirement, task and challenge
plays an important role in the development of language implementations.

The unsatisfactory result of this investigation is that there is no row which
is filled with ◦, • or ?’s. In other words, there is no LDT in which all of the
requirements of the basic concerns and of the special-purpose concerns can be

136 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

basic concern
GS grammar and semantics
Ch completable
P partial
Co consistency
MI multiple inputs
MO multiple outputs

Special-purpose Concern - Compositionality
LI localized interventions
GI globalized interventions

Special-purpose Concern - Multiple Inputs
Id Identification
Obe Obtention of External Information
Obc Obtention of Information of another language concern
Obd Obtention of Distributed information
Pr Provision of Information

Special-purpose Concern - Multiple Results
IdS Identify via the target language program
IdT Identify via the source language program
S Scheduling
I3 Integration using a three-party contract

Table 4.2: Tasks and challenges of language concerns.

4.5. INTERACTION STRATEGIES 137

implemented, let alone supports a degree of separation of concerns. We can thus
conclude that a language implementation in each of the listed LDTs is bound to
violate the separation of basic and special-purpose concerns.

There are entries that deserve a more thorough discussion. Those are marked
with a ?. A ? indicates that a LDT offers a special mechanism for implementing
a particular task or challenge of a special-purpose concern.

4.5.2 A Definition of Interaction Strategies

The interesting thing about the entries marked with a ? is that these are suc-
cinct, distinct, successful and proven approach to implement the special-purpose
concerns that confine the impact of the implementation of complex translational
semantics on other basic concerns. We will call these mechanisms interaction
strategies.

Interaction strategies do not entirely separate the various concerns within a
language implementation. The most noteworthy interaction strategies in this
regard are those that deal with the integration of multiple results as a three-
party contract. Monads, ICG, SOP and dynamic rewrite rules are four examples
in which the weight of the integration is focused on: external rules, the concerns
that consume the nonlocals, the target language translational semantics and the
concerns that produce the the nonlocals (this is discussed in more detail in 4.5.4).
Clearly none of them actually support the three-party contract (SP11 4.3.3) as
each interaction strategy shifts the responsibility of integration to one entity. As
such, these interaction strategies violate separation of concerns.

4.5.3 Interaction Strategy Space

The most prominent interaction strategies found in our analysis are listed in
Table 4.4. The table groups the interaction strategies into six major families of
systems: tree rewrite rules, graph rewrite rules, attribute grammars, template-
based approaches, compositional systems and ad-hoc systems. Each interaction
strategy is designed so as to improve the separation of a kind of special-purpose
concern.

When looking at Table 4.4 three things catch our immediate attention. First,
interaction strategies are unequally spread over the various tasks of special-purpose
concerns. Obtention of information for multiple input concerns is strongly repre-
sented in the table, whereas interaction strategies for multiple results, and com-
positionality are rather rare.

Second, there are no all-in one interaction strategies. Interaction strategies
focus on a particular task of the concern. So for instance in order to control
multiple inputs, several interaction strategies need to combined. Another less
trivial example illustrating the need to combine multiple interaction strategies is
for localizing compositionality interventions by means of interaction strategies for

138 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

the obtention of external information. By implementing the obtention of external
information with interaction strategies that can cope with the changes induced
by the interventions, interventions cannot break the obtention of information.

Third, there are very few interaction strategies which reoccur in multiple
LDTs. You can see this rather quickly by looking at the name of the interaction
strategies. Names are strongly related to the LDT which support that interaction
strategy. There have been attempts with limited success, for example the con-
struction structure-shy query facilities with rewrite strategies [vW03]. The only
systems where interaction strategies often reoccur are ad-hoc approaches. The
same cross-fertilization between general purpose languages and LDTs occurred
in attribute grammars: a favored platform for constructing attribute grammars
is functional and object-oriented languages [Paa95].

4.5.4 Interaction Strategy Shortcomings

Based on our three observations above, the current interaction strategy space
can be characterized as incomplete, fragmented and non-orthogonal to the LDTs.
The space is incomplete due to their unequal spreading over the tasks of the
special-purpose concerns. The space is fragmented because there is no all-in one
interaction strategy. And finally, the interaction strategy space and the LDTs
is non-orthogonal because interaction strategies seem to be largely specific to a
particular LDT.

Given the current configuration of the space, LDTs fail to separate completely
the concerns using their interaction strategies. Fragmented interaction strategies
only improve the separation of concerns for a particular task. So for a complete
separation, different interaction strategies focussing on other tasks and concerns
must be combined. Unfortunately the set of interaction strategies is incomplete,
so there are interaction strategies lacking. However, completing the interaction
strategies is not trivial as interaction strategies cannot be added to the LDTs.

In search of some answers to resolve the above situation, we conducted a closer
analysis. The analysis revealed four shortcomings of contemporary interaction
strategies: they are not generally applicable, there is room for improvement,
there is room for new interaction strategies and there is no silver bullet interaction
strategy.

Interaction Strategy applicability

Each LDT offers its proper interaction strategy with its strengths and weaknesses.
For each challenging language implementation a choice must be made in order
to determine the most applicable interaction strategy. Each interaction strategy
captures a particular interaction pattern between concerns. So, the suitability of
a particular interaction strategy depends on whether the interaction pattern cap-
tured by the interaction strategy conforms to the communication pattern among

4.5. INTERACTION STRATEGIES 139

basic concerns.
In Appendix B, we compare the interaction strategies that improve the separa-

tion between interacting basic concerns by focussing on the same task or challenge
of the same special-purpose concern. We show that interaction strategies imple-
menting the same task or challenge of a special-purpose concerns have different
tradeoffs and are not simply exchangeable.

Room for Improvement

There is still room for alternative interaction strategies to improve current inter-
action strategies. An obvious example are monads. Monadic programming is a
general purpose feature which offers control over the application of the transla-
tional semantics of the basic concerns. Its generic property opens many oppor-
tunities, but its bareness renders it a crude tool for separating the concerns of a
language implementation. Clearly, monads were not designed with this purpose
alone in mind. However, monads teach us that there is large potential to be
explored.

Current interaction strategies are only capable of establishing a degree of
separation of concerns, hence our rather lengthy discussion. Interaction strategies
have a number of inherent properties but also have a number of limitations due
to the properties of the LDT in which they are embedded. An example of such
an interaction strategy is attribute forwarding. Attribute forwarding redirects
attribute requests to the target language fragment. One of the difficulties of
this interaction strategy, which is acknowledged by the authors, is to determine
when to redirect and where to direct. Children, parent and results may define
the attribute, and the order in which these are consulted is difficult to generalize
for every language implementation. Unfortunately, attribute grammars do not
expose control over the attribute requests.

Current interaction strategies provide alternatives for explicit referencing other
concerns. More so, these interaction strategies target the accidental involvement
of concerns. We believe that it is also possible to eliminate some of the more essen-
tial involvement of concerns. Consider for example symbol tables and structure-
shy queries. In the symbol table interaction strategy, concerns that produce the
information that needs to be accessible for other concerns, must still explicitly
publish that information into the symbol table. The explicit publication can be
extracted from of those concerns in cases where the value that has to be published
can be identified by exploiting structural or run-time information. Structure-shy
queries reference other concerns directly. This could be avoided by extending
structure-shy queries for finding concerns based on other information such as the
availability of some derived information or some structural information. Another
example is the scope of structure-shy queries. The scope of XPath structure-shy
queries is unlimited. A query can traverse the entire source or target program.
For some queries that is not desirable and the search space should be limited.

140 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

By adding a scope clause to structure-shy queries this can be realized. In Sec-
tion 6.3.2, we extend our structure-sky query interaction strategy with scoping.

Room for New Interaction Strategies

Interaction Strategies are unequally spread over the various tasks of special-
purpose concerns. Most interaction strategies are mainly focused on the prop-
agation of information. New interaction strategies can be conceived to tackle
other kinds of involvements such as changing the responsibilities and the imple-
mentation of other concerns to ensure cooperation and consistency. The most
prominent example of such a situation is the underrepresentation of specific in-
teraction strategies to handle multiple results. In most LDTs multiple results
are currently treated as multiple inputs. This means that the identification of
concerns in which nonlocals must be integrated is made responsible for retrieving
nonlocals and for integrating them in the translational semantics of the concern.
Interaction strategies which do support the identification, statically introduce an-
chor points to guide the identification e.g. dynamic rewrite rules are statically
scoped, and morphisms describe static patterns. Statically deciding where to
integrate is in general not always feasible (cfr. implicit node creation). These
mechanisms are especially unsuited to deal with context-dependent integration.
In Section 6.3.3, we implement a new interaction strategy to handle multiple
results, which is called INR.

So far interaction strategies are generic, meaning that they can be used in
many language implementations. There are also interaction strategies which are
designed for a particular language specification. We designed such an interaction
strategy in Section 7.5.9 for the case study used to validate this dissertation.

The applicability of interaction strategies is limited because they focus on par-
ticular tasks or challenges and assume a different set of prerequisites and inter-
action patterns between the concerns. Hence, new interaction strategies tailored
to other interaction problems and language cases are necessary to separate the
concerns of a language implementation effectively. In Section 6.3.3 we present a
series of language-specific extensions to the INR interaction strategy that handles
multiple results. These extensions complete the basic version of the interaction
strategy in order to incorporate the semantics of the language.

Silver Bullet

Each LDT advocates its own, specific interaction strategy(-ies) for improving
the SOC of a language implementation. Furthermore, each of them have been
researched in depth by the community and have proven over time their value.

Based on the current interaction strategy space, interaction strategies need to
be combined so as to provide an adequate solution (e.g. multiple inputs interaction
strategy and localizing compositionality resolutions in Section 4.5.3). Moreover,

4.5. INTERACTION STRATEGIES 141

interaction strategies make different tradeoffs. Consider for example structure-shy
queries and attribute propagation rules. In the former, one explicitly and locally
defines a path in the parse tree without imposing any requirements on other
concerns. In the latter, attribute values are requested (more or less) regardless
of location of the value of that attribute but relying on other concerns to offer
(define, propagate) the attribute.

It is unlikely that an overall general-purpose interaction strategy can be found
that combines all the merits of the existing interaction strategies, eliminates their
drawbacks and thus renders them obsolete.

Conclusion

Contemporary interaction strategies alone do not suffice because of the four short-
comings explained in the previous paragraphs. Additionally, we observe that in-
teraction strategies are embedded in the language development techniques. They
are offered as part of the distinguishing characteristics of a LDT. The availability
of such an interaction strategy determines for those systems to a large extend
their competitive advantages over other systems. It is thus desirable to equip a
LDT with appropriate facilities in which new and specially tailored interaction
strategies can be specified.

4.5.5 Metafacilities

The interaction strategies embedded in contemporary LDTs do not suffice for
completely separating the basic concerns from the special-purpose concerns. There-
fore a LDT must be equipped with facilities to be able to construct new and tai-
lored interaction strategies. The question we asks ourselves in this section is what
kind of facility is suitable. To answer that question, we need to find a common
denominator for characterizing interaction strategies in the midst of the design
choices of a LDT.

The Representation of Programs

The first design choice of LDTs is the representation of programs. This representa-
tion dictates the available operations which can be performed by the transforma-
tion modules of a LDT. There is a tension between the various forces influencing
that decision.

From a separation of concern perspective, data structures must be completable
and basic concerns should enforce the local consistency of the produced program
fragments. The only way to enforce local consistency of data structure is to
construct an abstract data type.

142 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

The simplest way to discover the influences of interaction strategies on the data
structures is by looking at reoccurring interaction strategies in ad-hoc approaches.
It comes at no surprise that the most reoccurring interaction strategies are found
in ad-hoc approaches. The major reason for this is due to the availability of a
general purpose language. A general purpose language renders ad-hoc systems
the most flexible LDTs, in which new libraries can be added and implemented to
facilitate the implementation of languages. General purpose languages provide
good libraries to query tree structured data if a suitable representation is used.
Having a suitable data structure is thus an important enabler. In most ad-
hoc approaches, such a suitable structure is a metastructure (e.g. container -
element structure). The metastructure provides a generic interface to access and
manipulate the specific data structure of each language construct. As such, it
is used to facilitate queries such as traversals in OO, in prolog and in functional
languages like Haskell. Some LDTs require developers to use these metastructures
directly, some generate this metalevel and others use reflection.

Because the two representations are important they should be available at
the same time: an abstract data type to implement the basic concerns and a
metastructure to implement and separate the special-purpose concerns.

Amount of Control LDTs Expose over their Execution

The second design choice is the amount of control the LTDs expose over their
execution. Each interaction strategy exposes, in a very controlled way, part of
the system. So each interaction strategy enables reasoning about the metalevel
confined and controlled to a particular purpose. Table 4.5.5 lists all the iden-
tified interaction strategies together with the metaoperations they perform on
the system. Because the interaction strategies only expose part of the system in
a restricted fashion, it is hard to construct other interaction strategies or even
adapt them. The attempt to implement structure-shy queries on top of rewrite
strategies has been successful up to the point where structure-shy queries required
more metalevel abilities.

The focus of the LDTs at the moment when the interaction strategies were
designed was to offer a single suitable layer of abstraction for the internal machin-
ery of a LDT. Nothing more and nothing less. Those highly restricted metalayers
expected that the interaction strategy offered to separate the concerns is suf-
ficient for every language implementation. A typical example illustrating this
expectation of the designers of interaction strategies are the long awaited specific
interaction strategies to implement language concerns with multiple results. In
many LDTs multiple results are treated as the inverse of multiple inputs and
should therefore be tackled with interaction strategies to control multiple inputs.
Interaction strategies and capabilities to control multiple results have been added
very recently. Compared to the first interaction strategies to control the multiple
inputs that were designed in the late seventies, the interaction strategies to con-

4.6. CONCLUSION 143

trol multiple results were published in 2001 (dynamic scoped rewrite rules) and
2005 (ICG).

The critique that reflective systems rely on the assumption that their metafa-
cilities are sufficient for the domain of specific system extensions was first pre-
sented in the context of support for evolution by Kai-Uwe et.al. [MB97]. Kai-Uwe
even argues that “the developers have to devise an appropriate design for that
higher level self-reflection”. In this dissertation we argue exactly the same line
of thought. Interaction strategies should be designed by developers such that a
higher level of reflection can be employed by the language developers. To make
this possible LDTs must be equipped with more generic metafacilities. More
generic metafacilities do not imply unlimited and full control over an LDT as it
is the case with ad-hoc approaches. Neither does generic metafacilities imply a
general purpose mechanism (like monads) which merely is the vehicle to imple-
ment interactions. Generic metafacilities for interaction strategies must expose
an appropriate expressiveness at a suitable abstraction level for controlling the
execution and to reason about an LDT and the language implementation at hand.
We want to stress with the terms appropriate and suitable that metafacilities of an
LDT should be designed for supporting the construction of interaction strategies
for resolving compositionality conflicts, control the information flow and integrate
nonlocal results.

4.6 Conclusion

Modularization Model We separate, decouple and parameterize the language
constructs to modularize a language implementation along the dimension of the
language constructs.

Our modularization model is defined by five requirements R0 to R4.

The five requirements are:

• The first requirement (R0) enforces the that valuation functions can produce
partial program phrases. The consistency of changes is be controlled by local
consistency enforcers.

• The second requirement (R1) enforces that valuation functions operate on
language constructs rather than on whole language phrases.

• The third requirement (R2) enforces that valuation functions can in addition
only depend on essential externally provided information.

• The fourth requirement (R3) enforces that valuation functions can define
effects on language phrases produced by other the translational semantics
of other language constructs.

144 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

• The fifth requirement (R4) enforces that the grammar of single language
constructs are set of higher order productions which do not directly refer to
other productions, but contain a number of free variables.

The requirements R0 to R3 imposed on the specification of the translational
semantics prohibit the presence of any kind of dependency among the basic con-
structs, ranging from a direct reference to other constructs, or any implementation
decision that is imposed by, or stems from, another construct. The fifth require-
ment R4 attacks the monolithic definition of grammars of languages in order to
separate the grammatical definition of each basic language construct. As such,
basic language constructs define their translational semantics and their syntax in
complete isolation from one another.

Three Language Implementation Concerns From our modularization model
we deduce a new language implementation design in which languages consist of
three kinds of concerns: basic language concerns defining the language constructs,
language specifications defining the interactions between the basic concerns by
using special-purpose concerns which define the mechanisms to implement the
interactions.

Each basic concern comprises a modular language construct which is defined
in isolation with respect to the rest of the language implementation. It is defined
by a syntactical definition and a translational semantics. As such, a basic concern
captures a separate construct of a language definition.

The five requirements restrict the definition of the syntax and the translational
semantics of basic concerns. The exiled translational semantics needs to be com-
pleted, to be able to effect the complex translational semantics. Requirements R1
to R3 are tackled by three kinds of special-purpose concerns. A special-purpose
concern describes a mechanism for establishing a particular kind of interaction
among concerns:

• The compositionality requirement is completed by the special-purpose con-
cern that resolves compositionality conflicts.

• The requirement enforcing that translational semantics can in addition only
depend on essential externally provided information is completed by the
special-purpose concern that controls multiple inputs.

• The requirement enforcing that translational semantics can define effects on
language phrases produced by the translational semantics of other language
concerns is completed by the special-purpose concern that controls multiple
inputs.

The challenge lies in describing the mechanisms of these special-purpose concerns
separately from the basic language concerns such that the separation of basic lan-
guage concerns is not violated: invasive changes of basic concerns are prohibited
and their cohesion is ensured.

4.6. CONCLUSION 145

Completing basic language concerns to compensate for the requirement R1 to
R4 is performed in a language specification. The specification binds the syntac-
tical definitions of basic concerns and uses special-purpose concerns to establish
interactions between them.

Metafacilities for Interaction Strategies An analysis of the separation of
concerns into basic concerns and special-purpose concerns in contemporary LDT
shows that separation cannot be completely realized. The success of LDTs range
from entire failure to implement the given concerns, to at most a couple of mech-
anisms to improve the separation of concerns. We refer to these mechanisms as
interaction strategies.

The current interaction strategy space can be characterized as incomplete,
fragmented and non-orthogonal to LDTs. Given the current configuration of the
space, LDTs fail to separate basic concerns completely using their interaction
strategies. A closer analysis revealed four shortcomings of contemporary interac-
tion strategies: they are not generally applicable, there is room for improvement,
there is room for new interaction strategies and there is no silver bullet interaction
strategy. In order to remedy this situation, these shortcomings can be tackled by
equipping LDTs with metafacilities so as to be able to construct new and tailored
interaction strategies.

The metafacilities form a common denominator of interaction strategies which
determines the representation of the programs and the amount of control which
is exposed by a LDT. Two representations are important and should be available
at the same time: an abstract data type to implement the basic concerns and
a metastructure to implement and separate the special-purpose concerns. In-
teraction strategies should be designed by developers such that a higher level of
reflection can be employed by language developers. To make this possible, generic
metafacilities are required.

Chapter 5 presents a new language development technique and discuss the basic
concerns and the language specification concern. Chapter 6 discusses how special-
purpose concerns fit in the new language development technique. It introduces
the metafacilities required for implementing the tasks and challenges imposed by
special-purpose concerns.

146 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

2

L
D

T
/F

ea
tu

re
s

b
as

ic
co

n
ce

rn
s

C
om

p
os

it
io

n
al

ty
M

u
lt

ip
le

In
p
u
ts

M
u
lt

ip
le

O
u
tp

u
ts

G
S

C
h

P
C

o
M

I
M

O
L
I

G
I

Id
O

b
e

O
b
c

O
b
d

P
r

Id
S

Id
T

S
I3

Ic

R
ew

ri
te

R
u
le

s
•

◦
◦

◦
◦

◦
·

◦
◦

·
◦

T
ra

ve
rs

al
s

•
◦

◦
◦

◦
◦

◦
?

•
•

•
D

y
n
am

ic
al

ly
sc

op
ed

re
w

ri
te

ru
le

s
w

it
h

re
w

ri
te

st
ra

te
gi

es
(f

o
cu

s
on

S
tr

at
eg

o)
•

◦
◦

?
◦

◦
◦

?
◦

?
?

?

M
ac

ro
s
(f

o
cu

s
on

M
ac

ro
s
d
e-

si
gn

ed
fo

r
C

om
m

on
L
is

p
)

•
◦

◦
·

•
•

◦
-

-
-

T
em

p
la

te
-b

as
ed

A
p
p
ro

ac
h
es

(l
ik

e
X

S
L
T

,
V

el
o
ci

ty
)

◦
◦

◦
•

·
•

?
◦

-
-

-

G
ra

p
h

re
w

ri
te

ru
le

s
(l

ik
e

A
G

G
)

•
•

◦
•

◦
◦

•
•

•
◦

◦
◦

◦
•

•
Im

p
li
ci

t
N

o
d
e

C
re

at
io

n
•

•
◦

•
◦

◦
•

•
•

◦
◦

•
?

?
M

at
ch

in
g

b
y

M
or

p
h
is

m
s

•
•

◦
•

◦
◦

•
•

?
◦

◦
◦

?
•

H
ig

h
er

O
rd

er
A

tt
ri

b
u
te

G
ra

m
m

ar
s

◦
•

?
·

?
•

•
?

•
◦

•
◦

F
or

w
ar

d
in

g
◦
•

•
·

?
•

•
?

?
◦

•
◦

M
u
lt

ip
le

in
h
er

it
an

ce
an

d
T
em

p
la

te
s

◦
•

•
·

?
•

?
?

•
◦

•
◦

F
ir

st
C

la
ss

A
tt

ri
b
u
te

G
ra

m
-

m
ar

s
◦
•

•
·

?
•

?
?

•
◦

•
◦

C
om

p
os

it
io

n
al

G
en

er
at

or
s

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

S
u
b
je

ct
or

ie
n
te

d
p
ro

gr
am

-
m

in
g

(S
O

P
)

•
◦

◦
-

-
-

-
-

-
?

?

G
en

V
o
ca

◦
◦

-
-

-
-

-
-

-
-

In
te

gr
at

iv
e

C
om

p
os

ab
le

G
en

er
at

or
s

(I
C

G
)

•
•

?
◦
•

?
◦

•
•

•
•

?
?

?

A
d
h
o
c

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

D
el

eg
at

in
g

C
om

p
il
er

O
b
-

je
ct

s
(D

C
O

)
◦

?
?

•
◦

?
?

?
?

?
?

?
?

?
?

In
te

n
ti

on
al

p
ro

gr
am

m
in

g
(I

P
)

•
?

?
·

?
?

?
?

?
?

?
?

?
?

J
ak

ar
ta

T
o
ol

S
u
it

e
(J

T
S
)

•
•

•
◦

·
?

?
?

◦
•

•
F
u
n
ct

io
n
al

◦
•

•
•

•
?

?
?

?
?

◦
•

•
?

Table 4.3: Overview of the capabilities of each LDT to realize the tasks and
challenges of each language concern.

4.6. CONCLUSION 147

LDT Strategies Concern Task

Rewrite rules traversals multiple input obtention
rewrite strategies multiple output scheduling
limited form
of structure-
shy paths

multiple input obtention

dynamic rewrite rules multiple output identification
multiple output integration

Graph rewrite
rules

implicit node creation multiple output identification

multiple output integration
morphisms multiple output identification

multiple input obtention

Attribute
grammar

attributes multiple input identification

copy- and propagation rules multiple input obtention
attribute forwarding multiple input identification

multiple input provision

Template-
based
approaches

structure-shy queries multiple input obtention

Compositional
Systems

Composition rules multiple output integration

Identification rules multiple output identification

ICG basic concern consistency

Ad-hoc monads multiple input obtention
monads multiple output integration

compositionality local and global
traversals multiple input obtention
symbol tables multiple input identification

Table 4.4: Overview of the interaction strategies offered by LDTs.

148 CHAPTER 4. MODULARIZATION OF LANGUAGE CONSTRUCTS

S
trategies

M
etaop

eration
T
ask

traversals
op

eration
s

on
term

s
gen

eric
traversals

on
th

e
p
arts

of
an

y
term

lim
ited

form
of

stru
ctu

re-sh
y

p
ath

s
op

eration
s

on
term

s
gen

eric
access

an
d

traversals
on

th
e

p
arts

of
an

y
term

d
y
n
am

ic
rew

rite
ru

les
op

eration
s

on
th

e
set

of
ru

les
d
efi

n
in

g
ru

les
an

d
ad

d
in

g
ru

les
to

th
e

set
of

ru
les

at
ru

n
tim

e
im

p
licit

n
o
d
e

creation
op

eration
s

on
n
o
d
es

gen
eric

id
en

tifi
cation

an
d

com
b
in

ation
of

n
o
d
es

m
orp

h
ism

s
op

eration
on

n
o
d
es

an
d

con
n
ection

s
gen

eric
ex

p
ression

s
op

eratin
g

over
con

n
ec-

tion
s

b
etw

een
n
o
d
es

an
d

n
o
d
es

th
em

selves

cop
y
-

an
d

p
rop

agation
ru

les
op

eration
on

attrib
u
tes

gen
eric

ru
les

op
eratin

g
on

attrib
u
tes,

to
com

p
u
te

th
e

valu
es

of
an

attrib
u
te

u
sin

g
a

given
set

of
attrib

u
tes

attrib
u
te

forw
ard

in
g

op
eration

on
attrib

u
tes

in
tercep

tin
g

u
n
k
n
ow

n
attrib

u
te

valu
e

re-
q
u
ests

an
d

red
irectin

g
it

stru
ctu

re-sh
y

q
u
eries

op
eration

on
term

s
q
u
ery

on
th

e
p
arts

an
d

p
aren

t
of

a
term

C
om

p
osition

ru
les

op
eration

on
p
rogram

fragm
en

ts
com

p
osin

g
p
rogram

fragm
en

ts

m
on

ad
s

op
eration

on
com

p
u
tation

s
com

b
in

es
com

p
u
tation

s
in

to
a

n
ew

com
p
u
-

tation
sy

m
b
ol

tab
les

op
eration

on
in

form
ation

gen
eric

storage
an

d
retrieval

cap
acities

of
in

form
ation

T
ab

le
4.5:

O
verv

iew
of

th
e

m
etaop

eration
s

p
erform

ed
b
y

in
teraction

strategies.

Chapter 5

Linglets : The basic language concerns

In the previous chapter, we defined a language as a set of cooperating language
concerns. Each basic concern, defines in isolation of other concerns, a single
language construct by its syntactical definition and its translational semantics.
A concern is completely separated from another concern when it adheres to five
sets of requirements of our modularization model discussed in Section 4.1. In this
chapter, we present the design of a language implementation system which turns
these requirements into a solution.

The language implementation system we present in this dissertation is called
the Linglet Transformation System (LTS). In LTS, a language implementation is
conceived as a set of interacting language modules called linglets, each capturing a
basic language concern. This is called the kernel of LTS. The interactions among
linglets using special-purpose concerns are discussed in the next chapter.

A suitable architectural style is chosen to reflect the interactions of the system.
The division of a language in basic concerns requires a totally different architec-
ture which is in fact orthogonal to the typical architecture used in contemporary
LDTs (see Section 2.2.2).

LTS is implemented in an object-oriented style because this paradigm fits
the interactions among linglets. Each linglet represents a program fragment of a
larger program and defines several methods which operate on that program frag-
ment. The most important methods of a linglet are its translational semantics, its
concern-specific logic, and logic to complete the complex translational semantics
of linglets with the necessary interactions and cooperations.

The remainder of this chapter is structured as follows. We first describe the
running example which will be used throughout this chapter. Section 5.2 presents
the architecture of LTS and introduces its two major parts: linglets and language
specifications. We detail the features of LTS that ensure the modularization of
the various language concerns into linglets and that enable adaptations of linglets
for implementing interactions among them. The language specification of linglets
and of language specifications themselves are detailed in Sections 5.3 and 5.4.

149

150 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Equipped with these specifications we show in Section 5.5 how linglets enforce
and adhere to the requirements of our modularization model to ensure their sep-
aration. Furthermore, we show that in the language specification linglets can be
combined together and adjusted with the translational semantics complements,
and the necessary concern-specific logic.

5.1 A Running Example: T2SQL Language

Languages are constructed by composing modular basic language concerns, each
defining the syntax and the translational semantics of a single language construct.
In order to clarify this, we implement the Tuple Calculus language [Cod72, EN94]
in terms of SQL [CAE+76]. We refer to this language implementation as the
T2SQL language. T2SQL is used as a running example throughout this chapter.
The Tuple Calculus language and SQL are designed for querying databases.

Note that this chapter does not contain the whole implementation of the
T2SQL language. We rather focus on the interesting and relevant parts of the
language implementation for the purpose of this chapter.

Tuple Calculus Language

The Tuple Calculus Language is a formal declarative language where queries are
formulated as predicates. As an example, consider a query to collect the family
names of the employees with a wage of 50.000 that work on the project ‘Little
Boy’. This query is formulated in Tuple Calculus as follows:

(1) { t.family |

(2) employee(t) ∧
(3) t.family = t.lastname ∧
(4) t.wage = 50.000 ∧
(5) (∃ w)(workson(w) ∧ w.ssn = t.ssn ∧ w.project = ’Little Boy’

) }

Queries in Tuple Calculus are defined as a mathematical sets. A set consists
of two parts: a header (line 1) and a condition (lines 2-5) which are separated by
a vertical bar. The query collects all tuples t of the universe that are valid for a
given condition. The tuples in the header are either free or bound variables in the
set. They can remain free or can be bound to a relationship. If the tuple variables
remain free, the tuple is entirely constructed through the equality equations such
as in line 3. If a tuple is bound to a relationship (line 2), the tuple becomes a
member of that relationship. Note that equality equations are also valid when
the header tuple variables are bound. In that case, the result tuple is extended
with the additional values. For instance in our example query, the tuples t are

5.1. A RUNNING EXAMPLE: T2SQL LANGUAGE 151

bound to the relationship employee and contain an additional attribute called
family.

The set, defined in the query above, contains all the tuples with a family
attribute where t is an employee with a wage of 50.000. In addition, for each tuple
t there exists one tuple w of the workson relation, with the same social security
number (ssn) attribute as the employee tuple and with a project attribute equal
to Little Boy.

The Tuple Calculus grammar in BNF[BBG+60] that we consider is:

NamedSet ::= ID "=" Set

Set ::= "{" Attributelist "|" Expression "}"

Attributelist := Attribute

| Attribute "," Attributelist

Attribute ::= ID "." ID

Expression ::= Expression Operator Expression

| NOT Expression

| Relation

| BinOperation

| ForAll

| Exists

Relation ::= ID "(" ID ")"

Operator ::= AND | OR

BinOperation ::= Attribute BinOperator Attribute

BinOperator ::= EQUALS | GREATERTHAN | ...

Exists ::= "(EXISTS ID ")" "(" Expression ")"

ForAll ::= "(FORALL ID ")" "(" Expression ")"

The names printed in capital refer to the following lexical categories:

NOT ¬
AND ∧
OR ∨
EXISTS ∃
FORALL ∀
ID [a-zA-Z @$&#%][a-zA-Z 0-9]*

EQUALS =
GREATERTHAN ≥

SQL

The target language of the T2SQL language is SQL. SQL is a structured query
language operating on a database schema. Below we reformulate the same Tuple
Calculus example query in SQL.

152 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

SELECT DISTINCT t.lastname as family

FROM employee t

WHERE t.wage = 50.000 AND

EXISTS (SELECT * FROM workson w

WHERE w.ssn = t.ssn AND w.project = ’Little Boy’)

SQL queries consists of a number of clauses. Only the SELECT, FROM and
WHERE clauses are considered. SQL select queries return a new table called a
result set or result table. The columns to be returned are specified in the SELECT

clause. The example query selects1 one column of the table employee called
lastname. The name of that column is aliased with the keyword as to give it
the name family in the result table. The table employee is aliased with the
name t. The WHERE clause specifies an additional condition stating which rows
are selected from the given tables. Only rows with a wage column value of 50.000
are selected. In addition, for each employee row there must exist at least one
row of the workson table with the value of the column ssn being the same as
the value of the column ssn of the employee row, and the project column being
equal to Little Boy.

The SQL grammar in EBNF that we consider is:

Select ::= "SELECT" ["DISTINCT"] Columnlist

"FROM" tablelist "WHERE" Expression

Columnlist := Column

| Column "," Columnlist

Column ::= ID "." ID as ID

Tablelist := ID

| ID "," TableList

Expression ::= Expression Operator Expression

| NOT Expression

| Relation

| BinOperation

| Exists

Operator ::= AND | OR

BinOperation ::= Attribute BinOperator Attribute

BinOperator ::= EQUALS | GREATERTHAN | ...

Exists ::= "EXISTS" "(" Select ")"

The names printed in capital refer to the following lexical categories:

1The technical term for ‘selecting’ columns is ‘projecting’. Projection results in a vertical
slice of a table.

5.2. LTS ARCHITECTURE 153

NOT NOT

AND AND

OR OR

ID [a-zA-Z][a-zA-Z 0-9]*

EQUALS =

GREATERTHAN >=

In the following sections, details about the translational semantics of the
T2SQL language are given along with the examples.

5.2 LTS Architecture

The concepts of our new language design technique have been introduced in Sec-
tion 4.2. Recall that, languages are designed with three kinds of concerns: basic
language concerns defining the language constructs and language specifications
defining the interactions between basic concerns by using special-purpose con-
cerns which in turn define the mechanisms to implement the interactions.

In LTS, linglets implement the basic language concerns which we defined in
Section 4.2.1 and are structured according to Definition 4.11 〈Ḡ,D〉. A linglet
thus consists of two parts: a grammar Ḡ specifying the syntax of a language
construct, and a set of functions D defining its translational semantics.

In addition, due to the modularization of special-purpose language concerns,
concern-specific logic (see Definition 4.15) can be added to linglets. This logic
establishes the interactions among linglets. As such, linglets are made responsible
for all of their behavior in a language. The special-purpose language concerns
form the subject of the next chapter.

The components of our architecture are linglets. The connectors are the in-
teractions among linglets in order to parse the complete source program and in
order to produce an equivallent target program. The set of connectors are special-
purpose concerns. Architectural specifications correspond to language specifica-
tions.

The architectural style of LTS is quite different from the typical LDT architec-
ture (see Section 2.2.2). Pipe and filter architectures use a shared data structure
as a common denominator of all components. However, this style does not match
the components and their interactions we described above. More precisely, the
basic language concerns do not successively process the entire source program
text yielding a new target program text at the end of the pipeline.

Therefore we opt for an object-oriented organization [GS93]. An object-
oriented architectural organization is a better fit since the components of this
style are objects. Objects bundle data along with the possible manipulations
(functions and procedures) on that data. As linglets also bundle an expression of
a source program together with their manipulations (e.g. producing an equivalent
expression in a target language), objects are a natural representation for them.

154 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

ParserLexer Semantics

Set ::= "{" Attributelist
	 	 "|" Expression "}"
Attributelist := Attribute
 | Attribute "," Attributelist

Attribute ::= ID "." ID

Expression ::=
	 Expression OP Expression

 | Relation

 | Attribute BINOP Attribute

 | Exists ::= "(" EXISTS ")"
	 	 "(" Expression ")"

ID

SELECT Attributelist
FROM tablelist
WHERE Expression

ID .ID as Alias

Expression =
 Expression OP Expression

	 | true

	 | Attribute BINOP Attribute

	 | EXISTS(SELECT*
	 	 	 FROM tablelist
 WHERE Expression)

ID = [a-zA-Z_]
 [a-zA-Z_0-9]*

EXISTS = E

Exists

PHASES

LA
N

GU
AG

E
CO

N
ST

RU
CT

S

ID

Set

Attribute

Expression

Relation

Bin Operation

Figure 5.1: Illustration of the decomposition of the T2SQL language using the
new architectural style.

We now argue this design choice more precisely by showing that the behavior
of linglets nicely maps to objects.

• First, objects bundle data along with their possible manipulations (func-
tions and procedures). Linglets do so too. The data of a linglet is the lan-
guage algebra 〈E, F〉 given its grammar Ḡ (see Definition 4.5). The methods
on a linglet implement its translational semantics, its concern-specific logic
and even its syntactical definition. Recall that the translational comple-
ments are not part of the definition of a linglet but they are provided in
language specifications (see Section 4.2.3).

• Second, objects interact by sending messages to other objects. These mes-
sages invoke one of the methods offered by the receiving object. Linglets
behave similarly. Parsing is a coordinated effort among linglets, realized
by relying on the parsers of each linglet. In addition, the target language
program is constructed by invoking the translational semantics of linglets
and their concern-specific logic.

5.2. LTS ARCHITECTURE 155

• Third, polymorphism and late binding are powerful mechanisms to structure
a compiler. In object-oriented attribute grammars [Hed92, Hed99, Gro92,
MuLA99, Paa95], the left hand-side of a production acts as a common
superclass for the alternatives in the right hand-side. Consider for exam-
ple, the production Expression ::= Assignment. In an object-oriented
attribute grammar, the Assignment node class subclasses the Expression

node class. The superclasses share common behavior. A popular example
of such common behavior is the threading of an env attribute [MuLA99,
Hed99, HM03, Gro92], that models the environment of visible identifiers.
Note that although environment threading can be implemented in LTS like
the existing LDTs, we treat this interaction mechanism, like any other, as a
special-purpose concern. These concerns are discussed in the next chapter.

Polymorphism and late binding also play an important role in LTS. Linglets
are composed in an inheritance hierarchy of language specifications (see Sec-
tion 5.4.2). In Section 5.9.2, we argue that polymorphism and late binding
of prototype-based languages are crucial to maintain the modularization of
the translational semantics which produces multiple results. The potential
of polymorphism and late binding for specifying interaction strategies is
used in the next chapter particularly in Sections 6.2 and 6.3.

We also show the more classical benefits of polymorphism and late binding,
allowing linglets to share common behavior and allowing interactions among
linglets to abstract from more concrete linglets. An example illustrating this
is given in Section 5.9.2.

In order to clarify our object-oriented architectural style, we illustrate its
impact on the implementation of the T2SQL language in Figure 5.1. In con-
ventional compilers, the three phases of a compiler, which are considered in this
dissertation, are lexing, parsing and the generation. Because these phases are the
primary components in the typical and conventional language implementation
architecture, they are shown in grey. These phases serve as a reference point to
illustrate the impact of our new architectural style on a language implementa-
tion. As a primary component we will use language constructs which crosscut
the phases of a conventional compiler. The figure depicts seven language con-
structs of the T2SQL language: ID, Set, Attribute, Expression, Relation,
BinOperation. Each language construct defines part of the vocabulary of the
language (a lexer and a grammar) and its translational semantics expressed in
SQL. Consider for example the Set construct. The Set construct contains two
parts: a list of attributes and an expression, and is transformed into a Select

statement in SQL.
Applying an object-oriented architectural style to the design of the T2SQL

compiler decomposes it into a set of interacting objects. Each object represents a
language concern, contains the necessary information to recognize and parse its

156 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

syntax, and defines its semantics to produce its equivalent translational semantics.
These objects are defined by linglets. These are composed and glued together in
a language specification (cfr. Section 4.2.3). The primary function of a language
specification is to compose the grammars of each linglet into the grammar of
the language. The secondary function is to complete linglets with behavior to
establish the necessary interactions among linglets and to provide a coherent
language.

Figure 5.2 depicts the T2SQL language. Each language construct is sepa-
rately defined by a linglet (depicted by diamonds) in isolation from the rest of
the language. A diamond is divided into three layers, depicting the basic parts
of a linglet. The top layer contains the name of the linget. The middle layer
contains the parser which is depicted by its syntactical description. The bottom
layer contains its translational semantics which is depicted by the linglet’s equiv-
alent target language expression. The linglets that are brought into a language
specification (black square) which is depicted by the grey arrows pointing from
the nodes of their composition (the black lines).

Set
"{" header

"|" condition"}"

SELECT ...

Attribute
tuple"." name

... as Alias

Bin-
Expression
left OP right

BinExp

Relation
...

true

ID
[...][...]*

ID

=, > , ...

Exists
E "(" ... ")"

exists (select ...)

reference to
the linglet ID
reference to
a linglet

linglet

language specification

Figure 5.2: T2SQL using an object-oriented architectural style.

5.3. LINGLETS 157

5.3 Linglets

Before we commence the explanation of the language defining linglets, we
first introduce the major concepts of a linglet by using the example linglet
AttributeEquation. The AttributeEquation linglet defines the language
construct to equate two attributes. In the example Tuple Calculus query printed
below, the equate construct (line 3) binds an attribute family of the free tuple
t to the attribute lastname of the bound tuple e.

(1) { t.family |

(2) (∃ e)(employee(e) ∧ e.ssn = ’098-00008’ ∧
(3) t.family = e.lastname

(4) }

The AttributeEquation linglet is defined as follows:

(1) Linglet AttributeEquation {

(2) syntax {

(3) left "=" right

(4) }

(5) generate { | left right alias nonlocal local |

(6) left := ast left

(7) generate.

(8) right := ast right

(9) generate.

10) ast isFreeTuple

(11) ifFalse: [#Expression{ ’left = ’right }]

(12) ifTrue: [local := #Expression{ true }.

(13) alias := right name.

(14) nonlocal := #Column{ ’left as ’alias }.

(15) local nonlocal add: nonlocal role:#alias.

(16) local

(17)]

(18) }

(19) isFreeTuple { }

(20) }

The syntax of the AttributeEquation linglet is defined in its syntactical
method called syntax (lines 2-4). The syntax consists of three parts: a left at-
tribute denoted by the word left, an equal sign denoted by "=", and an name
attribute denoted by the word right. The left and right are syntactical pa-
rameters (cfr. unbound variables in requirement R4 4.5). These parameters are
bound to other linglets in the language specification of T2SQL.

The abstract syntax tree (AST) node of the AttributeEquation linglet con-

158 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

tains two parts or childnodes i.e. left and right. We refer to the current
executing node with the pseudo variable ast. The translational semantics of the
AttributeEquation linglet is defined in its semantical method called generate.
The translational semantics is compositional so, the linglet retrieves its parts
left and right (lines 6 and 8) by sending the messages left and right, subse-
quently retrieves the semantics of its parts (lines 7 and 9) by sending the message
generate and finally computes a new target program fragment in SQL (lines
10-17).

The semantics of the AttributeEquation linglet is context dependent2. De-
pending whether the left part of the linglet is a free tuple of the set or not, the
AttributeEquation linglet produces a different SQL program fragment. The
context information cannot be computed by using the parts contained in the
AttributeEquation linglet. Clearly the linglet requires additional information.
The need for that additional information is declared by the abstract method
isFreeTuple in line 19. This method has to be implemented in the language
specification, and has to determine whether or not the left attribute is a free
tuple.

If the left attribute is not a free tuple of the set, then an attribute equation is
translated into a SQL expression comparing the two attributes. This expression
is produced in line 11 by using the #-construct which enables the construction
of target programs using the concrete syntax of our target language SQL. The
quoted variables are metavariables.

If the left attribute of the linglet is a free tuple (line 12), then an attribute
equation is translated into two results: an Expression and a Column. These
results must be integrated in various places in the target language program. To
illustrate that consider, our tuple query example where the left part of the equa-
tion on line 3 is bound to the attribute t.family of a free tuple t. This tuple
query (see below) is translated to a SELECT statement containing the aliased
column (line 1) in the SELECT clause and the true expression (line 3) in the WHERE
clause.

(1) SELECT e.lastname as family

(2) FROM employee e

(3) WHERE e.ssn = ’098-00008’ and true

The primary or the local result of the AttributeEquation linglet is a simple
SQL true expression (line 12), the other result is a SQL column which aliases
a column (line 14). This other result is attached as a nonlocal result (line 15)
because SQL expressions and columns cannot be combined into a single SQL ex-
pression as the columns must end up in the SELECT clause instead of the WHERE

2Note that for clarity reasons we do not fully explain the reasons for the semantics of this
linglet. Examples in the next sections will be explained in more detail.

5.3. LINGLETS 159

clause.

With polymorphism and late binding of object-orientation many if state-
ments can avoided. From an object-orientation perspective the if statement
(ifTrue:ifFalse: expression (lines 10-12)) could be replaced by splitting the
AttributeEquation linglet into three linglets. An abstract AttributeEquation
linglet with an abstract generate method, and two linglets which delegate to the
abstract linglet. The two linglets would each handle a different case of the if
statement: a linglet to produce SQL expression comparing the two attributes
(line 11) and a linglet to produce the other two results (lines 12-16). From
a transformation perspective, this is a bit more difficult to realize because the
nodes of the source program tree are created during parsing. At that time, there
is not sufficient information to decide which node to take. A couple of solutions
have been proposed ranging from dynamic reclassification of objects [Ser99] via
rewritable reference attribute grammars [EH04] to plain source tree rewriting (see
Sections 3.1 and 3.2). A solution for this problem could be elegantly and easily
supported in LTS because of its prototype-based paradigm. In prototype-based
languages an object inherits from another object via delegation. The delegation
link can be changed or dynamically computed when necessary.

The next two sections introduce the language to specify language specifications
and the language to specify linglets. We only explain how local-to-local trans-
formations are implemented. This transformation serves as a simple illustration
throughout the discussion of the language specification. Quite a lot of advanced
features remain rather abstract as they are used by linglets to cope with more
complex translational semantics i.e. compositionality conflicts, requiring external
information and producing multiple results. This is explained in more detail in
Section 5.5.

5.3.1 Linglet Declaration

Linglets are blueprints of language constructs. Thus, a concrete language con-
struct denoting a fragment of a particular program is represented by an instanti-
ation of the linglet defining the language construct. Linglet instances are called
AST nodes. We properly introduce the term in Section 5.3.3.

A declaration of a linglet defines the linglet type3, and a body which is a list
of method declarations:

Linglet ::= LINGLET Type "{" Linglet-body "}"

Type ::= ID

Linglet-body ::= Syntax Generate (Method)*

3By convention, we start the type of a linglet with a capital letter.

160 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

There are two mandatory method declarations in each linglet: a syntax

method and a generate. The former is a syntactical method for defining the
concrete syntax of a linglet and uses a modularized grammar formalism. Note
that only one syntactical method is allowed per object. The latter is a seman-
tical method implementing the translational semantics of the linglet using an
imperative object-oriented language.

Besides the syntax and the generate method, other methods can be defined
for various purposes. Methods defined to control the data of a linglet (see Sec-
tion 5.3.2) come in pairs of getter and setter methods. Methods defined without
a body indicate the need for external information, which must be provided by the
language designer when using the linglet in a language. Other methods are defined
to perform auxiliary computations. Moreover, due to the separation of special-
purpose concerns, additional methods are needed to implement concern-specific
logic (see Definition 4.15). Also, due to the isolation of linglets, additional meth-
ods are needed to complete their translational semantics (see Definition 4.14). For
these reasons, linglets and their instantiations must be extendable with behavior.
Behavioral extensions are realized through specialization in a prototype-based
object-oriented model. Linglets are arranged in a single-inheritance hierarchy via
delegation.

Unlike general purpose languages, the data that is manipulated by the se-
mantical methods is not explicitly defined in a linglet. The methods defined
in a linglet serve various purposes. Some methods are an intrinsic part of the
definition of the linglet such as the method that defines its translational seman-
tics, other methods are added afterwards to respond correctly to requests made
by other linglets, yet other methods establish communication and cooperation.
These methods have their own logic and their own data which they manage. So a
computation performing on a linglet can thus declare only those values that are
important for a computation and may ignore the rest. The absence of a central
data declaration, reduces the coupling of the various responsibilities of linglets.

5.3.2 Linglet Data

The data of a linglet are its AST children and other data which is referred to or
created for the computation of its translational semantics. Data are not explic-
itly declared but implicitly by the linglet’s syntactical and semantical methods.
Language constructs or expressions used in these methods that implicitly declare
the data will be presented in Section 5.3.3 and Section 5.3.4 respectively. Be-
cause linglets are extended with additional behavior in language specifications,
therefore new data of a linglet are not fixed at compile time.

The data managed by a linglet, on which the semantical methods operate, are
called parts or children. Other data like references to other AST nodes are also
called children, yielding the datastructure which is used through the translation
into a graph. In object-oriented terminology, these parts correspond to instance

5.3. LINGLETS 161

variables. Lingets store their parts in open-ended forms that map labels to values.
As they are open-ended, there is no upper limit to the number of mappings4.
Labels are used to store and to retrieve the values (see next section)5.

The default value of a part is the bottom element i.e. nil. As such, linglets can
produce incomplete program fragments which are completed during the execution
of the transformation by other linglets (see Section 5.6).

The main source of information for the data of linglets is the parsing of pro-
gram fragments using its syntactical definition. The semantical methods of a
linglet mainly retrieve that data. However, there are cases where the data of
linglets are also altered. This occurs for example when circular information is
computed (more details and examples are given in Section 5.8) or in iterative
computations of information to compute the location of nonlocal results (more
details and examples are given in Section 5.9).

The current implementation of LTS does not offer support to avoid naming
conflicts. These conflicts can be avoided with adequate namespace management.
Note that this is not further discussed in this dissertation.

5.3.3 Syntactical Methods

Syntactical methods describe both the concrete syntax and the abstract syntax
of linglets.

Concrete Syntax

The concrete syntax of a language construct defined by a linglet is described in a
syntactical method. As said before each linglet has only one syntactical method,
this method is called syntax.

The syntactical definition of a linglet is defined in EBNF according to the
requirements we imposed in Section 4.1.8. EBNF is chosen because of its con-
venient and concise syntax. All the well-known basic operators are available:
concatenation (Sequence), disjunction (Alternative), optional (Optional) and
repetition (Kleene Star) operators. The operators operate on groups of symbols
called Rules. The rules in LTS are nested. Sequences of rules state that rules
follow each other. Alternative rules state that only one of the rules is required.
An optional rule over another rule states that the syntax described by the other
role is not obligatory. Rules that may occur multiple times are defined by the
Kleene Star. The productions describing the syntax of linglets are:6.

Syntax ::= "syntax" "{" Rule "}"

4Open-ended forms could be implemented with hash tables or lists. Objects are typically
implemented with arrays, restricting the number of accessible fields.

5By convention, the label of a part consists of lowercase characters.
6Symbols enclosed in brackets are optional. Repetitive symbols are denoted by the Kleene

Star. Alternatives are separated by a bar and a series of symbols by a space.

162 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Rule ::= Sequence | Alternative | Optional

KleeneStar | CharRange | String | Ref

Sequence ::= (Rule)*

Alternative ::= Rule ("|" Rule)*

Optional ::= "(" Rule ")!"

KleeneStar ::= "(" Rule ")*"

CharRange ::= INT "-" INT [Expression]

String ::= """ [1-38,40-255]* """ [Expression]

Ref ::= ID

As linglets are modularized, rules do not operate on terminal symbols or non-
terminals, but on primitive rules and syntactical parameters respectively. Ter-
minals are not allowed, since each linglet defines its own syntax, syntax that is
considered to be a terminal in one linglet is not necessarily a terminal in another
linglet. Therefore, a lexer which turns a character stream into a terminal symbol
(token) stream is not very useful, and would even erect unnecessary dependencies
in the syntactical definitions of linglets as there needs to be a common agree-
ment on the token stream. Instead of terminals, primitive rules are used, such
as: CharRange and String. The former rule accepts every character between
the specified range. The latter rule accepts a series of characters. The optional
Expression, which accompanies these rules, is explained in the next section.

Nonterminals are not allowed because, in order to preserve modularization,
only nonterminals defined within a linglet would be allowed to be used in the
syntax definition of that linglet. Instead of nonterminals, an indirection is made
through syntactical parameters (see the nonterminal Ref)7. These parameters
correspond to the unbound variables U of the grammar Ḡ = 〈T, N, S, D,B, V, U〉
(see Definition 4.5) of a language construct. These parameters are bound in the
language specification to other linglets (see next section). Hence, the definition
of a linglet cannot directly reference other linglets.

Example: The Set linglet defines the Set language construct of T2SQL (see
Section 5.1). The syntax of the Set linglet contains two syntactical parameters
variable and condition. These do not directly refer to the linglets Variable

and Condition. In the language specification, a variable and a condition are
bound to the language constructs Attribute and Expression respectively.

linglet Set {

syntax {

"{" variable+ "|" condition "}"

}

}

Note that the + operator is syntactic sugar for a sequence of a rule followed
by a Kleene Star.

7By convention, syntactical parameters consists of lowercase characters.

5.3. LINGLETS 163

Abstract Syntax

The syntactical description of a linglet does not only define the set of correct
language phrases that can be constructed with that linglet, but also implicitly
describes the abstract syntax of that linglet. The abstract syntax is a structured
representation of the correct language phrases, as it removes all information that
does not affect the semantics of a linglet. What remains in the abstract syntax
of a linglet is stored as parts.

The nodes in an AST refer to other AST nodes and to primitive data types.

When program text is parsed, the linglet whose syntactical definition matches
the program text is instantiated. That instantiated linglet is called an abstract
syntax tree (AST) node. Hence, the syntactical description defines a parser, serv-
ing as a constructor to create the AST nodes. When a syntactical parameter is
encountered, the parser of a linglet invokes the parsers of the linglets bound to
that parameter. New AST nodes are constructed and added to the current AST
node as parts. So, in a syntactical method, the major parts of the linglet are
its syntactical parameters. These parts are stored without a need for semantic
actions [App98]. The linglet compiler deduces the applicable data structure re-
quired to store the AST nodes. For multivalued parameters i.e. parameters that
occur multiple times in the language phrases, the AST nodes are stored in an
ordered collection. Otherwise, the AST node is stored as a plain reference.

Besides the syntactical parameters, also other parse data need to be stored,
namely the values of the primitive syntax rules CharRange and String (see previ-
ous section). Because the system cannot automagically deduce what information
to store and how to store it, the linglet developer must manually provide code for
this.

Example: In T2SQL, an AST node created by the Set linglet (depicted in
Figure 5.3) contains a variable and a condition part, one for each syntactical
parameter. The variable is a collection of references as more than one variable
is allowed in the header of a set. The condition is a plain reference. The
parameters variable and condition are bound to the linglets Attribute and
Expression respectively. The Set linglet contains a parser recognizing its given
syntax. When the syntactical parameter variable is encountered, the linglet
invokes the parser of the Attribute linglet and subsequently stores the resulting
AST node in the part variable. Similarly, when condition is encountered, the
linglet invokes the parser of the Expression and subsequently stores the resulting
AST node in the part condition.

Merits of a Modularized Syntax

The syntax of language constructs is modularized in LTS by decoupling their
syntax definitions with syntactical parameters. The modularization of syntax
has several merits. The first merit is the resulting fundamentally different design

164 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Set
"{" variables

"|" condition"}"

SELECT ...

variablecondition

variable
condition

reference
to ASTs
reference
to linglets

AST

linglet

semantic link

Figure 5.3: An instantiated Set linglet of the T2SQL language.

perspective when defining a linglet: it forces developers to conceive the linglet
in complete isolation from other language constructs and thus not to depend on
syntactical nor semantical properties of other language constructs. This is par-
ticularly important for the modularized definition of translational semantics, as
the semantics of a language construct is expressed in terms (of the semantics) of
other language constructs i.e. its parts (see Section 4.1.3). The syntactical prop-
erties of language constructs stem from its syntax definition and are the various
parts of the linglets defining these constructs. The semantical properties of lan-
guage constructs are the various methods supported in the linglets defining these
constructs e.g. the kind of return values returned by the method defining the
translational semantics, the existence of auxiliary methods to compute additional
context information. By not relying on these syntactical and semantical prop-
erties, the semantics of language constructs does not depend on the availability
of certain parts of other linglets nor on any method supported by other linglets.
Consequently, the language in which linglets are used can evolve more easily as
linglets do not contain embedded fixed dependencies.

In order to illustrate the gained reusability of linglets let us look at a par-
ticular kind of linglets that solve compositionality problems, which are auxiliary
language-independent linglets. An example of such a linglet is the AsNonlocal

linglet. The syntactical definition of this linglet (shown below) consists of one
syntactical parameter body. The semantics of this linglet, which we cannot show
at this point, resolves compositionality conflicts by declaring the semantics of the
linglet bound to the body parameter as a nonlocal result i.e. a result which must
not directly be used, but must be integrated in another location in the target
program.

5.3. LINGLETS 165

Linglet AsNonlocal {

syntax { body }

...

}

A second merit of modularizing the syntax of language constructs is the
reusability of syntactical patterns in a language. An example of such a common
pattern are sequences. They are used for sequences of statements separated by a
dot or a comma, sequences of arguments or parameters separated by a comma,
array initializers separated by a comma, etc. In LTS, such a sequence can be fairly
easily be defined as a reusable syntactical pattern in the Sequence linglet (shown
below). This linglet contains two syntactical parameters element and separator

respectively denoting the linglet defining the construct to be sequenced and the
separator used between the elements.

Linglet Sequence {

syntax {

element (separator element)*

}

...

}

Also syntactical patterns which are specific for a language can be used. For
example, one of the common syntactical patterns in XML formatted languages
are tags. Describing the concrete tags in such a language is tedious e.g. the syntax
of the HTML tag of the HTML language using EBNF:

HTMLTag ::= "<html [HTMLAttributes] ">" [HTMLBody] "</html>"

HTMLTag ::= "<html" [HTMLAttributes] "/>"

...

In LTS, the syntax pattern of a tag can be described by the linglet Tag (shown
below). This linglet serves as a constructor to describe the various concrete
tags in an XML formatted language. It consists of four syntactical parameters
lefttagname, attribute, body and righttagname. In order to construct a spe-
cific tag, these syntactical parameters are bound to specific linglets in a language
specification.

Linglet Tag {

syntax {

"<" lefttagname ((attribute)* ">" (body)*

"</" righttagname ">" | "/>")

}

}

166 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Another kind of example, illustrating the reusability of syntactical patterns,
are the auxiliary language independent linglets that solve composition deficit
problems. A composition deficit arises when two or more linglets need to be
composed but have too few syntactical parameters to compose them. A concrete
example of a composition deficit and the language independent linglet which
resolves it, is shown in our validation in Section 7.4.9.

5.3.4 Semantical Methods

The most important semantical method is the method implementing the transla-
tional semantics. In addition, there are accessor methods to manage the parts of
linglets, i.e. primarily to retrieve the parts and to ensure consistency when they
are altered.

Due to the separation of linglets, additional methods are needed to implement
the concern-specific logic and the translational semantics complements. The com-
plements indicate their need for external information (see 5.8) and return and
handle multiple results (see 5.9). The latter are discussed in more detail in Sec-
tion 5.4.2. In order to maintain the isolation of linglets and at the same time
ensure their high cohesion, linglets (see Section 5.6.4) and their instances (see
Section 5.9.2) must be extendable with such behavior.

Semantical methods of linglets fulfill many tasks and purposes. In this section
we discuss how methods can be declared, the primary uses of method declarations,
the accessors of parts, the need for external information and the translational
semantics of a linglet.

Method Declaration

The translational semantics are declared by an imperative general purpose lan-
guage. In this dissertation we discuss an implementation of LTS which uses a
Smalltalk variant.

Each method of a linglet defines how instances of this linglet will respond
to a particular message. As in Smalltalk [Bud86], the particular method being
defined is given by the signature of the message. The signature of a method is
either a unary selector, a binary selector or a series of keyword selectors. An unary
selector is a simple identifier. A binary selector takes two arguments, and is used
to model operators as methods. A keyword selector is an identifier followed by a
colon. After each keyword selector an identifier denoting the parameter variable
must be specified.

Method ::= MethodSignature

"{" [Temporaries] Statements "}"

MethodSignature ::= Name [":" Parameter (Name ":" Parameter)*].

Temporaries ::= "|" ID* "|"

Statements ::= ...

5.3. LINGLETS 167

Due to implementation issues we excluded a return statement. At the end of
a method the result of the last expression is returned. Because linglets implement
a prototype-base object-oriented language, two new pseudo variables have been
added. They are called ast and previous, and correspond to the self and super

pseudo variables of Smalltalk8. Unlike normal variables they do not need to be
declared, they are made available by the system. Both ast and previous refer
to the currently executing linglet instance. When a message is sent to ast, the
message is looked up in the current linglet instance. On the other hand, when a
message is sent to previous, the search for a method begins in the delegate of the
current linglet instance. Delegation is discussed more in detail in Section 5.3.8.

Accessors

The parts of a linglet are not directly accessible. Although the form is open-
ended, it is strongly encapsulated. The values stored in AST nodes are only
accessible and changeable via a pair of (inspectors or) getters and (mutators or)
setters. Also linglet methods cannot access the values directly.

Setters and getters are semantical methods with the following signature part:
and part respectively. For example, in order to access the part, say bar, the
method bar is provided, and to alter the part the method bar: is provided.

A default getter and setter are provided by the linglet compiler. So a new part,
say foo, can be added by the default setter foo:. As such, strong encapsulation
(see Section 5.6 and Section 5.7) is successfully combined with the openness of
linglets (see Section 5.8.2).

Example: The Set linglet has at least two possible parts variable and
condition. These are implicitly declared by the syntax of the linglet. In the
code snapshot below, the variable part is accessed and a new part unique is
created and initialized to true.

variable := ast variable.

ast unique: true.

The strong encapsulation of parts is a prerequisite in order to ensure local
consistency and to tackle localized compositionality conflicts. The former requires
to specialize their corresponding setters (see Section 5.7), the latter requires to
specialize their corresponding getters (see Section 5.6.4).

Example: The code fragment below shows how to override the default getter
and setter of the part unique. The getter unique always returns the value true.
The setter unique: is implemented in terms of the default setter.

unique {

8The Smalltalk pseudo variables self and super are excluded by the linglet compiler, as
they operate in the Smalltalk runtime not in the LTS runtime.

168 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

true

}

unique:value {

value isTrue: [previous unique:true].

true.

}

External Information

The external information required by a linglet is explicitly defined by a method.
When the information is not available or has no default value, the method is
defined with an empty method body (a.k.a. an abstract method). The method is
named after the information that is desired.

unique { }

There are no restrictions on the signature of methods. However, when the
signature equals the signature of a getter method of a syntactical parameter,
then that part is both considered as a syntactical parameter to be bound to a
linglet and as a request for external information. The value of that part will only
be accessible when a message is sent via its previous.

Translational Semantics

The translational semantics are defined in a single semantic method called
generate. As is required by the compositionatility requirement R1a, the semanti-
cally equivalent target language expression is produced by using the translational
semantics of their parts, and by using information external to the linglet.

The produced target program is also represented as an abstract syntax tree
to allow future manipulations to be invoked by other linglets (i.e. integration of
multiple results, completion of partial results, etc.).

The trees representing the target language program fragments can be con-
structed manually by composing and instantiating linglets or via a #-construct
(see Section 5.3.6) by using the concrete syntax of the target language.

More complex translational semantics produce multiple target language frag-
ments. These fragments are either returned as a plain set or as a combined single
result. In the latter case, the returned result is called the primary result. The
other results are hooked on that primary result as nonlocals (see Section 5.3.7).

5.3.5 Standard Namespace base

LTS offers a namespace base. That namespace bundles a number of pseudo vari-
ables which refer to the linglets that are defined in the target language of the
current language specification. The pseudo variables can be accessed with the

5.3. LINGLETS 169

dot-operator. These variables are used to construct AST nodes. In the example
below, the base namespace is used to access the Select linglet of the target lan-
guage SQL.

selectnode := base.Select new.9

5.3.6 #-Construct

The #-construct is quite similar to the quasiquote construct [Gra94] of LISP, to
templates in template languages such as Velocity [Vel03], and to rewrite rules
using concrete syntax of ASF+SDF [vdBK02]. At the end of the section, we
detail the differences between #-construct and other approaches.

The tree representing the target program fragment can be constructed by
hand in LTS.

Example: The semantical equivalent of the Set linglet, shown below, is a
select query which is defined in its generate method. The first two lines of the
generate method retrieve the translational semantics of the parts variable and
condition of the current Set node, by invoking the generate method on their
value. The two local variables variable and condition contain the columns of
the equivalent SELECT query and the condition of the SELECT query respectively.
The table of the SELECT query is called dual. The node is created by sending
the new message to Table linglet (line 5). The body of the table is an ID node
(line 3) which contains the string dual (line 4). The Select node is created in
line 7. The Select node is subsequently composed with the nodes variable,
condition and table. The composition with the former two is performed using
the appropriate setter on the Select node. The composition with the later is
performed by adding the table node.

Linglet Set {

syntax {

"{" variable* "|" condition "}"

}

generate { | variable condition dual table query |

(1) variable := ast variable generate.

(2) condition := ast condition generate.

(3) dual := base.ID new.

(4) dual body: ’dual’.

(5) table := base.Table new.

(6) table body: dual.

(7) query := base.Select new.

9The linglets and the new method are part of the metalayer of LTS, which is discussed in
Section 6.1.

170 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

(8) query column: variable.

(9) query where: condition.

(10) query from add: table.

(11) query.

}

}

Constructing the tree representing the target program fragment by hand is
not only tedious and error-prone, but also requires detailed knowledge of the
structure of target programs. As domain-specific languages(DSL) often gradu-
ally increase the abstraction level, such detailed knowledge is troublesome in an
incremental language development process in which DSLs are chained so that a
DSL is a source language and a target language both at the same time. In an
incremental development process where a language changes at each iteration or
increment, the target language is thus also subject to change. As the construc-
tion of programs of such languages by manually creating an AST is fragile, LTS
features a special language construct # to produce the AST by using the concrete
syntax of the target language. With the #-construct no code has to be manually
written to create an AST of a target program. The construct not only facilitates
the construction of target programs, it also significantly increases the readabil-
ity and comprehensibility, since the developer immediately recognize the actual
expression being produced.

The developer can easily and quickly respond to changes to the language
specification of the target language. If the language is merely extended with
optional syntactical clauses then existing program fragments described using the
concrete syntax remain valid. If changes are made in the syntax being used, then
the target language expression can easily be updated by the developer to reflect
the new target language syntax.

The #-construct (see below) parses a program fragment and handles escaping
variables (a.k.a. metavariables). The ID indicates the type of a linglet, so that the
parser can disambiguate the fragment by invoking the parser of the proper linglet.
The target language expression is formalized by the Hash-body production and is
enclosed by curly braces. These outer curly braces are part of the syntax of the #-
construct, the inner curly braces (by nesting the Hash-Body) are considered part
of the target language expression. The metavariables in the expression are defined
by the EscapingVariable production. By quoting10 a variable, the resulting AST
refers to the value of the metavariable rather than their names being interpreted
as plain target language expressions.

10Escaping to the computational environment

5.3. LINGLETS 171

Hash ::= "#" ID Hash-Body

Hash-Body ::= "{" (EscapingVariable | Hash-Body

| [0-124,126-255])* "}"

EscapingVariable ::= "’" ID

Note that the metavariables may either refer to a single AST node or to a set
of AST nodes.

Example: The #-construct allows us to construct the Select query using the
syntax of the SQL language more easily. We use two metavariables variable and
condition. The produced Select AST refers to the content of those variables.

Linglet Set {

syntax {

"{" variable* "|" condition "}"

}

generate { | variable condition |

variable := ast variable generate.

condition := ast condition generate.

#Select{ SELECT DISTINCT ’variable FROM dual WHERE ’condition }

}

}

The #-construct has some limitations. A target language expression can only
be parameterized with metavariables. More complex fragments have to be created
manually.

The #-construct is similar to quasiquote construct [Gra94] of LISP with the
difference that the syntax of the quasiquoted program can be an arbitrary lan-
guage. There is no special operator such as the ,@ operator to unquote a list of
AST nodes. Sets of AST nodes or references to nodes are both unquoted with the
same ’ operator. The #-construct is also similar to templates in template-based
programming languages (see Section 3.4). Template languages such as Veloc-
ity [Vel03] often offer language constructs to embed more complex expressions
than plain metavariables and in addition offer language constructs for control
flow if and looping constructs. In ASF+SDF [vdBK02] the # can be transpar-
ently used i.e. the left hand side and right hand side of rewrite rules may be
written in the syntax of the target language.

5.3.7 Standard Part nonlocals

Linglets can produce multiple results which must be integrated at different places
in the target program. The linglet that uses produced program fragments is called
the using linglet. A using linglet distinguishes between local and nonlocal results,
as it does not accept arbitrary AST nodes because the composition of AST nodes

172 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

in the produced program fragment must yield a grammatically and semantically
valid program fragment. Nodes that yield a semantically and syntactically valid
program fragment in the using linglet are called the locals, others are called the
nonlocals. By classifying the AST nodes into locals and nonlocals, nonlocals
can be passed to a linglet without a linglet having logic to handle them. The
modularization of linglets is guaranteed as linglets can now produce results which
cannot be immediately handled by using linglets.

Each AST node has a special part called nonlocals to store an arbitrary num-
ber of nonlocal results. Nonlocals can only be accessed but not altered. In other
words, there is no setter for the nonlocals part.

Beside the ability to separate what can be handled and what not, hooking the
nonlocal to the locals is also beneficial because it captures the proper context to
further process nonlocals (see Section 5.9.2).

The nonlocals part is accessed via the primitive nonlocals method which
returns a set which understands the same methods of those of an ordered col-
lection. Nonlocals are added to the set by the methods nonlocals:role: and
nonlocals: (see below). The role argument is a name of a role which is used
to identify nonlocals on a more abstract level.

nonlocals: anAST role: aRole

nonlocals: anAST

5.3.8 Specialization

Since linglets are implemented with a prototype-based object-oriented model,
specialization is implemented with delegation.

In LTS, delegation is used to extend the data, the behavior, the syntactical
parameters and to override the syntactical methods.

The behavior defined in a delegatee11 is applicable at its delegator12. A mes-
sage that is sent to a delegator is first resolved at the delegator. If a method
matches the signature of the message, the method is executed. Otherwise, the
message is forwarded to its delegatee. If a method matches the signature of the
message, the method is executed. This process continues until there are no dele-
gatees left or an appropriate method has been found. If no method has been found
in the delegate chain, then the message unkownrequest:on:args: is executed.
The default behavior of this message throws a compilation error.

Syntactical methods always override a previous definitions. In other words,
new syntax defined in a specializing linglet cancels previous syntax definitions.
However, syntactical parameters which are implicitly declared remain a part of the
definition of a linglet, and cannot be cancelled out. Thus specialization of syntax

11A delegatee is the object to whom requests are delegated.
12A delegator is the object that delegates requests to its delegatee.

5.3. LINGLETS 173

can only extend syntactical parameters and change concrete syntax. Hence, new
syntax must contain the already existing syntactical parameters.

Recall that data is implicitly declared and modeled as an open-ended form in
linglets. Data cannot be shadowed or cancelled. More details about the relation-
ship between data and delegation are given in following sections.

For those who are not familiar with prototype-based object-orientation, we
need to stress the fact that everything is an object. Linglets are specialized with
other linglets, linglets are specialized into instances and instances are specialized
with other instances.

Specialization of Linglets

Linglets are combined in the language specification in order to define a language.
At that point, linglets can be specialized with other linglets. This is discussed in
Section 5.4.

Specialization of Instances

Linglet instances are specialized by declaring a series of methods following an
expression yielding a linglet instance.

ASTSpecialization ::= Expression (Method)*

Example: Reconsider the Set linglet. Its semantical equivalent is a select

query returning distinct elements. The linglet instance or AST node represent-
ing the query is stored in the temporary variable query. The distinct:value

method of this Select node is overridden to ensure that its DISTINCT clause is
not removed. As such, the produced query always returns a set of rows.

Linglet Set {

syntax {

"{" variable* "|" condition "}"

}

generate { | variable condition query |

variable := ast variable generate.

condition := ast condition generate.

query := #Select{ SELECT DISTINCT ’variable

FROM dual

WHERE ’condition }.

query distinct: value {

(value == #on) ifTrue: [

previous distinct: value

]

}.

174 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

query

}

}

When methods can be declared on a linglet instance, the set of acquaintances
available within a newly declared method are the parts of that linglet instance.
Furthermore, the declared method has also access to the variables of the cur-
rent run-time environment of the method which declares the declared method.
Consider the following example:

(1) | table attribute |

(1) ...

(2) table := #Table{ Employee e }.

(3) attribute := #Attribute { e.name }.

(4) table alias: newAlias {

(5) previous alias: newAlias.

(6) attribute tuple: ast alias

(7) }

In lines 2 and 3 two target program fragments are created: a Table AST
node which is stored in the local variable table, and an Attribute AST node
which is stored in the local variable attribute. In line 4 the setter alias: of
the Table AST node is specialized so that upon changing the alias of the table,
the tuple of the Attribute AST that refers to the Table alias is updated as
well. This is implemented in two steps. First the alias of the Table AST node is
updated in line 5. Depending on the logic of the previous method this alias is
either updated or not. To keep this into account, the alias of current Table AST
node is retrieved instead of using the newAlias variable, and is used to change
the tuple of the Attribute AST node. Clearly, when specializing the alias:

method of the linglet instance table, within this specialized method the ast and
previous pseudo variables refer to the linglet instance table being specialized
and the variable attribute defined in the current run-time environment can be
accessed.

Information lookup: Access to variables of the current run-time environment
makes information available such as local variables containing: the translational
semantics of the parts of the defining AST node, new target program fragments
and other derived information. As such, information at the definition site of a
method can be used across the entire target program, without having to compute
complex queries to retrieve information from that definition site. Such queries
would create hazardous dependencies between linglets in an incremental language
development process. An example illustrating this is given in Section 5.9.2 where
a method declared on a nonlocal node refers to a local variable from its definition
site in order to decide where the nonlocal in the target AST should be integrated.

5.4. LANGUAGE SPECIFICATION 175

Delegation: Plain application of delegation at linglet instances causes update
consistency problems [MB97]. Firstly, problems arise due to the loss of object
identity. In order to specialize the behavior of an AST node, one often relies
on the previous definition of that behavior. In these cases, new AST nodes are
created and thus also a new object identity. This means that AST nodes that
reference the current object identity are not affected. Therefore, interactions still
refer to the AST node’s old behavior, which may lead to inconsistencies. LTS
prevents such situations by referencing AST nodes via proxies. Hence, identity
across multiple specializations remains the same.

Secondly, problems arise due to data retrieval intricacy. AST nodes contain
behavior and data i.e. references to other nodes. By chaining the AST nodes
with the delegation relationship, each AST node along the chain can contain its
own data. Consequently, data can be shadowed and made invisible to previous
behavioral extensions (AST nodes higher up in the delegate chain). In LTS, this
distribution of data is prevented by centralizing data in the proxy and by restrict-
ing delegation to behavior only. Moreover, because object identity is preserved,
the non-distribution of data ensures that updates are always made consistent with
the current set of behavior extensions. In the language Gilgul, a similar imple-
mentation technique is used which is called Identity Through Indirection [KC86].

5.4 Language Specification

The individual linglets of a langauge each define a single language construct.
In order to construct a language, linglets are composed together in a Language
Specification (LS). As linglets combine syntactical descriptions with translational
semantics, the composition determines both the grammar and the semantics of
the overall language.

A language specification is divided into two sections: a header and linglet
introductions. The header defines the name and specifies the name of the target
language. The name of the target language is indicated by the keyword base.
The first introduced linglet is the root linglet. This linglet acts as a starting point
for the grammar and for the transformation process.

LanguageSpec ::= ID "base" ID LingletIntroduction*

An introduction of a linglet consists of the type of a linglet, the compositions
with other linglets through their syntactical parameters and additional behavior
to further specialize them.

LingletIntroduction ::= String

LingletIntroduction ::= ID SyntacticalParameter* Method* "."

176 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Example: The most rudimentary version of the language specification for
the T2SQL is shown below. The language is named T2SQL and its translational
semantics is expressed with the SQL language. Other than that, this version of
the language recognizes the empty query i.e. the single phrase "{}".

T2SQL

base SQL

"{}"

The next two sections discuss how the grammar of the language is specified and
how the overall semantics of the language is formulated.

5.4.1 Grammar

In order to define the grammar of a language, linglets are introduced by using
their type. Recall that types are the names of linglets specified in their definition
(see Section 5.3.1).

The grammar of a language is defined by binding the syntactical parameters
of a linglet using the colon operator to other linglets (see SyntacticalParameter
production).

SyntacticalParameter ::= ID ":" LingletIntroduction*

Example: Consider a snapshot of the LS specification introducing and bind-
ing the Set linglet. Its syntactical parameter variable is bound to the linglet
Attribute, and condition is bound to Expression.

T2SQL

base SQL

Set

variable: Attribute.

condition: Expression.

Note that according to the grammar of language specifications, linglet introduc-
tions can be nested. The following excerpt of the language specification of T2SQL
shows how the introductions of the Set, Attribute, ID and Expression linglets
can be nested.

T2SQL

base SQL

Set

5.4. LANGUAGE SPECIFICATION 177

variable: Attribute

name: ID.

tuple: ID..

condition: Expression..

The above specification should be read as follows. The Set linglet is composed
with the Attribute and the Expression linglet by binding its variable and
condition parameter. In turn, the Attribute linglet is composed with the ID

linglet by binding its name and tuple parameter. As every linglet introduction
ends with a dot, nested linglet introductions end with several dots: in order to
terminate the Attribute and the ID linglet two dots are required, and in order
to terminate the Expression and the Set linglet again two dots are required 13.

Observe that several linglets can be bound to a single syntactical parameter.
These are usually treated as alternatives. This is explained in more detail in the
next subsection.

For simple linglets that consist of a fixed string as syntax only and that do not
have any semantic value, a shorthand is provided. There is no need to define the
linglet, the fixed string can be used directly as a literal in a language specification.

An introduced linglet is called a bound linglet, otherwise it is called unbound.
An introduction can either refer (by using the type of a linglet) to a previously
introduced linglet or to a newly introduced linglet. When all the syntactical
parameters of a linglet are bound, then an introduction reintroduces this linglet
as an newly introduced linglet. In fact, this allows us introduce linglets several
times in a language specification. When not all syntactical parameters are bound,
then the introduction reuses an already (partially) bound linglet and binds its
unbound syntactical parameters and rebinds its syntactical parameters. For a
language specification to be valid, all syntactical parameters of every introduced
linglet need to be bound, except if that linglet is not used in a binding of a
syntactical parameter.

Example: Introducing linglets several times in a language specification is
shown in Section 5.4.1, where the BinExpression linglet is used to define a binary
boolean expression and a binary comparator expression. Multiple introductions
are also useful to be able to use auxiliary language-independent linglets and use
linglets that define syntactical patterns (see Section 5.3.3) as they might occur

13The watchful reader may have noticed that a additional dot is missing at the end of the
previous language specification because every linglet introduction ends with a dot. As the Set
linglet as well as the Expression linglet is introduced, two dots are necessary: one dot to
terminate each linglet introduction. For presentation purposes we removed the additional dots.
When linglet introductions are nested these dots cannot be removed as that would sacrifice
readability.

178 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

several times in a language. An example of the latter are sequences which are
used to define SQL: a SELECT clause contains a sequence of columns, and the FROM
clause a sequence of tables, both separated with a comma. This can be easily
defined by reusing the pattern of a sequence which is defined in the Sequence

linglet (see Section 5.3.3). An excerpt of the language specification for SQL where
the pattern of a sequence is reused by introducing the Sequence linglet two times:

SQL

base SQL

Select

select: Sequence

separator: ",".

body: Column..

from: Sequence:

separator: ",".

body: Table..

This specification can be further optimized in terms of reuse by reusing a par-
tially bound linglet Sequence where its separator is already defined. Such a lan-
guage specification is shown below. At the bottom of this language specification,
the partially bound Sequence linglet is introduced where only the separator pa-
rameter of the Sequence linglet is bound. This linglet introduction is then reused
in the introduction of the Select linglet.

SQL

base SQL

Select

select: Sequence

body: Column..

from: Sequence:

body: Table..

Sequence

separator: ",".

Binding Semantics

A single syntactical parameter can be bound to several linglets. Note that if one
parameter is bound several times (i.e. multiple bindings) this does not lead to
syntax repetition (i.e. the syntax of the bound linglets does not occur multiple

5.4. LANGUAGE SPECIFICATION 179

times). This has to be specified in the syntax definition by a Kleene Star (see
Section 5.3.3).

The semantics of bindings of syntactical parameters are determined by the
linglet declaring them. By default, bindings are treated as alternatives which
corresponds to the notion of alternative productions in (E)BNF14.

The binding semantics of its syntactical parameters specified by a linglet can
be circumvented in the language specification through an indirection. We bind
the parameter to a single linglet which in turn binds the actual linglets. The
extra linglet in between then determines the binding semantics.

Example: In order to illustrate the need to override the default binding se-
mantics in the language specification, consider the alternative Set’ linglet given
below. Its syntactical definition is slightly different from the Set linglet (affor-
mentioned). The Set’ linglet defines a syntactical parameter header instead
of a parameter variable. Moreover, the Set’ only allows a single syntactical
clause defined by the linglet bound to the syntactical parameter header. In other
words, the syntax of the linglet bound to the syntactical parameter header can
only occur once.

Linglet Set’ {

syntax {

"{" header "|" condition "}"

}

generate { | header condition |

header := ast header generate.

condition := ast condition generate.

#Select{ SELECT DISTINCT ’header FROM dual WHERE ’condition }

}

}

We cannot plainly use this alternative Set’ linglet to define the SQL language,
as the header of set should a list of attributes instead of a single attribute. So in
order to use this alternative Set’ linglet to define the SQL language, we need to
override the default binding semantics of the header parameter in the language
specification. We do this by a simple indirection using the linglet Multiple.
The language specification using the Set’ linglet (see below) binds the header

to the linglet Multiple and subsequently binds the body of that linglet to the
Attribute.

T2SQL

base SQL

14A special syntactical operator exists to treat bindings as a mandatory sequence instead of
alternatives.

180 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Set’

header: Multiple body: Attribute..

condition: Expression.

with:

Linglet Multiple {

syntax {

body*

}

generate {

ast body generate

}

}

Note that we included the translational semantics of the Set’ to show that noth-
ing substantial needs to be changed to its translational semantics compared to
the Set linglet. The only thing that has been changed is the name of the part
variable into header.

Aliasing Linglets

Bound linglets can be aliased with new types. Aliases resolve ambiguous language
specifications in case a linglet introduction specializes another linglet which has
been introduced multiple times. By aliasing the various multiple introductions,
a linglet can specialize the proper introduction unambiguously.

Linglet ::= ID "=" Linglet

Example: Consider the following snapshot of the LS specification of SQL
defining a binary boolean expression and a binary comparator expression.
Both expressions are defined by using the BinExpression linglet. A binary
BooleanExpression is an alias for a BinExpression linglet whose left parame-
ter is composed with the ComparatorExpression linglet and whose right param-
eter is composed with the BooleanExpression or the ComparatorExpression

linglet. The BooleanExpression supports two operators And and Or. Similarly,
a binary ComparatorExpression is an alias for a BinExpression linglet whose
left and right parameters are composed with the Attribute linglet and whose
operator is either the strictly smaller or strictly larger linglet.

SQL

base SQL

BooleanExpression=BinExpression

5.4. LANGUAGE SPECIFICATION 181

left: ComparatorExpression.

operator: "And" "Or"

right: ComparatorExpression. BooleanExpression.

ComparatorExpression=BinExpression

left: Attribute.

operator: "<" ">"

right: Attribute.

5.4.2 Overall Language Semantics

Composing linglets via their syntactical parameters shapes the overall language
semantics, as these define the parts that will be used during the transformation
process. The translational semantics of bound linglets will be used to construct
the translational semantics of other linglets.

When linglets are introduced in a language they need to be adapted in order
to behave consistently, coherently and cooperatively, and their translational se-
mantics needs to be completed to effect their semantics. Therefore, linglets are
specialized with additional behavior upon introduction in a language specification
by a series of method declarations or by using the pseudo syntactical parameter
extends. The extends is a pseudo parameter, as it is not a part but is the
delegatee of a linglet.

Specializing Linglets with Additional Methods

Linglets are specialized by specifying a number of method declarations along
with their introduction in a language specification. The methods are necessary to
adapt the linglets such that they yield a coherent language specification: to add
the concern-specific behavior and to complete the linglets in order to establish
the necessary interactions among linglets.

Methods are declared by the colon operator, binding a signature of a method
to a body. The body is enclosed by curly braces. Method signatures in the
language specification have the same signatures as methods in the linglets (see
Section 5.3.4).

Method ::= MethodSignature ":"

"{" [Tempories] Statements "}"

MethodSignature ::= Name [":" Parameter (Name ":" Parameter)*].

Name ::= ID.

Parameter ::= ID.

Temporaries ::= "|" ID* "|"

Statements ::= ...

182 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Example: Minor syntactical differences are present in SQL among different
vendors of databases. So upon translation of tuple queries, these syntactical dif-
ferences need to be taken into account. The syntactical difference we are tackling
in this example are wild cards. Some venders have chosen a * while other vendors
a % to denote a wild card. Converting from one wild card to another should
ideally be specified in the language specification, and should not be hardcoded
in some linglet. In the language specification below, an excerpt of the T2SQL
language is shown where the * characters are converted to %. The conversion
is performed in the specialized getter right: on the ComparatorExpression

linglet.

ComparatorExpression=BinExpression

left: Attribute.

operator: "<" ">"

right: String.

right : {

res := previous right generate.

res chars replace: ’*’ to: ’%’.

res.

}.

Specializing Linglets with the Pseudo Syntactical Parameter extends

Another approach to specialize linglets is by explicitly establishing a delegation
relationship between them. This is done by binding the pseudo syntactical pa-
rameter extends to another linglet.

If the delegatee linglet is not specified, linglets delegate to the Linglet linglet.
Linglet is a pseudo variable and is defined by a language specification. It serves
as the root of delegation chain i.e. a common delegatee among all the linglets in a
language. The Linglet can be specialized and aliased like any other linglet. As
such, common behavior can be enforced upon all the linglets, and upon multiple
subsets of linglets.

Example: Recall that in Tuple Calculus queries are expressed as sets. Consider
an extension to the Tuple Calculus to define bags. The set and bag constructs are
defined by the Set and Bag linglet respectively. Both delegate to the Query linglet
such as they can share common behavior, syntax and bindings. It also allows
developers to address sets and bags as a single linglet when defining interactions
among the linglets. Another example is given in Section 5.9.2.

Set

extends: Query.

Bag:

extends: Query.

5.4. LANGUAGE SPECIFICATION 183

Query:

variable: Attribute.

condition: Expression.

Standard Method nonlocalrole : nonlocal

In order to respect the isolation of linglets, additional responsibility is added in
the language specification, outside the boundaries of the linglets that produce
nonlocals, to specify how the produced nonlocals should be integrated. In order
to do that nonlocals should be a part of the public interface. For this a method
nonlocalrole : nonlocal is called whenever a nonlocal is produced, where the
role is the role of nonlocal (see Section 5.3.7). By overriding this method
in the language specification the integration logic can be specified. For a given
linget L producing a nonlocal result with role r, the nonlocal can be integrated
by overriding the method nonlocalr: nonlocal on the producing linglet L:

L

nonlocalr: nonlocal {

...

}

In Section 5.9.1 a concrete example is given of a linglet producing a nonlocal,
and in Section 5.9.2 we show how this nonlocal can be integrated. The remainder
of this discussion explains why a new standard method has been introduced, and
the complexities regarding this design choice.

In order to integrate nonlocals, the proper context (i.e. the location in the
produced target tree where the nonlocals have been produced) is needed as the
integration of nonlocals may depend on that context. As we discussed earlier in
Section 5.3.7, this context is retained because nonlocals are hooked to locals, deep
into the produced target fragment. However, they also must be part of the public
interface so that they can be easily identified such that they can be integrated
(see Section 5.9.2).

It does not suffice to simply override the generate method at the base level
because this breaks the separation of linglets as it requires internal details to
identify the produced nonlocals nodes deep within the produced target fragment.
Furthermore, accessing nonlocals at that time can already be too late. Once
nonlocals are hooked into a local result, deep in an AST, the integration process
of nonlocals may already start. However, as the integration of nonlocals is only
specified after all results are produced, the integration process would not be cor-
rect. Therefore, new methods of the form nonlocalrole : nonlocal are called
by LTS exactly at the time nonlocals are hooked deep into the target AST. As
such, nonlocals become a part of the public interface and can retain their context
information by still hooking them deep into the local results.

184 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

5.4.3 LTS at Work

In this section, we give an overview of a language implementation in LTS.

In order to implement a language in terms of another, both the source and
the target language must be implemented in LTS. It is obvious that the source
language must be implemented in LTS, but it may be less obvious why this is also
the case for the target language. The first reason is that the target program is
represented using a dense and highly structured representation. By implementing
the target language in LTS, this structure becomes available. The second reason is
that the translational semantics of a linglet does not only use the produced target
program fragments obtained from their parts, but must also be able to perform
computations on that structure so as to be able to express complex compositions
(see Section 5.6.4). Flexible and extensible ASTs of language implementations in
LTS can be extended with additional semantics to facilitate these computations
and maintain the modularization of linglets (see next sections). The third reason
is that domain-specific languages (DSL) [vDKV00] often gradually increase the
abstraction level. Hence, they are chained so that a DSL is both a source language
and a target language at the same time. It is thus natural to implement both
source and target language in the system.

The regression from one language to another, less developed, language is not
infinite. The compiler at the bottom of the chain is the identity compiler. In LTS
terms, the base language and the source language of such a language implemen-
tation are the same.

The root linglet of the source language starts parsing the source program
text and produces an AST tree of the source program text. Linglets invoke the
parsers of the linglets bound to them in the language specification. As such, they
collectively produce a tree out of the individual AST nodes which are produced by
their parsers. The AST nodes have a semantic link with the linglets that created
them. This link ensures that the behavior defined in linglets can be applied
on their AST nodes. This allows us to initiate the transformation process by
invoking the translational semantics of the root AST node. Each node recursively
invokes the translational semantics of the parts to combine them into a valid target
program fragment.

Example: To further clarify this process, we schematically depict a transfor-
mation process in Figure 5.4 in its final stage in transforming the source program:

{ t.lastname | employee(t) ∧ (∃ w)(...) }

to the target program:

SELECT t.lastname

FROM employee

WHERE true and exists (SELECT w.* FROM ... WHERE ...)

5.4. LANGUAGE SPECIFICATION 185

Set
"{" variables*

"|" condition"}"

SELECT ...

Attribute
tuple"." name

... as Alias

Bin-
Expression
left OP right

BinExp

Relation
...

true

ID
[...][...]*

ID

Exists
E "(" ... ")"

exists (select ...)

Select
SELECT values

INTO target
FROM sources

WHERE condition

...

lastname

t

AND

employee

t

w

lastname

t

t

employee

*

w

Column
tuple"." name

as alias

Table
name alias

Exists

EXISTS "(" query ")"
...

ID
[...][...]*

ID

transformation

true

AND

Bin-
Expression
left OP right

BinExp

lastname

source programsource language target program target language

Figure 5.4: Snapshot of the transformation process for a T2SQL program in its
final stage.

Note that the ellipsis in the example programs are not part of the syntax of the
language but are used in order not to clutter up the figure. Notice also that the
target program is not formulated in its most canonical form. The subexpression
true could be omitted. We deliberately kept that part as the subexpression is
the translational semantics of a relation. As such, we are able to depict the
translational semantics of each of the T2QL linglets used in the source program.

At the left side of the picture, the source program is depicted. The root node
is the Set node. It refers to one Attribute and a Binexpression node. The
Binexpression node combines the Relation node and an Exists node with an
AND node. The grey arrows represent the semantic links between the AST node
and their linglets. This source AST is recursively transformed to the target AST,
which is depicted on the right side of the figure. The fat black arrows between
source and target nodes illustrate the transformations that start at a source node.
They point to the nodes that are produced by the transformations. The top node
of the target AST is a Select node. This node contains three parts: a list of
attributes, the tables of the FROM clause, and a condition in the WHERE clause.
The nodes which are not connected to a linglet point to the linglet ID.

186 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

5.5 LTS Requirements

In Section 4.1, we impose five requirements on the translational semantics of a
language construct. Due to the requirements, the semantics of linglets can only
be defined but not effected (see Definition 4.8 in Section 4.1.2). Hence, for each
of the three kinds of requirements, a special-purpose concern is required offering
a mechanism that can be used to effect linglets i.e. implement their interactions.
These interactions are defined in the language specification by completing the
semantics of linglets.

In the following sections, we revisit each of these requirements and show how
LTS enforces and abides them. For each requirement, we subsequently explore
how its corresponding special-purpose concerns are used in the language specifi-
cation.

Note that although the language specification is the sole place where all the
linglets of a language and their compositions are known, interactions of linglets
are still severely constrained. Linglets can only define their semantics by using
the semantics of their parts. A linglet in a plain language specifications can
only access the direct or immediate acquaintances through the parts of its AST
nodes. Other more distant AST nodes can only be accessed by successively in-
voking messages to retrieve parts. Such implementations are very fragile in an
iterative and incremental development process. In each iteration, any change in
the composition of linglets would invalidate such implementations. We therefore
introduce interaction strategies to extend the mechanism offered by the language
specification in the next chapter.

5.6 R0 - Program Representation

As mentioned in Section 4.1.6, the first requirement enforces that a valuation
function produces partial program fragments (R0a). In order to complete the
fragments, they need to be completable (R0b). Furthermore, requirement R0c
requires that consistency of changes must be controlled by consistency enforcers,
local to the produced values and the producing linglet.

5.6.1 R0a - Partial Program Fragments in Linglets

Due to the different abstraction levels of source and target language, we can-
not expect that the translational semantics of a linglet expressed in some target
language results in a complete and correct target language fragment. The trans-
lational semantics of the parts of a phrase may not be sufficient for computing the
target language fragment. There are two options for dealing with this problem:
one can request external information or one can produce partial values. In order
to maintain the separation of linglets, we impose requirement 4.2 stating that only

5.6. R0 - PROGRAM REPRESENTATION 187

external information which is essential (see Section 4.6) is allowed to be requested.
Therefore, in cases where external information is not essential and is only needed
to complete the target language expression, the translational semantics should
rather omit these parts and thus produce partial values.

LTS explicitly supports the ⊥ value to construct partial values. A partial
value is an AST node in which certain parts are empty, or technically speaking
contains nil. Partial AST nodes can be created in two ways: by hand (skipping
the initialization of the part involved) or by the #-constructor (which constructs
an AST representation of target programs using concrete syntax).

Example: Consider again the Set linglet whose semantically equivalent SQL
expression is a SELECT statement. The Set linglet is a simple example illus-
trating the need for partial values. The translational semantics has two target
program expressions (variable and condition) at its disposal to construct a
new AST node with three parts (value, source and condition). Clearly, the
Set AST node has not enough parts to construct its Select AST node. Up
till now, we circumvented this problem in previous definitions of the Set linglet
(e.g. Section 5.3.4). In those early definitions, the source of the Select AST
node contained a dummy table called dual. Note that it is a correct and valid
SQL expression as the dual is dummy table within is actually supported in some
commercial database management systems15. As explained in Section A.1, this
solution is ad-hoc, not applicable in all situations, and lacks an explicit intention.
Instead of using the dual table, we redefine the Set linglet using the nil value
as follows:

Linglet Set {

syntax {

"{" variable* "|" condition "}"

}

generate { | variable condition |

variable := ast variable generate.

condition := ast condition generate.

#Select{ SELECT ’variable FROM ’nil WHERE ’condition }

}

}

In Set linglet, nil is a metavariable and not a table. By quoting the reserved
variable nil, that part of the AST is left out16. The equivalent definition of the
Set linglet without the #-construct is given below.

Linglet Set {

15The dual is a table which is created by Oracle along with the data dictionary. It consists
of exactly one column whose name is dummy and one record. The value of that record is ’X’.

16If the word nil is not escaped it is treated as a plain target language expression.

188 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

syntax {

"{" variable* "|" condition "}"

}

generate { | variable condition query |

(1) variable := ast variable generate.

(2) condition := ast condition generate.

(3) query := base.Select new.

(4) query column: variable.

(5) query where: condition.

(6) query.

}

}

5.6.2 R0b - Completable Program Fragments in Linglets

Completable values are an important prerequisite for the definition of a linglet
and of special-purpose concerns. AST nodes that represent program fragments
are completable because each part of an AST is stored in a slot which is always
managed by a setter and an getter method. Only by invoking these methods, the
composition of the nodes can be changed.

Example: The DefineRelation linglet (shown below) defines the construct
for naming a set (see NamedSet production in Section 5.1).

Linglet DefineRelation {

syntax {

name "=" definition

}

generate { | name definition |

name := ast name generate.

definition := ast definition generate.

(1) (definition linglet type = ’Select’)

(2) ifTrue: [| firstchar |

(3) definition target: name.

(4) firstchar := (name asString left: 1) asString toUpper.

(5) definition values do: [:el | | oldname |

(6) oldname := el columnname.

(7) el columnname: #ID{firstchar’oldname}.

(8)].

(9)]

(10) ifFalse: [CompilerException raiseSignal:

(11) ’definition is not a Select statement’

(12) within: ast].

(12) definition.

5.6. R0 - PROGRAM REPRESENTATION 189

}

}

The translational semantics of a DefineRelation linglet is a SELECT state-
ment with an INTO clause, and subject to the convention that the column names
are prefixed with the first character of the name of the relationship.
The following query:
families = { e.name | employee(e) }

is thus transformed into:
SELECT DISTINCT Fname INTO families FROM employee e.

In order to construct this semantics, a DefineRelation AST node uses the se-
mantics of its parts name and definition which contains an ID node and a
Select node respectively. The implementation of the translational semantics re-
lies on the ability to change the obtained Select node. First, we ensure that
the semantics of the definition part is a SELECT statement (line 1), otherwise
we throw an exception (line 10). Second, the DefineRelation linglet alters the
Select query, obtained from its part definition, to store the result in a table.
To this end, we alter the target table of the SELECT statement (line 4), which is
the parameter of the INTO clause. In the query example, the target table is the
families table. Lastly, to enforce the naming convention on the columns, we
iterate (line 5) over the values and alter the column name (line 7) that will be
used in the result table, with a prefix firstchar.

5.6.3 R0c - Local Consistency in Linglets

As linglets use the translational semantics of their parts so as to construct their
equivalent target program fragment, the interactions among linglets can change
any result produced by linglets. In order to prevent invalid changes, linglets get
the additional responsibility for ensuring the consistency of their instantiations
during successive changes. They do this by overriding their getters and setters,
which encapsulate their parts.

Example: In SQL, each column name in a table must be unique, since SELECT
statements produce new tables containing the selected values, a Select AST
node must thus ensure the uniqueness of its column names whenever the node is
changed.

Consider the Select linglet given below. The value parameter is bound to
the Column linglet in the language specification of T2SQL. The consistency of
its column names is implemented in the check method. This method is called
whenever the set of values change (intercepted by the value: setter method)
or when a single value is changed in the set (intercepted by value:put: setter
method). The check method renames duplicate columnnames to EXPRn , with

190 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

n an unique number. Note that the check method relies on two methods to
get and set the columnname of duplicated values, they are columnname: and
columnname. Hence, the separation of the Select linglet is maintained.

Linglet Select {

syntax {

"SELECT" value "FROM" source "WHERE" condition

}

generate { | value source condition |

value := ast value generate.

source := ast source generate.

condition := ast condition generate.

#Select{ SELECT ’value FROM ’source WHERE ’condition }

}

value: index put: value {

ast check

}

value: values {

ast check

}

check { | columnnames index |

columnnames := Set new.

index := 1.

ast value do: [:el |

(columnnames contains: el columnname asString)

ifTrue: [el columnname: #ID{EXPR’index}.

index = index + 1].

columnnames add: el columnname asString

].

}

}

5.6.4 SP0 - Concern-specific Logic: Cooperation and Co-
herence in Language Specifications

Accessing and modifying information defined in other linglets to implement inter-
actions by relying on the definition of other linglets would break their modularity.
In order to preserve the modularity, interactions should rely on methods which
are part of so called interaction interfaces. Upon composition and combination
of linglets in a language, an implementation for these methods can be added to
them. We have called the behavior of these methods the concern-specific logic
of a linglet (see also Section 4.3). There are two kinds of concern-specific logic:
coherence and cooperation. Note that relying on the interface of the linglets that

5.6. R0 - PROGRAM REPRESENTATION 191

define the target language, is a border case, and is not strictly considered as a
modularization violation.

SP0 - Concern-specific : cooperation

In order to implement complex translational semantics, linglets rely on external
information invoked upon and/or changes applied to the translational semantics of
their parts. As linglets should by requirement R1c limit access to parts of nested
program fragments, the access and changes are realized by invoking concern-
specific logic on the translational semantics of their parts. In order to ensure
correct cooperation between linglets, this concern-specific logic is not necessarily
part of linglet definitions, therefore it is added to them in language specifications.
We first discuss an example of cooperation based on the definition of the linglets of
the target language. Afterwards, we discuss the case where language specifications
add this logic.

Cooperation by linglets Linglets can use the methods of the linglets which
define the target language, to enable cooperation with other linglets.

Example: The most basic form of cooperation was illustrated with the
DefineRelation linglet, in the subsection completable program fragments on
page 188. The translational semantics of that linglet used the default available
setter target: to change the target part of a produced Select AST node (line
3 of the definition of the linglet).

Cooperation by the language specification Linglet can also be extended
with additional methods in the language specification to support cooperation
among them.

Example: The DefineRelation linglet and the Select linglet use another pair
of methods named columnname and columnname: to prefix the column name and
correct duplicated column names respectively. The methods columnname and
columnname: get and set the name of the column, respectively. Those methods
are not present in the linglet that define the columns. Columns in SQL are defined
by the Column linglet (shown below) and the ComposedColumn17 linglet. Given
the definition of the Column linglet, a Column AST node offers three getters and
setters, one for each of its three parts: tablename, name and alias.

Linglet Column {

syntax {

tablename "." name !("as" alias)

}

...

}

17For conciseness reasons we do not include the definition of a ComposedColumn linglet.

192 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Hence, the language specification must define the methods columnname and
columnname: on all the linglets bound to the value parameter of the Select

linglet in order to enable the correct cooperation between the bound linglets.
Consider the following excerpt of the language specification of SQL. Three lin-
glets are introduced: Select, Column and ComposedColumn. The latter two lin-
glets are extended with the columnname and columnname: which inspect and the
retrieve the name of the column used for the final result set respectively. The
columnname of a Column used in the result set is the alias, while the columnname
of a ComposedColumn is its name.

Select

values: Column. ComposedColumn.

....

Column

name: ID.

tablename: ID.

alias: ID.

columnname: { ast alias }.

columnname: value : { ast alias: value }.

ComposedColumn

name: ID.

body: ArithmeticExpression.

columnname: { ast name }.

columnname: value : { ast name: value }.

SP0 - Concern-specific : coherence

As linglets are defined in isolation, one must ensure that linglets are coherent.
Since composing several linglets to form a language does not automagically re-
sult in a working language, linglets need to share a common goal to produce a
semantically valid target program. We distinguish between implicit and explicit
coherence.

Implicit coherence by linglets In most cases there is an implicit agreement
among linglets of a language. In other words, linglets are designed to yield a valid
target language program.

Example: An example of implicit coherence is the agreement among the
Relation linglet and the Attribute linglet. The former generates the tables
which are part of the FROM clause of the equivallent SELECT statement, e.g.
employee e. The latter uses those tables in the columns e.g. e.lastname. The
silent agreement among these two linglets is that the tables are aliased with the
tuple name such that the columns can use the tuple name instead of the actual
table name.

5.7. R1 - COMPOSITIONALITY 193

Explicit coherence by language specifications There are also cases where
coherence can be explicitly enforced by changing linglets with additional behavior
in a language specification.

Example: Consider again the Relation linglet. Its relation and name pa-
rameters are bound to the linglet ID in the language specification. Identifiers in
Tuple Calculus are syntactically less constrained than identifiers in SQL because
in the former, identifiers may contain symbols such as #, @, &, to name a few. So
the ID linglet of the Tuple Calculus language produces a new ID node of the SQL
language and prunes the unacceptable symbols. However, whenever the identi-
fier is used as an alias in SQL these symbols are allowed, provided that they are
enclosed within special markers. Some SQL implementations use double quotes,
other use square brackets as markers. These decisions need to be made explicitly
coherent across the language implementation during the integration of linglets in
the language specification.

In the Relation linglet, the name part is accessed and used as an alias. As we
just explained, when identifiers are used as aliases, the unacceptable symbols do
not have to be pruned away. This is resolved in the excerpt language specification
shown below. The name getter of the Relation linglet is overridden to produce
a Text node containing the original content of the name. When overriding the
name getter, the original content of the name part, i.e. a T2SQL ID AST node, is
obtained by invoking the name getter on the previous. Instead of using the trans-
lational semantics of the T2SQL ID AST node, i.e. an SQL ID AST node pruned
with the unacceptable symbols, the T2SQL ID AST node is merely converted to
a string. The resulting string is then enclosed by two double quotes and returned
as a Text node.

Relation

relation: ID.

name: ID.

name: { name := previous name asString.

#Text{ "’name" } }.

5.7 R1 - Compositionality

Recall from Section 4.1.3, that requirement R1a enforces that a valuation func-
tion operates on language constructs rather than on whole language phrases. It is
clear that linglets do so, as they use the translational semantics of their parts to
construct their semantically equivalent target fragment. Moreover, composition-
ality implies that the semantics of a language construct is defined in terms of the
semantics of its parts. In other words, linglets assume that the semantics of its
parts suffice to yield semantically and syntactically correct program fragments.
When that is not possible a compositionality conflict arises, and these conflicts
are resolved in the language specification.

194 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Requirement R1c ensures that the translational semantics of a language con-
structs cannot access the parts of its parts and in turn their parts, etc. LTS does
not enforce that requirement but supports it by allowing linglets to request any
additional information they need.

5.7.1 R1 - Compositionality in Linglets

To be able to intervene in the composition of linglets, linglets must use getters and
setters to access and change their parts. As such, linglets can remain oblivious
to compositionality conflicts (R1b). By using getters and setters, interventions in
the composition do not need to change the composition among the AST nodes.
As a result, the effect of the compositions can be kept local and non-destructive.

Example: Consider the language specification shown below and the query in
Section 5.1 as sample input to explain a compositionality conflict found in the
Attribute linglet.

Set

variable: Attribute.

condition: Expression.

Attribute

tuple: ID.

name: ID.

The Attribute linglet (see below) produces a Column node that accesses a
column on a table. The produced column is named after the name part of the
Attribute linglet and the table is named after the tuple of the Attribute linglet.
So, the attribute e.family in example query is transformed into the column
e.family as family. This semantics is correct when considering the various
linglets of the Tuple Calculus language in isolation. However, when equality
equations (cfr. Section 5.1) are used together with attributes, an error occurs. In
our example query, it is not correct to produce the name of the attribute family

in the SELECT statement but it should be t.lastname which is the name of the
attribute bound to it. The error is due to a composition conflict and it occurs
in the Attribute linglet. If an attribute created via the equality equations is
used in the header of a set, then the name of the attribute is not the name of its
equivalent column of a table. Instead of the name of the attribute, the name of
the attribute assigned by the equality equation to the attribute must be used as
the column name. Hence, in such cases, there is a semantical compositionality
conflict in the name part of the Attribute linglet.

5.7. R1 - COMPOSITIONALITY 195

Linglet Attribute {

syntax {

tuple "." name

}

generate { | tuple name alias |

(1) tuple := ast tuple generate.

(2) name := ast name generate.

(3) alias := ast alias generate.

(4) #Column{ ’tuple.’name as ’alias }

(5) }

(6) alias {

(7) ast name

(8) }

}

When looking at the definition of the Attribute linglet above, notice that
the generated tuple, name and alias parts of a Column node are obtained by
invoking the corresponding getter for each part (lines 1-3). In other words, the
parts are not directly accessed. Hence, to resolve the compositionality conflict it
suffices to change the composition of the ID nodes in the language specification.
This is discussed in the following section.

5.7.2 SP1-SP2 - Resolving Compositionality Conflicts in
Language Specifications

When linglets are composed, one must make sure that the translational semantics
of their parts are syntactically and semantically correct to prevent composition-
ality conflicts. Compositionality conflicts are resolved by intervening in the com-
position of linglets (cfr. Section 4.3.1). We distinguished between two kinds of
interventions: localized (SP1) and global interventions (SP2). There are two ways
to implement localized interventions. The first one is to change the composition
of linglets by inserting other linglets. The second one relies on the encapsulation
of their parts from their proper methods. Global interventions cannot be tackled
by a single basic concern because of its isolation. They can neither be tackled
by the language specification because we can only intervene on specific parts but
not on all parts. They are tackled with interaction strategies in the next chapter.

SP1 - Insertions between Linglets

The most straightforward way to realize interventions to solve compositionality
conflicts is by changing the composition of linglets so that the given composition
of linglets do not longer give rise to a conflict. However, one must be careful to

196 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

rearrange the composition of linglets as a language specification determines both
the grammar and the overall semantics of a language. So, the compositions that
affect the grammar are not allowed in LTS. Therefore changes to the composition
of linglets are restricted to insertions.
Let L1 and L2 be two bound linglets, where:

L1 param: L2..

Inserting a linglet L3 results in:
L1 param: L3.

L3 body: L2.

The inserted linglets must have a single syntactical parameter body as its syntax
definition, with the appropriate binding semantics to bind the L2. As such, the
syntax of the inserted linglets do not change the grammar. The translational se-
mantics of these inserted linglets are responsible for resolving the compositionality
conflict.

Example: Consider again the Relation linglet. In the overview of the LTS
system in Figure 5.1 a Relation node corresponds to a True node and a Table

declaration node. The Table node is the semantical equivalent of a Relation

node in the SQL. The True is produced because a relation is part of a boolean
expression in the Tuple Calculus. There are two approaches we can take to
implement the Relation linglet. In one approach, the linglet produces these two
results. In this case, we face a linglet with multiple results. This which will
be discussed in Section 5.9. In the other approach, the linglet produces only
its equivalent semantics in isolation which is the Table node. In that case we
face a compositionality problem when a relation is composed within a boolean
expression in the language specification. In what follows we discuss how to solve
this problem.

The language specification below shows a relation which is composed with
a boolean expression. The BooleanExpression linglet produces an equivalent
BooleanExpression node in SQL. The Relation linglet is composed with the
BooleanExpression, so the left or right part of a BooleanExpression node can
be a Relation. However, the Relation linglet only produces a Table node,
but according to the SQL grammar, a table declaration cannot be part of a
boolean expression. Hence, there is a compositionality conflict between the
BooleanExpression and the Relation linglet.

name T2SQL

base SQL

...

Set variable:

condition:BooleanExpression.

...

5.7. R1 - COMPOSITIONALITY 197

BooleanExpression=BinExpression

left: CompExpression. Relation.

operator: "And" "Or"

right: BooleanExpression. CompExpression. Relation.

...

In order to tackle this composition conflict we insert a new linglet MakeTrue

between the BooleanExpression linglet and the Relation linglet by including
the following language specification:

Relation=MakeTrue

body: Relation.

Relation

relation: ID.

name: ID.

The semantics of the MakeTrue linglet (shown below) is a True SQL node.
Due to the insertion of this linglet, the Relation linglet can now be used within
a boolean expression. More precisely, the semantics of the Relation linglet can be
composed with the semantics of the BooleanExpression because the MakeTrue

linglet returns a Table as nonlocal result. The integration of this nonlocal result
is handled by interaction strategies which is discussed in the next chapter.

Linglet MakeTrue {

syntax {

body

}

generate { | res |

res := #True{}.

res nonlocals add: ast body generate.

res.

}

}

SP1 - Encapsulation of Linglets’s Parts From their Proper Methods

Another way to intervene in the composition which does not require insertions of
new linglets as in the previous option, is by overriding the getters of the parts in
the language specification.

Example: In the beginning of this section, we discussed a composition conflict
of the Attribute linglet when there is an equality equation defining an attribute
used in the header of a set. In order to change the composition of the Attribute

node for resolving this conflict, two new getters for the name and the alias

override the existing composition of the node. The name method searches for

198 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

the equality equation that assigns the current attribute. If an equation is found,
the name of the assigned attribute is used, otherwise no action is taken and the
original name is used. Note that by default the alias is the name of the attribute
(see line 6-8 of the Attribute linglet defined in Section 5.7.1). So, if we change
the name of the attribute, the alias also changes. However, the column should
remain aliased with the name of the attribute of the set. In order to maintain
the desired column name in the result table, we override the getter of the alias to
retrieve the original name.

Note that we cannot further discuss the findAssignedAttribute:name method
at this point, as that method requires to traverse the source program and this is
achieved by the interaction strategies.

Attribute

tuple: ID.

name: ID.

alias: { previous name }

name : { | eq |

eq := findAssignedAttribute: (ast tuple asString)

name: (ast name asString)

(eq == nil)

ifTrue: [previous name]

ifFalse: [eq name].

}

5.8 R2 - Multiple Inputs

As explained and introduced in Section 4.1.4, requirement R2 enforces that the
translational semantics of a linglet can only depend on essential externally pro-
vided information next to the syntactical parts defined in the syntax of the lan-
guage construct defined by the linglet. Hence, the name multiple inputs. Such
external information required for the compilation of a term may reside in other
concerns or even have to be computed by other concerns.

5.8.1 R2 - Declaring Multiple Inputs in Linglets

In the implementation of a linglet’s translational semantics, we do not distinguish
between local i.e. its parts, and nonlocal i.e. external input contained in other
linglets. Both kinds of input can be retrieved via methods regardless of their
location: a part of a linglet or other linglets. Similar to how getter methods
provide access to the parts of a linglet, we define additional methods that provide
access to external input (R2a). However, because we cannot determine how this
additional input is gathered, this method must remain abstract (R2d). Empty

5.8. R2 - MULTIPLE INPUTS 199

methods are interpreted as abstract methods. They can be specialized in the
language specification with the behavior that implements the retrieval of the
requested input.

As a linglet can only access its parts, and declare its need for external infor-
mation, a linglet can only consider one language construct at a time (R2b).

No artificial distinction is made between the different sources of inputs. In
essence, the distinction between local and nonlocal input is not important when
implementing a linglet and when using a linglet. But the distinction is still
clear enough to be able to know what external information should be provided
to a linglet. This is not only important for language designers but also for the
implementation of special-purpose concerns discussed in next chapter.

Example: Consider the definition of the Attribute linglet given in Section 5.7.
The translational semantics of the linglet produces a Column node that has three
parts: a table, a name of a column and an alias which is used for the result
table. The Attribute linglet lacks sufficient parts for constructing the Column

node as it has two parts: tuple and name. By default, we used the name of the
attribute as an alias for the column. The alias is an essential part of a column
in a SELECT clause, and thus an essential part of the translational semantics of
an attribute. But, instead of embedding that into the translational semantics we
created a new method alias which contained that logic and acts as a kind of
virtual part. This facilitates the definition of the translational semantics of the
Atribute linglet because no artificial distinction is made to retrieve the three
parts which are necessary for constructing the Column node.

5.8.2 SP3-SP7 Acquisition of Multiple Inputs in Language
Specifications

Recall from Section 4.3.2 that there are three steps required to acquire multiple
inputs: identification, obtention and provision of the external information. The
identification (SP3) and obtention (SP4-SP6) cannot be realized by the language
specification because the language specification can only manipulate linglets i.e.
compose and adapt them. This will be handled by interaction strategies. Provi-
sion of information (SP-7) to a linglet is supported by the language specification
using two mechanisms: extension with behavior or extension with data.

SP7 - Extension with Behavior

The most common way for providing information in LTS is by extending the
behavior of linglets. We already encountered this when we illustrated in the
previous section how the compositionality conflict of the Attribute linglet can
be solved. The alias getter method of the Attribute linglet is not a real part
but a request for external information which has a default implementation.

200 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

SP7 - Extension with Data

Another mechanism for providing information in LTS is by extending linglets
with new information. This kind of mechanism is more fragile because we need
to ensure that the information is available when it is required by its translational
semantics or by another linglet. Linglets should respect requirement R2c and only
produce additional information which is an essential part of their translational
semantics.

Extension with data is a necessary mechanism which is used for incremental
computation. Such computations are used in the integration of nonlocal results
(see Section 5.9.2 on page 207), but also for the computation of circularly de-
fined external information. A circular definition of external information cannot
be solved by merely computing the information using its parts because the parts
themselves rely on the information that is currently being computed. Consider
for example the following query:

F = { x.firstname, x.name |

(∃ p) (rabbit(p) ∧ p.firstname = ’Bert’ ∧ p.name = ’Fillemong’)

∨ (∃ p) (rabbit(p) ∧ x.firstname = p.firstname

∧ x.lastname = p.name ∧ (∃ f) (F(f) ∧ f.id = p.parent }

The query selects the rabbit breeding line starting with ‘Bert Fillemong’, by
recursively selecting its children. Any property P one wishes to compute about
the set F which depends on the definition of the set, depends on the P itself.
In the case of circular definitions [WdMS+01], a fixed-point iteration is used for
computing the final value of a derived piece of information. The algorithms assign
an initial value and in each iteration that value is adjusted. When that value no
longer changes, the final value is computed and the iteration is stopped. So, we
need to assign and reassign values during the iterations. Once the computation
is finished, these values can be accessed.

In order to implement such definition in LTS, we rely on the extensibility
of the data of linglets and AST nodes. Information can be easily stored and
retrieved using their corresponding getters and setters. Hence, linglets are made
oblivious to the source of the information.

5.9 R3 - Multiple Results

As mentioned in Section 4.1.5, requirement R3 enforces that the translational
semantics of a linglet can define effects on program fragments produced by the
translational semantics of other linglets. The multiple results produced by the
semantics of one linglet needs to be handled appropriately by other linglets such
that the produced results get composed in the correct part of the target program.

5.9. R3 - MULTIPLE RESULTS 201

Because linglets are isolated from one another, linglets can only produce multiple
results.

5.9.1 R3 - Producing Multiple Results in Linglets

Linglets can produce multiple results which need to be integrated in different
places in the target program. We have called these results nonlocal results. Non-
local results are produced by hooking them to the local results (see Section 5.3.7)
because only the local results are returned by the generate method.

The distinction between nonlocal and local results is important for the linglet
using the produced program fragments. Because linglets use, combine and com-
pose the program fragments so as to create their semantically equivalent target
program fragment, and because the values preferably have to be semantically
correct and definitely syntactically correct, linglets only accept certain kinds of
AST nodes. In other words, nodes that are not non-acceptable are the ones do
not yield a semantically and syntactically correct program fragment. Hence, by
classifying the AST nodes that are not acceptable as nonlocals, a using linglet can
ignore these nodes. The distinction is less important for the producing linglet,
but as the distinction is very clear at the producing linglet it is often also made
in that producing linglet: linglets that produce multiple values which cannot be
combined into one expression, are also aware that a using linglet cannot accept
all the various kinds of fragments. Therefore, linglets elect their primary result
as their local result and their other results as their nonlocal results. If there is
more than one local result or no distinction between a local and a nonlocal can be
made, multiple results can also be returned by the generate method as a set, and
all the results are then considered locals. When the distinction between locals
and nonlocals is not so clear, a composition conflict can arise between the linglet
using the multiple results and the linglet producing them. We refer the reader
to Section 5.7 which detail how linglets and the language specification handle
compositionality conflicts.

Example: In Section 5.7.2 we explained that the Relation linglet can be
implemented in two ways. In this section, we discuss the implementation variant
of this linglet which produces multiple results. The Relation linglet produces
two results as shown below: a True node and an additional result being a Table

node. The Table node is considered the nonlocal because the relation predicates
are in fact operators or functions which return a boolean value. The Table node
is therefore hooked into the True node as a nonlocal result. The role given to the
Table node is the symbol #table (which is not be confused with the #-construct).

Linglet Relation {

syntax {

relation "(" tuple ")"

}

202 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

generate { | relation tuple res table |

(1) relation := ast relation generate.

(2) tuple := ast tuple generate.

(3) res := #True{}.

(4) table := #Table{ ’relation ’tuple }.

(5) res nonlocals add: table role: #table.

(6) res.

}

}

Context Information

The integration of nonlocal results sometimes depends on the context i.e. the
surrounding AST nodes (see SP12 in Section 4.3.3). In order to allow interaction
strategies to operate on the context of a nonlocal, the initial context where a
nonlocal is originated must be retained when it is produced. This initial context
is essential to further process the nonlocals because it determines the integration
semantics of the nonlocal (as we will further discuss in Section 5.9.2). A linglet
must thus be able to indicate the initial context of nonlocals if required. The
node where the nonlocal results are attached indicates the initial context of the
nonlocal results in the target program.

Example: The integration of the nonlocal Table node produced by the
Relation linglet (explained above) is not that straightforward. Some Table

nonlocals may be discarded depending on the expression in which the relation is
used. Consider the following query as an example why context is important:

{w.name | (∃ w) (¬ works on(w) ∧ manager(w)... }

Upon transforming this query, two nonlocal Table nodes are produced:
works on w and manager w. The integration of these tables in the FROM clause
of the equivalent SQL query is not trivial. It is not possible to judge if a table is
discarded only on the base of the source relation predicate. The whole expression
must be analyzed. For this, the context of the nonlocal works on table and the
nonlocal manager within the expression is required. In this example, the works on

relation can be discarded in the equivalent SQL query because, according to the
semantics of Tuple Calculus, quantified negated relations are expressions that al-
ways evaluate to true. This is due to the fact that there is always at least one
node in the universe that does not belong to a given relation. Therefore, the table
works on should not be integrated while the table manager should be kept.

The algorithm for discarding and integrating Table nonlocals is explained in
detail in the next chapter.

5.9. R3 - MULTIPLE RESULTS 203

Identification of Nonlocals

As explained in Section 4.3.3 according to the three-party contracts, a producing
linglet should also participate in the integration of its nonlocal results. In order
to be able to integrate nonlocals, linglets need to identify them. To this end, role
names are used. Roles decrease the coupling between the various language im-
plementation concerns. In a language specification, nonlocal results are identified
by their role names so as to specify their integration. By using role names, the
language designer can abstract from the details of the results and thus respects
the isolation of linglets. In other words, this identification is used to specify the
integration of nonlocal results outside of the borders of linglets.

Example: The Relation linglet produced a nonlocal Table node. This non-
local is named table. Via this name the nonlocal can be identified in order to
encode its integration.

5.9.2 SP8-12 Handling Multiple Results in Language Spec-
ifications

Recall from Section 4.3.3 that handling multiple results consists of two steps:
identification of the place where to integrate them and the integration itself. Due
to requirement R3b a linglet is not allowed to explicitly consume results produced
by other linglets unless these are essential for defining its proper translational se-
mantics. In other words, other linglets cannot be charged with the additional
responsibility of handling nonlocal results produced by other linglets. As the
producing linglets, nor the consuming linglets can be made responsible for inte-
grating the nonlocals, nor any another linglet can be made responsible for the
integration, the only remaining option is to make the nonlocal results themselves
responsible for finding the place where to integrate themselves. This leads to a
specification of the algorithm for identification and integration in a single linglet
i.e. the linglet that produces nonlocals.

In order to identify in which term the nonlocal result must become part of,
one can either use the information encoded in the target terms themselves, or use
the linglets that produce that target language term. We refer to the former as
target-steered integration and to the latter as source-steered integration.

We first introduce the basic mechanism available in the language specification
to add these responsibilities. The specific kind of behavior that implement these
responsibilities is not hard-coded and dictated by the system but is contained in
interaction strategies.

Basic Mechanisms

The basic mechanisms for adding the identification and integration responsibilities
to nonlocals are:

204 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

1. External identification of nonlocals Nonlocals can be identified by their
role which is given by the producing linglet when the method
nonlocalrole : nonlocal (see Section 5.4.2) is specialized.

2. Extension of nonlocals with additional behavior As detailed in Sec-
tion 5.3.8, AST nodes can be extended with new method definitions. By
encoding in these methods the behavior to identify the target program frag-
ment in which to integrate a nonlocal, a nonlocal is made responsible for
its integration.

As the nonlocalrole : nonlocal methods capture the initial context of
nonlocals and their producing linglet, information from these locations can
be easily accessed in the definition of the new methods. More precisely, by
specializing nonlocals at run-time with new methods, the new methods can
refer to variables in the current run-time environment (see Section 5.3.8).
This is further illustrated in the example given below.

3. Access to other ASTs In order to identify and integrate nonlocals, we need
to access the AST. As linglets are defined in isolation from one another, a
linglet can only access it parts. So, only the methods which are added to
the linglets in the language specification have access to the whole AST.
However, access to sibling and parent AST nodes is required to be able to
cover the whole tree. This access is provided by the reflective layer of LTS
and interaction strategies which are discussed in the next chapter.

Example: Consider the query below that selects all employees who work more
than 10 hours on ‘ProjX’. The challenging part in this query is its formulation
where two existential quantifiers appear right after each other and afterwards
bounding the tuples. Although it is not formulated in a conventional way, it is
mathematically sound.

{ e.name | employee(e) ∧ (∃ w) ((∃ p) (project(p) ∧
works on(w) ∧ w.ssn = e.ssn ∧ w.hours > 10 ∧
p.ssn = e.ssn ∧ p.project = ’ProjX’))}

As each existential quantifier produces an exists SQL expression, two directly
nested existential quantifiers raise an interesting integration problem. Figure 5.5
depicts the AST of the above source program and its equivalent target program.

As explained in the previous subsection, each Relation nodes produces a
nonlocal Table node which is hooked to a local True node. In our example query,
the three Relation nodes each produce a nonlocal Table and a local True node
(see the nodes in typewriter font in Figure 5.5). The two directly nested existential
quantifiers translate in a target program where two Table nodes are hooked as
nonlocals in the expression of nested Select nodes. The integration of these
nonlocals must ensure that the two Table nodes are integrated in the FROM clause

5.9. R3 - MULTIPLE RESULTS 205

Column
Select

Select

(*) nonlocal Table AST Node

Source Program

Expression
true

and

employee e

Select

Expression
true

and

project p

Expression
true

and

works_on w

...

*

Exists

Exists

*

move the nonlocal
project p

and integrate it in
the Select node

within the scope
of the tuple p

Attribute
Set

p

e.name

Expression
employee(e)

and

w

Expression

project(p)

and

Expression

and
...

Exists

Exists

works_on(w)

Target Program

transformation

scope of the
tuple w

scope of the
tuple p

move the nonlocal
works_on w

and integrate it in
the Select node

within the scope
of the tuple w

move the nonlocal
employee e

and integrate it in
the Select node

within the scope
of the tuple e

e.name

scope of the
tuple e

Figure 5.5: Source dependent integration of Table nodes.

of the correct Select node. More precisely, the integration must ensure that the
nonlocal Table node representing the project(p) expression is integrated in the

206 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

inner most Select, that the nonlocal Table node representing the works on(w)

expression is integrated in the middle Select and that the nonlocal Table node
representing the employee(e) expression is integrated in the outermost Select.
In order to accomplish that, we need to identify the nonlocals and subsequently
adapt them.

Below an excerpt of the language specification of T2SQL is given containing
the integration of the nonlocal Table node. We identify the nonlocal Table

with role #table, by overriding the method nonlocaltable: nonlocal. In that
method, we extend the nonlocal with a new method integratable: master

in line 4, which encodes the behavior computing whether a given AST node is
a suitable node to integrate the nonlocal Table18. The integrable: master

method works as follows. Recall that a relation is transformed into a Table

node and that the tuple of a relation is an alias for the produced Table node in
SQL. Tuples are scoped in Tuple Calculus by the quantifiers that declare them.
In our example, the tuple w is scoped by the exists quantifier. A Table node
is thus scoped according to the quantifiers in Tuple Calculus. In our example,
the nonlocal table declaration works on w is scoped by the exists quantifier ∃ w.
Using the scope, we can thus decide where the table should be integrated or not.
A nonlocal Table node is only integrated in a given master of the target AST
when its source linglet is a scope (line 4) and declares the scope of its tuple (line
5). As such, nonlocal Table nodes are always integrated in those Select nodes
which define the scope of the table.

The method integratable: master illustrates an interesting side effect of
creating this behavior at run-time, since it uses the variable tuple which is de-
fined in the enclosing method nonlocaltable: nonlocal. As such, the acquain-
tances of the nonlocal node in its method integratable: master are virtually
extended with information from the Relation linglet.

Scope = Linglet

tuple: {}

Set

variable: Attribute.

condition: Expression.

extends: Scope.

tuple: { ... }.

Exists

extends: Scope.

tuple: ID.

condition: Expression.

18This method is part of a protocol prescribed by an interaction strategy to integrate nonlo-
cals. More details are given in the following chapters.

5.9. R3 - MULTIPLE RESULTS 207

Relation

(1) nonlocaltable: nonlocal { | tuple |

(2) tuple := ast tuple asString.

(3) nonlocal integratable: master {

(4) (master source linglet hasType: ’Scope’) and: [

(5) master source tuple = tuple

(6)].

(7) }

}

SP8 - Identification via the Source Language Program

We have mentioned that the integration and identification is the responsibility
of the nonlocal results themselves. A mechanism is necessary to access the AST
node which produced that target node, so as to be able to guide the integration
and identification using the source language in a method which is defined on a
target node of the target language. The mechanism for gaining access to the
source AST node is a pseudo part of the target AST node called source. This is
a link between the target and source AST nodes provided by the reflective layer
of LTS (explained in Section 6.1.5).

Example: In the previous example we illustrated that the integration of the
nonlocal tables depends on the source language: the integration can only occur
when the source AST node and source linglet of the target master define the
scope of the table (see Figure 5.5). The source language provides a suitable
abstraction level to encode the integration whereas SQL actually lacks an explicit
scope declaration mechanism.

SP9 - Identification via the Target Language Program and SP12 - Con-
text Information

Computing the decision whether or not to integrate nonlocal results based on the
target language is more robust than the source language due to the reduced se-
mantical complexity of its language constructs. In cases where the target language
is less expressive than the source language, there are fewer language constructs
for expressing the same observable semantics. As the semantics of the source
language is defined in terms of the target language, the computations about the
semantics of the source language expressed in terms of the target language in fact
implicitly take into account the semantics of the source language constructs. As
such, the semantics of the source language can be changed, which is more likely
to happen than changes to definition and semantics of the target language, with-
out having to change the computation of the integration logic. This is based on
the Felleisen’s conciseness conjecture [Fel91]. The conciseness conjecture states

208 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

Relations
No query works on manager

1 e.name|(∀w)(works on(w) ∧manager(w)...) FAIL FAIL
2 e.name|(∀w)(works on(w) ∨manager(w)...) FAIL FAIL
3 e.name|(∃w)(works on(w) ∨manager(w)...) OK FAIL
4 e.name|(∃w)(works on(w) ∧manager(w)...) OK FAIL
5 e.name|(∃w)(¬works on(w) ∨manager(w)...) DROPPED OK
6 e.name|(∃w)(¬works on(w) ∧manager(w)...) FAIL OK
7 e.name|(∀w)(¬works on(w) ∨ ...) OK -
8 e.name|(∀w)(¬works on(w) ∧ ...) FAIL -
9 e.name|(∃w)(¬works on(w) ∨ ...) FAIL -
10 e.name|(∃w)(¬works on(w) ∧ ...) FAIL -

Table 5.1: Context-sensitive integration of nonlocal Tables produced by the re-
lations in the listed queries.

that programs in a more expressive programming language that use the additional
facilities in a sensible 19 manner, contain fewer programming patterns than equiv-
alent programs in less expressive languages. What Felleisen actually is saying is
that the closer the constructs in the programming language are to the tasks in
the computation which needs to be expressed, the better. Hence, we can con-
clude that when the tasks of the computation are supported by constructs in the
target language, the language constructs defined in the source language are not
necessary to compute the integration. Moreover, excess logic (or code patterns)
would have to be written to take the excess language constructs in the source
language into account during integration.

Example: In the following example we show that the computation of the
decision whether or not to integrate based on the target language is more robust
and even less complicated compared to a source-steered integration.

Recall the integration of nonlocal Table nodes on page 202. We explained
for a particular query that it is not possible to judge if a table is discarded only
on the basis of the source relation predicate, but the context of the whole ex-
pression must be taken into account. Table 5.1 summarizes based on the context
of queries indicate when the Table nodes produced by the relation should be
integrated (OK), or when they cannot be integrated (DROPPED) or when the
transformation process should fail (FAIL) because the query violates the seman-
tics of the source language.
The table is constructed obeying the following rules:

• A positive relation fails when it is universally quantified, because not every
tuple in the universe belongs to that relation.

19Sensible in this conjecture informally excludes the use of more expressive constructs for
non-observable behavior.

5.9. R3 - MULTIPLE RESULTS 209

• A relation fails integration when the same tuple must belong to two rela-
tions.

• A negated relation is acceptable when it is universally quantified in disjunc-
tion with an or, because every tuple in the universe can be considered part
or no part of the relationship.

• A negated relation fails when it is universally quantified in conjunction with
an and, because every tuple in the universe cannot be considered not to be
part of the relationship.

• A negated relation fails when it is existentially quantified in conjunction
with an or, when there is no other relationship left to define the tuple, it is
dropped when another relationship is present. It can be dropped because
there always exists a tuple in the universe which does not belong to that
relation.

Consider the first line of Table 5.1. The relation works on cannot be inte-
grated because it is a positive relation in universally quantification of the tuple w.
An universal quantification denotes that the given predicate must hold for every
tuple in the universe called w. Obviously, the works on relation predicate does
not contain every tuple in the universe, so the transformation must fail. A similar
reasoning can be formulated for each of the other listed queries.

The integration of the nonlocal Table nodes, based on Tuple Calculus, de-
pends on five linglets which can be composed with a Relation linglet: Exists,
ForAll, And, Or, Not. In order to compute when to discard, fail or integrate a
Table node, one needs to take into account the composition of each of those lin-
glets with other linglets and encode how they affect the integration. As we have
shown, the rules to compute this decision are quite complex. More information
on the drawbacks of a source-steered integration of nonlocal of this example are
discussed in [CK07]. Clearly in this case, computing the decisions whether or not
to integrate based on the source language is fragile as we explicitly rely on the ex-
istence of these linglets and their behavior. We therefore opt for a target-steered
integration.

In SQL there are two linglets which can be composed and have an effect on
a Relation linglet: AND and NOT. In order to compute when to discard, fail or
integrate a Table node, one must only take into account those two linglets, and
compute their effect of the linglet on the integration. The logic computing the
integration is implemented in the context changed:node method20. The logic
encoded in the method is quite simple and is modeled after a state machine. Each
encountered node changes the state of the integration. First two new variables

20This method is not part of LTS but is part of a protocol prescribed by an interaction
strategy to integrate nonlocals. More details are given in the following chapters.

210 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

discard and required are stored in the linglet using their corresponding setters
(see Section 5.8 for more information). When a NOT node is encountered, the
discard and required flags are negated. When an AND node is encountered, the
required flag is set to true.

We illustrate the integration of one nonlocal Table node with the example
query number seven of Table 5.1. Figure 6.4 depicts the integration process for
the nonlocal Table node.

Relation

nonlocaltable: nonlocal {

nonlocal discard: false.

nonlocal required: true.

nonlocal context_changed: node {

node linglet type = ’NOT’ ifTrue: [

ast discard: ast discard not.

ast required: ast required not.

] ifFalse: [

node linglet type = ’AND’ ifTrue: [

ast required: true.

].

].

}

SP10 - Scheduling

In the previous examples, we showed that nonlocals are made responsible for
their integration. The added logic to the nonlocals declaratively state when21 to
perform the integration, regardless of the fact whether other linglets producing
the identified term or influencing the integration has already been executed or
not.

SP11 - Integration

The integration of nonlocals in LTS is implemented as a three-party contract,
carefully dividing the responsibilities (see Section 4.3.3). A three-party contract
consists of (1) the linglet that produced the nonlocal and the nonlocal itself, (2)
an external integration rule, and (3) the linglet that produced the program frag-
ment in which the nonlocals must be integrated, and the produced the program
fragment itself. The method nonlocalrole : nonlocal and the specialization of
nonlocal with new behavior clearly involves the first party. We also mentioned
that the actually integration is specified by interaction strategies. These are in-
fact the second party. The integration of a node in produced program fragments

21Nonlocals may also contain code to perform the integration (see next paragraph)

5.9. R3 - MULTIPLE RESULTS 211

is specified by invoking its setters. Hence, by ensuring the consistency in their
setters, those fragments actively participate in the integration of nonlocal results.
This is the third party which is involved.

Example: Consider the Exists linglet shown below. In some situations the
linglet does not produce an exists expression but a join22. However, a join op-
eration of tables can produce duplicate results which are undesirable. To correct
this, the Exists linglet produces a Select node with the DISTINCT keyword.
This Select node must be integrated in (see correspond: master method)
the SELECT clause defining the tuple query and it must (see combine: master

method) add the DISTINCT keyword to the Select node upon integration. How-
ever, in case the tuple query is not a set but a bag, the DISTINCT keyword must
not be integrated. This can be achieved because the integration is a three-party
contract involving also the semantics of the Bag linglet. More precisely, the Bag

linglet overrides the setter distinct: of its produced Select node to ensure that
its distinct flag is not set.

Exists

condition: BooleanExpression.

tuple: ID.

nonlocaldoubles: select {

select correspond: master {

master source linglet hasType: ’Query’

}

select combine: master {

master distinct: ast distinct

}

}

Linglet Bag {

syntax {

"[" variable+ "|" condition "]"

}

generate { | variable condition query |

variable := ast variable generate.

condition := ast condition generate.

query := #Select{ SELECT ’variable FROM dual WHERE ’condition }

query distinct: value {

(value ~~ #on) ifTrue: [

previous distinct: value

]

}

22When an attribute is part of the header of the set, then the translational semantics of a
relation is not an exists but a join.

212 CHAPTER 5. LINGLETS : THE BASIC LANGUAGE CONCERNS

}

}

5.10 Conclusion

The Linglet Transformation System (LTS) is a novel language development tech-
nique which fulfills the five requirements postulated in Chapter 4. In this chapter
we introduced the core of LTS consisting of basic concerns and language specifi-
cation concerns.

Languages in the Linglet Transformation System (LTS) are constructed from
isolated language modules which we call linglets. Each linglet is a basic language
concern. It thus defines the syntax and the translational semantics of a single
language construct. The overall language semantics are defined by the language
specification that composes linglets and establishes interactions among them.

The architectural style adopted by LTS is a prototype-based object-oriented
organization. Each linglet represents a language construct and implements all
operations that can be exercised on a program fragment that uses this construct.
An instantiation of a linglet thus represents a particular program fragment and all
cooperations and interactions among linglets are implemented by mere message
passing between these instantiations.

The object-oriented prototype-based paradigm provides us with the ability to
modify, compose and tailor linglets as well as instantiated linglets with concern-
specific logic, which allows us to maintain the modularization of linglets. Even
in the presence of more complex translational semantics, the semantics is ap-
propriately localized in all the involved linglets. This high cohesion of a linglet
and low coupling among linglets clearly shows that linglets maintain their strict
separation.

Because linglets only define the semantics, they need to be completed in a lan-
guage specification. Language specifications are incomplete at this point because
the actual logic to establish the interactions cannot be expressed conveniently.
More precisely, a linglet can only interact with its direct acquaintances. The
interaction patterns and mechanisms are the subject of the next chapter.

Chapter 6

The MetaObject Protocol for LTS

The previous chapter introduced the kernel of LTS. The kernel is a transformation
system in which each basic concern is captured in a modularized linglet.

Special purpose concerns are the mechanisms for implementing the interac-
tions among linglets (see Section 4.2). Interactions occur when several linglets
are combined which have more complex translational semantics, i.e. they do not
compose, they require multiple inputs and/or produce multiple outputs. Trans-
lational semantics that does not compose need to be adapted so as to resolve the
compositionality conflict. Translational semantics with multiple inputs require
additional information besides the information contained in a linglet or transla-
tional semantics with multiple outputs require changes to the results produced by
other linglets. We call this part of translational semantics in our modularization
model the effect (see Definition 4.8).

In this chapter, we present a technique to implement the effects by using
modularized implementations of special-purpose concerns, while maintaining the
dominant decomposition of separate language concerns into linglets. So any logic
specific to a linglet can be locally defined in that linglet. Any logic specific
to a particular special-purpose concern can remain local to the special purpose
concern.

The inability to effect the semantics at the level of basic concerns is rooted
in the primitive communication mechanisms offered by the kernel of LTS. Recall
that the kernel of LTS allows linglets to communicate directly with their imme-
diate acquaintances only. The immediate acquaintances of a linglet consist of its
children and its semantically equivalent target fragments. However, the inter-
actions imposed by the complex transformations may stretch from neighboring
linglets to distant linglets. As a result, many small interactions over these ac-
quaintances, which we call intermediate linglets, are required in order to reach
the more distant linglets and interact with them.

In Chapter 4 we discussed existing language development techniques (LDTs)
(see Definition 2.2), each capturing a specific interaction strategy (e.g. forwarding,

213

214 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

structure-shy queries, symbol tables) that can be added so as to increase the
degree of separation among basic language concerns. So in order to reduce the
involvement of linglets, we will likewise also need interaction strategies.

In this chapter, we show that interaction strategies can vary. So it’s unlikely
that a fixed set of interaction strategies is sufficient, as will be apparent from
the examples discussed in this chapter. The analysis of the interaction strate-
gies identified in Chapter 4 already attests that they expose control over the
execution of LDTs. The execution of the LTS is entirely expressed in terms of
a set of interacting linglets. Hence, exposing control over the execution of LTS
means exposing control over the execution of linglets. To this end, we equip LTS
with a reflective layer for linglets so as to be able to construct new and tailored
interaction strategies.

Reflection [Smi84] is the ability of a program to manipulate its state during
its own execution. There are two aspects of such manipulation: introspection
and intercession. Bobrow [BGW93] defines those terms as follows. Introspection
is the ability for a program to observe and therefore reason about its own state.
Intercession is the ability for a program to modify its own execution state or
alter its own interpretation. There are two types of computational reflection:
structural and behavioral. Both are required in order to implement interaction
strategies as they inspect and intercept linglets and change their semantics.

A metaobject protocol (MOP) organizes the reflective layer of a program such
that it can be extended in an object-oriented style [Mae87, KRB91, Ste94]. For
example in LTS, object-oriented concepts like dynamic dispatch, inheritance and
information hiding are used at the meta-level to provide abstractions that hide
implementation details of LTS while at the same time ensuring its extensibility.
Moreover collaborations among objects naturally map to the concept of protocols
and subprotocols in a MOP, resulting in an elegant system.

This chapter is divided into seven sections. Section 6.1 details the metaobject
protocol designed to open up LTS. Afterwards, in Section 6.2, we explain how
interaction strategies can in general be implemented using the MOP and sketch
the implementation of the interaction strategies. The suitability, applicability and
extensibility of the MOP is illustrated by implementing two interaction strategies
in Section 6.3: one to retrieve information external to linglets, and one to resolve
multiple outputs. We conclude our experiments with an advanced application of
the MOP which is presented in Section 6.4, where we implement the languages to
define linglets and language specifications in LTS itself. In Section 6.5, we revisit
the tasks and challenges of the three kinds of special-purpose concerns which we
identified in Chapter 4. We show how MOP can accommodate their needs. Before
we conclude in Section 6.7, we reflect upon the essential and crucial qualities of
the MOP to design and implement interaction strategies in Section 6.6.

6.1. METAOBJECT PROTOCOL 215

6.1 MetaObject Protocol

The metaobject protocol reifies the fundamental concepts of LTS as first-class
entities. As these entities represent linglets and encode their behavior, they are
metaobjects. The protocol followed by the metaobjects to provide the behavior
of linglets is called the Linglet MetaObject Protocol (LMOP). A static diagram
of LMOP is shown in Figure 6.1.

The reified concepts in LTS are: LS, Linglet and ASTNode 1. The LS metaob-
ject reifies the language specifications, the Linglet metaobject reifies linglets and
the ASTNode metaobject reifies the AST nodes.

Each metaobject reifies the structure and the behavior of its corresponding
LTS concept. Intercession and introspection is only selectively applied to ensure
the integrity of the system (see Section 6.1.6). For example, in Figure 6.1, the
methods which can be intercepted are marked.

Interactions among the metaobjects define the basic behavior of LTS. They
are described with sub-protocols i.e. smaller protocols that are a part of the over-
all protocol defined by LMOP. The kernel of LTS consists of isolated linglets and
language specifications. Because the latter glues linglets, the behavior of a lan-
guage implementation written in LTS is entirely defined and dictated by linglets.
Furthermore, as linglets are defined in isolation, they have very limited commu-
nication abilities. Hence, there are only a few simple sub-protocols describing the
basic interactions among LMOP metaobjects.

The remainder of this section consists of two parts: a description of the static
part and a description of the dynamic part of LMOP. In the first three subsections
we introduce and detail the static structural properties of the three reified con-
cepts of LTS: language specifications, linglets and programs (linglet instances or
AST nodes). The subsequent two sections each discuss the dynamics of the proto-
col for the various tasks performed by a linglet: the construction of its equivalent
translational semantics by producing multiple target program fragments and the
retrieval of the necessary context information. In these two sections, we include
the necessary sub-protocols that describe the interactions and manipulations of
metaobjects which define the basic behavior of LTS. The one but last section
discusses how consistency of the base-level is retained given the intrusive access
of the metaobject protocol. We conclude the discussion of the protocol with a
summary.

6.1.1 Specifying Languages

Language specifications are reified by LS metaobjects. Through the metaobject,
its three major parts are accessible: the header containing the name and the
base language, the root linglets, and the test suites. Note that this information

1Not all the concepts encountered in LTS are reified. Syntactical parameters and methods
are omitted as they behave passively in the semantics of LTS.

216 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

can only be introspected. More details on the reasons for this can be found in
Section 6.1.6.

The source language specification can always be accessed through the global
variable LS. The name of the source language and the name of the target language
can be introspected respectively by the methods NAME and BASE defined in the LS
metaobject.

Linglets

Root linglets can be introspected by the LINGLETS method defined in the LS

metaobject. They are the entry points to linglet compositions and as such reifies
the grammar.

Using the composition of linglets is rather tedious to look up linglets. To this
end, a convenience method LINGLET:aType is provided by the LS metaobject in
orrder to lookup linglets. This method traverses the composition of the linglets
and looks up the linglets of a given type aType.

Parsing and Compilation

The language specification also provides methods PARSE:aText for parsing a com-
plete program or a program fragment, and COMPILE: anAST WITH: globals for
compiling it. The anAST parameter is the AST of a program written in the source
language. The parameter globals (see also Section 6.1.5) is a dictionary of key-
value pairs denoting the information which is external to the program. Global
parameters are for example settings for the optimization level of a compiler, or
search paths for looking up libraries, etc.

6.1.2 Specifying Linglets

The linglet metaobject reifies the type of a linglet, the syntax of its corresponding
language construct, its translational semantics and its concern-specific methods.

The instance variables of a linglet metaobject cannot be assigned to after it
has been created and initialized by LTS. This design choice is discussed in detail
in Section 6.1.6.

Type

The most specific type of a linglet can be accessed through the method TYPE.
Other types can be tested through the method HASTYPE: aType that determines
whether the delegation chain of a linglet contains a linglet of the given type aType.

6.1. METAOBJECT PROTOCOL 217

Syntactical Parameters

The syntactical definition of a linglet is not stored as a textual description but
as a parser, modeled after parser combinators [SAA99], to retain both a high
level and an executable specification. The syntactical definition refers to a set of
syntactical parameters (see Section 5.3.3). Parameters can be inspected through
the PARAMETERS method, yielding a list of symbols. The bindings of parameters
can be retrieved by the method PARAMETER: aName but they cannot be altered
(see Section 6.1.6).

Parameters can be single- or multivalued. This distinction is important in
order to correctly compose AST nodes. The linglet metaobject provides the pred-
icate MULTIVALUED:aName for determining whether a parameter with the given
name aName is multivalued or not.

Semantical Methods

The translational semantics for a given AST node can be executed via the method
GENERATE: anAST. Other methods can be reflectively invoked via the method
EXECUTE: aSignature ON: anAST WITH: anArgumentList, where aSignature

is the signature of the method to be executed, anAST is the receiver AST node,
and anArgumentList the list of arguments for executing the method.

Besides reflectively executing methods, a limited form of introspection is
available. One can only determine whether a linglet can respond to a method
and obtain a list of abstract methods. The method RESPONDSTO: aSignature

checks whether a linglet supports a message signature aSignature. The method
ABSTRACT returns a list of signatures of abstract methods to which a linglet cannot
respond. Methods themselves are not reified.

Semantical methods which are defined in a language specification or in a linglet
behave slightly differently. Method declarations in a linglet must respect its
isolation (see Section 6.4). Messages to retrieve acquaintances which are defined
in the metaobject protocol or in one of its extensions may in principle not be called
from within a method defined in a linglet. In order to enforce this, we distinguish
between external method and internal methods. At run-time we check whether a
certain method call is allowed from an internal method. This can be determined
by the EXTERNAL: aSignature method.

6.1.3 Specifying Programs

Programs are represented with an AST, where each node is an instantiation of a
linglet.

218 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

AST nodes

A new AST node representing a specific code fragment of a linglet can be created
with the NEW message, which is defined on the Linglet metaobject.

AST nodes delegate to their linglets. The link from an AST node to its most
specific linglet is exposed at the metalevel through the LINGLET method defined in
each AST node. However, the delegation links between linglets are not accessible.

Parts

AST nodes form a tree navigable downwards from parent to child by storing
their parts in a dictionary called members2. The MEMBERS method returns a list of
symbols naming slots. Note that this function is not equivalent to the PARAMETERS
of its linglet: some syntactical parameters may not have slots and some slots may
not be syntactical parameters.

Each slot contains either a single AST node or a set of AST nodes. A set
representation is necessary to avoid duplicate nodes in the AST. As nodes are
changeable, duplicate nodes would cause unexpected changes when changing such
nodes. When such behavior is indeed desired, it should be explicitly encoded.

Members can be accessed via the method MEMBER: aName. They
can be updated, and new members can be added, via the method
MEMBER: aName ADD: aValue ON: index. The index is an integer ranging from
1 to the number of nodes contained in a slot.

Both single and multivalued slots are thus manipulated using the same meth-
ods. Single-valued slots can only contain a single value and are thus always
added at index 1. Because of the ON argument of the MEMBER:ADD:ON: method,
the index of the value always needs to be specified. However, we add several con-
venience methods to modify the value of a single valued slot by MEMBER:aMember

PUT:aValue or to add an element to a particular member by MEMBER:aMember

ADD:aValue.

Parent

AST nodes form an upwards navigable tree through a parent link which is aces-
sible via the PARENT method. Parent links among nodes are set by the kernel
metaobjects.

6.1.4 Constructing Target Programs

Now that we have introduced and detailed the static structural properties of the
three reified concepts of LTS, we proceed with the dynamics of the protocol for
the various tasks performed by a linglet. In this and the next section, we include

2The members correspond to the slots or instance variables in object-oriented languages

6.1. METAOBJECT PROTOCOL 219

the necessary sub-protocols that describe the interactions and manipulations of
metaobjects which define the basic behavior of LTS.

All the sub-protocols of LTS are listed in Figure 6.2. We adopt the presen-
tation style from Paepcke [Pae93]. The sub-protocol descriptions are depicted
by a list of the various activities that must take place during the course of a
sub-protocol. The activities correspond to a method call. A series of indented
subactivities below each entry shows the necessary steps for accomplishing that
entry. In other words, the subactivities below a method call are the method calls
which need to be executed to implement that method call. Successive levels of
indentations thus represent increasing levels of detail. The figures serve two pur-
poses: giving a quick overview of a sub-protocol and showing the ‘hooks’ available
for effecting changes.

In this section we explain the dynamics of the protocol involving the construc-
tion of equivalent translational semantics by producing (multiple) target program
fragments.

#-Construct

The construction of a target program using the #-construct is syntactic sugar for
a complex series of meta-level calls. Meta-level calls construct a target program
by parsing an expression of the target language. Subsequently, each meta-variable
Mi is inserted into the correct location Ki in the AST tree. The sub-protocol of
the # construct is depicted in Figure 6.2.

Producing Multiple Results

Multiple results are produced by storing them in the nonlocals slot of an AST
node. The base-level calls to retrieve and add nonlocals carry the same name
as the meta calls, respectively NONLOCALS and NONLOCAL: anAST ROLE: aRole

where anAST is the AST node which is added as nonlocal with the given role
aRole. Alternatively, multiple results can simply be returned from methods, for
example as sets. The resolution of multiple results, independent of how they are
produced, is not further specified in LMOP but must be resolved by a suitable
interaction strategy.

In the previous chapter, we have shown that nonlocals are directly retrievable
via the interface of the linglet that produces them. This ensures that nonlocals are
directly accessible although they can be hooked deep into the produced AST. For
this, we define the nonlocal results sub-protocol which is depicted in Figure 6.2.
The T and S name in the sub-protocol are both AST nodes, respectively denoting
the target language AST node and the source or generating language AST node.
The subprotocol invokes the method NONLOCALrole : aNonlocal on the generat-
ing linglet, where aNonlocal is a new nonlocal which has been created, and role

is the role of the nonlocal (see Section 5.3.7). For example: the relation linglets

220 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

in T2SQL (see Section 5.9.1) produce a nonlocal table . So this nonlocal can
be intercepted at the metalevel via the method NONLOCALtable :. This method
is invoked upon the attachment of a nonlocal result via the NONLOCAL:ROLE:

method.

6.1.5 Retrieving Information

In this section we discuss the dynamics of the protocol involving the retrieval
of the necessary context information. The information sources of a linglet to
compute context information can be subdivided into static and dynamic sources.

Static Information Sources

The static information sources for a linglet are its static acquaintances, i.e. its
parts and its parent, and auxiliary methods in case the information is not locally
available. Information requests to access their static information sources are
implemented by method calls (see Section 5.8).

The subprotocol for requesting information is shown in Figure 6.2. Every
information request starts out as a plain method call and is thus also treated
as a plain method call. We first check whether a method is defined with that
signature.

When no method is found and the signature has more than one argument, then
the AST node cannot respond to the request and the UNKOWNREQUEST:aSignature
WITH:anArgumentList is invoked. The default implementation throws an error,
except for the following two cases:

• When the signature of a method request has one argument, and no method
corresponds to that request, then that request is treated as a setter. Parts
are set by the method MEMBER:ADD:ON:. As the AST nodes store their
members in an open-ended form (see Section 5.3.2), any request for an
unknown setter results in the creation of a new part. So when overriding
the UNKOWNREQUEST:aSignature WITH:anArgumentList and invoking the
overridden implementation, unknown setters can only be intercepted once.

• When the signature of a method request has no arguments, and no method
corresponds to that request, then that request is treated as a getter. Parts
are accessed by the method MEMBER:. As the AST nodes store their members
in an open-ended form (see Section 5.3.2), any request for an unknown getter
results in the creation of a set such that multiple AST nodes can be added.
Consider for example the following code excerpt:

ast unkownpart add: otherast.

6.1. METAOBJECT PROTOCOL 221

It gets an unknown part unkown which returns a set, and to this set a node
otherast is added.

So when overriding the UNKOWNREQUEST:aSignature WITH:anArgumentList

and invoking the overridden implementation, unknown getters can only be
intercepted once.

Globals

Another static source of information for linglets is the access to information which
is external to a language. We call this global information. Global information
can only be accessed in a language specification, in order to preserve the modu-
larization of linglets as linglets are not designed to operate in a specific language
but should be usable in many languages. Global information can be accessed via
the method GLOBAL: aKey.

Source

LTS provides the source link as a special static acquaintance to linglets in addition
to its parent and its parts. The source of an AST node points to the AST node
which produced it. This link is automatically set by the system and can only be
accessed through the SOURCE part.

The source acquaintance plays a crucial role for debugging, tracking and in-
teraction strategies which use the source language as an abstraction level for the
target language. The latter are for example used to implement source-steered
integration of nonlocal results (see Section 4.3, Section 5.9.2 and Section 7.5.10).

Caller

Besides static information sources, a linglet also has a dynamic information
source. There is currently only one dynamic acquaintance offered by linglets
and that is the caller of a semantic method of a linglet. A linglet can thus reflect
on the dynamic chain of semantic method calls issued by previous linglets through
the CALLER method.

The reason for adding this is that many interaction strategies implicitly use
the caller. Consider, for example, the threading of a symbol table through an
interpreter. Each time a function is invoked, the current symbol table is passed
from the caller to the callee. As it is our intention to provide an open language de-
velopment technique, where interaction strategies can be implemented as custom
linglets, LTS explicitly provides access to this information.

222 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

6.1.6 Consistency

Steyaert [Ste94] warns us that an open implementation does not define a single
system but an entire design space of (related) systems. Merely opening up a
system’s implementation gives no guarantee that the so created design space is
coherent. Furthermore, he argues that it is therefore important to identify the
constraints surrounding the language concepts that are made explicit.

When adding a meta-layer to LTS, the consistency of linglets must not be
compromised by the control over the behavior and over the structure of a language
implementation obtained through the meta-layer. Intercession can easily disrupt
the basic assumptions and behavior of a system. The goal in designing LMOP
was to expose the behavior of the transformation process so as to be able to
extend LTS, while limiting the risk of accidentally breaking and corrupting LTS.

The following design decisions are also graphically depicted in Figure 6.1.

Stable Information

Intercession of structural information which needs to remain stable throughout
the execution of a transformation is prohibited. The specification of source and
target language are the prime examples of such information. We call this grammar
stability. Grammar stability ensures that interaction strategies relying on the
grammar behave consistently during the transformation.

Consistent Information

Intercession of structural information which needs to remain consistent is care-
fully controlled. AST nodes have two kinds of static acquaintances: their parts
and their parent. In order to enforce local consistency, intercession of these ac-
quaintances must be managed.

AST nodes form a tree through a parent link. Intercession of the parent is
not possible. The parent link is maintained by the metalevel and is implicitly
changed when parts are added or replaced. Hence, the local consistency of the
containing node is ensured.

Linglets can enforce local consistency by providing additional methods for
guarding the setters of the parts of an AST. LTS ensures this consistency by
reversing the implements-by relationship between the base and the meta level:
by enforces that all changes to parts originating both from the base and the
metalevel go through the guarded setter methods of the base level.

Hidden Implementation Details

Implementation details are hidden by limiting intercession of behavior. The
prototype-based character of LTS treats linglets and their AST nodes as ob-
jects whose behavior can be progressively specialized. Linglets and AST nodes

6.1. METAOBJECT PROTOCOL 223

are in fact a series of objects that delegate to each other. This delegation chain is
hidden from both the base and the metalevel to preserve the identity and to cen-
tralize data in order to maintain update consistency of the AST nodes during the
transformation process (see Section 5.3.8). Therefore metaobjects are equipped
with a pair of methods that abstract over the delegation chain.

Metaobjects provide methods that allow interaction strategies to use the infor-
mation provided by the delegation chain. The RESPONDSTO: method determines
if an AST or linglet can respond to a particular message call. Another example is
the HASTYPE: method to determine whether an AST or linglet is of a particular
type. In both methods, the delegation chain is taken into account.

Completing Behavior

Only some of the methods at the metalevel can be overridden. They are marked by
a double star in Figure 6.1. Examples of non-overridable methods are HASTYPE:

(see Section 6.1.2) and NONLOCAL:ROLE: (see Section 6.1.4).
Bulk of the structural information cannot be altered because there are simply

no setter methods defined in the metaobject protocol. However, as all struc-
tural information is accessible by inspectors, these accessors have to be made
non-overridable as well. Examples of such information are the CALLER (see Sec-
tion 6.1.5) and the PARENT (see Section 6.1.4) getters.

Intercession in behavioral information is designed to complete the basic meta
behavior of a linglet in case of: introspection and intercession of members, the
execution of the translational semantics and the execution of methods. These
methods are always executed first by the kernel metaobjects, afterwards metaob-
ject extensions can respond to these calls. There are two such methods in the
metaobject protocol, the method MEMBER: (see Section 6.1.4) and the method
RESPONDSTO: (see Section 6.1.2). When a member is retrieved by calling the
method MEMBER:, and a value for that member has been found, that value is re-
turned regardless of the return value of the overridding MEMBER: methods. The
same is true for the return value of the method RESPONDSTO:. Only in case there
is no method or part which can respond to the given signature, can the overriding
RESPONDSTO: methods refine the return value to true. As a result, members and
functionality cannot be hidden.

These above methods have a similar feel to the inheritance scheme used in
Beta [BC90], as inheritance in Beta is designed to provide security from replace-
ment of a method by a completely different method. However, only the mentioned
methods defined on the kernel metaobjects have this inheritance scheme. Exten-
sions of these metaobjects use an inheritance scheme like in the kernel of LTS
(see Section 5.3.4).

The other overridable methods (see Figure 6.1) can completely override those
of the kernel metaobjects. As such, a developer can add logic before and after
the execution of those methods and even prevent their execution if required.

224 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

6.1.7 Putting It All Together

Table 6.1 lists the meta-level calls which correspond to the various base-level
calls. These meta-level calls are the primary means for interaction strategies to
influence the behavior of the linglet.

6.2 Interaction Strategies

Interaction Strategies use the meta level of LTS in order to extend linglets with
additional functionality so as to facilitate the implementation of the more com-
plex and challenging translational semantics. In this section, we explain how
interaction strategies can be implemented in LTS using LMOP.

In the first section, we explain how interaction strategies fit in the two level
architecture of LTS i.e. how interaction strategies fit in its base level and its meta
level.

6.2.1 Situating Interaction Strategies in LTS

Interaction strategies are implemented as collaborations between linglets and need
to exercise control over the behavior of linglets. Hence, interaction strategies op-
erate on the base level and on the meta level. We further observe that the
base-level parts and the meta-level parts of an interaction strategy tightly coop-
erate. A meta-level call can invoke base-level calls and a base-level call can invoke
meta-level calls. The underlying reason for this lies with the generic nature of
interaction strategies. Consider for example interaction strategies for handling
multiple results. Such interaction strategies can encode some generic behavior
to traverse and direct the integration, but the actual logic deciding whether a
particular AST node should be integrated and how, needs to be specialized by
that specific AST node. As this logic solely deals in terms of specific AST nodes,
that logic is best written at the base-level.

In LTS the base and the meta level are not stratified. As a result, an interac-
tion strategy can be implemented as a single linglet extension.

6.2.2 Implementing Interaction Strategies

LMOP only exposes the internal structure and behavior of LTS. This fixed pro-
tocol offers basic abstractions and basic functionality necessary to implement
custom interaction strategies. Through extension of the predefined metaobjects
with new metaobjects, interaction strategies can be added to LTS (see Figure 6.3).

A new metaobject defines all the additional methods required for the protocol
of a new interaction strategy. The methods contain parts of the protocol which
are common to all linglets that use the interaction strategy (L2 of Figure 6.3).

6.2. INTERACTION STRATEGIES 225
B

A
S
E

L
A
Y

E
R

M
E

T
A

L
A

Y
E

R

C
1

:
=

a
s
t

p
a
r
a
m
1

g
e
n
e
r
a
t
e
.

C
2

:
=

C
1

i
n
f
o
.

t
a
r
g
e
t
p
r
o
g

=
#
L
{}
.

t
a
r
g
e
t
p
r
o
g

p
a
r
t
1
:

C
1
.

t
a
r
g
e
t
p
r
o
g

p
a
r
t
2

a
d
d
:

C
3
.

t
i

=
#
t
y
p
e

t
a
r
g
e
t

c
o
d
e

’
C
1

.

t
a
r
g
e
t
p
r
o
g

n
o
n
l
o
c
a
l
s

a
d
d
:

t
i

r
o
l
e
:

a
R
o
l
e
i
.

C
1

:
=

a
s
t

E
X
E
C
U
T
E
:

#
p
a
r
a
m
1

W
I
T
H
:

n
i
l

a
s
t

G
E
N
E
R
A
T
E
:

W
I
T
H
:

n
i
l

C
2

E
X
E
C
U
T
E
:

#
i
n
f
o

W
I
T
H
:

n
i
l

M
E
M
B
E
R
:

#
i
n
f
o

U
N
K
O
W
N
R
E
Q
U
E
S
T
:

#
i
n
f
o

W
I
T
H
:

n
i
l

L
:
=

L
S

B
A
S
E

L
I
N
G
L
E
T
:

#
L
.

t
a
r
g
e
t
p
r
o
g

:
=

L
N
E
W
.

t
a
r
g
e
t
p
r
o
g

E
X
E
C
U
T
E
:

#
p
a
r
t
1

W
I
T
H
:

C
1

t
a
r
g
e
t
p
r
o
g

M
E
M
B
E
R
:

#
p
a
r
t
1

P
U
T
:

C
1
.

a
s
t

p
a
r
t
1
:

C
1

t
a
r
g
e
t
p
r
o
g

E
X
E
C
U
T
E
:

#
p
a
r
t
2

W
I
T
H
:

C
3

t
a
r
g
e
t
p
r
o
g

M
E
M
B
E
R
:

#
p
a
r
t
2

A
D
D
:

C
3
.

a
s
t

p
a
r
t
2
:

C
3

t
i

=
(
L
S

B
A
S
E

P
A
R
S
E
:
(
"

t
a
r
g
e
t

c
o
d
e

K
i
:
:
"
,

C
1

T
Y
P
E
,

"
"
)

L
I
N
G
L
E
T
:

t
y
p
e
)

K
1

P
A
R
E
N
T

M
E
M
B
E
R
:

#
m

P
U
T
:

C
1

O
N
:

K
i

t
a
r
g
e
t
p
r
o
g

N
O
N
L
O
C
A
L
S

A
D
D
:

t
i

R
O
L
E
:

a
R
o
l
e
i

t
a
r
g
e
t
p
r
o
g

N
O
N
L
O
C
A
L
:

t
i

R
O
L
E
:

r
o
l
e

t
i

R
O
L
E
:

r
o
l
e
i

a
s
t

L
I
N
G
L
E
T

N
O
N
L
O
C
A
L
a
R
o
l
e
i
:

t
i

T
ab

le
6.

1:
O

ve
rv

ie
w

of
th

e
b
as

e-
le

ve
l
ca

ll
s

co
rr

es
p
on

d
in

g
to

th
e

re
sp

ec
ti
ve

m
et

a-
le

ve
l
ca

ll
s.

226 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

If there is no common part for an activity of a protocol, the method correspond-
ing to the activity is an abstract method (starred methods in Figure 6.3). The
metaobject also contains a number of overridden or refined methods that hook
the extension into the execution of linglets and thus into LTS (methodX in L2
of Figure 6.3). This way the protocol of an interaction strategy is clearly speci-
fied for all involved parties and the discrete metaobjects that define interaction
strategies can be reused across multiple language implementations. The parts of
the metaobject protocol that are not common are left to the linglet (methodX
in L1 of Figure 6.3) or to the ASTNode (methodX in L0 of Figure 6.3) further to
be specified. A concrete example of interaction strategy deployment specialized
down to the level of the linglets is given is depicted in Figure 7.4 in Section 7.4.10.

Linglets and interaction strategies are defined in isolation with respect to the
rest of a language. Only in a language specification, linglets are finally specialized
with interaction strategies. As interaction strategies sometimes need to impact all
linglets in a language specification, the root linglet of the delegation chain called
Linglet (see Section 5.4.2) can be specialized. An example of such a deployment
is shown in Section 6.3.1.

6.3 Experiments with Interaction Strategies

The major difference between LTS and other transformation systems is its ability
to customize and change the transformation system so as to incorporate new
interaction strategies through its LMOP. By discussing a number of concrete
interaction strategies, we illustrate the extensibility of the LTS system but also
the impact of that extensibility on the design of interaction strategies.

In the following two sections we conduct two experiments in which we pre-
sented a family of interaction strategies for retrieving context information and
for declaring and specifying the scattering of code fragments. The former is a
variation of an existing interaction strategy from another language development
technique, the latter is an entirely new interaction strategy. Both interaction
strategies are used in our case study where we validate this dissertation (see
Section 7.4.10 and Section 7.5.10).

6.3.1 Existing Interaction Strategies: Structure-shy Queries

In this section, we present an interaction strategy for completing linglets with
translational semantics that require external information. The interaction strat-
egy implements structure-shy queries similar to the ones found in XSLT [Lai] via
a LMOP extension. We refer to this interaction strategy as the SSQ strategy,
which stands for Structure-Shy Queries. SSQ enables us to look up information
that resides in other linglets by specifying a path to another AST node in the
source or target AST using basic operations like descendant to find a particular

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 227

AST node in a given subtree, or ancestor to find a particular AST node con-
taining a given node. Paths in XSLT do not specify the actual path in the AST
that needs to be followed for obtaining information. We introduce the proto-
col gradually, starting with a very basic protocol followed by adding a number
of extensions. As such, we illustrate the flexibility for adapting and configuring
interaction strategies using several layers of extensions.

Interaction Strategy Protocol

The basic simple SSQ protocol (see below) consists of three basic structure-shy
operations: descendant, ancestor and descendants.

Each operation is implemented with two mutually recursive methods. De-
scendant is implemented with DESCENDANT:aType and DESCENDANTWITH:aType,
ancestor with ANCESTOR:aType and ANCESTORWITH:aType, and descendants
with DESCENDANTS:aType and DESCENDANTSWITH:aType. DESCENDANT:aType

finds a node whose linglet is of a certain type from the subnodes of a cur-
rent node, which means that the current node is excluded in the search.
DESCENDANTWITH:aType does the same but includes the current node in the
search. Likewise, ANCESTOR:aType finds a node whose linglet is of a certain type
from the parent nodes of a current node, and ANCESTORWITH:aType does the same
including the current node. DESCENDANTS:aType and DESCENDANTSWITH:aType

are similar to DESCENDANT:aType and DESCENDANTWITH:aType but collect all
nodes whose linglet is of certain type instead of returning just one matching
node.

Protocol - Basic simple SSQ:

DESCENDANT: aType

DESCENDANTWITH: aType

ANCESTOR: aType

ANCESTORWITH: aType

DESCENDANTS: aType

DESCENDANTSWITH: aType

Illustration

Querying the source or target AST is not only used for completing the trans-
lational semantics requesting multiple inputs. External information is also nec-
essary in order to compute other translational kinds of completions or concern-
specific logic. As an illustration of the SSQ strategy, we complete the resolution
of the compositionality conflict introduced in Section 5.7.2 on page 197. A com-
position conflict occurs between the attribute linglet, used as a variable in the

228 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

header, and the ID linglets in case this attribute participates in an equality rela-
tion.

(1) { t.family |

(2) employee(t) ∧
(3) t.family = t.lastname ∧
(4) t.wage = 50.000 ∧
(5) (∃ w)(works on(w) ∧ w.ssn = t.ssn ∧ w.project = ’X’) }

In the above T2SQL query (see Section 5.1), the name, tuple and alias parts
of the attribute node t.family are composed with the AST nodes family, t
and family respectively. However, because t.family is bound with the attribute
t.lastname, the composition of the Attribute node is incorrect. In the binding
of the attribute t.family with the attribute t.lastname, the latter contains the
actual name and tuple, the former denotes the alias. So actually, the name, tuple
and alias parts of the attribute node should be composed with the AST nodes
lastname, t and family respectively.

In order to resolve the conflict, the accessors of the alias, the tuple, and the
name, of the Attribute linglet are specialized. The two accessors invoke an aux-
iliary method findAssignedAttribute:name: in order to retrieve the binding
of the equality relation which is a BinaryOperation with an Equal operation op-
erating on two Attributes. The binding is retrieved by invoking the descendant
method of the SSQ strategy.

Attribute

...

findAssignedAttribute: aTuple name: aName {

bin := (ast descendant: ’BinaryOperation’) detect: [

bin operator hasType: ’Equals’

and: [bin left linglet hasType: ’Attribute’]

and: [bin right linglet hasType: ’Attribute’]

and: [bin left tuple asString = aTuple]

and: [bin left name asString = aName]].

(bin == nil) ifTrue:[nil] ifFalse:[bin right].

}

In the code above we assume that the attribute of a tuple in a header occurs
on the left hand side of the binding. In general this is not always the case. The
above can easily be adjusted so as to deal with other cases.

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 229

Implementation

There are two ways for implementing the SSQ strategy: iteratively or recursively.
In an iterative implementation, the logic of a basic operation is contained in a
single linglet metaobject. Descending an AST, for example, can be performed in
a single method. In a recursive implementation, one meta-linglet relies on the
meta-linglet of its neighbours. In order to descend an AST, linglet metaobjects
recursively continue the traversal in its neighbours. At first sight, the iterative
implementation may be more favorable because of its limited impact on the im-
plementation i.e. only one linglet must be equipped with this interaction strategy.
However, in complex queries (for example the query on page 233) where several
basic operations are concatenated, every AST can be the starting point of a
subquery. Hence, every linglet must be equipped with this interaction strategy.
Therefore, we opt for a recursive implementation.

The SSQ strategy is implemented in a separate linglet called SSQ. The first
and second method retrieve the descendant whose linglet matches the given type
aType. They are mutually recursive methods. The method descendant: it-
erates over the members of an AST node and subsequently calls the method
descendantwith:. This method checks whether the linget of the current AST
node matches the given type. If so, a descendant has been found. If not, the
search for a descendant is continued.

Linglet SSQ {

descendant: aType {

ret:= nil.

ast members detect: [:member | | ret |

(ast member: member) detect: [el |

(ret:= el descendantwith: aType) ~~ nil] ~~ nil.

ret

}

descendantwith: aType {

(ast linglet hasType: aType) ifTrue: [ast] ifFalse: [

ast descendant: aType.

]

}

}

Note that in this discussion, we only focus on a single basic operation, namely
descendant:. The other operations of the interaction strategy are similar.

The SSQ strategy extends the metaobject protocol of LTS. It provides new
methods allowing communication with more distant linglets by introspecting the
structural information of an AST node.

A typical deployment of the SSQ strategy is shown in the following language
specification:

230 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

T2SQL

base SQL

Linglet=SSQ

extends: Linglet.

The interaction strategy is deployed such that every linglet and their instances
are equipped with this protocol. To this end, the Linglet3 linglet is aliased to
the SSQ Linglet, which in return extends the default Linglet.

6.3.2 Adjustment of Existing Interaction Strategies

There are several opportunities to further extend the SSQ strategy. It is not our
intention to list them all but rather to illustrate that interaction strategies can
extend existing interaction strategies and that multiple variations of the same
interaction strategy can be used, therefore we limit this discussion to three sub-
concerns. In this section we present two extensions. The first extension is to
allow nested queries i.e. descend and ascent based on a condition rather and on
the type of the node to be found. The second extension is to limit the scope of a
query i.e. descend or ascent a limited part of the tree rather than traversing the
whole tree. We start by revisiting the basic strategy to pave the way for future
extensions.

Basic Queries

Before we can start discussing the various extensions we need to revise the im-
plementation of SSQ described up till this point in the dissertation. The three
sub-concerns of the SSQ strategy we cover in this section are: the parameters in-
fluencing the behavior of the query, the tests determining whether an AST node
satisfies the query, and the execution of the query. The new protocol reflecting
these three sub-concerns is shown below:

Protocol - SSQ Basic:

DESCENDANT: aType

_DESCENDANT: aType IN: args

_DESCENDANTWITHOUT: args

_DESCENDANTWITH: args

_TESTDESCENDANT: args

The basic strategy is implemented in the linglet SSQBasic, which is shown
below. The implementation is a straightforward mapping of the protocol.

3The Linglet linglet is the root of the delegation chain (see Section 5.4.2)

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 231

Linglet SSQBasic {

descendant: aType {

ast _descendantwithout:

(ast _descendant: aType in: Dictionary new)

}

_descendant: aType in: args {

args at: #type put: aType.

args

}

_testdescendant: args {

(arg includesKey: #type) ifTrue: [| type |

type := (arg at: #type).

(ast linglet hasType: type)

] ifFalse: [true]

}

_descendantwithout: args {

ret:= nil.

ast members detect: [:member |

(ast member: member) detect: [el |

(ret:= el _descendantwith: args) ~~ nil] ~~ nil

ret.

}

_descendantwith: args {

(_testdescendant:args) ifTrue: [ast] ifFalse: [

ast _descendantwithout:args

]

}

}

The parameters of a query are stored in a Dictionary called args. The
method DESCENDANT: aType hides the dictionary from the language implemen-
tor using this interaction strategy. The method appropriately initializes the dic-
tionary when a descendant of a particular type is searched. The test determining
whether or not an AST satisfies a query is performed in TESTDESCENDANT:args.
The method returns true on a positive match. The method retrieves the argument
#type from the dictionary and checks whether the current AST is of a partic-
ular type. The execution of the traversal is captured in two mutually recursive
methods DESCENDANTWITHOUT:args and DESCENDANTWITH:args. The method
DESCENDANTWITH: iterates over the members of an AST node and subsequently
calls the method DESCENDANTWITHOUT:args. This method checks whether the
current AST satisfies the query by calling the TESTDESCENDANT:args method. If
this returns true, a descendant has been found. If not, the search for a descendant
is continued by calling the DESCENDANTWITH:args method.

232 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

The methods in the protocol that start with an underscore are included in the
protocol to provide more possibilities for customizing it.

Extension: Nested Queries

SSQ is modeled after the operators found in XPath [BB02]. The basic strategy
presented above, however, oversimplifies XPath. XPath also supports more gen-
eral conditions in the form of predicates. These predicates state which nodes are
to be selected or found when the AST is traversed. They are defined in terms of
basic operations and functions. As such, queries can be nested. In order to allow
the same kind of expressiveness as in XPath, we implement an extension of the
SSQBasic strategy called SSQCondition. The protocol of the interaction strategy
is depicted below.

Protocol - Nested Queries:

DESCENDANTIF: aCondition

_DESCENDANTIF: args IN: args

_DESCENDANTWITHOUT: args

The protocol has been extended with a DESCENDANTIF:aCondition method
taking a condition instead of a type. As the extension only influences the test
determining whether or not an AST node satisfies the query, only the method
TESTDESCENDANT:args is overridden. An AST node satisfies the query if the
node adheres to the condition and if the previous TESTDESCENDANT:args method
evaluates to true.

Linglet SSQCondition {

descendantif: condition {

ast _descendantwithout: (ast _descendantif: condition

in: Dictionary new)

}

_descendantif: condition in: args {

args at: #condition put: condition.

args

}

_testdescendant: args {

(args includesKey: #condition) ifTrue: [| block |

block := (arg at:#condition).

(block value:ast) ifTrue: [previous _testdescendant:args]

ifFalse: [false]

] ifFalse: [previous _testdescendant:args]

}

}

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 233

Extension: Bounded Queries

The second extension to SSQ illustrates that existing interaction strategies can
be extended without holding true to their original or initial conception. In this
example, we extend the SSQBasic strategy with the ability to limit a query to a
certain scope. This interaction strategy is called SSQScope. Note that scoping is
not explicitly4 supported by XPath.

Scoped queries are called for in the implementation of the T2SQL language
(see Chapter 4). In multilingual databases, the column names containing mul-
tilingual information are duplicated for each language and postfixed with a lan-
guage identifier. So for an attribute foo in a multilingual database supporting
Dutch and French, two columns foo nl and foo fr are created. Queries executed
against a multilingual database must return only one of the values depending on
the context. Queries in T2SQL are formulated in terms of attributes and not in
terms of columns. Hence, the actual column names that must be used in case
of a multilingual attribute are computed by the T2SQL compiler. Consider the
following query, where the project attribute of a works on relation is a multi-
lingual field which is retrieved by the attribute t.project in the header of the set.

(1) { t.family, t.project |

(2) employee(t) ∧
(3) t.family = t.lastname ∧
(4) t.wage = 50.000 ∧
(5) (∃ w)(works on(w) ∧ w.ssn = t.ssn ∧ w.project = t.project)

(6) }

In order to resolve the actual name of the attribute t.project in the header
of the set, we first need to lookup its binding to the attribute w.project. After-
wards, the relation works on of the tuple w is searched within the scope of the
declaration of that tuple w. The query in the second step is bound to the scope of
the declaration so as to prevent entering subscopes that shadow the declaration.
Once the relation works on of the bounded attribute t.project is found, one
can determine whether the attribute project is multilingual by consulting the
database schema and compute the correct column name. The database schema
is an example of additional information which is external to the compilation (see
SP4 in Section 4.3).

In the query below, we present the snapshot of the code that resolves
multilingual fields. It queries for the relation within the declaration scope
of a tuple. First, the assigned attribute is computed using the method
findAssignedAttribute:name:, which is defined in Section 6.3.1. Second, the
declaration of the tuple of the binding is looked up. Last, the relation of that
tuple is searched within the scope of the current declaration.

4Scoping is implicitly supported through the language which XPath is embedded in.

234 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

Attribute

...

findRelation: aTuple name: aName {

bin := findAssignedAttribute: aTuple name: aName.

(bin == nil) ifTrue:[nil] ifFalse:[| attribute |

attribute := bin right.

declaration := attribute ancestorif:

[scope | (scope hasType: ’Scope’)

and: [scope tuple asString

= attribute tuple asString]].

declaration descendantif: [rel |

(rel hasType: ’Relation’)

and: [rel tuple asString = aTuple]

] scope: [scope | (scope hasType: ’Scope’)

and: [scope tuple = attribute tuple asString]].

].

}

The protocol of the SSQScope strategy consists of a single method:

Protocol - Scoped Queries:

_DESCENDANTSCOPE: aCondition IN: args

The interaction strategy is implemented by the linglet SSQScope. This inter-
action strategy overrides the DESCENDANTWITH: method. It first checks whether
the current AST node exceeds the scope of the descent. If so, the descent is
aborted, otherwise the descent is continued by invoking the previous definition of
the DESCENDANTWITH: method.

SSQScope {

_descendantscope: scope in: args {

args at: #scope put: scope.

args

}

_descendantwith: args {

(args includesKey: #scope) ifTrue: [| block |

block := (arg at:#scope)

(block value:ast) ifTrue: [previous _descendantwith:args]

ifFalse: [

nil

]

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 235

] ifFalse: [previous _descendantwith:args]

}

}

Notice that all methods are hooks (prefixed with an underscore). This in-
dicates that this interaction strategy must be further completed with a method
that offers a convenient way to use this extension.

In the language specification below, Linglet is extended with one interaction
strategy and two extensions: first with SSQ, subsequently with SSQCondition

and finally with SSQScope. The latter linglet is completed with the method
descendantif:scope:. This method brings together the functionality of the
SSQCondition and SSQScope linglet. It launches a scoped descent query in search
of an AST node adhering to a particular condition.

SSQCondition

extends: SSQ.

Linglet= SSQScope

extends: SSQCondition.

descendantif: condition scope: scope {

args := Dictionary new.

args := ast _descendantscope: scope in: args.

args := ast _descendantif: condition in: args.

ast _descendantwithout: args

}.

6.3.3 New Interaction Strategies for Multiple Results

In this section, we present a new interaction strategy to complete linglets pro-
ducing multiple results. We refer to this interaction strategy as the INR strategy,
which stands for Incremental Nonlocal Results. The interaction strategy identifies
where the nonlocals should be integrated and performs their integration.

The INR strategy is interesting for several reasons. First, the INR strategy is
a pioneering example of the introduction of successful techniques from composi-
tional generators into transformational systems. Second, this interaction strategy
invasively changes the behavior of LTS. Third, to the best of our knowledge this
interaction strategy is the only existing mechanism that effectively modularizes
the specification to scatter multiple results in a target program.

The INR Strategy

The INR strategy is a generic interaction strategy that manages the lifecyle of
nonlocals starting from the point where they are produced to the point where they

236 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

are integrated in a target program AST. Like any other interaction strategy, INR
operates on and is defined at the meta level of LTS. The INR strategy can thus
reason about the target language and its implementation, but it is not designed
for a specific language implementation.

The INR strategy offers a language independent implementation of the relo-
cation and the integration of nonlocals. Relocation is a step-by-step process mov-
ing nonlocals node by node upwards in the AST. Integration is a semi-automatic
process. Based on the grammar of the target language, INR decides whether a
nonlocal can be integrated in a given target node or not.

The INR Strategy Protocol

The INR strategy handles each nonlocal throughout the execution of a transfor-
mation. The location in the target program AST in which to integrate nonlocals
is computed incrementally by using a fixed point algorithm. The fixed point is
the point where nonlocals are no longer moved and can be successfully integrated.
When one fixed point exists the transformation process succeeds, when no fixed
point exists it fails. The case where many fixed points are found is discussed in
Section 6.3.3 on page 244. The incremental nature of the INR strategy allows
nonlocals to be processed even if the actual location in the target program in
which to integrate them has not been computed yet. The scheduling of the pro-
duction of nonlocals, the creation of the target location and the processing of the
nonlocals is handled by the protocol.

The INR strategy establishes a rather complex collaboration between three
roles: the subject, the master and the consumer. The nonlocal plays the subject
role. The node in which to integrate the nonlocal plays the consumer role. The
intermediate nodes along the path from the nonlocal to its consumer play the
master role.

Nonlocals are explicitly bound by the interaction strategy, as nonlocals are
made responsible for integrating themselves. In other words, the meta level of
nonlocals is equipped with the INR strategy. The consumer and master roles
cannot explicitly be bound to certain nodes, as the nodes which consume non-
locals and the intermediate nodes in between are to be computed by the INR.
Explicitly binding them would mean that we can statically identify, without any
computation, where nonlocals should be integrated. Clearly that is not the case.

The protocol of the INR strategy is depicted below. The lower case names
indicate the roles used in the various activities of the protocol.

Protocol - INR Strategy:

aggregate MEMBER: aName PUT: part

subject INTEGRABLE: master

subject RELOCATETO: aggregate FROM: part

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 237

subject INTEGRATE: consumer

subject CORRESPONDS: peer

subject COMBINE: peer

subject INJECT: aName IN: consumer

consumer MEMBER: aName ADD: subject

The incremental and invasive character of the INR strategy is already visible
in the first activity of the interaction strategy, the MEMBER:PUT: method. This
method is part of LMOP and reifies the composition of one AST node (called
the part) as a member of an existing AST node (called the aggregate). The
method is specialized by the INR strategy and triggers the INR protocol. The
INR strategy is thus executed each time two AST nodes are composed. For
example, this is in contrast to the SSQ strategy (in Section 6.3.1) which only
extends the functionality of LMOP and which is explicitly triggered by the linglets
themselves.

Whenever two AST nodes are composed, potential new locations are avail-
able to integrate the nonlocals of the composed AST nodes. The interaction
strategy checks in the INTEGRABLE: method whether the nonlocals of the com-
posed AST nodes can be integrated. If integration is possible, it is performed
by the INTEGRATE: method. If integration is not possible, then all the nonlocals
from the part are moved to the aggregate by the RELOCATETO: FROM: method.

The incremental step, which moves around the nonlocals is performed in the
RELOCATETO: aggregate FROM: part method. The receiver of such a message
is the subject role. The aggregate argument is the master role which is played
by the successive AST nodes to which the nonlocal is moved. The part argument
is the node containing the nonlocals.

The INTEGRABLE: method determines whether a subject can be integrated in
a particular master of the produced program.

The integration of nonlocals defined by the INR strategy is based on the com-
position interaction strategies of subject-oriented programming (see Section 3.6).
Subject-oriented composition establishes correspondences between program ele-
ments such as classes and methods, and derives elements of the composed pro-
gram by combining the corresponding elements. Correspondence is a fairly simple
concept: If elements of two subjects describe complementary functionality that
should be merged in the combined program, they are said to correspond. For
elements that correspond to each other, an element of the combined program is
derived from a combination of the corresponding elements. The integration of
two program elements is thus a triplet consisting of composition, correspondence
and combination rules. The combination of complementary functionality per-
formed by composing their AST representations, nicely captures and defines the
integration of multiple results produced by complex translational semantics.

INR adopts the integration triplet in the form of messages exchanged during
the protocol. The composition is defined in the INTEGRATE: method, the corre-

238 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

spondence is defined in the CORRESPONDS: method and the combination of two
corresponding AST nodes is defined in COMBINE: method. The receiver of the
integrate message is the subject role, its argument is the consumer role which is
played by the selected master. The correspondence is used by the integration to
check if nodes in the AST need to be combined with the nonlocal. In the integra-
tion of the code fragment, we first check whether the nonlocal already corresponds
to an existing part of the consumer by calling the CORRESPONDs: method.

If a correspondence is found, the two nodes are combined by calling the
COMBINE: method. The receiver of these messages is the subject role and the
argument is the peer role and is played by the existing part of the consumer.
If no correspondence is found, the fragment is added to the consumer using the
INJECT:AS: method. This method uses the MEMBER:ADD: method of LMOP to
add the subject to the consumer.

The methods CORRESPONDS: and COMBINE: are abstract in the INR strategy.
They need to be specialized for a particular linglet.

Extension: Context-dependent Integration

We present a small extension of the INR strategy which enables the integration
of nonlocals depending on their context (see Section 4.3 and Section 5.9.2).

Protocol - Extension: Context-dependent Integration:

subject RELOCATETO: aggregate FROM: part

subject CONTEXT_CHANGED: master

The method CONTEXT CHANGED: is called whenever a nonlocal is moved from
one node to another. As such, upon each move, the context of nonlocals can be
used to compute their correct integration.

Language Independence

For the combination of program fragments, standard combination strategies such
as join and replace [OKK+96] have been developed. The join strategy glues two
program fragments together and the replace strategy performs a replace. Glueing
can be done in a number of ways such as concatenating, summing, etc. Again,
concatenation can be performed by concatenating one structure before or after
the other, etc. The point is that there are many rules, which depend on the
semantics of the program fragments. The INR offers a language independent
implementation. The logic to integrate, correspond, combine or even relocate
evidently involves specific semantics of the language or semantics of a particular
code fragment. This language-specific logic has to be provided by the actual
linglets in the language specification or by the actual code fragment themselves.

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 239

Each nonlocal and/or its linglet is thus extended with additional behavior to
complete the interaction strategy or to further specialize the interaction strategy.
This is done by specializing or adding variations of the following methods:

CORRESPONDS:, RELOCATETO:FROM:, INTEGRABLE: stating the specific conditions
of where nonlocals should be integrated

COMBINE:, INTEGRATE: stating how nonlocals should be added to the rest of the
produced program

CONTEXT CHANGED so that nonlocals can take the context into account and adjust
their integration.

The specialization of the INR strategy for specific linglets results in an inter-
action strategy that can take into account the specific semantics of the language
which is being implemented by the linglets. As such, more specific and expres-
sive methods and functionality can be offered for handling the produced nonlocal
results. The extension possibilities are discussed in more detail in the following
sections.

Illustration

Before we dive into the implementation of INR, let us first illustrate how the
interaction strategy is used in practice by specifying the semantics of the nonlocal
Table declaration produced by the Relation linglet (Section 5.9.2 on page 207).

Recall the example of the integration of the nonlocal Table nodes. It is not
possible to judge if a table is discarded solely on the source relation predicate, but
the context of the whole expression must be taken into account. In Section 5.9.2
on page 207 we argue that integration logic is more straightforwardly created
and more robust when the integration of the nonlocal Table nodes is based on
the target language. The solution in that section is to specify the integration
semantics locally to the linglet that produces the Table nodes, by specializing
the context changed method.

The method context changed is thus actually part of the INR strategy. For
the integration of the Table nodes, two other methods need to be specialized:
the corresponds:, and the integrable: methods. The mechanism to relocate,
and initiate the integration attempts of the nonlocal Table nodes is provided and
controlled by (the default implementation of) the INR strategy.

Relation predicates in T2SQL (see Section 5.1) are deeply embedded in the
nested expressions specifying the condition to which a set of tuples must adhere
to. Hence, in an AST of T2SQL, the Relation nodes are deeply nested within the
subtree of the source AST that represents the condition of a set. The condition
defining a set is transformed into the condition of an equivalent SQL statement.
So the translational semantics of the Relation linglet is also deeply nested in the

240 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

condition of an SQL statement. This is shown in Figure 6.4 which depicts example
Query 7 of Table 5.1 and its target query in SQL. The figure also illustrates the
integration process of nonlocal Table nodes, which we are now about to explain.

Recall from Section 5.9 that the translational semantics of the Relation lin-
glet consists of two AST nodes: a True node and a Table node which is attached
to it as a nonlocal. As the True node is recursively composed with nodes that
ultimately define the condition of an equivalent SQL query, the nonlocal Table
node is moved upwards in the AST of that SQL query. The successive moves of
a nonlocal Table in search of a suitable integration location is depicted by the
numbered grey arrows in Figure 6.4.

Recall from Section 5.9.2 that the integration of nonlocal Table nodes depends
on the context nodes NOT and AND of its producing Relation node. Upon each
move, the context changed method is called by the INR strategy. When a NOT or
an AND node is encountered, the integration policy of the Table node is adjusted.
This policy is modelled after a state machine containing two states: discard

and required. These two states are respectively stored as parts discard and
required into the nonlocal. A NOT negates the discard and required flag of the
nonlocal. An AND renders the nonlocal required so its variable is to true.

The INR strategy calls the integrable: method in order to determine whether
the nonlocal can be integrated in a given master. Whether or not a nonlocal can
be integrated depends not only on the fact whether the grammar of the language
allows it as it is defined in the INR strategy, but also on the two states defining
the integration policy. Therefore, the method integrable: is overridden with
the following rules stating when a Table nonlocal is integrable:

• A nonlocal Table cannot be integrated if the grammar of the language
disallows this (line 1).
For example, a Table node can only be integrated in the FROM clause of a
SELECT statement i.e. as a source part of a Select node (cfr. definition of
the Select linglet in Section 5.6.4). More details about how the grammar
is enforced in the INR strategy is given in the next subsection.

• A nonlocal Table integration fails if it is in contradictory state, i.e. if it is
both required and discardable, or if it is both not required and not discard-
able (line 2).
This is, for example, in case in queries 6, 8 and 10 listed in Section 5.9.2.

• A nonlocal Table integration drops or ignores the relation when it can be
discarded and not required (line 5). Examples of such queries are queries
1, 2, 5 and 9 of Section 5.9.2. Note that the transformation process fails in
queries 1,2 and 9 because of at the end of the transformation the equivalent
SQL SELECT statements contain empty FROM clauses.

• A nonlocal Table integration fails if the nonlocal is required and there
is already an existing table which clashes (line 4) with the nonlocal (line

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 241

6). This is the case for example in queries 3 and 4, where the second
nonlocal Table node manager w clashes with the already existing Table

node works on w.

Relation
nonlocaltable: nonlocal {

nonlocal discard: false.
nonlocal required: true.
nonlocal context_changed: node {

node linglet type = ’NOT’ ifTrue: [
ast discard: ast discard not
ast required: ast required not

] ifFalse: [
node linglet type = ’AND’ ifTrue: [

ast required: true
].

]
}
corresponds: master {

(master linglet type == ast linglet type) and: [
master alias asString == ast alias asString

]
}
combinable: master {

ast required == master required not
}
integrable: master {

(1) label := ast findmember: master.
(label == nil) ifFalse: [

"according the grammar a suitable
location to integrate the nonlocal table has been found"

(2) (ast discard == ast required])
ifTrue: [Exception new raiseSignal:

’does not compute’]
ifFalse: [

(4) clash := (ast member: label) exists:
[:el | (ast corresponds: el) and:

[ast combinable: el]].

(5) (discard) ifTrue: [
Transcript show: ’Warning: table dropped’.
false.

] ifFalse: ["nonlocal is required"
(6) (clash) ifTrue: [Exception new raiseSignal:

’duplicate table,
cannot integrate required table’]

242 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

(7) ifFalse: [true]
]

] ifTrue: ["label is nil"
false.

]
}

}

Implementation

The INR strategy is implemented in the INR linglet (shown below). We recognize the
five main methods of the protocol: relocateto:from, integrate:, corresponds:,
combine: and inject:in:.

The INR strategy not only extends LMOP by reflecting on its structure, but also
extends its behavior. The strategy specializes LMOP in order to trigger the execution
of the strategy so that nonlocals are resolved. The method MEMBER:PUT: is special-
ized so as to try to integrate the nonlocals each time an AST node is composed with
another one. The receiver of this message plays the role of the aggregate. For each
nonlocal nl attached to the part, an attempt is made to integrate it in the aggre-
gate. If the INTEGRABLE: method of the nonlocal evaluates to true, the integration is
started by calling is INTEGRATE: method. Otherwise, the nonlocal is relocated by its
RELOCATETO:FROM: method.

The RELOCATETO:FROM: method removes a nonlocal from its current parts and
attaches it to the aggregate.

The INTEGRABLE: method evaluates to true when a member of the master is found
where the nonlocal can be added to become a part. The member is searched by the
FINDMEMBER: method. A composition of two AST nodes is valid when it adheres to
the grammar of the language. So in order to check whether the nonlocal can become a
part of the master, we search for a parameter of the linglet of the master that is bound
to the linglet of the nonlocal. If a parameter is found, the corresponding member may
include that nonlocal.

The INTEGRATE: method stores the nonlocal in the correct member of the master.
The current parts of the members are compared with the nonlocal to determine if the
two nodes correspond. Correspondence is determined by the CORRESPONDS: method.
By default, a node never corresponds with another node. If a correspondence is estab-
lished, the existing part is combined with the nonlocal. The combination of two nodes
is implemented by the COMBINE: method. There is no default implementation for the
combination of two AST nodes, as the actual combination depends on the semantics of
the language.

Linglet INR {
member: name put: part {

previous member: name put: part.
part nonlocals do:[:nl |

(nl integrable: ast)
ifTrue: [nl integrate: ast]

6.3. EXPERIMENTS WITH INTERACTION STRATEGIES 243

ifFalse:[nl relocateto: ast from: part]
]

}
relocateto: aggregate from: part {

aggregate nonlocals add: ast.
part nonlocals remove: ast

}
integrable: master {

member := ast findmember: master.
member ~~ nil

}
integrate: consumer {

member := ast findmember: consumer.
combined := (ast member: member) exists: [:el

(el corresponds: consumer)
ifTrue: [el combine: consumer. true]
ifFalse: [false]

].
combined ifFalse:[ast inject: member in: consumer].

}
inject: part in: consumer {

consumer member: part add: ast
}
combine: peer { }
corresponds: peer { false }

findmember: master {
master linglet parameters detect: [:parameter |

(master linglet parameter: parameter) exists: [:linglet |
linglet type = ast linglet type
]

]
}

}

This implementation is simplified in a couple of ways for clarity. The full imple-
mentation with all its extensions (see Section 6.3.3 on pages 244 and 244) is beyond
the scope of this text. The most apparent restriction is the shallow integration. This
means that the logic to determine whether or not a nonlocal can be integrated in a
master only checks whether the nonlocal can become a part of the master. The parts
themselves, and in turn their parts are not considered. More details about the possible
extensions of this interaction strategy to tackle these restrictions are given in the next
subsection.

Due to the genericity of the INR strategy and due to the complexity of integrating

244 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

program fragments, there are a lot of opportunities to extend this protocol. We divide
the possible extensions according to the two main algorithms of the INR strategy:
relocation of the nonlocals and their integration.

We could not include the implementations of all the variations of the INR strategy
as the design space of this interaction strategy is simply too large. Discussion of the
variations on the INR strategy shows the potential of LMOP to accommodate them.
More precisely, we show that an interaction strategy is not monolithic, but rather a
space of variations and options, including language-specific logic.

INR Extensions of Relocation

The relocation algorithm only works in cases where the location of nonlocals can be
determined unambiguously, or in cases when there is a simple satisfactory interac-
tion strategy to disambiguate. In general purpose target languages like Java or C++,
language constructs like classes, datamembers, methods and statements are typical
language constructs that are only allowed in specific contexts. E.g. a class cannot be
declared in a method body, a variable and a method cannot be declared directly in a
package, a statement cannot be part of an expression, etc. Such language constructs
are very common in DSLs as well.

In case of domain-specific languages (DSLs) [vDKV00], automatic relocation is very
well suited. DSLs are designed to support domain experts, by offering suitable language
constructs and a structured way of using them. As the language constructs may only
be used in a certain context [EJ01], disambiguation is not often needed.

If the location of other language constructs such as expressions and statements can-
not be unambiguously determined, the nearest possible location is often the desired
one. However, in languages like Beta and Scheme relocation solely based on the gram-
mar fails for most types of nonlocals, because most language constructs may be used in
every other language construct. For these languages, custom relocation must be used.

INR Extensions of Integration

The protocol of the full INR strategy is much more elaborate than the one discussed
here. It divides the tasks in smaller units of responsibility or subconcerns, and can
handle more complex cases such as:

Generic Integrations There are many composition triplets. In [OKK+96], Ossher
et.al. lists a significant set of possible correspondence rules such as equate and
MatchByName, and combination rules such as ByNameMerge, ByNameOverride,
Before, After, Replace, UseByNameOverride, UseMerge.

Language Construct-Specific Integration Some of the generic rules that integrate,
combine and correspond may need to be further refined for specific language con-
structs. Consider for example the rule to inject statements at the end of the
execution of a Java method. It does not suffice to plainly append such state-
ments. One needs to take into account the language constructs that terminate
the execution of a method early, such as return statements and exceptions.

6.4. ADVANCED EXPERIMENTS: COMPILE-TIME MOP 245

Deep integration Except for the leaf nodes of an AST, the AST nodes are subtrees.
Integration of a nonlocal into a subtree of an AST node is called deep integration.
Deep integration is not simply a recursive version of a shallow integration (which
is discussed here). Deep integration may require the creation of intermediate
AST nodes before the actual nonlocal can be integrated. Consider, for example,
the integration of a statement initializing a datamember in a Java class. The
statement cannot become a part of the Java class, it needs to be put inside a
constructor of the target class. Hence, the integration must descend into the
AST node representing the Java class and subsequently perform the integration.
When the Java class does not have an explicit constructor yet, an explicit default
constructor must be created first, prior to the integration of the initialization
statement. In Section 7.4.10, deep integration is used in our case study where we
validate this dissertation.

Multiple integrations Nonlocals that need to be integrated in several locations in
the AST require an interaction strategy supporting multiple integrations. So
whenever a location in the AST is found in which the nonlocal is integrated, a
copy of the nonlocal is integrated so that the integration in other locations can
continue.

6.4 Advanced Experiments: Compile-time MOP

The meta-protocol as described up till now is used to establish the necessary collab-
orations between distant and even unknown linglets so that linglets can effect their
complex translational semantics. The meta-protocol is thus used within a language
implementation to reflect upon itself. In this section, we use the metaobject proto-
col, for defining the LTS system itself. More precisely, the structural reflection of the
metaobject protocol is used to construct the meta-languages provided by LTS.

From a language perspective, the kernel of LTS defined in the previous chapter
consists of two meta-languages: a language to define the linglets and a language to
define the specification of languages. The former is called the linglet language (LL),
and the latter is called the language specification language (LSL). We consider them as
two separate languages because the semantics of the methods of the linglets defined in
LL is different from LSL. Exactly how the semantics differs is detailed in Section 6.1.2.
As our objective in this dissertation is to conceive and develop a design technique for
the modularization of language implementations along language constructs, it is natural
to consider developing the two LTS languages separately using our design technique.

By implementing LL and LSL in LTS, these two languages themselves become cus-
tomizable through LMOP. This gives us the opportunity to add new language constructs
to LL and LSL in order to facilitate expressing linglets and language specifications re-
spectively. For example, we can take advantage of syntactic convenience and static
checks in the definitions of languages themselves. Especially the benefit of LTS to keep
complex language constructs modularized via interaction strategies is now applicable
to itself. Since, such customizations of LTS take effect while compiling a language
definition L before it processes any concrete program written in L we in fact obtain a

246 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

compile-time meta-object protocol of the language L.
We distinguish between the terms language-compilation-time and language-execution-

time. At language-compilation-time, the language specification of a language together
with its linglets are compiled by LTS into a run-time representation consisting of LMOP
metaobjects. At language-execution-time, this representation is executed with a given
source program yielding a target program.

6.4.1 LTS in LTS

LTS is currently implemented as a run-time system that implements the metaobject
protocol. So the LTS system is always running, and the LL and the LSL languages
are just programs that are run by this run-time system. The implementation of LTS
in LTS is illustrated in Figure 6.5. LTS consist of two languages LL and LSL. These
respectively compile the linglet definitions and the language specifications to the run-
time system. Both languages are in turn implemented using the LTS system. For the
language constructs in LL and LSL, linglets are defined which compile to the run-time
system, and interaction strategies are defined to handle the interactions among these
linglets.

The languages of LTS are good examples for illustrating the qualities of a language
implementation in LTS because: first, both languages share part of their language
specification, giving us the opportunity to test the reusability and composability of
language constructs. Second, their language constructs have complex translational
semantics, giving us the opportunity to test the modularization capabilities of LTS.

Reuse of Linglets

Although both languages serve various purposes they have a fairly large part in com-
mon as both languages primarily deal with the single concept of a linglet. The LL
language creates them and the LSL language assembles them through combination and
specialization. As such, the language constructs in both languages contribute to the
definition of a linglet.

The bulk of the shared linglets such as Method, Tempories, Statement, Variable,
KeywordMessage, UnaryMessage, BinaryMessage, Expression, String and Integer
define the Smalltalk language. Besides the linglets that define SmallTalk language
constructs, there is a new linglet which defines the #-construct and two linglets that
introduce the pseudo variables ast and previous.

Although linglets are shared, their combination differs in the LL and the LSL lan-
guage. This means that a method declaration in the linglet is not semantically equiv-
alent in both languages: In order to preserve isolation, the messages that are defined
in LMOP or in one of its extensions may not be called from within a method defined
in a linglet. A method declared in the LL may not access distant linglets (not even its
parent), while a method in the LSL may do so. In order to enforce the isolation of lin-
glets we need to work both at language-compile-time and at language-execution-time.
At language-compile-time, we distinguish between an external method and an internal
method, and at language-execution-time, we can check whether a certain method call
is allowed from an internal method.

6.4. ADVANCED EXPERIMENTS: COMPILE-TIME MOP 247

Complex Translational Semantics

The language constructs used in the languages of LTS have complex translational se-
mantics, which gives us the opportunity to test our ability to design these languages
using modularized constructs. In the implementation of LL and LSL languages, we
encountered linglets that depend on external information which had to be computed
using a complex interactions, we encountered linglets that produce multiple results
which must become a part of the results produced by other linglets, and we encountered
linglets that are facing a compositionality conflict. As an example for such complex
translational semantics we discuss left recursion in grammars. It is not only a mere
illustration of a compositionality conflict and multiple inputs, but it is an interesting
problem in its own right, one that occurs in other language implementations as well.

The parser used by LTS is a simple left recursive descent parser composed of parser
combinators [SAA99]. Left-recursive grammars [App98] cannot be implemented with
such parsers, because the left recursion in grammars results in an infinite loop. To
clarify this consider the following grammar excerpt:

Expression ::= Integer
Expression ::= UnaryMessage

UnaryMessage := Expression ID

The above grammar defines a part of the LL and LSL language to express unary mes-
sages on integers. This grammar is left recursive because the non-terminal Expression
occurs as the first symbol of the right hand side of an Expression production (i.e. the
UnaryMessage). The example sentence we use in this section is:

3 inc square dec

It denotes the square of the increment of three with one, decremented with one.
The AST of this sentence using the above grammar, shown in Figure 6.6, is constructed
using a series of nested UnaryMessage nodes. This nicely illustrates the left recursion
of the above grammar.

In a left recursive descent parser each production is implemented with a separate
function, and each non-terminal in the right-hand side of productions is an invocation of
the corresponding function. In the descent parser for the given grammar, the function
UnaryMessage immediately calls the Expression function, which in turns immediately
calls the UnaryMessage function, without consuming any tokens from the input stream.
Clearly, the parser gets stuck in an infinite loop.

There are simple techniques to rewrite a left recursive grammar into a non-left
recursive grammar. Rewriting the above grammar to eliminate left recursion yields the
following grammar:

(1) Expression ::= Integer Expression’
(2) Expression’ ::= UnaryMessage Expression’
(3) Expression’ ::=

(4) UnaryMessage := ID

248 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

The Expression non-terminal is the starting token of a valid expression, (1) con-
sisting of the most concrete symbol Integer, followed by a Expression’. This latter
non-terminal is the remaining part of expressions: (2) consisting of a UnaryMessage
followed by a Expression’ or (3) consisting of no token at all. Due to this rewrite
strategy, the UnaryMessage is reduced to a dependent clause consisting only of the
name of the message (4).

Although these abstract syntaxes are mathematically equivalent, there are fewer
available parts of a node. Figure 6.6 illustrates this by depicting the ASTs of our
example sentence based on the left recursive grammar (a) and on the non-left recursive
grammar (b) . In the left AST, UnaryMessage nodes are composed with a subtree
representing the expression on which the message has to be executed e.g. inc operates
on the number 3, square on the result of the inc message and dec on the result of the
square message. In the right AST, this composition is lost, as UnaryMessage nodes are
composed with the next message, which is from a semantic point of view, unrelated.

It is important to maintain the original abstract syntax tree, where we wish to be
able to define a linglet using left recursion, unaware of the parse problems that might
arise when composing that linglet. It is even more importantly a matter of control. The
translational semantics of an operator needs to access both left and right parts in order
to compute its semantically equivalent value. An example of such a situation is shown
in Section 6.4.2, where LSL is extended with a new linglet called Descendant. That
linglet is a binary operator just like the UnaryMessage linglet above. The Descendant
linglet produces an expression where both the left part and the right part are enclosed
as a subexpression.

In LTS, a linglet can be defined as it would be in a left recursive grammar. So
unary messages are defined in the UnaryMessage linglet like:

Linglet UnaryMessage {
syntax { left operation }

}

It consists of two syntactical parameters left and operation respectively denoting
the expression on which an operation operates.

The composition of the UnaryMessage linglet in the language specification of LL
and LSL can be changed to remove left recursion while still retaining the same abstract
syntax tree as it would have been in a left recursive grammar. Like the rewrite technique
suggests, we define an expression’ non-terminal in the linglet Expression below. It
takes a left and optionally a right part.

Linglet Expression {
syntax { left !(right) }

}

In the language specification, shown below, the start of an expression is defined by
composing the Expression linglet with an Integer and a BinBranch. The BinBrach
is the remainder of an expression which is again an Expression linglet composed with
UnaryMessage and itself to define a series of unary messages.

6.4. ADVANCED EXPERIMENTS: COMPILE-TIME MOP 249

The left parameter of the UnaryMessage linglet is bound to the Nil linglet. The
Nil linglet does not have any syntax. Thus, upon parsing, the left part of an unary
message can be left blank. As such, the problem of left recursion during parsing is
avoided. Figure 6.7 part (a) depicts the resulting AST of our example sentence.

In order to compensate for the loss of the left part, we specialize the left accessor
and retrieve the proper AST node. The left part of UnaryMessage is obtained in three
steps. The code executing these steps is enumerated in the language specification and
correspond to the numbers used in Figure 6.7 (c). The left part of the UnaryMessage
node is the left part (3) of the expression (2) containing the expression (1) of which
the UnaryMessage node is a part. The traversal of the AST to retrieve the missing
left part of UnaryMessage nodes is implemented using the SSQ strategy, rendering
the implementation more robust for future changes. The resulting AST is depicted in
Figure 6.7 (b).

Expression
left: Integer.
right: BinBranch.

BinBranch=Expression
left: UnaryMessage.
right: BinBranch.

UnaryMessage
operation: ID.
left: Nil.
left: {

(1) ((ast ancestor: ’Expression’)
(2) ancestor: ’Expression’)
(3) left.

}.

6.4.2 Compile-time Strategies

As LL and LSL are not fixed, developers can tweak them. In this section, we present
an interesting example.

User-friendly syntax

Interaction strategies provide new functionality which can be used by the language
developer to better separate the basic language concerns. The new functionality has to
be encoded by semantical methods which are general purpose language abstractions.
Often the syntax of a method is not the most convenient way of offering the functionality
of the interaction strategy.

If we take a look at contemporary language systems, we see that interaction strate-
gies are typically offered together with convenient syntax. Consider for example the

250 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

structure-shy queries of XPath which are provided by XSLT. XPath has a path nota-
tion as in URLs for navigating through the hierarchical structure of an XML document,
hence a path mimics the hierarchical structure of the document.

In our undertaking to implement a part of the XPath strategy in LTS as the SSQ
strategy, we apparently lost its syntactic convenience. By extending the LL and the
LSL languages, this syntax can be recovered and provided to the language developer.
Expressions using the new syntax are translated to method calls to the SSQ strategy.
Consider for example the Descendant linglet shown below.

Linglet Descendant {
syntax { left "\\" right }
generator { | right left |

right := ast right asString.
left := ast left generate.
(ast body linglet hasType: ’ID’)

ifTrue: [#Expression{ (’left)
descendant: ’right }]

ifFalse: [#Expression{ (’left)
descendantif: ’’’right’’ }]

}
}

This linglet enables the use of expressions like:

A \\ B \\ C

instead of:

(A descendants: ’B’) descendants: ’C’

This linglet removes a lot of syntactical clutter. First, instead of using the message
name, a path operator can be used. Second, it detects if the right part should be
enclosed by single quotes, depending whether the argument of the operator is a simple
identifier or not. If so, it is treated as a string, and otherwise as an expression yet
to be computed. Lastly, the parenthesis to ensure the correct order of evaluation are
automatically set.

To conclude, each interaction strategy can be accompanied by an extension of LL
and LSL. Hence, developers cannot only apply additional interaction strategies to mod-
ularize their language implementations, but also take advantage of additional convenient
syntax to use these interaction strategies in a user-friendly way.

Static Checks

Interaction strategies use structural reflection to compute the information they require.
Unfortunately, there is no guarantee that interaction strategies will indeed find what
they are looking for. However, in many cases we can provide warnings when the required
information is guaranteed not to be available.

6.5. STRATEGIES FOR SPECIAL-PURPOSE CONCERNS 251

Let us revisit the XPath example. Given a grammatical description of a document,
we can answer the question if a given path will fail to execute or not. For the retrieval
of an ancestor of a particular node type, it can be checked whether the current node
can have an ancestor of that particular type at all. These and other checks are actually
implemented in an extension of LSL.

6.5 Implementing Special-purpose Concerns with

Interaction Strategies

The next three sections revisit the tasks and challenges of special-purpose concerns.
Interaction strategies are a special mechanism for implementing a particular task or
challenge of a special-purpose concern (see Chapter 4). Each section discusses how
LMOP can accommodate the needs of the various kinds of special-purpose concerns.

6.5.1 Special-purpose Concern - Compositionality

SP1 - Localized Interventions In this special-purpose concern, localized com-
positionality conflicts are resolved by changing the composition of AST nodes. In
Section 5.7, we illustrate how this can be achieved using the base level LTS. There,
by specializing the getters of the parts of linglets, the composition of ASTs is not de-
structively changed. In other words, the original composition is still retained and can
be accessed at the meta level by introspection. For this purpose, the meta level is not
forced to go through getters for accessing the parts of an AST node. This is contrary
to setting parts of an AST node which always has to be performed through setters (see
Section 6.1.6).

The original composition for an AST node is important as this is the primary
composition dictated by the grammar which the interactions of other special-purpose
concerns may rely on. So, changing the composition non-destructively resolves compo-
sition conflicts and does not invalidate such interactions.

For example, linglets that retrieve or store information of other linglets can rely
on the grammar composition of linglets in a language specification regardless of their
composition which is imposed by their translational semantics. By implementing inter-
action strategies which rely on the introspection of parts, interactions are not affected
by the non-destructive changes in composition.

SP2 - Globalized Interventions Global compositionality conflicts by definition
involve several linglets, possibly even all linglets in a language specification. The meta
level is ideally suited for covering such a broad scope of linglets, abstracting over the
specific parts of AST nodes. So instead of specializing the getters and setters of the
various parts, one can specialize all the parts at once.

Conflicts can be resolved at various times during the execution of the transformation
process. One can either intercept the introspection of parts, similarly to the localized
interventions, so as to compensate for syntactically and semantically invalid composi-
tions. Another possibility is intercepting the modification of the AST nodes and resolve

252 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

conflicts when nodes are composed. As such, erroneous compositions are corrected as
they occur. Yet another possibility is intervening when the nodes are produced, and
altering them so as to avoid erroneous compositions in the future.

A concrete example of interaction strategies for globalized interventions are monads.

6.5.2 Special-purpose Concern - Multiple Inputs

SP3 - Identification Linglets explicitly state their need for external information
by declaring abstract methods (see Section 5.3.4). Interaction strategies can anticipate
the need for this information by inspecting the meta level of the linglet for abstract
methods or can intercept the introspection of unkown requests and respond accordingly.

A concrete example of an interaction strategy for the identification of multiple
inputs is forwarding.

SP4 - Obtention of External Information Obtention of external information
is available by accessing a global (see Section 6.1.5). In language specifications, global
information must be explicitly retrieved and provided, because linglets are isolated
from a concrete language implementation. Global information can also be obtained
by an interaction strategy that redirects unknown requests and checks if the requested
information is available globally. If so, a global value can implicitly become available
locally.

SP5 - Obtention of Information of Another Language Concern We
distinguish between two approaches used by interaction strategies depending on the
location of traversal logic. Either the traversal logic is contained and executed in the
linglet that requests information. This is, for example, the case in queries or traversals.
In this case, the requesting linglet introspects the parts of AST nodes and/or introspects
the parameters of linglets. Another approach is to distribute the traversal logic. Each
linglet is capable of processing an information request and redirecting the request to the
proper acquaintances. In this case, a linglet intercepts the attempt to retrieve unkown
requests and responds accordingly.

Concrete examples of interaction strategies for the obtention of multiple inputs are
queries of template-based approaches or traversals (see Section 6.3.1).

SP6 - Obtention of Distributed Information This kind of information is the
result of a distributed effort among linglets. So each linglet is equipped with logic
tailored for its semantics in order to contribute to the computation of the required
information. The linglets involved in this process do not have to be direct acquaintances
but can be more distant. In that case, we rely on the same mechanisms discussed in
the previous paragraph.

Concrete examples of interaction strategies for the obtention of distributed infor-
mation are attribute copy- and propagation rules and symbol tables.

SP7 - Provision of Information Information can be provided either when re-
quested or provided when it is computed. Although both scenarios can be dealt with

6.5. STRATEGIES FOR SPECIAL-PURPOSE CONCERNS 253

at the base level, the functionality of the meta level comes in handy when one wants to
abstract over many linglets and/or specific kinds of information. In the case where in-
formation is provided when required, one relies on the intercession of unkown requests
and known parts. In the case where information is provided as it is computed, one
changes parts by intercession. Instead of explicitly referring to the name of the infor-
mation, at the meta level other properties can be taken into account such as structural
information of the AST nodes and of the linglets. So the provision may also rely on
introspection of AST nodes and their linglets.

6.5.3 Special-purpose Concern - Multiple Outputs

SP8 - Identification via the Target Language Program Computation of
the location of nonlocal in the target language program can be quite complex involving
detailed semantics of AST nodes. As soon as one moves from the base level to the
meta level, AST nodes representing the target program are treated more abstractly.
In other words, the target program is reduced to a set of interconnected AST nodes.
Hence, moving to the meta level also complicates matters. However, there is also a
gain in raising the abstraction level, namely the visibility of the grammar. At the meta
level, the grammar is a datastructure which can be used as a primary mechanism for
computing the possible locations of nonlocals. Further, disambiguation has to be done
by the base level or through a more fine-grained meta level. So identification interaction
strategies at the meta level rely on introspection of linglets and AST nodes.

Concrete examples of interaction strategies for the identification via the target lan-
guage are the INR interaction strategy (see Section 6.3.3) and dynamic rewrite rules.

SP9 - Identification via the Source Language Program The grammar of
the source language is typically of little importance for identifying the correct location
of nonlocals. However, a limited form is certainly important, such as the type and the
behavior of linglets (e.g. the scope of a table declaration in T2SQL (see Section 5.9.2)),
which can be used as a distinguishing characteristic to guide the identification based
on the source program.

SP10 - Scheduling Scheduling is tackled in LTS by separating the responsiblities
of producing and integrating nonlocals. LTS allows the base level to produce nonlo-
cals for unknown target program locations which might not even exist yet. It is the
responsibility of custom interaction strategies to monitor the creation and the assign-
ment of target language fragments in order to find and integrate the nonlocals in the
proper places. Such interaction strategies can be defined at the meta level in a language
independent fashion.

A concrete example of an interaction strategy for the scheduling of nonlocals is the
INR strategy (see Section 6.3.3).

SP11 - Integration Using a Three-party Contract Integration of a nonlocal
in another AST node is a three party contract in LTS involving the nonlocal itself,
the AST node in which to integrate and an external actor specifying the integration

254 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

contract. The integration contract can be simplified and made more generic by using
the meta level to inspect AST nodes and to analyze their linglets. This information
can be fed into the negotiation of the contract. Decisions depending on a potential
conflict among the existing parts can be specified at the meta level regardless of the
specific AST node involved, by reflecting on the composition of linglets which define
the grammar of the target language.

A concrete example of an interaction strategy for the integration using a three-
party contract is the INR strategy (see Section 6.3.3). Other integration strategies are
implicit node creation and composition rules.

SP12 - Context-dependent Integration The integration of context-dependent
nonlocals is potentially influenced by any surrounding AST node both in the source and
the target programs. The interaction strategy developer is relieved of explicitly enu-
merating the relevant nodes. Instead the introspective capabilities LMOP can be used
to select nodes based on their metalevel properties to play specific roles in interaction
strategies.

A concrete example of an interaction strategy for context-dependent integration of
nonlocals is the INR strategy (see Section 6.3.3).

6.6 Discussion

LMOP combines the benefits of two worlds: modularized linglets implementing each
language construct in isolation, together with an open-ended list of interaction strate-
gies. We do not have to include new features in the kernel of LTS, nor include addi-
tional responsibilities into linglets themselves. Therefore the kernel remains a system
with simple semantics, and linglets each capture a single concern. With LMOP, iso-
lated linglets can be used and customized in order to realize complex interactions using
interaction strategies.

Language implementations are able to structurally and behaviorally reflect over
themselves. Both types of reflection are essential for defining interaction strategies:

Structural reflection grants us the ability to inspect and manipulate the relation-
ships among instantiated linglets, inspect their parameters and parts, inspect
and manipulate their behavior. The SSQ strategy inspects the relationships of
instantiated linglets for retrieving information. The INR strategy changes the
composition of instantiated linglets by injecting nonlocal results. Other interac-
tion strategies like symbol tables add additional behavior to linglets for accessing
and storing values which are distributed throughout the compilation process.

Behavioral reflection grants us the ability to change how linglets and their instantia-
tions respond to requests, to intercept how they are combined, how they construct
their equivalent target program fragments, etc. The INR strategy changes how
program fragments that were produced by other linglets, which do not fit accord-
ing to the grammar, are handled during language-execution-time. More precisely,
the interaction strategy intercepts when two program fragments are combined to
initiate the integration of nonlocal results. Other interaction strategies like for

6.6. DISCUSSION 255

example attribute copy- and propagation rules determine whether a linglet can
respond to a request. If a linglet cannot respond to a request then the request is
propagated to a neighbor.

LMOP exhibits the following interesting properties to design interaction strategies:

Separate the definition of interaction strategies LMOP is an orthogonal exten-
sion of the kernel of LTS. The extension introduces an optional layer of func-
tionality. This precisely meets our objective of separating the implementation of
interaction strategies. As there is no silver-bullet interaction strategy which can
be anticipated by linglets, multiple interaction strategies have to coexist in LTS.
Orthogonality also means that linglets can remain oblivious of any interaction
strategy. This is certainly the case for plain one-to-one transformations which do
not require any interaction strategy. Moreover, as linglets are involved in inter-
actions initiated by other linglets, a default interaction strategy must be present
which is used as a fallback mechanism when no interaction strategy is specified.
We have managed to do so for the INR strategy by automating certain interac-
tion strategy decisions e.g. the decision whether or not to integrate is based on
the grammar of the target language (see Section 6.3.3).

Scope the application of interaction strategies Both fine-grained and coarse-
grained scope control are important in LTS. Metaobjects can change the behavior
of a single instance of a linglet. This fine-grained scope control is exercised in
the INR strategy to change the behavior of multiple results such that they get
integrated in the results produced by other linglets. Recall from Section 5.9.2
that this leads to a localized specification of the integration and identification of
nonlocal results.

Metaobjects can change the behavior of a common delegatee5 among linglets.
As such, coarse-grained scope control can be exercised to control the behavior
ranging of a subset of interacting linglets, to possibly all the linglets of a lan-
guage. This granularity of scope control is required to ensure consistency and
co-operation between all the linglets of a language. Consider for example the
SSQ strategy. Basic structure-shy queries such as descendants and ancestors in
LTS do not even need to interact with other linglets, as the client linglet itself
can traverse other linglets. Although in principle such an interaction strategy
can be defined locally in a linglet, this does not necessarily limit the impact of
this interaction strategy to a single linglet. Structure-shy queries issued from a
client linglet are in general arbitrary expressions where the basic structure-shy
queries are the operators. The successive application of those operators requires
that their results (other linglets) also support this interaction strategy. Hence,
each linglet of a language can potentially be involved in such an interaction.

Build and customize interaction strategies LMOP defines the execution of LTS
in terms of behaviors implemented by linglet metaobjects. Object orientation
provides us with the necessary modularity, encapsulation, specialization and re-
finement required to structure and extend the metaobject layer. The resulting

5This term is defined in Section 5.3.8

256 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

incremental and ease of use obtained from object orientation enables a layered
design which is customized to the concepts of a specific interaction strategy. Fur-
thermore, the default behavior of LMOP can be used in case the behavior is
found to be sufficient, otherwise LMOP can be partially extended and special-
ized. As a result, interaction strategies are not monolithic entities but rather sets
of different linglets each capturing a particular feature of an interaction strategy.
This is demonstrated in the SSQ strategy in Section 6.3.2, which is designed as
a set of extensions of a basic version of the SSQ strategy.

Interaction Strategy binding time The time at which an interaction strategy is
bound is called the binding time. This time depends on the scope of the adap-
tion. At the system level and at the linglet level, interaction strategies are bound
statically at language-compile-time. At the instance level, interaction strate-
gies are bound at language-execution-time allowing us to incorporate language-
execution-time information into an interaction strategy, and tweak an interaction
strategy per instance. Both binding times are supported by the prototype-based
object orientation through static and dynamic modification of linglets and their
instances.

In order to reach a stable LMOP, we implemented a wide range of existing interaction
strategies and interaction strategy families:

Traversals AST nodes are visited in a certain visiting order, while operations can be
applied on them.

Dynamic Rewrite Rules AST ‘rewrite’ nodes are threaded along during the execu-
tion of linglets. When these match with a node, the matched node is rewritten
or modified. These rewrite nodes are removed when they no longer apply. As
such, the interaction strategy can scope the effects of these rewrite nodes.

Implicit Node Creation During language-execution-time, each node produced by a
linglet is considered a potentially partial state of a program fragment in the final
target program. Hence, each node may be merged with another node.

Copy- and Propagation Rules Requests for parts or information to which linglets
cannot respond are simply redirected to their parent or an answer is synthesized
from the redirections to their parts.

Forwarding Forwarding redirects requests of parts or information to which linglets
cannot respond to their semantically equivalent produced target language pro-
gram fragments.

Queries of Template-based Approaches The best kown query language in LDTs
is the set of structure-shy paths provided by XPath in XSLT. XPath query func-
tionality is implemented in the SSQ strategy.

Composition Rules They determine whenever two AST nodes need to be combined.
An example of such a rule which depend on the grammar is part of the INR
strategy.

6.7. CONCLUSION 257

Monads determine how semantics of linglets are combined without having to code the
combination manually each time it is required.

Symbol Tables This interaction strategy threads information along the execution of
the translational semantics of the different linglets.

By implementing the kernel of LTS in LTS using the structural reflection of LMOP we
created a compile-time meta-object protocol of LTS. This protocol consists of two lan-
guages LL and LSL which define the language to define linglets and define the language
to define language specifications respectively. By changing these languages, language
developers can tweak how their linglets and language specifications are compiled.

Form this discussion we can conclude that language developers can optimize their lan-
guage development environment to suit their needs both at language-compilation-time
and at language-execution-time. Examples of the latter are interaction strategies, ex-
amples of the former are syntactic convenience and static checks.

6.7 Conclusion

Due to their ability to isolate language constructs, linglets having complex translational
semantics cannot effect their semantics. In order to allow linglets to effect their seman-
tics without breaking their modularization, we have designed a reflective layer in the
form of a meta-object protocol called LMOP. The metaobject protocol is an orthogonal
extension of the basic system and thus respects the modularization of the language
constructs. In other words, linglets can effect their semantics through LMOP, which
requires no changes to be made to their implementation.

LMOP can control the behavior to the level of individual program fragments during
the execution of a language implementation in LTS. As such, the translational semantics
of a language construct has a high cohesion and a low coupling, as its behavior can
be carefully controlled throughout the execution of the language implementation. This
fine-grained granularity of LMOP is enabled by the prototype-based object-oriented
paradigm.

In order to effect the semantics of a linget, a linglet needs to cooperate with other
linglets. Cooperation patterns are lifted to the meta level such that a linglet can reason
about and change the information and behavior of other linglets. This is possible
through metaobject protocols because the structure and the behavior of the reflective
layer mimics the concepts of the basic layer. So a co-operation among linglets at the
base level can remain a co-operation at the meta level among the linglet metaobjects.

The meta level and the base level are not stratified. The reason for this lies in the
fact that a part of the co-operation which deals with the base level is often directly
used in the meta level and vice-versa. As such, co-operations can be implemented in a
single entity without unnecessary technical complications.

By separating the actual communication partners of a co-operation in metaobject
extensions, metaobject extensions are turned into reusable mechanisms capturing a
collaboration with implicit roles, which can implement similar co-operations.

258 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

Interaction strategies are not monolithic metaobject extensions. They are modeled
as sets of linglet metaobjects each capturing a particular feature of the interaction strat-
egy. Interaction strategies can even be extended with specifically designed features for
a particular language implementation. This is an essential feature for some interaction
strategies, as in the shift from base to meta level, a concrete language setting is lost.
By extending the interaction strategies for particular languages, language specific logic
can be incorporated into these interaction strategies while keeping the generic part of
the interaction strategy separate and thus reusable.

The suitability, applicability and extensibility of LMOP is illustrated by implement-
ing the SSQ interaction strategy to retrieve information external to the linglets, and
the INR strategy to resolve multiple outputs. In addition, we have used LMOP to
implement the languages to define linglets and language specifications in the system
itself, which gives rise to a compile-time metaobject protocol.

In the next chapter, meta-level implementations of interaction strategies are used to
facilitate the design of three different domain-specific languages using a pool of shared
linglets. The interaction strategies provide us the means to change the composition of
linglets without having to re-implement all the interactions between them.

6.7. CONCLUSION 259

Language Specification
NEW

✩NAME
✩ BASE

✩ LINGLETS
LINGLET:
PARSE:

EXECUTE:WITH:

Linglet
NEW

✩TYPE
HASTYPE:

✩PARAMETERS
PARAMETER:

MULTIVALUED:
GLOBAL:

ASTNode
MEMBERS

* MEMBER:
✩ PARENT

PARSE:
**GENERATE

**EXECUTE:ON:WITH:
* RESPONDSTO:
EXTERNAL:
✩ ABSTRACT

** UNKOWNREQUEST:WITH:

NONLOCALS
NONLOCAL: ROLE:

NONLOCALrole: nonlocal
✩ ROLE

✩ CALLER
✩ SOURCE

✩ LINGLET

*
✩ PARAMETERS
Linglets are composed
with (other) linglets
via their syntactical
parameters

 Linglets delegate
to one other linglet

ASTNodes delegate
to one other ASTNode
or linglet

*

0..1

1

1
root lingletsLinglet LINGLET

** Overridable methods
* Refinable methods
- Hidden

- DELEGATE

- DELEGATE

↕ Reversed implements-by relationship

**, ↕ MEMBER:ADD:ON:

**, ↕ MEMBER:PUT:
**,↕ MEMBER:ADD:

✩ ReadOnly

Figure 6.1: Diagram of LMOP.

260 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

Sub-protocol - #-Construct

 LS BASE PARSE: aProgram LINGLET: aLinglet
 aLinglet PARSE: aProgram
 Ki PARENT MEMBER: #m PUT: Mi ON: index

Sub-protocol - Nonlocal Results

 T NONLOCALS ADD: ti ROLE: role
 T NONLOCAL: ti ROLE: role
 ti ROLE: role
 S NONLOCALrole: ti

Sub-protocol - Request Information

 EXECUTE: signature WITH: args
 MEMBER: signature
 MEMBER: signature ADD: arg[1] ON: index
 UNKOWNREQUEST: signature WITH: args

Figure 6.2: Subprotocols of LMOP.

6.7. CONCLUSION 261

Linglet

Strategy

delegate

methodX
methodY
methodZ*

* abstract methods which are denoted in italic

methodY

ASTNode

methodZ

MetaObject
methodX
...

delegate

MetaObject
Protocol

Strategies

Language

Program

delegate

L0

L1

L2

L3

La
ng

au
ge

 S
pe

ci
fic

La
ng

au
ge

 In
de

pe
nd

en
t

Figure 6.3: Diagram of the deployment of an interaction strategy.

262 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

Column
Select

Select

(*) nonlocal Table AST Node

Source Query 7

NOT

Attribute
Set

w

e.name

OR

works_on(w)

ForAll

Target Query 7

e.name

NOT

NOT

true

workson_w

OR

...

NOT

...

1. discard = true
required = false

0. discard = false
required = true

2. just move

3. discard = false
required = true

4. nonlocal table can be
integrated in the

Select Node according
to its grammar,

and to its integration
semantics as it

is required and it should
not be discarded

(*)

nonlocal is relocated
and integration is attempted

Exists

{ e.name | (w) (works_on(w) v ...) } SELECT w.name
FROM
WHERE not exists (SELECT *
 FROM workson_w
 WHERE not (not true or ...)

Figure 6.4: Integration of the nonlocal Table node works on in example query 7.

LL

transfor-
mation

LSL SmallTalk
+

implemented in terms of
LL and LSL

implemented
inRunTime

System

Figure 6.5: Conceptual Diagram of LTS in LTS.

6.7. CONCLUSION 263

3
inc

3 inc square dec

square

dec

(UnaryMessage)

(a) Left Recursive

Expression

3
(UnaryMessage)

inc

square

Expression'

Expression'

Expression'

(b) Non-left Recursive
3 inc square dec

dec

(UnaryMessage)

(UnaryMessage)

Expression

(UnaryMessage)Expression
(UnaryMessage)Expression

Figure 6.6: Example AST of a left recursively and non-left recursively defined
grammar.

264 CHAPTER 6. THE METAOBJECT PROTOCOL FOR LTS

Expression

3

UnaryMessage

inc

Expression

Left Recursion in LTS

3 inc square dec

(1)

(2)

(3)

Expression

3

UnaryMessage

inc

UnaryMessage

square

Expression

Expression

UnaryMessage

dec

...

Expression

3 inc square dec

(b) AST with overriden parts (c) detailed traversal of the AST
for obtaining the left

part of UnaryMessage nodes

Expression

3

UnaryMessage

inc

UnaryMessage

square

Expression

Expression

UnaryMessage

dec

...

Expression

3 inc square dec

(a) AST produced
by the LTS parser

Figure 6.7: Example AST of a non-left recursively defined grammar using left
recursively defined linglets in LTS.

Chapter 7

LTS at work:
Building a Family of Languages

The goal of this dissertation is to investigate a design technique for modularizing the
implementation of languages according to their language constructs. In the previous
chapters we explained the principles of this design technique and discussed our imple-
mentation called the Linglet Transformation System. In this chapter, we validate the
proposed technique.

The case study which we use to validate this dissertation is a family of domain-
specific languages for Advanced Transaction Models (ATMS). The languages have been
designed by Fabry in his dissertation [Fab05]. We follow an incremental development
process and re-implement the languages in the Linglet Transformation System (LTS)
that were originally implemented in Java (see Section 5 and Section 6). We grow the
compilers of these languages in terms of language constructs and their semantics. Each
language is constructed using the same pool of shared basic language concerns and
interaction strategies.

We will show that our language implementation design technique (Chapter 5 and
Chapter 6) effectively modularizes the implementation of individual language con-
structs. A thorough evaluation of the gained benefits of such a modularization, which we
discussed in the introduction of this dissertation (see Section 1.2), is beyond the scope
of this dissertation. This validation is only a first step towards that goal. However,
during this validation, we will illustrate the gained benefits of such a modularization:

• Understandability : Language constructs are designed and implemented in isola-
tion, focussing on one construct at a time.

• Evolvability: Languages co-evolve with their implementations into new languages.

• Extendibility: Languages are extended with new language constructs.

• Reusability: Language constructs are reused across new languages.

• Iterative development: The set of languages are constructed by subsequent iter-
ations.

265

266 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

The language constructs are composed and complemented in a language specifi-
cation (Chapter 5) to form the various languages. We will show that different com-
positions and complements of language constructs yield different languages with dif-
ferent overall semantics. The complements are expressed using interaction strategies
(Chapter 6). We will show that some interaction strategies need to be customized for
improving separation of concerns, others can be reused as such, and yet other interac-
tion strategies are entirely new, designed to tackle the specific separation of concerns
problem at hand.

We start with a brief overview of the background of ou case study in Section 7.1.
We introduce the concept of advanced transactions and the different models we are
about to implement. Section 7.2 details the objectives and the general outline of our
experiment. Subsequent sections each present an increment of the stepwise development
of Fabry’s family of domain-specific transaction languages (DSTLs). Before we conclude
this chapter in Section 7.7, Section 7.6 evaluates the experiments.

7.1 Advanced Transaction Models

The concept of transaction management plays a prominent role in many business-
oriented systems. Transactions ensure data integrity and free an application program-
mer from dealing with the complex issue of concurrency management. Transaction
management permeates client-server systems that handle a large number of clients
which work concurrently on shared data, which usually kept in a database, and that
communicates over a wide area network.

A transaction consists of a sequence of program instructions which are considered
as an indivisible block. Such blocks, when executed concurrently, may not interfere,
and will therefore keep the database in a consistent state.

Transactions have been originally designed to treat small units of work, which
merely access a few data items, and take a short time to complete. However, modern
client-server applications process large units of work, which renders the basic transac-
tion concept ill-suited. Such transactions take a long time to execute and are more likely
to be involved in a deadlock causing many rollbacks, latency time, and the re-execution
of other transactions. The reason is that transactions are typically aligned with object-
oriented methods, which call yet other methods and consist of several statements to be
executed in sequence. Since methods are typically long and call other methods, it is
hard to align them with a single transaction.

This is just one example of the mismatch between the properties of a single trans-
action model and the concurrency management properties requested by modern appli-
cations. Other mismatches can be found in [Fab05].

7.1.1 ATMS

A number of advanced transaction models (ATMS) have been conceived, so as to address
the above mismatches. An impressive number of alternative ATMS can be found in
the literature which are brought together in an comprehensive overview by Fabry in
[Fab05]. Each ATMS usually treats long-lived transactions in a particular way. Fabry

7.1. ADVANCED TRANSACTION MODELS 267

designed a domain-specific transaction language (DSTL) for a number of ATMS. It is
this set of languages that is our case study. A detailed discussion of the different ATMS
for which these languages are designed for is given later in this chapter. The list of
ATMS we consider in this chapter is:

Classical Transactions

Classical transactions form the most basic transaction model. They declare which
methods of applications should behave as a transaction. They are the primary building
blocks which are arranged and composed in other ATMS.

Nested Transactions

The best known ATMS is nested transactions [Mos81], which addresses the granularity
and scope of rollbacks. Nested transactions arrange a number of transactions onto a call-
tree of methods. We distinguish between the case where the hierarchy of transactions
is identical to the call hierarchy and the one in which the hierarchy of transactions does
not correspond to the call hierarchy.

Sagas

Sagas [GMS87] addresses the issues of long-lived transactions by splitting them into
a sequence of sub-transactions called steps. The sequence of sub-transactions should
either be executed completely or not at all. This notion will be used to associate a
transaction with “big methods” that consist of several statements.

7.1.2 KALA

We have now seen three ATMS, each focusing on a particular shortcoming of basic
transactions. Each model can be implemented in terms of the Kernel Aspect Language
for ATMS language (KALA) that was proposed by Fabry [Fab05]. In this section we
sketch the background and introduce the major concepts of this language.

ATMS can be expressed in a formal model called ACTA. ACTA, however, is solely
a formal model and was not conceived with an implementation in mind. KALA is a
language that implements the ACTA model allowing developers to separately specify
the transactional properties of Java methods. With KALA, different ATMS can thus
be specified. Using KALA, a software application programmer declaratively states the
transactional properties of a Java method in one block of statements, using the concepts
provided by the ACTA formal model. There are also additional constructs present in
KALA for using secondary transactions, for naming and grouping transactions and for
terminating transactions and groups of transactions.

We do not expect the reader to fully understand KALA. Details are explained when
necessary. In the remainder of this section we will briefly introduce the KALA language
by means of an example. A more formal overview can be found in Appendix C.

Consider a banking application that transfers money. The money transfer method
is conceptually composed of three actions: first performing the actual bank transfer,

268 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

second printing a receipt and third updating the logs of the bank. The major issue
with the money transfer is the printing out of the receipt: to make a printout, even on
a fast printer, takes a few seconds, which effectively turns the transfer method into a
long-lived transaction. Therefore, the money transfer transaction is modeled as a saga
transaction because it is a long-lived transaction. By splitting the money transfer into a
sequence of atomic sub-transactions or steps, the money transfer transaction interferes
less with other transactions. As such, by using the Saga ATMS the performance of the
banking application can be significantly increased.

Recall that a Saga describes a sequence of sub-transactions called steps. The pro-
gram, shown below, is an excerpt of a description of a Saga transaction in KALA.
The code is the KALA specification for the sub-transaction associated with the
printReceipt(...) method of the Cashier class (line 1). This method is the sec-
ond step of the Saga money transfer transaction. The money transfer transaction is
called the top-level Saga transaction.

1 Cashier.printReceipt(Account, Account, int) {
2 alias (Saga <Thread.currentThread()>)
3 alias (CompPrev <""+Saga+"Comp">)
4 groupAdd (self <""+Saga+"Step">)
5 autostart (Cashier.printTransferCancel(Account,Account,int,int)
6 <source, dest, amount, num_receipt> (num_receipt) {
7 name(self <""+Saga+"Comp">)
8 groupAdd(self <""+Saga+"Comp">)
9 })
10 begin {
11 alias (comp <""+Saga+"Comp">)
12 dep(saga ad self, self wd saga, comp bcd self)
13 }
14 commit {
15 alias (comp <""+Saga+"Comp">)
16 dep(CompPrev wcd comp, comp cmd saga, comp bad saga)
17 }
18 }

Transactions coincide with the methods of software applications. Hence, the
method name of a transaction is the signature of the method implementing the trans-
action (line 1). In our example Saga step, the method associated with this step is
Cashier.printReceipt(Account, Account, int).

The transactional properties (defined in the ACTA formal model) are associated
with significant events in the lifecycle of transactions. These are begin (line 10), abort
or commit (line 14). Upon begin and commit, in our example Saga step, some transac-
tional properties are stated. In addition, a transaction can also declare some prelimi-
naries i.e. transactional properties which are global to the different events. In our Saga
step example at lines 2-9, four KALA statements are defined as preliminaries.

KALA offers naming, so as to set properties on transactions at run-time. Lookup is
performed in KALA by using an alias statement (line 2), and transactions can be given

7.2. DOMAIN-SPECIFIC TRANSACTION LANGUAGES 269

a name with the name statement (line 7). Transactions can subscribe and unsubscribe
to a group so that properties can affect more than one transaction. This is respectively
handled by the groupAdd (lines 4 and 8) and groupAlias statements. Each of these
statements take a variable denoting a transaction or a group of transactions and an
expression that computes the identifier of the transaction or group of transactions to
either lookup or register the transaction or group of transactions. Naming is used in
our Saga step example to obtain a reference to its top-level saga transaction (line 2) so
as to add itself to the group of steps of its Saga (line 4). By adding itself to the group
of steps, we ensure that steps are terminated when their Saga ends.

The behavior of multiple, possibly concurrent, transactions is governed by con-
straints between the events of these transactions. These constraints can be defined by
establishing dependencies among transactions. Views relax the conservative visibility
defined by the ACID properties of basic transactions. Delegations transfer ownership of
the data read and modified by a transaction. For each of these declarations a statement
is available: dep (line 12), view and del. Delegations at line 12 are used, in our Saga
step example, to trigger the rollback of the Saga when one of its steps rolls back. These
set a number of specific dependencies between steps and their Sagas when steps begin
to execute (line 12). Furthermore, delegations at line 16 set dependencies that ensure
the correct order of execution of the compensation of the step when its Saga has to
rollback.

Transactions are not automatically removed from the run-time transaction monitor
when they end because other running transactions may have placed dependencies on
them. Hence, the programmer must manually declare when these references are no
longer needed. For this, KALA offers the terminate and groupTerminate statements.

Transactions that need to be run separately from the main control flow of software
applications are spawned by the autostart statement. The execution of these trans-
actions is controlled via dependencies (line 7 - 8). The autostart statement consists
of four parts. The first part is the method signature to be invoked for compensating
the current transaction. The second part lists the actuals which are used to invoke the
specified method. The third part lists which of the actuals is a local variable of the
method declared as a step transaction (see Section 7.5.2). The final part contains the
transactional properties of the compensating transaction. In our Saga step example,
the step needs to spawn a secondary transaction (line 5), to be used as a compensating
transaction when its Saga rolls back. It achieves this by using an autostart statement
(lines 5 to 9), which compensates a printReceipt simply by performing the inverse
printTransferCancel method. The secondary transaction adds itself to the group of
compensating transactions (line 8), ensuring it is properly terminated when its Saga
ends.

7.2 Domain-specific Transaction Languages

The general-purpose nature of KALA comes at a price. Each time a particular ATMS is
used in software systems, the whole ATMS has to be reimplemented. Using KALA, the
implementation of ATMS is extensive, quite complex, and can lead to a high amount
of code duplication [Fab05]. As a result, the use of an ATMS with KALA is difficult

270 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

and error-prone. To alleviate this problem, a number of domain-specific transaction
languages (DSTLs) have been designed to allow the programmer to use ATMS-related
concepts.

In Figure 7.1 we sketch the background of our case study used to validate this dis-
sertation and sketch where LTS comes into the scene. A couple of DSTLs are defined
on top of KALA. Each DSTL translates to a KALA specification ((2) in the figure).
Together with a software application ((3) in the figure), the generated KALA speci-
fication is subsequently fed into the KALA weaver ((4) in the figure) which has been
developed by Fabry. The result of this weaving process is pure Java code ((5) in the
figure), which contains the software application with transaction code woven into it.

The DSTLs are conceived as a family of languages because there are many opportu-
nities to share and reuse syntax and semantics. This design decision exploits common
concepts, minimizing the knowledge required to learn each individual DSTL. Skills
acquired by using one DSTL can be transferred to other DSTLs.

KALA
Domain-specific
Transaction Lanaguges

Transformation

- Classical Transactions
- Simple Nested Transactions
- Nested Transactions
- Sagas

Distributed Software Application
Java Code

Distributed Software Application
with transaction management
JAVA

+ KALA Weaver

Linglet Transformation System

(1) (2) (3)

(4)

(5)

Figure 7.1: Context of the case study.

Fabry designed six languages each time using on average of four language constructs
out of eleven language constructs. We re-implemented three of these languages using
LTS. The syntax and semantics of the resulting languages are identical to the specifi-
cation given by Fabry. An early report on the implementation of these languages can
be found in [FC05].

The three DSTLs are:

• the ClassicalTx DSTL for the classical transactions ATMS

• the SimpleNestedTx DSTL for a simplified version of the Nested Transactions
ATMS

7.2. DOMAIN-SPECIFIC TRANSACTION LANGUAGES 271

• the Saga DSTL for the Sagas ATMS

7.2.1 Case Study

The implementation of the three DSTLs is the case study presented in the rest of this
chapter (see Figure 7.1). It is an interesting case because the three DSTLs share a lot of
language constructs and semantics. The case is exceptionally fit to illustrate the benefits
of LTS to implement linglets. Each linglet describes the syntax and the translational
semantics of the language construct it defines. The compilers of the DSTLs, designed in
LTS, maintain the decomposition of the DSTLs into language constructs. The linglets
can be composed and reused in the conception of various languages. With this case
study we show that in LTS we can design the three DSTL languages using a pool of
shared linglets.

The case study is also representative to validate the claims of this dissertation. This
is because upon decomposition of the DSTLs and their semantics into their different
language constructs, the language constructs exhibit the five phenomena, on which our
dissertation is founded and that challenge their modularization1:

P0 the translational semantics of their language constructs yield partial KALA frag-
ments

P1 the translational semantics of their language constructs do not compose i.e. the
semantics of the parts of a language construct cannot be used to define its se-
mantics;

P2 the translational semantics of their language constructs require multiple inputs,
i.e. information which is not present in a language construct but external to the
DSTLs or present in other language constructs;

P3 the translational semantics of their language constructs produce multiple results,
i.e. multiple KALA fragments which need to be integrated and combined with
the KALA fragments produced by other language constructs;

P4 the syntax of some language constructs refer explicitly to the syntax of other lan-
guage constructs.

Each DSTL is described in a separate section. For each DSTL, we describe the
phenomena that we encounter more concretely. We subsequently discuss the ability of
LTS to modularize the semantics of the language constructs of the DSTLs facing the
above modularization challenges. To this end, we rely on the kernel of the LTS system
(see Chapter 5) and on the linglet metaobject protocol (LMOP) of LTS (see Chapter 6).

We formulated for each phenomenon P0 to P4 a requirement R0 to R4 (see Sec-
tion 4.1.2), in order to ensure the modularization of language constructs where we
encounter these phenomena.

1The phenomena are discussed in detail in Chapter 4

272 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

7.2.2 Incremental Development of Three DSTLs

In the following sections, we discuss the incremental development process used to con-
struct three DSTLs. In each increment we highlight a different feature of LTS which
facilitates the incremental development of the DSTLs. We relate the LTS features to
the requirements R0 to R4 of our formal model, and to the derived design challenges
SP1-SP12 (see Section 4.3) to modularize interactions among language constructs.

Initial Language We start with a simple language, called ClassicalTx, describing the
classical (i.e. the most basic) transaction model. In this initial language, we show
how to construct a linglet defining classical transactions.

Increment 1 The first increment evolves the ClassicalTx language by nesting trans-
actions with an unlimited nesting depth. In the language constructed in this
increment, called SimpleNestedTx, the hierarchy of transactions coincides with
the call hierarchy in software applications.

Firstly, we show that linglets are able to modularize language constructs despite
semantically equivalent partial KALA specifications (P0) and the need for mul-
tiple inputs necessary to compute their semantics (P2). Secondly, we show the
ability of LTS to overcome compositionality conflicts (P1, SP1) and composi-
tion deficit problems. Finally, we show that the modularization of translational
semantics (P3) producing multiple results can be maintained due to adequate in-
teraction strategies (SP9-SP12) that establish the necessary interactions to effect
such translational semantics.

Increment 2 The second increment creates a new language, called Saga, which focuses
not on the nesting depth but on cooperations among sibling transactions in a
single level. The idea is to align them with method calls in a method.

In the second increment, we show how multiple results (P3) get integrated by
using the source language (SP8). Furthermore, a new interaction strategy is
devised which is specific for this case study.

Each DSTL implementation is discussed in a similar fashion. We start by explaining
the ATMS which is implemented by that DSTL. We introduce the DSTL by means
of an example and discuss its equivalent KALA code in order to demonstrate the
complexity of the latter. Subsequently, the translational semantics of the DSTL is
formally discussed to indicate the major challenges to modularize its various language
constructs. Using this knowledge we present how LTS is able to modularize the language
constructs and reuse the language constructs.

7.3 Initial Language: Classical Transactions

As explained in Section 7.1, Classical Transactions is the most basic transaction model.
The model defines the primary building blocks which are arranged and composed in
other ATMS.

7.3. INITIAL LANGUAGE: CLASSICAL TRANSACTIONS 273

Case

Consider the following excerpt of a method taken from a banking application:

class Cashier {
public void periodicSavings(Account a, Account[] savings,

int amount) {
...
}

}

The method Cashier.periodicSavings(...) is used for periodically transferring
the same amount form an account to a set of accounts. The argument a is the account
from which money is withdrawn, the argument savings is an array of accounts on
which money deposited, and the argument amount is the actual amount of money to
be transfered.

Equivalent KALA code

Providing such a method with transactional code in KALA is done as follows. Line 1
declares the transaction, lines 2 and 3 terminate the transaction, on commit or abort.

(1) Cashier.periodicSavings(Account, Account[], int) {
(2) commit {terminate(self) }
(3) abort {terminate(self) }
(4) }

DSTL

Using the ClassicalTx DSTL implemented in this section, KALA’s complexity for
declaring a classical transaction is hidden in a single clause i.e. a transaction declara-
tion. A transaction declaration starts with the keyword trans followed by the signa-
ture of the method which must be treated as an transaction. The ClassicalTx program,
shown below, declares in a single line of code that the method Cashier.periodicSavings(...)
is transactional.

trans Cashier.periodicSavings(Account, Account[], int)

7.3.1 DSTL Translational Semantics

Figure 7.2 depicts the translational semantics of the ClassicalTx DSTL. The left side
of the figure depicts the DSTL language construct, the right side of the figure depicts
its equivalent KALA code fragment. The ClassicalTx language is not very complex as
it is described by one language construct: the transaction declaration (trans). The
transaction declaration is depicted in line (1) in Figure 7.2.

The transaction declaration language construct and its translational semantics is
depicted separately by two code templates. The left side being a DSTL code fragment

274 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

methodsignature' {
 commit { terminate(self) }
 abort { terminate(self} }
}

(trans methodsignature)'(1)

Figure 7.2: Translational semantics of the ClassicalTx DSTL.

of a language construct and the right side being its equivalent in KALA code. The
italic names denote template parameters in the source and the target code fragments.
The translational semantics of a template parameter is denoted by its corresponding
template parameter prime (the name of the parameter postfixed with a quote) e.g. the
translational semantics of the template parameter methodsignature is denoted by the
template parameter methodsignature’.

7.3.2 The Tx Language Construct

In LTS, the transaction declaration construct is defined by the Tx linglet. The syntax
of the Tx linglet is straightforward, and the semantics of the Tx linglet is a simple
one-to-one translation. It does not seem impressive when considering it in isolation.
Nevertheless, this initial language allows us to discuss and validate the basic notions
when designing a language in LTS.

(1) Linglet Tx {
(2) syntax {
(3) "trans" (package ".")* class "." method
(4) "(" !(parameter ("," parameter)*) ")"
(5) }
(6) generate { | package class method parameter |
(7) package := ast package generate.
(8) class := ast class generate.
(9) method := ast method generate.
(10) parameter := ast parameter generate.
(11) #Tx_Declaration{ ’package.’class.’method(’parameter) {
(12) commit {terminate(self) }
(13) abort {terminate(self) }
(14) }
(15) }
(16) }
(17) }

7.3. INITIAL LANGUAGE: CLASSICAL TRANSACTIONS 275

The Tx linglet contains two methods called syntax and generate. The first method
defines the syntax, the second defines the translational semantics of the transaction
declaration language construct.

Syntax

A transaction declaration in the ClassicalTx DSTL takes the form of a trans keyword,
followed by the method signature of the transaction. The method signature is defined by
a series of package names separated by a dot, a class name and a method name followed
by a series of parameters enclosed in round brackets. All identifiers within the syntax
definition of a linglet are syntactical parameters. As a consequence, the identifiers
package, class, method and parameter represent the syntactical parameters: package
name, class name, method name and parameters. Later, when the language is defined,
the syntactical parameters are bound to the ID linglet (defined in Section 7.3.3) which
defines identifiers.

Translational Semantics

The syntactical description of a linglet implicitly describes its abstract syntax (see Sec-
tion 5.3.3). The syntactical parameters define the abstract syntax tree (AST). The Tx
linglet has four parts called package, class, method and parameter which can be used
to define its translational semantics. This translational semantics is a straightforward
one-to-one translation. The transaction declaration is constructed via the # construct
(lines 11-15) which we introduced in Section 5.3.6. The # construct allows a developer
to produce a target language program using the concrete syntax of the target language
of a translation.

A classical transaction is directly translatable to the language construct
Tx Declaration of KALA that defines a transaction (line 11). What remains is a
pair of terminate statements for removing the current transaction (indicated by the
KALA pseudovariable self) from the system (lines 12-13). The method signature of
the produced transaction declaration consists of a set of metavariables package, class,
method and parameter which are indicated by the quote symbol (line 11). These
variables contain the translational semantics of the parts of the Tx linglet (lines 7-10).
They are initialized in two steps. We first access the accessor of their corresponding
parts of the currently executing Tx linglet instance or AST node which is denoted by
the pseudovariable ast. Second, the translational semantics of the parts is computed
by invoking the generate method.

Observe from the syntax definition that a method signature can consist of multiple
parameters and multiple packages. Hence, the parameter and package variables con-
tain a set of parameters or packages. Like AST nodes, sets of nodes can also be quoted.
By quoting we actually refer to the content of the quoted variable, in other words we
do not convert the quoted variable to a string. As such, in case of a set of packages
or parameters there is no need to know that packages are separated by a dot and that
parameters are separated by a comma.

276 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

7.3.3 The ID Language Construct

Identifiers in the ClassicalTx language are used for package, class, method and param-
eter names. Identifiers are defined by the ID linglet.

(1) Linglet ID {
(2) syntax { (("a"-"z" [ast chars add: currentchar] |
(3) "A"-"Z" [ast chars add: currentchar])
(4) (("a"-"z" [ast chars add: currentchar] |
(5) "A"-"Z" [ast chars add: currentchar] |
(6) "_"-"_" [ast chars add: currentchar] |
(7) "0"-"9" [ast chars add: currentchar]))*)
(8) }
(9) generate { | chars |
(10) chars := ast chars asString.
(11) #ID{ ’chars}.
(12) }
(13) }

The linglet contains two methods called syntax and generate defining the syntax,
and the translational semantics respectively.

Syntax

The syntax of an identifier (line 2) is defined as a series of characters ranging from a
to z (line 4), from A to Z (line 5), including an underscore (line 6) and ranging form 0
to 9 (line 7). Identifiers can only start with a capital or small letter (lines 2-3). After
each character range, a SmallTalk block is specified which adds the current parsed char
currentchar to the set of characters chars of the current AST node ID.

Translational Semantics

The semantics of the ID linglet is a new identifier of the target language. The new iden-
tifier is defined at line 11 using the metavariable chars, which contains the characters
of the current identifier. The variable chars is initialized in two steps. We first access
the chars part of the current ID AST node. Second, this set of characters is converted
into a string using the asString method.

7.3.4 The Entire ClassicalTx Language

The language specification defining the ClassicalTx DSTL is:

name ClassicalTx
base KALA

Tx package: ID.
class: ID.

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 277

method: ID.
parameter: ID.

The first two lines define the name and the target language of the ClassicalTx DSTL.
What follows is the introduction and composition of the linglets Tx and ID linglet in
order to define the language.

Linglets are introduced in a language by using their name. Upon introduction, a
new linglet is defined which delegates to the definition of the linglet. As such, the
syntactical parameters of the new linglet can be bound to other linglets, and methods
defined in the linglet can be overridden.

In this language specification, the syntactical parameters package, class, method
and parameter are bound to the ID linglet with the colon construct.

7.4 First Increment: Nested Transactions

In the first increment, we evolve our initial language by nesting transactions with an
unlimited nesting depth. This results in a second DSTL called SimpleNestedTx. The
discussion of the first increment is structured similarly to the discussion of the previous
language.

7.4.1 Nested Transactions ATMS

When methods are being written using a hierarchical calling structure, nested trans-
actions can be used to align with that structure. Rollback of a sub-transaction causes
all its sub-transactions to rollback, recursively down the call-tree. In these cases, the
scope of a rollback is fine-tuned to the control flow structure of the application. As
such, instead of having one big transaction which needs to rollback, smaller transac-
tions can rollback and application code can retry the failed operations. Furthermore,
sub-transactions do not commit their work directly but delegate this responsibility to
their parent transaction. As such, sub-transactions operate on intermediate data.

7.4.2 Simple Nested Transactions DSTL by Example

In this increment, we start with the most common case where the resulting hierarchy
of transactions corresponds to the calling hierarchy. In this case, the nearest parent
transactional method is located by going up the call chain.

The new concept apparent in the nested transactions ATMS, over classical transac-
tions, is that a method can be declared as a sub-transaction of the (possibly indirectly)
calling transaction. Consider the following code excerpt of a banking application:

class Cashier {
public void periodicSavings(Account a, Account[] savings,

int amount) {
...
this.moneyTransfer(a, savings[i],amount)

278 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

...
}

public void moneyTransfer(Account from, Account to, int amount){
...

}
}

Again, the Cashier.periodicSavings(...) method periodically transfers an amount
of a set of accounts to another account. The argument a is the account from which
successively money is withdrawn, the argument savings is an array of the account on
which money is deposited, and the argument amount is the amount to be transfered.
The Cashier.periodicSavings(...) method is implemented by successively calling
the method Cashier.moneyTransfer(...) to transfer a given amount.

The Cashier.periodicSavings(...) method calls for a nested transaction, as
the structure of this method is clearly hierarchical and the successive deposits must
operate on the intermediate balance of the accounts. If one transfer fails due to a lack
of money, all the work performed by the periodicSavings(...) method and all the
work performed by the moneyTransfer(...) must be undone by a rollback.

Equivalent KALA code

The following code taken from Fabry [Fab05] shows how KALA is used to annotate
Java code with ATMS code to reflect such nested transactions.

(1. T/N) Cashier.periodicSavings(Account, Account[], int) {
(2. N) name(self <Thread.currentThread()>)
(3. T) commit {terminate(self) }
(4. T) abort {terminate(self) }
(5. T/N) }

(6. T/E) Cashier.moneyTransfer(Account, Account, int) {
(7. E/C) alias(parent <Thread.currentThread()>)
(8. E) name(self <Thread.currentThread()>)
(9. E) begin {
(10. E) dep(self wd parent, parent cd self)
(11. E) view(self parent) }
(12. T/E) commit {
(13. E) del(self parent)
(14. E/C) name(parent <Thread.currentThread()>)
(15. T) terminate(self) }
(16. T/E) abort {
(17. E/C) name(parent <Thread.currentThread()>)
(18. T) terminate(self) }
(19. T/E) }

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 279

The code at lines 1 to 5 is the KALA equivalent of the root transaction of the DSTL
program, and the code at lines 6 to 19 is the KALA equivalent of the sub-transaction.

The code uses the current thread object2 to identify the calling transactional
method. The root transaction will register itself using the current thread object (line
2). The child transactions look up their parent using current thread object as name
(line 7). These transactions save the parent identifier locally and register themselves as
current thread object (line 8), to enable their sub-transactions to obtain a reference to
them in their turn. At the end of the transaction, the identity of the parent is restored
using the saved identifier (lines 14 and 17).

At the beginning of a sub-transaction, a couple of dependencies are set so that if the
parent aborts, the sub-transaction aborts as well (wd dependency line 10) and so that
the parent does not commit until the sub-transaction has committed (cd dependency
line 10). Upon commit, the sub-transaction delegates the responsibility for committing
or aborting the data to the parent (line 13). Finally, a sub-transaction has a view
on the intermediate results of its parent, which is achieved by setting the view at the
beginning of the sub-transaction in line 11. For more details we refer to [Fab05].

DSTL

The complexity of this KALA program is hidden by our second DSL which explicitly
supports nested sub-transactions. Sub-transactions are declared by reusing the trans-
action declaration from the ClassicalTx DSTL form Section 7.3.2, and extending it with
the extends caller statement. The keyword caller is an expression to denote that
the parent transactional method can be found in the dynamic call chain.

Root transactions can be stated explicitly in the DSTL as well, and as they do not
extend any other transaction, they are therefore specified by omitting the extends
caller statements. Root transactions are declared using the trans clause of the
Classical DSTL. Line 1 declares the method Cashier.periodicSavings(...) as the
root transaction. Lines 2 and 3 declare the method Cashier.moneyTransfer(...)
as a sub-transaction of the nearest transactional method, which is in this case,
according to the control flow structure of the example application code, the
Cashier.periodicSavings(...) transactional method.

The following code excerpt shows how the above KALA code is hidden in our DSTL.

(1) trans Cashier.periodicSavings(Account, Account[], int)
(2) trans Cashier.moneyTransfer(Account, Account, int)
(3) extends caller

7.4.3 DSTL Translational Semantics

Let us now have a look at the translational semantics of the SimpleNestedTx DSTL
which is shown in Figure 7.3. Again, the left-hand side of the figure depicts source code
templates for the two basic concepts of the language, the right-hand side of the figure
is the equivalent KALA code for these concepts. The first concept is a root transaction

2Thread.currentThread() is used because it uniquely identifies the current control flow in
Java.

280 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

methodsignature' {
 name(self <Thread.currentThread()>)
 commit { terminate(self) }
 abort { terminate(self} }
}

(trans methodsignature)'(1)

(trans methodsignature

extends caller)'
(2) methodsignature' {

 alias(parent <Thread.currentThread()>)
 name(self <Thread.currentThread()>)
 begin {
 dep(self wd parent, parent cd self)
 view(self parent) }
 commit {
 del(self parent)
 name(parent <Thread.currentThread()>) }
 terminate(self) }
 abort {
 name(parent <Thread.currentThread()>)
 terminate(self) }
}

Figure 7.3: Translational semantics of the SimpleNestedTx DSTL.

((1) in the figure), the second is a sub-transaction ((2) in the figure). We now discuss
each of the concepts in more detail:

Root Transaction In the KALA equivalent of our SimpleNestedTx program, the
root transaction Cashier.periodicSavings(...) contains a name statement
that registers the root transaction so that sub-transactions can refer to their
parent. Hence, from a syntactical and conceptual language point of view, the
root transaction is a classical transaction. However, the translational semantics
of a root transaction of the SimpleNestedTx DSTL and a classical transaction of
the ClassicalTx DSTL, shown in Figure 7.2, do not correspond.

Indeed, the name statement is not present in the semantics of a classical transac-
tion. In the translational semantics of a root transaction of the SimpleNestedTx
DSTL ((1) in Figure 7.3) we marked this additional name statement in green.
Obviously, we cannot simply reuse the transaction declaration of the ClassicalTx
DSTL. The SimpleNestedTx DSTL compiler needs to invasively change the se-
mantics of a classical transaction declaration.

Sub-transaction The translational semantics of a sub-transaction is a complex KALA
program ((2) in Figure 7.3). The additional extends caller clause, which is
marked in yellow, invasively changes the translational semantics of a classical
transaction. As such, defining the semantics of a sub-transaction, reusing the se-
mantics of the classical transaction declaration and the semantics of the extends
clause requires to invasively compose two KALA transaction specifications. We

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 281

recognize this phenomenon as an instance of multiple results (R3) we defined in
Section 4.1.5.

7.4.4 Overview of the Language Implementation in LTS

In the SimpleNestedTx DSTL we distinguish between two language constructs, each
implemented by their respective linglets: the transaction declaration (trans keyword)
and extensions of a transaction (extends caller keyword). In LTS, the transaction
declaration is defined by the Tx linglet (see Section 7.3.2) and the extension of a trans-
action is defined by the Extends linglet (see Section 7.4.5).

The Tx linglet was already defined in the ClassicalTx DSTL, and therefore we want
to reuse it. However, as we explained in the previous section, we require an additional
KALA statement that is marked in green (see Figure 7.3). To be able to reuse the
Tx linglet we create an additional linglet which produces the additional green KALA
statement. This linglet is called the TxRegistration linglet (see Section 7.4.6). Hence,
the linglets of the SimpleNestedTx language comprise the Tx, the Extends and the
TxRegistration linglets.

As we explained and illustrated in Section 2.3.1, in general, the more fine-grained
transformations are, the more interactions are necessary among these transformations
to yield the desired language semantics. The modularization challenges are due to
the fact that interactions must be defined separately from transformations in order to
maintain their modularization. The same is true for linglets. Due to the fine granularity
of linglets, their complexity, and the challenges to modularize them increases. In our
increment we encounter, linglets that do not compose syntactically, that do not compose
semantically (R1), that consume multiple inputs (R2), that produce partial KALA
fragments (R0) and that require to combine and integrate their partial KALA fragments
(R3). All of these problems are described formally in Chapter 4.

Due to the modularization of language constructs the interactions among constructs,
more precisely the combination and integration of the KALA fragments, are not part of
the linglets that define them. These interactions are implemented separately with the
INR strategy (see Section 7.4.10) which extends the linglet metaobject protocol such
that the linglets are not polluted with combination and integration semantics.

The SimpleNestedTx DSTL will be defined in a language specification (see Sec-
tion 5.4) that combines linglets and extends LTS for implementing the interactions
among its linglets (see Section 7.4.10).

7.4.5 The Extends Language Construct

The first language construct in the SimplesNestedTx DSTL defines sub-transactions.
Recall that sub-transactions are declared by reusing the classical transactions of the
ClassicalTx DSTL, and extending it with the extends caller statement. The exten-
sion is defined by the Extends linglet, in full accord with the semantics depicted in line
2 of Figure 7.3.

(1) Linglet Extends {

282 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

(2) syntax {
(3) "extends caller"
(4) }
(5) generate { | methodsignature |
(6) methodsignature := ast methodsignature generate.
(7) #Tx_Declaration{ ’methodsignature {
(8) alias(parent <Thread.currentThread()>)
(9) name(self <Thread.currentThread()>)
(10) begin {
(11) dep(self wd parent, parent cd self)
(12) view(self parent) }
(13) abort {
(14) name(parent <Thread.currentThread()>) }
(15) commit {
(16) name(parent <Thread.currentThread()>)
(17) del(self parent) } }
(18) }
(19) }
(20) methodsignature { nil }
(21) }

Modularizing semantics: scattering of results

The generate method defines the translational semantics. The Extends linglet pro-
duces a KALA transaction, which we refer to as the extends transaction, that contains
the transactional properties to turn a transaction into a sub-transaction. We did not
chose to produce only the KALA fragments as have they conceptually belong with an-
other. So the idea is apparently to merge two KALA declarations in the end. Rather
than to insert individual KALA statements.

We do not expect the reader to understand the semantics of the KALA statements of
the extends transactions. Details are given in Section 7.4.2. The transaction fragment
is constructed using the # construct (see Section 5.3.6) (lines 7-18)3.

The produced extends transaction is defined in full accordance with the semantics
depicted in line 2 of Figure 7.3. The semantics of the extends caller clause invasively
changes the semantics of the classical transaction declaration. In LTS, we are able to
modularize the semantics of this clause such that it is defined independently from the
semantics of classical transaction declaration defined by the Tx linglet. The extends
linglet just produces a new transaction fragment containing additional transactional
properties that are needed to turn a classical transaction into a sub-transaction. In
other words, the Extends linglet produces the code marked in yellow.

3A KALA transaction is defined by the Tx Declaration linglet of our LTS KALA language
implementation (see Appendix C)

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 283

Modularizing semantics: partial results

Just like any other KALA transaction, the extends transaction requires a method sig-
nature. As the syntax of the Extends linglet has no syntactical parameter, the linglet
cannot obtain the method signature for the extends transaction. The need for a method
signature is stated in the methodsignature method defined at line 20.

We have chosen to simply omit the method signature, the methodsignature method
returns nil (line 20), and leave the extends transaction incomplete. This is an example
of the R0 requirement (see Section 4.1.6). It is non-essential information, which may be,
in full accord with the model requirement (R1a), omitted by linglets. In other words,
the Extends linglet does not to need concern itself on how to complete the extends
transaction.

7.4.6 The TxRegistration Language Construct

As sub-transactions refer to their parent, root transactions need to register themselves
with a name. However, as we already showed, solely using the classical transaction to
define a root transaction does not work because a classical transaction does not register
itself (see Section 7.3.2). The TxRegistration linglet produces the additional KALA
statement which is marked in green in line 1 of Figure 7.3.

(1) Linglet TxRegistration {
(2) syntax { body }
(3) generate { | methodsignature |
(4) methodsignature := ast methodsignature generate.
(5) body := ast body generate.
(6) #Tx_Declaration{ ’methodsignature {
(7) name(self <’body>)
(8) }
(9) }
(10) }
(11) methodsignature { nil }
(12) }

The first method (line 2) defines the syntax. The syntax consists of one syntactical
parameter, called body denoting the expression which is used to register a transaction.
Hence, the linglet does not define additional syntax concrete syntax4.

Modularizing semantics: scattered results

The second method (line 3) defines the translational semantics. The TxRegistration
linglet produces a transaction of its own (line 6) which registers itself (line 7) using the
name computed by the body part of the TxRegistration linglet (line 5).

4In context free grammar terminology, we speak about a unit production i.e. of the form
A ::= A.

284 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

The code produced by the TxRegistration linglet is the code marked in green (see
Figure 7.3). As you can see the produced code should be part of the root transaction.
Recall that the root transaction is produced by the Tx linglet. So the semantics of
the TxRegistration linglet actually should inject a KALA statement in the KALA
transaction produced by the Tx linglet.

Now, in order to ensure the modularization of the TxRegistration linglet, the
linglet only produces a new transaction declaration, independently of the Tx linglet.
We refer to the produced transaction as the registration transaction. As such, we
preserve the modularization of the Tx linglet and the TxRegistration linglet.

Modularizing semantics: partial results

The TxRegistration linglet has one part called body, which can be used to define its
translational semantics. However, as any KALA transaction, the extends transaction
produced by the TxRegistration linglet also requires a method signature. Similar to
the Extends linglet, the TxRegistration linglet requires an additional part i.e. the
method signature of the registration transaction (line 6, methodsignature). This is
stated by the third method (line 11).

We can simply omit the method signature and leave the new transaction fragment
incomplete: the method methodsignature returns nil. This an example of the R0
requirement (see Section 4.1.6). It is non-essential information, which may be, in full
accord with the model requirement (R1a), omitted by the linglet.

7.4.7 The Entire SimpleNestedTx Language

The language specification defines the SimpleNestedTx DSTL, by introducing and com-
posing the linglets Tx, Extends, TxRegistration as follows:

(1) name SimpleNestedTx
(2) base KALA

(3) Root body: NestedTx. RootTx.

(4) RootTx=TxRegistration
(5) body: Tx.
(6) body: { #Expression{ Thread.CurrentThread() } }
(7) generate : { | classicaltx registrationtx |
(8) registrationtx := previous generate.
(9) classicaltx := (previous body generate).
(10) classicaltx nonlocals add: registrationtx.
(11) classicaltx }.

(12) NestedTx=Concat left: Tx. right: Extends.

(13) Tx package: ID.
(14) class: ID.

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 285

(15) method: ID.
(16) parameter: ID.

The first two lines declare the name of the SimpleNestedTx DSTL and the target
language. The first linglet introduced in the language is the starting linglet or root
linglet for the language. It serves as the starting point to parse programs and to
initiate the transformation process. The first linglet in the SimpleNestedTx DSLT is
the Root linglet. It is a language independent linglet which basically allows programs
to consist of a series of sentences defined by the linglets which are bound to it (line 3).
The SimpleNestedTx DSTL allows two kinds of phrases to be built: a root transaction
without an extension (RootTx linglet) and a transaction with an extension (NestedTx
linglet).

The definitions of the RootTx and NestedTx linglets using the Tx, TxRegistration
and Extends linglets is non-trivial. Due to the isolation of these linglets three prob-
lems need to be solved in order to compose linglets into a valid language. The first
problem is a compositionality conflict. The second problem is a composition deficit.
The third problem is the invasive composition of the produced KALA specifications.
In the following three sections, we demonstrate the ability of LTS to overcome these
problems.

7.4.8 Root Transactions: Compositionality Conflict

Recall from Section 7.4.3 that in line 1 of Figure 7.3, the translational semantics of root
transactions is the combination of the semantics of a classical transaction (red code)
with an additional name statement. The former is defined by the Tx linglet and the latter
by the TxRegistration linglet. Therefore root transactions are defined by the RootTx
linglet as an alias, using the = operator, for the composition of the TxRegistration
and Tx linglets.

However, due to the isolation of the TxRegistration and Tx linglet, a composi-
tionality conflict arises when these linglets are composed. This is caused because the
translational semantics of the TxRegistration linglet cannot be composed with the
semantics of the Tx linglet. The semantics to resolve the composition conflict is written
in the language specification (lines 7-11) in order to preserve the modularity of the
linglets involved. The TxRegistration and the Tx linglets are composed in four steps:

1. The TxRegistration linglet is introduced in the language specification in line 4.
Recall from Section 5.4.2, that upon introduction of a definition of a linglet, a
new linglet is defined which delegates to the defined linglet. The newly created
linglet is aliased as the RootTx linglet, and is specialized with behavior to resolve
the compositionality conflict.

2. The body parameter of the TxRegistration linglet is bound to the Tx linglet
(line 5). Syntactically this makes sense as a root transaction (RootTx linglet) is a
plain transaction. So whenever the DSL programmer declares a root transaction,
he/she will implicitly also use the TxRegistration linglet. As such, each root
transaction will register itself.

286 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

3. From a semantical perspective the body parameter of the TxRegistration lin-
glet must actually be bound to the expression yielding the name to register the
transaction. However, as the body parameter of the TxRegistration linglet is
bound to the Tx linglet a compositionality conflict occurs: the semantics of the
body part cannot be substituted in the semantics of the TxRegistration linglet
because the translational semantics of Tx is not an expression, but a complete
transaction. As we explain in Section 5.7, in order to solve this problem in LTS,
we just need to override the getter of the body part (line 6) and provide an
expression that yields the name to register the transaction. Hence, the compo-
sitionality conflict between the TxRegistration and the Tx linglet is resolved,
without invasively changing the involved linglets or in other words violating the
modularity of the involved linglets.

4. The translational semantics of the TxRegistration linglet produces and
returns a new registration transaction (code line 6 of the definition of the
TxRegistration linglet in Section 7.4.6). However, as we stated earlier,
we require the combination of the transactions produced by the Tx and
TxRegistration linglet. For this, the generate method of the TxRegistration
linglet (line 7-11) is overridden. In that method we retrieve the two transactions
and combine them.

The registration transaction, which is stored in the variable registrationtx, is
the result of the original generate method which is obtained by the expression
previous generate. The classical transaction produced by the Tx linglet, which
is stored in the variable classicaltx, is obtained by invoking the original getter
for the body method and subsequently retrieving its translational semantics by
invoking the generate method.

In LTS, we do not have to manually combine the registration transaction with
the classical transaction, as that would introduce too much coupling between the
TxRegistration linglet and the Tx linglet in the language specification. Instead
the registrationtx node is simply attached as a nonlocal result (cfr Section 5.9)
to the classicaltx node in line 10. Hence, we can ignore the need to combine
the two nodes. A separately defined interaction strategy, called the INR strategy,
takes care of properly combining them (see next section).

The composition of the TxRegistration and the Tx linglet in the SimpleNestedTx
DSTL shows the versatility of LTS to overcome compositionality conflicts.

7.4.9 Nested Transactions: Composition Deficit

Recall from Section 7.4.3 that in line 1 of Figure 7.3, the semantics of nested trans-
actions is the combination of the semantics of a classical transaction (red code) with
the semantics of the extends caller clause. The former is defined by the Tx linglet
and the latter by the Extends linglet. Therefore nested transactions are defined by the

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 287

NestedTx linglet as an alias, using the = operator, for the composition of the Tx and
Extends linglets.

Due to the isolation of linglets, they sometimes have too few syntactical parameters
to compose them with other linglets. We call this problem a composition deficit. The
composition deficit problem encountered in the SimpleNestedTx DSTL occurs between
the Tx and the Extends linglet (see also Section 7.4.5).

The Tx linglet has several parameters denoting the signature of the transactional
method and the Extends has no parameters. There are thus no parameters left to com-
pose the Tx and the Extends linglet. In order to solve this problem in LTS, while still
reusing the linglets and maintaining their modularity, we use auxiliary linglets. Such
linglets are language independent and are especially designed to overcome composition
problems.

The composition of the Tx and the Extends linglet is realized by the auxiliary
Concat linglet, which is shown below. The Concat linglet has two parameters: left and
right. Its semantics is to compose the translational semantics of both parts. Because
we modeled the Contact linglet as a language independent linglet, the Contact linglet
does not know how to compose the translational semantics of the Tx and the Extends
linglet. So the default composition (line 8) hooks the semantics of the right part to
the left part as a nonlocal (line 9), and returns the latter (line 10). By hooking AST
nodes as nonlocals to another AST node, the actual composition of the two nodes can
be temporarily ignored and later in the transformation process the nonlocals can be
combined. A separately defined interaction strategy, called the INR strategy, takes care
of properly combining them (see next section).

(1) Linglet Concat {
(2) syntax { left right }
(3) generate { | left right |
(4) left := ast left generate.
(5) right := ast right generate.
(6) compose: left with: right
(7) }
(8) compose:left with:right {
(9) left nonlocals add: right.
(10) left
(11) }
(12) }

7.4.10 Integration of Transaction Fragments: INR strat-
egy

In this section, we show that the modularization of complex translational semantics
(see Definition 4.4) producing multiple results (R3) can be maintained due to adequate
interaction strategies (SP9-SP12) that establish the necessary interactions to effect the
complex translational semantics.

Throughout the discussion of the increment, we frequently relied on the INR (see
Section 6.3.3) interaction strategy to compose and integrate the different transaction

288 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

fragments. In our discussion of the semantics of the SimpleNestedTx DSTL in Sec-
tion 7.4.3 we illustrated in Figure 7.3, that the extends caller clause requires invasive
changes to be made to the classical transaction and that an additional statement needs
to be injected in the semantics of a classical transaction. In this section, we explain
how we can compose and integrate the KALA fragments by deploying the INR strategy.
For a full and detailed discussion about this interaction strategy, we refer the reader to
Section 6.3.3.

Maintaining modularization of the linglets

The semantics of the different linglets Tx, TxRegistration and Extends is complex
but modularized nevertheless. Each linglet produces fragments of a transaction speci-
fication (R3) (see Figure 7.3) which needs to be integrated and combined into a single
transaction specification (SP9).

Neither the linglets nor the language specification of the SimpleNestedTx DSTL
contains statements regarding the combination and integration of the produced KALA
transactions. It is by extending the linglet metaobject protocol (LMOP) of LTS with the
INR strategy (see Section 6.3.3), that we can integrate and combine different transaction
specifications without having to pollute or change the semantics of the linglets which
produced them.

INR strategy with deep integration

An interaction strategy is a separately defined meta-level mechanism to implement in-
teractions between linglets. The INR strategy is a mechanism to integrate and combine
AST nodes. We have defined this interaction strategy in Section 6.3.3 in the INR linglet.

The INR strategy pairwise integrates the produced KALA transactions until a single
KALA transaction is produced. In order to integrate the produced KALA transactions,
the INR strategy must support deep integration (see Section 6.3.3) which means that the
parts of the AST nodes representing two KALA transactions are recursively combined.
We described an extension of the INR to support deep integration in the linglet called
Deep in Section 6.3.3.

The INR strategy changes LMOP so that upon the composition of two AST nodes
which we respectively call master and client, the interaction strategy attempts to inte-
grate each of the nonlocal KALA transactions of the client into the master. The pair-
wise integration of two KALA transactions is, in the INR strategy, performed according
to the structure of the grammar of the KALA language defined in LTS. The grammar of
a language defined in LTS is available by introspecting the composition of the linglets of
a language. A KALA transaction is defined by a KALA transaction declaration, which
in turn contains names, aliases, terminates, groupadds, groupaliases, groupterminates,
autostart statements and significant events (begin,abort and commit). These signif-
icant events themselves contain names, aliases, terminates, groupadds, groupaliases,
groupterminates, dependencies, views and delegations statements. As a consequence,
integration starts at the top AST nodes representing two KALA transactions. It first
tries to detect a correspondence between both top AST Tx Declaration nodes by
invoking the corresponds: method. If the declarations correspond, the two are com-

7.4. FIRST INCREMENT: NESTED TRANSACTIONS 289

bined using the combine: method. In the combination that follows, the interaction
strategy integrates the name, alias, terminate, groupAlias, autostart, groupAdd,
groupTerminate and Event parts. Again it first tries to detect a correspondence be-
tween a part of the two declaration nodes. When a correspondence is detected, the parts
are combined by invoking the combine: method on these parts. As the events (named
begin, commit and abort) having the same name correspond, the resulting combination
in turn triggers the integration process for their parts e.g. the name, alias, terminate,
groupAdd, groupAlias, groupTerminate, dep, view and del.

INR strategy with deep integration in the KALA language specification

We add the INR and the Deep strategy to the KALA language specification (see below)
in line 1. This line ensures that each linglet of the KALA language delegates to the
interaction strategies, and as such inherit the integration mechanism defined in the INR
strategy. The methods defined and provided by the INR strategy for each linglet of the
KALA language are depicted in layer 2 of Figure 7.4.

In layer 1 of Figure 7.4 some of the linglets of the KALA language that further
specialize the strategy are depicted. The interaction strategy is specialized by over-
riding correspond (corresponds: method) and combination (combine:) methods in
the different linglets. As such, the interaction strategy knows which particular nodes
of the KALA language correspond to other nodes and how they need to be combined.
Linglets that do not specialize the corresponds: and combine: do not correspond
with other nodes and are thus not combined, but simply added to a suitable node of
the target AST by the INR strategy.

(1) Linglet=Deep
extends: INR.

(2) Tx_Declaration
(3) corresponds: peer {
(4) (ast correspondType: peer)
(5) and: [(ast contains: ’name’) ifTrue: [
(6) peer signature = ast signature
(7)] ifFalse: [true]]
(8) }
(9) combine: peer {
(10) ast body do: [:child | child integrate: peer].
(11) (peer contains: ’signature’) ifFalse: [
(12) peer signature: ast signature
(13)]
(14) }.

(15) Event
(16) corresponds: peer {
(17) (ast correspondType: peer)
(18) and: [ast name linglet type

290 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

= peer name linglet type]
(19) }.

(20) Naming=Linglet
(21) corresponds: peer {
(22) (ast correspondType: peer)
(23) and: [ast name = peer name]
(24) }
(25) combine: peer {
(26) (ast key = peer key) ifFalse:[
(27) Exception raiseSignal: (ast linglet type,

’ is duplicated’)
(28)]
(29) }.

(30) Alias
(31) extends: Naming.
(32) Name
(33) extends: Naming.
(34) GroupAlias
(35) extends: Naming.
(36) GroupAdd
(37) extends: Naming.
(38) Terminate
(39) extends: Naming.
(41) GroupTerminate
(42) extends: Naming.

The following INR specialization has been made:

1. KALA transactions are defined by the Tx Declaration linglet. This linglet de-
fines two parameters: body and signature. The former contains the statements
of a KALA transaction declaration and the later the method signature of a KALA
transaction declaration. By overriding the method corresponds: peer we define
when a Tx Declaration node corresponds with a given peer node. In line 4 we
state the linglets of the peer and the current ast node correspond if the types of
their linglets correspond. This is checked with the correspondsType: method.
In addition, we also need to take into account the method signature of KALA
transactions and whether or not KALA transactions have a method signature.
If the current ast node has a method signature (stored in the signature part)
(line 5) then the method signature of the ast and the peer must be the same (line
6). If the current ast node does not have a method signature, then the current
ast node corresponds to any other transaction (line 4). Whether an AST node
has a value can be checked by the LMOP method contains:label.

Upon combination of the peer and ast nodes, each part of the ast node is

7.5. SECOND INCREMENT : SAGAS 291

integrated into the peer node. At line 10 each child of the body of the ast node is
integrated in the peer node by recursively invoking the integrate:peer method
on the child. At line 11 the signature of the peer is only changed if the peer does
not have a method signature.

2. Significant transaction events such as begin, abort and commit are defined with
the Event linglet. The name parameter of the Event linglets for the different sig-
nificant events, contain the linglets "begin", "abort" and "commit" respectively
(see Section C.2). Two Event AST nodes correspond if the types of their linglets
correspond and if their name linglets are the same. This condition is encoded by
specializing the corresponds: peer with a boolean expression in line 16. The
first part of the boolean expression determines whether the types of the linglets
of the nodes correspond (line 17). The second part determines whether the types
of the linglets of their names correspond (line 18). The combination of the two
Event nodes is completely handled by the INR strategy.

3. The Alias, GroupAlias, Name, GroupAdd, Terminate, GroupTerminate linglets
each consist of a name and a key parameter. The name denotes the variable
which is either used or declared, and the key is used to identify the transaction.
In order to detect erroneous merges, nodes of these linglets correspond if nodes
have the same name. However, they fail to combine if their expressions, used to
identify the transactions, are different. As such, we can avoid erroneous merges.

Because the Alias, GroupAlias, Name, GroupAdd, Terminate, GroupTerminate
linglets all have the same combination and correspondence behavior, we encode
it in a new linglet called the Naming linglet. This new linglet is defined at line 20
and specializes two methods corresponds: peer and combine:peer of the INR
strategy. The former defines that two naming linglets correspond if their linglets
correspond, and if they have the same name (lines 21-23). The latter defines that
two naming linglets combine if their keys, which contain the expressions they use
to identify linglets, are the same (lines 26-28).

The common combination and correspondence behavior in the Naming linglet is
shared by installing the Naming linglet as a common delegate for the Alias (line
30), Name (line 32), GroupAlias (line 34), GroupAdd (line 36), Terminate (line
38), GroupTerminate (line 41) linglets.

To conclude, in LTS, the separately defined INR strategy can be added to combine
the different produced KALA transactions, without having to break the modularization
of the linglets producing these KALA transaction (fragments). More so, the interaction
strategy is reusable and can be used in many different language implementations (see
next increment in Section 7.5).

7.5 Second Increment : Sagas

In the second increment of our family of DSTLs we implement a DSTL for the Saga
transaction model we introduced in Section 7.1.1 which we refer to as the Saga DSTL.

292 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

This section follows a structure similar to the structure we used to discuss the previous
language.

7.5.1 Sagas ATMS

The Sagas ATMS does not focus on the nesting depth like nested transactions, but
on cooperations among sibling transactions on a single level. Sagas is designed to
support long-lived transactions. These transactions are split into a sequence of atomic
sub-transactions that should either be executed completely or not at all. Splitting long-
term transactions releases intermediate results at an earlier stage. First, it increases
concurrency as other transactions can execute concurrently. Second, it also decreases
the probability of deadlocks, since after each sub-transaction all data is released. Fi-
nally, each sub-transaction will probably require fewer resources than the complete
Saga.

Extra work needs to be done in order to rollback a Saga: compensating methods
must be provided to potentially undo the effects of already committed sub-transactions.
Hence, the application programmer should for each sub-transaction define a compen-
sating transaction, which performs a semantical compensation action.

7.5.2 Saga DSTL by Example

Sagas introduce several new concepts: a long-lived transaction called a Saga, atomic
sub-transactions called steps and compensating transactions called compensating steps
or compensates.

Case

Consider the following skeleton of a banking application:

class Cashier {
public void moneyTransfer (Account from, Account to, int amount){

this.transfer(from, to, amount);
this.printReceipt(from, to, amount);
this.logTransfer(from, to, amount);

}
private void transfer (Account from, Account to, int amount)
{ ... }
private void printReceipt(Account from, Account to, int amount)
{ ...}
private void logTransfer(Account from, Account to, int amount)
{ ... }

}

The money transfer method is conceptually composed of three actions: first perform
the actual bank transfer, second print a receipt and third update the logs of the bank.
The first action is the transfer itself, which updates both accounts involved in the bank
transfer. The second action prints out a receipt which the cashier hand over to the

7.5. SECOND INCREMENT : SAGAS 293

customer as proof of the transfer method. The third and last step updates the logs of
the bank to reflect that a transfer has been performed and a receipt has been given.

Conceptually, the money transfer method is one atomic event, and needs to be
made transactional. Implementing the entire money transfer method as one transaction
however is problematic. This is because printing out the receipt takes a few seconds
even on a fast printer. This effectively turns the money transfer method into a long-lived
transaction.

The Sagas ATMS suits the money transfer method better as it turns the long-lived
transaction into a series of steps. Each action of the transfer maps to a step in a
Saga, and for each step a compensating step is possible. The compensating step of the
transfer itself is a transfer in the opposite direction. The printout of the receipt can be
compensated by printing out a transfer cancellation notice. The last step of a Saga has
no compensating step, as the Sagas ATMS does not require this.

Equivalent KALA code

The KALA specification for the above Saga example is quite large and verbose. We
refer the reader to Section C.3.1. Section 7.1.2 shows the KALA equivalent of the
second step of the saga example and explains it in detail. We discuss the remaining
part of the KALA specifications, when we implement the Saga DSTL in LTS.

DSTL

A Saga is declared by the keyword Saga, followed by the method signature of the
method executing the Saga, and a list of steps. Each step is an atomic sub-transaction
declared by the keyword step. All steps, except for the last one, require a compensating
step. This is declared by the keyword compensate, followed by the signature of the
method executing the compensating step. The compensation of a step is invoked when
a step has to rollback. As such, we need to specify arguments for the parameters
of the method declared as a compensate. The list of arguments is prefixed by the
keyword params and enclosed in < and >. Some of these arguments are local variables
of the step method, because the compensating transaction executes in another thread
which is spawned before the step has even begun to execute. An indirection is used to
implement this. For this, in the Saga DSTL, the local variables which must be passed
to the compensating step have to be declared explicitly by the keyword wrap.

The code below shows an example of a Saga declaration containing three steps.
Each step is accompanied by a compensating step which takes a list of parameters and
an optional declaration of wrappers.

Saga Cashier.moneyTransfer(Account, Account, int) {
step Cashier.transfer(Account, Account, int)

compensate transfer(Account, Account, int)
params <to, from, amount>

step Cashier.printReceipt(Account, Account, int)
compensate printTransferCancel(Account, Account, int)
params <from, to, amount, num_receipt>

294 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

wrap(num_receipt)
step Cashier.logTransfer(Account, Account, int)

}

The moneyTransfer(...) method is the top level transaction of a Saga. This
transaction lists the steps which are executed as sub-transactions. The first step is the
transfer(...) method, with as compensating step also the transfer(...) method,
in which source and destination accounts have been swapped. The second step is the
printReceipt(...) method, which is compensated by the printTransferCancel(...)
method. The local variable num receipt of the printReceipt(...) method is passed
via the wrap declaration to the compensating step. As such, the compensating step can
include the receipt number in the cancellation notice. The last step of the Saga is the
logTransfer(...) method which, as explained, has no compensation.

7.5.3 DSTL Translational Semantics

The translational semantics of the Saga DSTL is depicted in Figure 7.5. The first
concept is a “top level” Saga transaction ((1) in the figure), the second is a step and
its compensating step ((2a) en (2b) in the figure). We now discuss each of the concepts
in more detail:

Saga The translational semantics of the Saga concept in line 1 of Figure 7.5 consists of
a list of KALA transaction specifications containing: the Saga transaction, and
a transaction for each of its steps.

Steps and Compensating Steps The translational semantics of a step and its com-
pensating step is a complex KALA program ((2) in Figure 7.5). The complexity
is due to three phenomena we observe:

Scattering of KALA code The DSTL program and its equivalent KALA spec-
ifications are marked with colors. The code marked in red corresponds to a
top-level Saga and its translational semantics. The code marked in yellow
concerns a step of a Saga and its translational semantics. The code marked
in green is about a compensation of a step and its translational semantics.

The code marked in yellow ((1) in Figure 7.5) indicates that the semantics
of a step clause invasively changes the semantics of its top-level Saga trans-
action. In addition, the KALA equivalent marked in yellow of a step and its
compensating clause ((2a) en (2b) in Figure 7.5) indicates that the seman-
tics of a step clause additionally produces its own KALA transaction. In
other words, the semantics of a step clause comprises several code KALA
code fragments. We recognize this phenomenon as an instance of multiple
results (P3).

Similarly, there is code marked in green in the KALA equivalent of a step
((2a) en (2b) in Figure 7.5), which is the equivalent of a compensate clause.

7.5. SECOND INCREMENT : SAGAS 295

Hence, the semantics of a compensate clause invasively changes the seman-
tics of a step clause. We also recognize this phenomenon as an instance of
multiple results (P3).

Duplicate KALA code There is one KALA statement which is both marked
in yellow and green because it part of the semantic equivalent of both the
compensate and the step clause. Naturally, upon integration of the KALA
fragments such duplicate KALA statement needs to be pruned.

Source program queries The translational semantics of a step and its com-
pensating step comes in two variants. If a step is not the first one, then
additional KALA statements are necessary to ensure the correct rollback of
the compensating steps of its Saga in reverse order (2a). If a step is the first
one, then there is no previous compensating step to rollback (2b). Hence,
upon translation of the compensate clause, the source program needs to be
queried to determine if a step is the first in its Saga or not. We recognize
this phenomenon as an instance of multiple inputs (P2).

It is clear, that the semantics of the various DSTL clauses is not a straightforward
one-to-one mapping. The challenge is to be able to define the semantics such that the
semantical specifications can be easily composed and used without requiring invasive
changes to their definitions.

7.5.4 Overview of the Implementation in LTS

In the Saga DSTL we distinguish between three language constructs: the Saga declara-
tion (saga clause), the atomic sub-transaction or step (step clause) and the compen-
sating transaction (compensate clause). Steps and compensating steps are considered
as two different language constructs because of several reasons. First, as we have ex-
plained earlier, compensating steps are optional: all steps, except for the last one, have
compensating steps. Second, compensating steps are the mechanisms offered by the
Saga ATMS to undo, in case of a rollback, the work performed by a single step. In
principle, other ATMS can offer other mechanisms to rollback steps. Therefore, a step
is a concept which is, in fact, independent of the notion of a compensating step of a Saga
ATMS. The arguments used to call the compensating steps and the declaration which
of these arguments are local variables of the transactional method executing the step,
are not considered as separate constructs but are considered part of the compensating
construct. The three language constructs define a top-level Saga, steps and compensat-
ing steps for these steps respectively. In LTS, each language construct is implemented
in a linglet. As a consequence, a Saga declaration is defined by the Saga linglet (see Sec-
tion 7.5.5), a step is defined by the Step linglet (see Section 7.5.6) and a compensating
transaction is defined by the Compensate linglet (see Section 7.5.7).

The interactions among constructs are not a part of the linglets that define them.
More precisely the combination and integration of the KALA fragments are imple-
mented with the INR and the source query to determine whether a step is the first one
is implemented with a new interaction strategy called the Sibling strategy. The INR
strategy extends the LMOP such that the linglets are not polluted with combination

296 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

and integration semantics. The Sibling strategy is an application-specific interaction
strategy, which is designed to further reduce the coupling between the compensating
linglet and the other linglets. As such we preserve the modularity of language con-
structs.

The Saga DSTL is defined in a language specification (see Section 5.4) in which its
linglets are combined, in which the LTS system is extended with interaction strategies
and in which the interactions among linglets are implemented with the Sibling and INR
strategies (see Section 7.5.9 and Section 7.5.10).

We do not explain the modularization of the language constructs of the Saga DSTL
by their corresponding linglets in detail, but only emphasize the new challenges that
this increment raises.

7.5.5 The Saga Language Construct

The Saga language construct which is implemented by the Saga linglet, is shown below.

Linglet Saga {
syntax { "Saga" (package ".")* class "." method

"(" !(parameter ("," parameter)*) ")"
"{" child* "}" }

generate{ | package class method parameter children toplevel |
package := ast package generate.
class := ast class generate.
method := ast method generate.
parameter := ast parameter generate.
children := ast child generate.
toplevel := #Tx_Declaration {

’package.’class.’method(’parameter) {
name(self <Thread.currentThread()>)

}
}.
ASTLoseSet add: toplevel add: children

}
}

The syntax of the Saga linglet consists of a keyword Saga followed by a method
signature (denoted by the parameters package, class, method and parameters) of a
Saga and zero or more children (denoted by child*) which are enclosed in parentheses.
Observe that the Saga linglet has a multivalued syntactical parameter called child
which is later, in the language specification, bound to the Step linglet. This is similar
to the Tx linglet discussed in Section 7.3.2. Note these two linglets could be refactored
such that their common syntax that defines a method signature could be specified in a
separate linglet.

The generate method of the Saga linglet defines the translational semantics of
a Saga in full accordance with line 1 of Figure 7.5. More precisely, the Saga linglet
produces the code marked in red. It returns a set of transaction specifications: the

7.5. SECOND INCREMENT : SAGAS 297

toplevel transaction specification of a Saga, and the atomic sub-transaction specifica-
tions defined by each child part. The two results toplevel and children are returned
as an ASTLoseSet5.

The only behavior specified by the toplevel transaction is that it registers itself
(denoted by the KALA pseudovariable self) using the current thread object with the
KALA name statement. As such, the atomic sub-transactions defined by steps can refer
to their toplevel Saga transaction. We refer to Section 7.1.2 for the rationale behind
this.

7.5.6 The Step Language Construct

Steps are the atomic sub-transactions of Sagas, and are defined by the following Step
linglet.

(1) Linglet Step {
(2) syntax { "step" (package ".")* class "." method
(3) "(" !(parameter ("," parameter)*) ")" }
(4) generate { | package class method parameter res |
(5) package := ast package generate.
(6) class := ast class generate.
(7) method := ast method generate.
(8) parameter := ast parameter generate.
(9) res := #Tx { ’package.’class.’method(’parameter) {
(10) alias (Saga <Thread.currentThread()>)
(11) groupAdd (self <""+Saga+"Step">)
(12) begin {
(13) dep(Saga ad self, self wd Saga)
(14) }
(15) }.
(16) res nonlocals add:
(17) #Commit {
(18) commit { groupTerminate(<""+self+"Step">)
(19) terminate(self) } }
(20) role: #terminate.
(21) res nonlocals add:
(22) #Abort {
(23) abort { groupTerminate(<""+self+"Step">)
(24) terminate(self) } }
(25) role: #terminate.
(26) res.
(27) }
(28) }

5An ASTLoseSet does not create an AST, but merely acts as container to hold the AST
nodes. The set is also normalized i.e. a set of sets is flattened.

298 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

Syntax

The Step syntax is defined at line 2 consisting of the keyword "step" and a method
signature (denoted by the parameters package, class, method and parameters).

Modularizing semantics: Multiple Results

The translational semantics is defined in full accordance with the semantics depicted
in lines 1, 2a and 2b of Figure 7.5. The Step linglet produces three results: a new
transaction (line 4) containing the KALA statements marked in yellow of lines (2a)
and (2b) of Figure 7.5, a commit statement (line 17) and an abort statement (line 22)
which are the KALA statements marked in yellow in line (1) of Figure 7.5.

The first result produced by the Step linglet is a transaction which declares a
given method as a sub-transaction of a Saga (line 9). The produced step transaction,
establishes some dependencies with its top-level Saga. Therefore its top-level Saga
transaction is looked up via the alias statement using the current thread object as
the name to identify the transaction (line 10). At the beginning of a step, a couple of
dependencies are set so that if a step aborts, its top-level Saga necessarily abort as well
(ad dependency line 13), and so that if its top-level Saga aborts, the step aborts as well
(wd dependency line 13). The step transaction also adds itself (self pseudovariabele
in KALA) to a group which is identified by the expression ""+Saga+"Step" (line 11).
This expression yields a unique group name for each Saga per thread. This group
name is used in the commit (line 17) and abort statements (line 22) which terminate
all transactions in that group when their top-level Saga transaction aborts (line 23) or
commits (line 18).

The second and third produced results are the commit and abort statements. They
need to be integrated in the transaction specification defined by the Saga linglet. How-
ever, due to the isolation of linglets, the commit and abort statements can only be
defined (see Section 4.8), not directly integrated. In LTS, such results are consid-
ered nonlocal results or plainly nonlocals. It suffices to hook the commit and abort
statements to the step transaction as nonlocals (lines 16 and 21). The integration of
the nonlocals has to be defined in the language specification (see Section 7.5.10 on
page 305). The two nonlocals are given a role name, so that in the language speci-
fication the language designer can encode behavior to handle the nonlocals. As both
nonlocals need to be treated similarly, they both play the role #terminate.

7.5.7 The Compensate Language Construct

Compensating transactions are defined by the Compensate linglet, which is shown be-
low.

Linglet Compensate {
syntax { "compensate" (package ".")* class "." method

"(" !(parameter ("," parameter)*) ")"
!("params" "<" argument ("," argument)* ">")
!("wrap" "(" localvariable ("," localvariable)* ")")

7.5. SECOND INCREMENT : SAGAS 299

}
generate { | package class method parameter txmethodsignature

arguments localvariables prevdep prevalias |
package := ast package generate.
class := ast class generate.
method := ast method generate.
parameter := ast parameter generate.
txmethodsignature := ast txmethodsignature generate.
arguments := ast argument generate.
localvariables := ast localvariable generate.
prevdep := ast prevdep.
prevalias := ast prevalias.
#Tx_Declaration {

’txmethodsignature {
alias (Saga <Thread.currentThread()>)
’prevalias
autostart (’package.’class.’method(’parameter)

<’arguments>
(’wraps) {
name(self <""+Saga+"Comp">)
groupAdd(self <""+Saga+"Comp">)

})
begin {

alias (Comp <""+Saga+"Comp">)
dep(Comp bcd self)

}
commit {

alias (Comp <""+Saga+"Comp">)
dep(Comp cmd Saga, Comp bad Saga)
’prevdep

}
}

}
prevalias {

(ast previous == nil) ifFalse: [
#Alias{

alias (CompPrev <""+Saga+"Comp">) }
] ifTrue: [’’].

}
prevdep {

(ast previous == nil) ifFalse: [
#Dependency{

dep(CompPrev wcd Comp) }
] ifTrue: [’’].

}

300 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

previous { }
txmethodsignature { nil }

}

The Compensate linglet consists of six methods: the syntax method defining the
syntax, the generate method defines the translational semantics, the remaining meth-
ods prevdep, prevalias, previous, txmethodname are auxiliary methods for comput-
ing the translational semantics. We do not explain the KALA semantics of compensat-
ing steps in full detail. Instead, we refer the reader to Section 7.1.2.

Syntax

The syntax consists of a keyword "compensate", the signature (denoted by the param-
eters package, class, method and parameters) of the compensating method, and two
optional clauses to specify the arguments to be used to call the compensating method
(prefixed by the keyword "params") and to specify which of those arguments is a local
variable (by keyword "wrap").

Modularizing semantics: scattering of results

Figure 7.5 shows that the semantics of the compensate clause invasively changes the
semantics of a step. In LTS, we are able to modularize the semantics of the compensate
clause such that it is defined independently from the semantics of the step clause (de-
fined in the Step linglet). The Compensate linglet just produces a new compensating
transaction declaration, which we refer to as the compensating transaction declara-
tion, containing additional transactional properties that are needed to turn an atomic
sub-transaction of a Saga (produced by the Step linglet) into a transaction with a com-
pensating transaction which is the transactional method that actually compensates the
work performed in a step in case of a rollback.

As a consequence, the translational semantics of the Compensate linglet does not
need to compose its translational semantics with the semantics of the step. An inter-
action strategy will be used to realize the interaction between the Compensate and the
Step linglet. Hence, we effectively preserved the modularization and isolation of the
Step linglet despite its invasive semantics.

Modularizing semantics: partial results

The Compensate linglet has several parts, which are used to define its translational
semantics. The method signature (txmethodsignature) of the compensating transac-
tion declaration is not defined in the Compensate linglet. In LTS, the need for this
additional information is stated by declaring the method txmethodsignature{...}. It
returns nil, and as a result renders the compensating transaction declaration a partial
result: it does not have a method signature. The method signature is non-essential in-
formation, which may be, in full accord with the model requirement (R1a), omitted by
the linglet. As such, we further modularize the Compensate linglet as its semantics does
not need to concern itself with the method signature of the compensating transaction
declaration.

7.5. SECOND INCREMENT : SAGAS 301

Modularizing semantics: Multiple Inputs

The translational semantics of the Compensate linglet contains both case (2a) and (2b)
of Figure 7.5 which depend on whether its step is the first one or not. If its step is not the
first one, then additional KALA statements are necessary to ensure the correct order of
execution of the compensating steps of its Saga. These additional KALA statements are
computed by two auxiliary methods prevdep and prevalias. The prevdep method
computes the dependency on the previous step of its Saga, the prevalias method
computes the alias for identifying the previous step of its Saga. Both these methods
need to determine if there is a previous step. Whether there exists a previous step, is
not defined by the Compensate linglet. In order to compute it, the source AST must
be traversed. Hence, the translational semantics of the Compensate linglet requires
multiple inputs: the information which is declared by its syntactical definition and
whether there exists a previous step. The computation based on source AST traversals
to determine whether there is a previous step cannot be a part of a linglet as it would
break the modularity of the Compensate linglet. Therefore we declare the need for this
additional input as an empty method. As such, the linglet can then use this information
as if it were present.

In contrast to the txmethodsignature method, an implementation for the previous
method has to be provided, because whether a step is a first one is essential to be able
to compute the semantics the Compensate linglet. The need to provide an implementa-
tion for this method upon the use of the Compensate linglet in a language specification
is ensured in LTS as empty methods are considered abstract methods.

7.5.8 The Entire Saga Language

The combination of the Saga, Step and Compensate linglets for constructing the Saga
DSTL is shown in the language specification below.

(1) name Saga
(2) base KALA

(3) Linglet=Sibling extends: SSQ.

(4) Top=Saga
(5) package: ID.
(6) class: ID.
(7) method: ID.
(8) parameter: ID.
(9) child: Compensated. Step.

(10) Compensated=Concat
(11) left:Step.
(12) right:Compensate.

(13) Compensate

302 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

(14) package: ID.
(15) class: ID.
(16) method: ID.
(17) parameter: ID.
(18) argument: Expression.
(19) localvariable: ID.
(20) previous: {
(21) ast leftsibling
(22) }.

(23) Step
(24) package: ID.
(25) class: ID.
(26) method: ID.
(27) parameter: ID.
(28) nonlocalterminate: el : {
(29) el integrable: master {
(30) master source
(31) == (ast source
(32) ancestor: ’Top’) } }.

The above language specification also has to implement two interactions among its
linglets. One interaction queries the source program for retrieving the previous step re-
quired by the Compensate linglet. The other interaction integrates the terminate non-
locals produced by the Step linglet in the correct KALA transaction. The interactions
for the Compensate and Step linglet are implemented with a suitable interaction strat-
egy by extending them. The previous step (line 20), computed in the previous method,
is retrieved by using a new interaction strategy. The nonlocals with the role terminate
(line 28) are relocated by the logic implemented in the nonlocalterminate :el method.
In the next two subsections each of those interactions is discussed in more detail.

In addition, there is a third interaction between the Step and the Compensate
linglet for combining their produced transaction fragments in one fragment.

7.5.9 Application-specific Interaction Strategies

In this section, we device a new interaction strategy called Sibling which is specifically
designed for this case study. The new interaction strategy allows us to further decou-
ple the Compensate and other linglets in the source program query that retrieves the
previous step.

Why do we need a new interaction strategy?

There are several ways to retrieve the previous step (line 20 in the language specifica-
tion). The most straightforward way is to implement a query with the SSQ strategy,
which is shown below.

7.5. SECOND INCREMENT : SAGAS 303

previous: { | saga currchild indexchild |
saga := ast ancestor: ’Saga’.
currchild := ast up:

[:child | child parent linglet type = ’Saga’].
indexchild := saga body indexOf: currchild.
(indexchild == 1)

ifTrue: [nil]
ifFalse: [(saga body at: (indexchild -1))

descendant: ’Compensate’]
}

This algorithm is quite simple. We locate the ancestor Saga node of the current
compensate node by ascending the source AST. We then check if there is a sibling in the
Saga node. The challenging part of the algorithm is that the Compensate node is not a
direct part of the Saga node, but nested several levels down a subtree of some part of the
Saga node (see Figure 7.6). Therefore we need to find the part of the Saga node which
the Compensate node belongs to. We do this by ascending from the current Compensate
node up to a node which is a part of the Saga node. The Compensate sibling node is
the descendant of the sibling of the found part of the Saga node. Observe that we rely
on the descendant: method of Structure Shy Query (SSQ) strategy for retrieving the
Compensate sibling node.

The above implementation is quite structure shy as we do not detail exactly how
deep the Compensate node is located in the AST. However, the query does hard-code the
point where multiple steps can occur i.e. the Saga node. To further reduce this explicit
coupling between the Compensate and the Saga linglet, we designe a new interaction
strategy called the Sibling strategy.

Sibling Strategy

The Sibling strategy extends the LMOP with the method leftsibling. This method
searches the AST tree upwards until an AST node is found in which multiple branches
can be stored. As such, there is no explicit need to hard-code the Saga node in the im-
plementation of the interaction. The search for a sibling using this interaction strategy
is reduced to a call to the method leftsibling.

In Figure 7.6, we depicted the execution of the Sibling strategy for the second
compensating step of our example Saga (given at the beginning of Section 7.5). The
black tree is the source AST of our Saga example implemented in LTS. The search starts
at the Compensate node, ascending the source AST. The first parent is the Concat AST
node. This node has two parts left and right, both of them containing a single AST
node. Hence the search is continued upwards in the tree. The second parent is the Saga
node whose has one part called child which can contain multiple AST nodes. Hence,
the search is stopped because we found an AST node where multiple branches can be
stored. Finally we retrieve the left sibling by descending form the Saga node down to
the sibling Compensate node.

304 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

Implementation of the Sibling Strategy

The code below merely shows a snapshot of the Sibling strategy sufficient for the
purpose of this dissertation. The core of the interaction strategy is implemented in the
findpart: method. It is a recursive method that checks whether the current node is
stored in a multivalued slot of its parent i.e. a slot which contains multiple AST nodes.
In order to implement this we rely on the introspective capabilities of the LMOP for
traversing the source AST and for determining whether an AST node can, according
to the grammar, have multiple AST node parts.

Recall that AST nodes store their parts in slots (see Section 5.3.2). Slots are
identified by names which we call labels. A slot can either contain a single AST node
or a set of AST nodes. The Sibling strategy retrieves the list of slots by using the
method members, and accesses the value of the slots by using the method member:label.

The findpart: method is implemented as follows. First, the findpart: method
searches for the label of the slot in a given parent in which the current node is stored.
Second the method multivalued of the LMOP is called in order to determine whether
the found slot can contain multiple AST nodes. If that is the case, and if the current
node is not the first child, the previous child is returned.

Once we obtained the sibling part of the Compensate node within the Saga node, we
descent in (the subtree denoted by) this part down to a Compensate node. The descend
is performed by the descendant:type method of Structure Shy Query (SSQ) strategy
(see Section 6.3.1). The method uses the given type parameter until a node is found
whose linglet has that given type. Observe that the Sibling strategy does not hardcode
the type of the Compensate node. Instead the type of the linglet of the descendant is
the type of the current node which initiated the search of a sibling. The linglet and its
type can be accessed using the LMOP methods linglet and type.

7.5. SECOND INCREMENT : SAGAS 305

1 Linglet Sibling {
2 leftsibling { | part |
3 part := ast _findpart: ast parent.
4 (part == nil) ifTrue: [nil]
5 ifFalse: [part descendant: ast linglet type]
6 }
7 _findpart: parent { | label index |
8 label := parent members detect: [:label |
9 index := 0.
10 (parent member: label) detect: [:child |
11 index:= index + 1. child == ast
12]
13].
14 (parent linglet multivalued: label) ifTrue: [
15 (index == 1)
16 ifTrue: [nil]
17 ifFalse: [(parent member: label) at: (index-1)]
18] ifFalse: [
19 parent _findpart: parent parent
20]
21 }
22 }

Deployment and use of the Sibling strategy

The Sibling strategy is deployed in line 3 of the language specification. This line ensures
that each linglet of the Saga DSTL delegates to the Sibling strategy, and as such
inherits the mechanisms defined in this interaction strategy. This is necessary because
the Sibling strategy is defined as an extension of an interaction strategy supporting
the descendant: method (line 5 of its definition). That method is defined in the SSQ
strategy.

The previous method provided by the language specification at line 20 is imple-
mented by using the leftsibling method of the Sibling strategy.

7.5.10 Source-steered Integration

In this section, we show that the multiple results produced by the Step linglet get
integrated using the source language (SP8) using the INR strategy. More so, for the
integration of these results the source language is indispensable as the produced KALA
transaction fragments lack the intentions required for the integration of the KALA
fragments.

Recall from Section 7.5.6 that the Step linglet produces two nonlocal terminate
statements. Both nonlocals have the same role, namely terminate. The nonlocals are
terminate statements which can be integrated in any transaction, according to the

306 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

KALA grammar which is used by the INR strategy to determine whether or not a
nonlocal can be integrated.

Saga declarations are translated into many transaction specifications: Recall that
each Saga declaration is translated to a top level transaction and so is each of its steps.
Moreover, there can be many Saga declarations. This fact renders the integration based
on the grammar of the nonlocal ineffective, because the nonlocal terminate statement
must be integrated in a specific transaction. Informally put, the terminate statements
must be integrated in the top level transaction of the Saga which contains the producing
Step linglet.

In order to integrate the nonlocal terminate statements into the proper trans-
action specification, we tweak the INR strategy for these nonlocals. Recall that the
INR strategy is an incremental process, successively attempting to integrate nonlo-
cals in an AST node (called the master) of the current target program AST. The
interaction strategy uses the integrable: master method to decide whether or not
nonlocals can be integrated in a given node of the target program. By specializing the
integrable: master method on the nonlocal (line 29 in the language specification),
we ensure that the nonlocals are integrated in the correct transaction. This overriding
is performed in the nonlocalterminate :master method of the metaobject protocol
(line 28). The method is executed upon the production of a nonlocal playing the role
terminate.

In the integrable: master method we need to identify the proper top-level Saga
in which the nonlocals should be integrated. Doing this according to the target lan-
guage is possible but suffers from dependencies on the semantics of the Saga linglet and
is actually only accidentally correct. Let us return to the definition of the Saga linglet,
to understand why this is the case. The Saga linglet produces a KALA transaction for a
method signature. So, upon the integrable check of the nonlocal terminate statement,
we would have to check whether the method signature of a given KALA transaction
is the method signature of the Saga linglet containing the Step linglet producing the
nonlocal. This check depends on the fact that the transactional properties of a method
are declared by a single KALA transaction. Transactions can in principle not be iden-
tified using their method signature, as there can be several transaction specifications
for the same method signature [Fab05].

Instead of using the target language to identify in which transaction the nonlocal
terminate statements have to be integrated, we use the source language. We can
basically write the informal condition of whether or not to integrate in a given master
in a formal way: a master qualifies if its producing node is the Saga node which
contains the step that produced the terminate nonlocals. The producing linglet can
be retrieved by the method source of the LMOP.

Figure 7.7 graphically illustrates the source-steered integration defined at lines 29-32
of the language specification in five steps.

• In step 1, the terminate nonlocals are moved up in the target AST to a new AST
node, and an integration of the nonlocals with that new AST node is attempted.
The integration process of INR invokes the integrable: master method on the
nonlocals (line 29).

• In step 2 at line 30, the source node of that new AST node (i.e. master) is

7.6. DISCUSSION 307

retrieved, which is a Saga node.

• From the source node of the nonlocals determined in step 3 at line 31, which is
a step source AST node, in step 4 at line 32 a query is launched to determine
its Saga node. The query is implemented using the ancestor: method of the
Structure Shy Query strategy (SSQ).

• In step 5 at line 31, the Saga node obtained from the second step, is compared
with the Saga node obtained from the fourth step. If the two nodes are the
same, this means that the nonlocals indeed are integrated in the Saga node
which contains the step node that produces the nonlocals.

Note that in order to further reduce the dependencies between the actual linglets
we refer to aliases instead of the actual linglets.

7.5.11 Resolving Duplicate Code Fragments

Figure 7.5 depicting the semantics of the Saga DSTL, shows that the Step and the
Compensate linglet each produce a transaction specification which needs to be combined
into a single specification. The combination of transaction specifications is taken care
of by the INR strategy, and has already been discussed in Section 7.4.10.

The challenging issue of combining the transaction specifications produced by the
Step and the Compensate linglet is that they both contain the same alias statement.
Duplicate nodes and thus also alias statements are detected by the INR protocol
because upon the integration of two transaction specifications, corresponding parts are
combined. In Section 7.4.10, we stated that two alias nodes correspond if the names
of the variables they declare correspond. Furthermore, their combination succeeds if
they use the same expression to lookup the transaction. Using this definition, duplicate
alias statements correspond and are successfully combined into a single statement.

7.6 Discussion

This chapter has validated our proposed approach for modularizing the implementation
of DSTLs according to their language constructs by implementing a family of domain-
specific languages using a shared pool of language constructs.

The semantics of the different language constructs is not trivial. Every restriction
R0 to R4 (see Chapter 4) we imposed for a proper modularization of the language
constructs, is obeyed in the definition of the linglets and is later on tackled in the
language specification:

R0 partial and changeable program fragments (see Section 7.4.5) and consistency of a
program fragment (see Section 7.4.10)

R1 compositionality (see Section 7.4.8)

R2 multiple inputs (see Section 7.5.7)

R3 multiple results (see Section 7.5.6).

308 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

R4 higher-order grammars (in every increment, in every linglet).

Each language construct is defined as a modularized linglet. Due to the strict
separation and isolation of language constructs we are able to use a linglet pool for
constructing three different languages.

The isolated linglets used to construct the DSTLs are adjusted to the language
context by using interaction strategies which in turn indirectly use the metaobject
protocol of LTS. Generic interaction strategies defined in the previous chapter such
as SSQ and INR are successfully reused in the implementation of all these languages.
The flexibility of LTS for defining new interaction strategies for tackling the specific
separation of concern problem at hand is put into practice in the last increment.

We have shown that our language implementation design technique effectively mod-
ularizes the implementation of individual language constructs. Although the scope of
this dissertation is the modularization of language constructs, this validation also is a
first step towards an evaluation of the gained benefits of such a modularization. We
have illustrated the gained benefits of:

• Understandability : The DSTLs have complex translational semantics which chal-
lenge the modularization of language constructs: the syntax of language con-
structs explicitly depend on each other (P4) and, the semantics of language con-
structs yield partial results (P0), do not compose (P1), require multiple inputs
(P2) and produce multiple results (P3). Despite that fact, the structure of the
different compilers still mimics our mental picture of the languages i.e. they are
constructed using linglets where each linglet defines a language construct. This
facilitates the understandability of the implementation of the compilers both
during construction as during future evolutions, as we are able to focus on one
construct at a time. Recall that the extends keyword for nested transactions ex-
tends the syntax of a classical transaction with a new clause, and the semantics
of that keyword invasively changes the semantics of the plain transaction. Never-
theless, the Extends linglet defines the syntax and the semantics of the extends
keyword in isolation. The composition deficit (Section 7.4.9) and integration of
the semantics (Section 7.4.10) is resolved in separate concerns like the language
specification and strategies.

• Evolvability: The different languages and their implementations are easier to
evolve and maintain as they co-evolve together. We have started with the indi-
vidual definition of the necessary language constructs which comprise for each
construct a syntactical definition to define a language and a semantical definition
to define the implementation of that language. Afterwards, the constructs are
combined yielding a language and compiler of this language.

• Extendibility: An extension of language implementations boils down to the addi-
tion of a separate linglet defining the new language construct. The SimpleNest-
edTx DSTL is defined as an extension of the ClassicalTx DSTL with a couple of
linglets each representing a construct of the new language. Thanks to the generic
interaction strategies such as SSQ and INR, and the application-specific strategy
such as Sibling, the interactions among the constructs do not cripple the extensi-
bility as they are handled by a separate concern. Moreover, strategies render the

7.7. CONCLUSION 309

composition of linglets more robust such that languages can be extended more
easily.

• Reusability: Language constructs are reusable in various languages as the im-
plementation of the language constructs is described in separate modules, which
can be used to construct other languages. Indeed, language constructs like the
classical transaction are reused to construct nested transactions. Syntactically,
the classical transaction and the root transaction are the same, but their seman-
tics are not entirely the same. Despite that fact, we can still use the classical
transaction because we can adapt the semantics of constructs defined in linglets
in order to fit them in a new language context. The generic interaction strate-
gies establishing the interactions among constructs such as SSQ and INR are
successfully reused in the implementation of all these languages.

• Iterative development: All these advantages combined enable developers to en-
gage in the natural process of developing a language, i.e. incremental language
and compiler codevelopment. The set of languages are constructed by subse-
quent iterations, starting from the small ClassicalTx DSTL all the way to the
more complex Sagas.

7.7 Conclusion

Using the novel language development technique LTS presented in chapter 5, we are
able to construct a family of languages by composing language constructs. We used a
set of reusable linglets and a set of reusable interaction strategies based on LMOP.

The linglets of our case study each define a modularized language construct. Each
definition adheres to the five requirements postulated in Chapter 4. Using this shared
set of linglets, we defined three different languages: The ClassicalTx DSTL to specify
classical transactions, the SimpleNestedTx language to specify nested transactions and
the Saga DSTL to define Sagas.

Complex interactions among linglets for retrieving information and for combining
the transaction specifications fragments are handled in language specifications, external
to linglets, by interaction strategies. We relied on the SSQ and the INR strategy which
are defined in Section 6.3.1 and Section 6.3.3. In addition, a new interaction strategy
was designed, tailored for preserving the separation of concerns in the Saga DSTL.

As such, the developer can rely on expert knowledge to realize the interactions and
can focus on the semantics of a single language construct at a time. Because interaction
strategies can be tailored and specialized for the modularization challenge at hand, an
optimal interaction strategy can be chosen.

We can conclude that our language implementation design technique effectively
modularizes the implementation of individual language constructs. In addition, we
illustrated some the gained benefits of such a modularization like understandability,
evolvability, extendibility, reusability and iterative development.

310 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

Tx_Declaration

INR Strategy

delegate

 aggregate MEMBER: aName PUT: subpart
 subject INTEGRABLE: master
 subject RELOCATETO: aggregate FROM: subpart
 subject INTEGRATE: consumer
 subject CORRESPONDS: peer
 subject COMBINE: peer
 subject INJECT: aName IN: consumer
 consumer MEMBER: aName ADD: subject

subject CORRESPONDS: peer
subject COMBINE: peer

Linglet MetaObject

aggregate MEMBER: aName PUT: subpart
...

delegate

MetaObject
Protocol

Strategies

LingletsL1

L2

L3

Langauge Specific

La
ng

au
ge

 In
de

pe
nd

en
t

Deep Strategy
subject COMBINE: consumer

delegate

Event

subject CORRESPONDS: peer

Naming
subject CORRESPONDS: peer
subject COMBINE: peer

Figure 7.4: An overview of the deployment of the INR strategy in KALA.

7.7. CONCLUSION 311

compensate
 methodsignature2
 params <arguments>
 wrap(localvariables))'

(step methodsignature

(saga methodsignature {
 steps
 })'

(1)

(2a)

steps'

(

)
,

compensate
 methodsignature2
 params <argumentlist>
 wrap(localvariablelist))'

(step methodsignature(2b)
with:

methodsignature' {
 alias (saga <Thread.currentThread()>)
 groupAdd (self <""+Saga+"Step">)
 autostart (methodsignature2'
 <argumentlist'> (localvariablelist') {
 name(self <""+Saga+"Comp">)
 groupAdd(self <""+Saga+"Comp">)
 })
 begin {
 alias (comp <""+Saga+"Comp">)
 dep(saga ad self, self wd saga, comp bcd self)
 }
 commit {
 alias (comp <""+Saga+"Comp">)
 dep(comp cmd saga, comp bad saga)
 }
 }

this step being
the first
one in the Saga

with:
this step NOT being
the first
one in the Saga

methodsignature' {
 alias (saga <Thread.currentThread()>)
 alias (compPrev <""+Saga+"Comp">)
 groupAdd (self <""+Saga+"Step">)
 autostart (methodsignature2'
 <arguments''> (localvariables') {
 name(self <""+Saga+"Comp">)
 groupAdd(self <""+Saga+"Comp">)
 })
 begin {
 alias (comp <""+Saga+"Comp">)
 dep(saga ad self, self wd saga, comp bcd self)
 }
 commit {
 alias (comp <""+Saga+"Comp">)
 dep(compPrev wcd comp, comp cmd saga, comp bad saga)
 }
 }

duplicate
KALA statements

duplicate
KALA statements

methodsignature' {
 name(self <Thread...Thread()>)
 commit { groupTerminate(<""+self+"Step">)
 terminate(self) }
 abort { groupTerminate(<""+self+"Step">)
 terminate(self) }
}

Figure 7.5: Translational semantics of the Saga DSTL.

312 CHAPTER 7. BUILDING A FAMILY OF LANGUAGES WITH LTS

compensate
 transfer(..)
 params <to, from, ...>

 step Cashier.transfer(...)

Saga Cashier.moneyTransfer(...)

child Concat

left

right

compensate
 printTransferCancel(..)
 params <from, ..., num_receipt>
 wrap(num_receipt)

 step Cashier.printReceipt(...)

Concat

left

right

 step Cashier.logTransfer(...)

1. left and right
part of Concat are
not multivalued,
search is
continued

2. multivalued
slot is found.
child part of
Saga node
is multivalued

3. previous
sibling is retrieved

4. Compensate
sibling is retrieved

Figure 7.6: Execution of the Sibling strategy for a second compensating step of
our Saga example.

7.7. CONCLUSION 313

 step Cashier.printReceipt(...)
Sagas Cashier.moneyTransfer(...) Cashier.moneyTransfer(...) {

 name(self <Thread.currentThread()>)
 }

 commit { groupTerminate(<""+self+"Step">)
 terminate(self) }
 abort { groupTerminate(<""+self+"Step">)
 terminate(self) }

Cashier.printReceipt(Account, Account, int) {
 alias (saga <Thread.currentThread()>)
 groupAdd (self <""+Saga+"Step">)
 begin {
 dep(saga ad self, self wd saga)
 }
 commit {
 alias (comp <""+Saga+"Comp">)
 dep(compPrev wcd comp, comp cmd saga, comp bad saga)
 }
 }

1. the nonlocal commit and abort
statements are moved up
the target AST and integration
is attempted

2. determine the source node
which produces this KALA
transaction

4. search the 'Top' node
(i.e. the saga node)
of this step node

3. determine
the source node
which produces
these nonlocals

5. Is the soruce node in which
to integrate the nonlocals produced by
a step, the saga node containing this step?

Transformation
Transformation

Figure 7.7: Source-steered integration of the terminate nonlocals.

Chapter 8

Conclusion

8.1 Research Context

Programming languages shape the way developers think and solve problems, but pro-
gramming languages themselves get shaped by the increasing experience of developers.
On the one hand, depending on the available language constructs, programmers reason
about their problems differently. On the other hand, programming languages are grown
with new constructs so that programmers can express more easily the problems from
their domain within the language they are using. There is thus a continuous interaction
between programming languages and the programs that developers try to express. We
identify this continuous interaction by the tendency in language design to improve the
expressiveness of the language with new language constructs.

8.2 Summary

Languages are grown by adding new language constructs and we wish to preserve
the decomposition into these constructs in their implementation. Language constructs
intrinsically take into account other language constructs and therefore compromise their
own modularization. Over the years, this problem has been the subject of much research
in the domain of compiler technology (see Chapter 2). We have shown in Chapter 4
that, unfortunately, the mechanisms provided by contemporary language development
technologies (introduced in Chapter 3) for separating a language implementation into
modules do not suffice.

In this dissertation, we have defined a formal model (see Chapter 4) in which the
grammar and the translational semantics of language constructs are modularized. In
order to do so we impose three requirements on the translational semantics, one require-
ment on the grammar and one on the program representation. The requirements do not
restrict the expressive power but, if adhered to, modularize a language implementation
according to its language constructs. A result of those requirements is that we use a
new definition of translational semantics in which we distinguish between two concepts:
definition and effect. The effect of the translational semantics of a construct is the part

315

316 CHAPTER 8. CONCLUSION

of its semantics which involves or interacts with other constructs. The requirements
exile this part. The translational semantics of a construct that is not part of the effect
merely defines its translational semantics.

From our model we have derived three kinds of language concerns: basic language
concerns, language specification concerns and special-purpose language concerns. A
basic concern consists of a modular language construct which is defined in isolation from
the rest of a language implementation. It contains the construct’s syntax specification
and the definition part of the construct’s translational semantics. Upon the introduction
of a basic concern in a language, its stripped translational semantics is completed with
its effect. The effect is expressed by establishing the necessary interactions between the
language concerns of a language. The interactions use special-purpose concerns which
describe reusable interaction mechanisms. For each of the three kinds of requirements
restricting the definitions of translational semantics, there is a corresponding special-
purpose concern offering a mechanism to complete it. We have determined the design
challenges to implement each of the concerns in a modularized implementation module.

As an implementation of our modularization model, we have created a new open
language development technique (see Chapters 5 and 6) through a tailored metaobject
protocol (MOP) where languages are defined as a set of modular and separately defined
constructs.

As a way to validate and prove that an implementation for such a MOP is fea-
sible we have constructed a new language development technique called the Linglet
Transformation System (LTS).

In the kernel of LTS (see Chapter 5), a language implementation is conceived as
a set of interacting linglets, each capturing a basic language concern. Each linglet is
responsible for representing a program fragment of a larger program and defines the
operations on that program fragment. It effectively captures all the behavior of that
language concern through compilation.

The interactions between linglets are implemented by using the three kinds of
special-purpose concerns which we identified and explored based on our modularization
model. These lead to the formulation of interaction strategies which define the mecha-
nisms which can be used by linglets to establish their interactions. In order to construct
interaction strategies, we have equipped the core of LTS with meta-facilities (see Chap-
ter 6). We have chosen to open up LTS by means of a tailored linglet metaobject
protocol called LMOP. In LMOP, interaction strategies are implemented as separate
extensions of language implementations. LMOP allows us to use the basic semantics
of the kernel of LTS and isolated linglets as such and customize their behavior in order
to transcend their isolation and allow them to participate in complex interactions.

LMOP is orthogonal to LTS. This enables a form of unanticipated control over
linglets that ensures the separation of interaction strategies and basic concerns, and
ensures the necessary latitude to construct appropriate interaction strategies. In addi-
tion, the metaobject protocol supports the reuse of existing discretely defined interac-
tion strategies through specialization and customization.

Complex translational semantics of a construct involving many interactions with
other constructs, is highly cohesive and lowly coupled in a linglet, as the behavior of its
produced individual program fragments can be controlled throughout the execution of

8.2. SUMMARY 317

a language implementation by locally tweaking their behavior using LMOP. This fine
granularity of LMOP is supported by the prototype-based object-oriented paradigm.

Each interaction strategy is captured in a discrete extension of LMOP in a separate
concern. Interaction strategies can be shared and reused across different language
implementations. More importantly, new interaction strategies can be defined, and
existing ones can be specialized in order to meet and tweak interaction strategies for
the separation of a concern challenge in a particular implementation. Furthermore, by
taking into account a specific language implementation, language designers can exploit
specific characteristics or structural properties of the language. Although this renders
an interaction strategy dependent on a language, the result is an implementation with
an optimal separation among the linglets implementing the various language constructs.

With this new and open language development technique, languages can be defined
in terms of modularized language constructs while keeping the interactions among lan-
guage constructs and interaction strategies implementing these interactions separate.
We have validated our approach by developing a family of domain-specific languages us-
ing a shared pool of language constructs and interaction strategies (see Chapter 7), and
by implementing the metalanguages we conceived in this dissertation (see Chapter 6).

8.2.1 Thesis

The goal of this dissertation is to design an approach for defining and constructing
languages as a set of modular and separately defined constructs. It is our thesis that an
open design of a new language development technique through a metaobject protocol
is capable of modularizing languages according to their language constructs.

We have achieved that goal and validated our thesis:

• A language construct can be modularized by defining it in discrete language
modules called linglets, isolated from the rest of a language.

• The interactions among language constructs due to their complex translational
semantics are added in a language specification.

• Mechanisms for implementing the interactions among language modules can be
defined separately as extensions of the linglet metaobject protocol.

In the remainder of this section we briefly summarise the main contributions of this
dissertation.

8.2.2 Survey of Contemporary Language Development Sys-
tems

There are many different approaches, formalisms and techniques for implementing lan-
guages. Since we were pursuing modularization, we presented a detailed and extensive
study of compilation based approaches in Chapter 3. This study is conducted by
evaluating a number of common properties which impact modularization. We first
analyze data structures for representing programs as they determine the possible op-
erations used to transform and manipulate program representations. Subsequently we

318 CHAPTER 8. CONCLUSION

determine how the set of operations offered by a system are used for implementing a
transformation with local and global source and target scopes.

Each LDT provides insights in how to divide a language implementation and
what mechanisms are necessary to maintain that separation. Our study discusses the
strengths and weaknesses of each mechanism that individual language development
techniques offer for modularizing language implementations. We conclude that trans-
formation modules are implicitly co-operating and that it is often unclear how these
relate to language constructs.

Our study also identifies a number of mechanisms that can be used to reduce the
implicit coupling between modules. These successful mechanisms are categorized as
interaction strategies for establishing co-operations between modules.

8.2.3 Modularized Language Construct Model

We have presented in Chapter 4 a formal model describing the modularization of a
language into language constructs, which is formulated as a set of requirements on the
translational semantics of a program.

The model modularizes language constructs that endanger their modularization be-
cause in general, they intrinsically take into account other language constructs. The
modularization is defined for both their syntax definitions and their translational se-
mantics because:

• The syntax of language constructs is described in terms of other language con-
structs. Hence, the syntax of language constructs is coupled with the syntax of
other constructs.

• The translational semantics of language constructs cannot always be expressed
with a simple homomorphic mapping. Instead, a more complex mapping must be
used, in which language constructs are designed with other language constructs
in mind. Hence, the translational semantics of language constructs is coupled
with the semantics of other language constructs.

The model formulates five requirements for modularizing the syntax and the trans-
lational semantics of a language construct: one on the grammar of language constructs,
one on the program representation and three on the translational semantics. The re-
quirements ensure that the syntax and the translational semantics can strictly apply
to a single language construct, even if it means that:

• The syntax of language constructs refers to other language constructs.

• The translational semantics does not yield a correct phrase in the target language.

• The translational semantics does not compose.

• The translational semantics of a language construct requires information external
to the language construct.

• The translational semantics of a language construct exercises an effect on the
translational semantics of other language constructs.

8.2. SUMMARY 319

The modularization requirements have led to the definition of the following three kinds
of concerns in a language implementation:

• A basic language concern representing a modularized language construct

• A language specification to complete the syntax and the semantics of modularized
language constructs

• Three kinds of special purpose concerns corresponding to the three requirements
on the translational semantics. These concerns respectively handle composition-
ality conflicts, multiple inputs and multiple results.

The evaluation of the suite of contemporary language development techniques (LDTs)
against our formal model revealed that their language construct’s modularization is in-
adequate. Furthermore, it shows that their interaction strategies for implementing
special-purpose concerns are incomplete, fragmented and non-orthogonal to the LDTs.
Given the current configuration of the interaction strategy space (see Section 4.5.3),
LDTs do not offer sufficient means to separate the basic concerns. A closer analy-
sis performed in Section 4.5.4 reveals four shortcomings of contemporary interaction
strategies: they are not generally applicable, there is room for improvement, there is
room for new interaction strategies and there is no silver bullet interaction strategy.
We found that in order to be able to construct new and tailored interaction strategies,
LDTs must be equipped with a generic meta-facility.

8.2.4 Kernel Transformation System

The Kernel Transformation System is the core of a new LDT we designed in Chapter 5
for solving the requirements imposed by the formal model on basic language concerns.
Our implementation of the system is called LTS.

In LTS, languages are constructed from a set of isolated language modules which
we call linglets. Each linglet implements a basic concern i.e. it defines the syntax
of a language construct joined with the definition part of its translational semantics.
Overall language semantics are defined by establishing interactions and co-operations
among the linglets of a language.

Each linglet represents a language construct responsible for maintaining a program
fragment and its manipulations. The language used to define linglets is a prototype
based object-oriented language. As such, linglets and their instantiations, which rep-
resent particular program fragments, can be modified with adding behavior. It allows
us to make linglets responsible for effecting their own semantics to other language
constructs:

• A linglet defines the need for parts and is extensible, such that its parts can be
bound to other linglets and that compositionality conflicts can be resolved.

• A linglet defines the need for external information and is extensible, such that
this behavior can be provided in a language specification.

• A linglet defines the results its produces and is extensible, such that its results
can be made responsible for integrating them into the target program.

320 CHAPTER 8. CONCLUSION

The resulting high cohesion of a linglet and the low coupling among linglets clearly
show that linglets are modularized and maintain strict separation.

8.2.5 Metafacilities for Defining Interaction Strategies

Basically a linglet can only access its parts. Access to other linglets was purposely kept
so simple because the interactions and co-operations among linglets are so diverse that
LTS must be designed to be extensible with interaction strategies to implement those
interactions and co-operations.

Linglets co-operate and interact with one another using interaction strategies. In-
teraction strategies compensate for the primitive communication mechanisms of the
kernel by offering new mechanisms for establishing collaborations among linglets that
have implicit roles. Implicit roles enable linglets to interact without explicitly referring
to others, using their relative location in the source or target program. As such, the
co-operations are less dependent on other linglets and their composition. The reduc-
tion in dependencies improves the separation among linglets, even in case of complex
co-operations and interactions.

In Chapter 6, we have defined a reflective layer for LTS via a specifically designed
metaobject protocol called the Linglet MetaObject Protocol (LMOP). With LMOP,
interaction strategies can be defined which can reflect about the structure and behavior
of linglets. The former is needed to execute the logic of interaction strategies e.g. for
the retrieval of information residing in other language linglets, or having changes to the
results produced by other linglets. The latter is needed to trigger interaction strategies
e.g. the provision or computation of information and the initiation of the integration
and relocation of multiple results.

The reflective layer offers the following benefits:

• LMOP is a generic meta-facility useful for implementing a wide range of interac-
tion strategies. As such, the most appropriate interaction strategy can be defined
for the language implementation at hand.

• Linglets do not have to anticipate any interaction strategy by including additional
responsibilities. The modularization of linglets is thus preserved.

• The co-operation among linglets can easily be lifted to the meta-level as the
structure and behavior of the reflective layer mimics the concepts of the basic
layer.

• The prototype-based model of the kernel is also present at the meta-level ren-
dering interaction strategies highly extensible and reusable because they can be
customized down to the level of an individual program fragment. Extensibility
is an essential feature for some interaction strategies, as in the shift from base
to meta-level a concrete language setting is lost. By extending the interaction
strategies for particular languages, language-specific logic can be incorporated
into these interaction strategies while keeping the generic part of the interaction
strategy separate and thus reusable.

8.3. LIMITATIONS AND FUTURE WORK 321

With LMOP, a compile-time MOP is defined allowing interaction strategies not
only to change the run-time behavior of LTS but also the compile-time behavior. The
compile-time MOP allows interaction strategies to offer syntactic convenience and static
checks. This was accomplished by using the structural reflection of LMOP for imple-
menting the two metalanguages which we conceived in this dissertation: a language for
defining linglets and a language for defining specifications of languages. By changing
those languages with strategy-specific extensions, special-purpose syntax for interaction
strategies and static checks can be implemented.

8.2.6 New Interaction Strategies

LMOP is a generic meta-facility for implementing a wide range of interaction strategies.
We have listed the identified interaction strategies embedded in other language devel-
opment techniques and indicated how these interaction strategies can be implemented
using LMOP. We conducted two experiments in which two interaction strategies were
implemented (Chapter 6). These are defined as a family of interaction strategy ex-
tensions rather than as a single monolithic module. We concluded each interaction
strategy with a couple of extensions.

In our first experiment we implemented an extension of an existing interaction
strategy for retrieving context information. It shows in detail that existing interaction
strategies can be implemented on top of LMOP and even extended beyond their original
conception.

In our second experiment we implemented an entirely new interaction strategy for
declaring and specifying scattering of code fragments called the Incremental Non-local
Results (INR) strategy. It is a pioneering example where we take the ideas behind
the successful techniques from compositional generators and introduce them in a trans-
formational setting. Second, in contrast to the first interaction strategy which reasons
about linglets, the INR strategy invasively changes the behavior of LTS. The INR strat-
egy is also our prime example of the extensibility potential of interaction strategies. We
indicated several extensions categorized into integration and relocation extensions. Al-
though both interaction strategies improve separation of interactions between linglets,
the INR is unique because we designed a novel interaction strategy which effectively
modularizes the scattering of results in the target program.

8.3 Limitations and Future Work

During our research we encountered several opportunities for improving and comple-
menting the approach we proposed. In this section, we indicate several directions for
future research.

8.3.1 Sandbox Isolation Model

The methods defined in linglets may only access their parts and their semantically
equivalent target program fragments, in order to preserve their isolation. Access to

322 CHAPTER 8. CONCLUSION

parts is indispensable as the translational semantics adheres to the principle of compo-
sitionality. In essence, the translational semantics of a linglet is defined in terms of the
translational semantics of its parts. However, methods defined in a language specifica-
tion which are provided to linglets in order to complete them, need to communicate with
other linglets for establishing the necessary interactions required to effect their complex
translational semantics. In other words, a definition of a linglet consists of methods
with different permissions for accessing and communicating with other linglets.

In the current implementation of LTS, access to other linglets needs to be controlled
by explicit checks in the metaobject protocol and its extensions. These checks are thus
scattered across the meta layer and pollute the definition of interaction strategies. What
we require is a sandbox isolation model similar to a sandbox security model [GAS98].
The definition part of a linglet must only execute inside its sandbox. It can do anything
within the boundaries of its sandbox, but it can’t take any action outside them. By
confining the sandbox to the parts of a linglet and their semantically equivalent target
program fragments, we can ensure their isolation without scattering checks all over the
meta layer.

There are a number of technologies such as aspect-oriented programming [KLM+97]
or context-oriented programming [CH05] which could be used to extract this scattering
and clean up the definition of the interaction strategies.

Aspect-oriented programming (AOP) is a programming technique for modularizing
the implementation of crosscutting concerns. An AOP module is commonly referred to
as an aspect and consists of two main parts: the aspect functionality and a pointcut
that describes where it is applied.

Another approach is context-oriented programming. It provides a means for asso-
ciating partial class and method definitions with layers. The layers can be activated
and deactivated during the execution of a program. When a layer is activated, the
partial definitions become part of the program until the layer is deactivated. As such,
the behavior of a program can be modified according to the context of its use.

In order to tackle our problem with AOP, a pointcut needs to capture the method
calls executed from within methods defined in a linglet and that return other linglets.
This pointcut is not easy to express if we want to refrain from depending on syntactical
conventions. Context-oriented programming seems a better fit, as the run-time LTS
system could activate or deactivate the metaobject layers. Which technique is the most
suitable remains to be seen.

8.3.2 Global Consistency Management

Proofs about program correctness are highly valued. Such proofs are also important
in compilers. Since in LTS the semantics of a programming language is expressed by
producing a semantically equivalent program, we want to ensure the correctness of the
produced program.

The basic approach, which is traditionally used, is to type parse trees. The type-
safety of specifications can only guarantee syntactical correctness i.e. the output parse
trees correspond exactly to the grammar of the target language [vdBK02].

Syntactic correctness is only the first step, typically we also want to state properties

8.3. LIMITATIONS AND FUTURE WORK 323

about the semantic correctness of programs. An example of such a next step is presented
by Chiyan Chen et.al. in [CX03]. The types of a program cannot be reflected in the type
of its parse tree representation. This is unsatisfactory as such representations make it
impossible to capture in the type system of the meta language various invariants in a
program transformation that are related to the types of programs.

In [Bri05], Brichau pushes this idea even further and introduces the notion of com-
position conflicts. In his program generation technique called Integrative Composable
Generators (ICG) (see Section 3.6) these arise when program fragments get composed
integratively. An integrative composition involves the invasive modification of produced
programs. Because integrative composition breaks the encapsulation of produced pro-
grams, it is likely that certain integrations cause broken functionality. Therefore, he
argues the need for an automatic conflict detection mechanism for the integrative com-
position of produced programs. As this mechanism covers the whole program being
produced we refer to this as global consistency management. Brichau illustrates his
concepts with an example where a particular integration of produced program frag-
ments causes that both programs now have to deal with the same datastructure. One
produced program fragment might expect a set datastructure, while another might ex-
pect an ordered list. Sets and ordered lists are semantically different datastructures
because a set do not store duplicate values, while the ordered list does. He concludes
that by detecting compositionality conflicts we can increase the correctness of generated
programs.

The kernel of LTS does not enforce a particular kind of correctness. However, LTS
does offer various opportunities to offer a basic degree of correctness. Each linglet can
intercept changes to its parts and ensure local consistency (Section 5.6.4). Syntacti-
cal correctness could be implemented with an interaction strategy as an extension of
LTS (Section 6.2). Compile-time checks about language specifications can be added
by changing the metalanguages LL and LSL (Section 6.4.2). However, the degree of
program correctness offered by ICG cannot be attained in LTS.

Combining both LTS and ICG and their conceptual models is not straightforward as
they are quite different. ICG features a constraint system in which a set of different logic
metaprograms produce a program, integrating the results of the different metaprograms.
LTS features a prototype-based object-oriented system in which a set of interacting
linglets and reflective extensions produce a program. Exactly how LTS and ICG can
be combined on a conceptual and technical level remains to be determined.

8.3.3 Incremental Language Development

The modularization of language implementations into language constructs allows us to
grow a language and its implementation by incrementally adding and changing lan-
guage constructs. LTS directly reflects the incremental development process through
its concepts and mechanisms. Iterative and incremental development of languages is
targeted at language constructs and their semantics. These are the building blocks for
language implementations in LTS, as languages are defined as the product of discrete
language modules, each defining a single language construct. A single specification de-
fines a language, facilitating a coherent and consistent co-operative behavior between

324 CHAPTER 8. CONCLUSION

the language modules.
In Chapter 7, we have showcased the incremental development of a family of DSLs

as a validation of our modularization model and technique. However, more research
and empirical studies are necessary to map the subsequent steps in an incremental
development process to actions and mechanisms in LTS that support these steps.

An interesting experiment in this context would be to replay the evolution of an
existing language and investigate to what extent LTS can equip and aid language de-
velopers to perform the evolution. A good example language for this experiment would
be Java. It is a popular language which has been subjected to significant evolution
and evolution proposals, and we compare our results with earlier work on the mod-
ularization of Java Compilers performed by Ekman [Ekm06], van Wijck [VWKSB07]
and Petersson [PR04]. Other interesting examples are the domain-specific languages
or models which target evolving systems (see Section 1.1.2) (the so called E-type sys-
tems [Leh96]).

8.3.4 Application in other Language Development Tech-
niques

In Chapter 3, we studied an extensive suite of contemporary language development
techniques. Compared to the prototype-based object-oriented nature of LTS, there are
LDTs which are based on quite different paradigms such as rewrite rules, graph rewrite
rules and logic meta-programming.

In essence, we could apply our modularization model to these techniques and/or
extend these techniques with a reflective layer. As the paradigm and the modularization
of these systems may be totally different, we also expect the reflective layer to be
quite different. An example illustrating how different a reflective layer can be, is the
technique of programmable rewriting strategies of Stratego [Vis01a]. This particular
mechanism offers first class control over the execution of rewrite rules and the creation
and destruction of rules in the rule set. The vocabulary (see Section 3.1.4 for more
details) of this mechanism is different from the vocabulary used in this dissertation.

It remains to be investigated how feasible and how adequate the result of such
an application would be. This application presents an opportunity for an interesting
comparison and will most certainly raise new issues that need to be dealt with. In
co-operation with Kurtev, we already performed some preliminary research in [CK07],
where we compaired QVT [Gro02b] and ATL [JK05] against our modularization model.

8.3.5 Interaction Strategy Library

Interaction strategies in LTS are not implemented as monolithic extensions, but rather
as a family of extensions. In our experiments (Section 6.3) we described two inter-
action strategies using a set of extensions. Each experiment was open-ended as we
concluded with a couple of extensions. Our prime example of the extensibility po-
tential of interaction strategies was the Incremental Non-local Results (INR) strategy,
where we indicated several opportunities for further extensions which we categorized
into integration and relocation extensions.

8.3. LIMITATIONS AND FUTURE WORK 325

During our experiments we only touched the surface of a true interaction strategy
library. In order to construct such a library, we need to revise existing interaction
strategies, classify them according to their intentions, and decompose them in smaller
building blocks called µ-interaction strategies. These building blocks should be orga-
nized into a logical or naturally intuitive structure. The nature of this structure (hi-
erarchical, iterative, etc.) is yet to be determined. Each µ-interaction strategy should
also indicate its relationship to other µ-interaction strategies. Similar to the idea of a
pattern language [AIS77], these relationships can be used as grammatical and semantic
relationships in order to form an interaction strategy language.

The combination of these µ-interaction strategies would then lead to a particu-
lar interaction strategy. Currently specialization is the only primitive combinator of
interaction strategy extensions. More complex combinators are necessary to hide imple-
mentation details and to prevent interference between extensions of a single interaction
strategy and among several interaction strategies. An example of exposing such details
is given in Section 6.3.2, where the combination of µ-interaction strategies required the
developer to write some combination logic into the language specification.

The study of an interaction strategy language can help us to discover undesired in-
terferences as a result of the cumulative effect of multiple interaction strategies. These
can be incorporated into the interaction strategy language such that conflicting combi-
nations of interaction strategies and µ-interaction strategies can be avoided. Such a con-
flict arises between attribute forwarding [WdMBK02] and attribute grammars [Knu68].
Forwarding, inheritance and synthesis are three possible directions to redirect a request
for an attribute. Choosing the correct one or establishing an order among these direc-
tions is acknowledged by the authors to be one of the difficulties of the combination of
forwarding with plain attribute grammars.

8.3.6 Modular Interpreters

Our modularization model is formulated using denotational semantics. Although we
had to use a highly structured semantical domain to express translational semantics, the
model largely applies for domains which are used in interpreters. The only requirement
which causes a problem is the completability of semantic values.

Interpreters are used to prototype languages and to experiment with various lan-
guage constructs. Compared to compilers, interpreters are considered a light weight
approach for language development. The access of run-time information during execu-
tion of a program facilitates debugging, reflection, etc.

Interpreters construct a semantic value and continue the computation with this
value. In other words, postfactum changes to that initial value which is performed in
compilers, would invalidate all the computations that depend on that value. Hence,
semantic values may not be changed after they have been computed and processed.
The impact of non-changeable values on the model is fairly limited as the model is
defined as a set of requirements. The impact on the implementation to adhere to that
“new” model is the actual challenge.

As the modularization model also largely applies here, the implementation of the
model in LTS is also to a large extent fit for implementing interpreters. The interac-

326 CHAPTER 8. CONCLUSION

tion strategies presented in Chapter 6 that reason about the source program are also
applicable in the context of interpreters. The remaining interaction strategies which
change the target program cannot be applied in an interpreter. An example of such
an interaction strategy is INR, which handles the integration of multiple results. This
and other interaction strategies need to be replaced by a fitting interaction strategy for
interpreters. As values may not be changed postfactum, all the necessary information
to construct the correct value needs to be computed first. For this, a linglet should
separate its “main” semantics from its “non-local” semantics. As such, the necessary
“non-local” semantics can be retrieved and applied without having to compute its main
semantics.

Clearly, the research presented in this dissertation largely applies to interpreters
but the implementation challenges and the impact on LTS require more study.

8.3.7 Model-driven Development

Model-driven Development (MDD) [TB03] advocates software development via models.
Models abstract from implementation details and allow programs to be specified at a
higher level of abstraction. MDD is a promising player in todays software development
practice and is quite similar to domain-specific language (DSLs).

MDD is an approach to software development where models are created before or in-
stead of writing source code. These higher level models are meta-data definitions of the
application that is to be built, consisting of concepts and relations at a higher abstrac-
tion level. The degree of abstraction is not further specified, and must be determined
for the problem at hand. Models are described by a meta-model. Meta-models for-
malize the range of applications by defining the vocabulary and well-formedness rules.
Meta-models are in turn described by metameta-models. Metameta-models describe
the structure and semantics of metamodel specifications. Although very abstract, it is
the most important level as it formalizes the means to construct other metamodels.

Instance
(application)

Model
(concepts

and relations)

MetaModel
(vocabulary and

well-formedness rules)

MetaMetaModel
(structure and

semantics
of metamodel
specifications)

describes

instance of

Figure 8.1: The four layered architecture of MDD

The MDD infrastructure [Gro02a] (see Figure 8.1) refines these higher level abstract
models to lower level executable models, that is to say code. Exactly how this refinement
from higher level to lower level models happens is not specified and is not standardized.
Models get transformed into modules adding more technical detail until code is reached
via code generators, transformation engines, template engines and model interpreters.
A prime example of MDD is the Object Management Group’s (OMG) Model Driven
Architecture [Fra02, MM] (MDA) standard. MDA is an instantiation of the concept of

8.3. LIMITATIONS AND FUTURE WORK 327

MDD by establishing a fixed set of metamodels (e.g. PIM, PSM) and by providing a
specification for transformation engine to be used.

It is quite possible to take an iterative and incremental approach with MDD. This
approach to MDD is called Agile MDD (AMDD) [Amb02]. With AMDD agile mod-
els are created which are sufficient for the iterative cycle at hand. Rational Unified
Process [Kru00] (RUP), Enterprise Unified Process [ANV05] (EUP) and agile software
development are capable of incrementally guiding the realization of a software applica-
tion for which domains are neither completely specified and known upfront [Amb02].

MDD did not introduce a new language design technique or system but adopted
and reused classical language implementation techniques. We investigated classical lan-
guage implementation techniques in this dissertation and the specific MDD techniques
in [CK07]. We can conclude that incremental and iterative design process used in MDD
is not backed-up by an implementation technique that modularizes the MDD refine-
ments in terms of language constructs i.e. modeling concepts defined in the metamodel.
From a technical point of view it is feasible to apply our approach to MDD and we
expect that MDD could benefit from the application of our approach.

The inverse is also true. It would be beneficial for our approach to be applied in a
MDD context as MDD is complementary to DSLs: MDD is a graphical language and
MDD places/integrates itself within the contemporary software development process.
The graphical notation of models is designed for describing structures, while DSLs are
better at describing business logic. The introduction into every day software develop-
ment increases the need to evolve languages/modules as most of their applications are
in a continuous state of flux [Leh96] and the application engineers are not professional
language engineers. Hence, the application of our modularization model and reflective
architecture in this context presents an opportunity for an interesting additional use of
our approach.

8.3.8 Debugging

Languages are grown by adding more expressive language constructs, such that they
can better reflect the intentions of the software developer. In fact, language constructs
are used to hide implementation details from the developer. Unfortunately, in most
language development techniques this hiding is abruptly punctured by errors raised by
the implementation of the language. This is because they are formulated in terms of
the implementation of the language. These errors are known to be cryptic because of
the mismatch of abstraction levels. The end-user programmer has to understand the
translated code in the target language, rather than the domain intention contained in
the source language [Fai98].

We are currently facing the same problem in LTS. LTS does not offer dedicated
features to hide the implementation of languages when errors should occur.

Furthermore, manual construction of debugging and error reporting for each new
language can be time-consuming, expensive, and error-prone [WGRM05]. Therefore
debugging support should be provided by the LDT.

LTS offers several advantages compared to other LDTs for adding debugging sup-
port. The first advantage is its modularization and its LMOP. In [WGRM05], Wu

328 CHAPTER 8. CONCLUSION

describes an approach to add debugging to LDTs that reasons about the language
implementation and that requires an explicit mapping between the source and target
language. We believe that it is advantageous to apply Wu’s technique in LTS as there is
a clear correspondence between the properties of LTS and Wu’s technique: In LTS the
semantics of language constructs is modularized in linglets and LMOP reflects about
these linglets. The second advantage LTS offers is the fact that LTS has been im-
plemented in LTS. The meta-languages that define languages are also implemented in
LTS. In other words, a language developer uses LTS itself to write languages. Hence,
if generic debugging support is provided in the run-time system of LTS, not only the
end-user languages would benefit from this feature but also the language developer.

In the future we plan to investigate the problem in more detail and reformulate it
in terms of the run-time system. This would result in generic debugging support for
language development.

8.3.9 Advanced Object-oriented concepts

Object orientation is acknowledged as a powerful paradigm to structure compilers.
Attribute grammar systems like JastAddII [EH04], Eli [KW94], and Lisa [MuLA99]
extensively make use of object-oriented modularization techniques. Of these systems,
JastAddII is the most recent and advanced system. It uses two synergistic object-
orientation mechanisms for supporting separation of concerns: inheritance for model
modularization, aspects for crosscutting concerns.

The evaluation model of JastAddII is declarative and does not incorporate join
points at the attribute level. Currently, only language constructs are present for refining
an entire equation, similar to a piece of around advice, at a single join point.

It is useful to further investigate the use of point-cut languages of aspect orien-
tation to refine interaction strategies. To the programmer, we should supply aspect-
oriented (sub)languages that are based on the constructs and basic syntax that the
programmer is most familiar with, as well as facilities for reifying and manipulat-
ing the crosscutting features of concerns. In this dissertation we continued pursu-
ing the use of advanced concepts of object-orientation in language implementations.
We have conducted research into a dynamic reflective object-oriented transformation
language that provides a rich infrastructure for the development of aspect-oriented
technology [Sul01a, Sul01b, BL02, Kic01, KLM+97].

Point-cut languages in LTS would enable language developers to easily and declar-
atively select linglets and linglet instances which need to be extended and customized
with particular behavior. For example, a symbol table could be maintained by advising
all linglets that have a syntactical parameter name with behavior to register themselves
in a symbol table. Point-cut languages can also be used to shield the imperative and
rather technical way of using interaction strategies via LMOP. Consider for example the
Incremental Nonlocal Results (INR) strategy which we discussed in Section 6.3.3. The
interaction strategy is customized for individual linglet instances in order to steer their
integration in the target program fragments produced by other linglets. So, instead
of overriding the methods CORRESPONDS: and COMBINE: of the INR strategy in their
metaobjects, a point cut and advice could be used respectively. Our advanced experi-

8.4. PERSPECTIVES 329

ments with LMOP show the potential of LTS to incorporate new syntactic constructs
together with their compile-time and run-time semantics.

8.3.10 Interaction Strategies for Aspects of the Semantic
Behavior of Compilers

A lot of expertise in the community has build up to yield reusable and modularized
language extensions, each providing additional functionality or an aspect of the se-
mantic behavior of compilers. Research [Vis01b, Vis01a, vW03, OV05] in the con-
text of Stratego is focused on the design of reusable interaction patterns to express
rewrites. In [MuLA99] and in [OdMS00], templates and reusable attribute copy rules
are specifically designed to share attribute communication patterns. During the design
of ReRAGs [Ekm04] in JastAddII several useful transformational patterns were dis-
covered, e.g. Semantic Specialization, Make Implicit Behavior Explicit, and Eliminate
Shorthands. In addition, it has been observed that various language implementations
also share a common design of name binding and type checking modules [Ekm06].

In LTS, we modularize the semantics of language constructs and modularize interac-
tion strategies to establish the necessary interactions among language constructs. Com-
pared to the literature, interaction strategies are currently generic and basic commu-
nication mechanisms like integrating nonlocal results, providing structure shy queries,
etc. It would be interesting to evaluate various richer aspects of the semantic behavior
of compilers in depth and combine efforts to design a shared library of them.

8.4 Perspectives

The central contribution of this thesis is all about the continuing effort to improve the
process of custom-building new languages. We indeed witness an increasing need for
this with the emergence of domain-specific languages and more recently with model-
driven development. In this particular field of language research and engineering there
is a significant gap left in how new languages and their meta-level structure co-evolve
with their implementation. In this thesis we propose an initial approach to conceiving
a language as the configuration of an interacting set of modular language constructs.
Languages are developed in an open environment that is sufficiently flexible in tailoring
specific design challenges. Language developers are at liberty to use custom language
design constructs at generator-construction time and use static checking to improve
the design process. At generator-execution time they can reuse, customize and con-
struct interaction strategies to handle complex interactions among language constructs
originally defined in isolation.

This thesis addresses new issues in language engineering using a novel approach.
The first experiments proposed here may seem modest but they are significant and
point the way to new and original principles of language design and implementation.
Linglets are definitely in sync with the model approach to software engineering and
contribute to the missing link between the abstract and the concrete view of building
software.

Appendix A

Analysis of the degree of Separation of
Concerns offered by Contemporary Lan-
guage Development Techniques

In this appendix, we present the detailed analysis of the degree of separation of ba-
sic concerns and the three kinds of special-purpose concerns offered by contemporary
LDTs.

In our discussion we revisit all of the language development techniques presented
in Chapter 3. The references to the literature are not repeated here but can also be
found in Chapter 3. Here is a list of the systems:

• Tree-based rewrite rules

– Traversals (ASF+SDF traversals)

– Dynamically scoped rewrite rules with rewrite strategies (focus on Stratego)

• Graph rewrite rules

– Plain graph rewrite rules (like AGG)

– Implicit Node Creation (like aspect-driven transformation systems)

– Matching by Morphisms (like delta-rewriting and variable number of edges
and nodes)

• Macros (focus on Macros designed for Common Lisp)

• Template-based Approaches (such as XSLT, Velocity)

• Attribute Grammars

– Higher Order Attribute grammars

– Forwarding

– Reference attribute grammars

331

332 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

– Multiple inheritance + Templates for common attribute communication
patterns

– First Class Attribute Grammars

• Compositional Generators

– Subject oriented programming (SOP)

– GenVoca

– Integrative Composable Generators (ICG)

• Adhoc

– Delegating Compiler Objects (DCO)

– Intentional programming (IP)

– Jakarta Tool Suite (JTS) in which we focus on the use of symbol tables and
the use of general purpose language features

– Functional programming languages in which we mainly focus on monads.

The structure of this section mimics the structure of Section 4.3. We start with
discussing the basic concerns. The subsequent three sections treat the three kinds of
special-purpose concerns.

A.1 Separation of Basic Concerns

Basic concerns describe a single language construct by defining its grammar and its
translational semantics.

Only a couple of LDTs like DCOs, IP and Macros offer transformation modules
which contain both syntax and semantics. Except for the above mentioned LDTs, all
other LDTs separate the grammatical definition of the language constructs from their
semantical definition.

A.1.1 R4 - Higher Order Grammars

DCOs offer a set of operators for reusing and extending entire grammars. In other
words, the granularity of DCOs is too coarse and its grammars are merely chopped up
into different modules: the productions still explicitly reference one another. The need
for more flexibility is acknowledged by researchers working on JAMOOS and TaLe.
In that work, the language constructs are separated into discrete modules. They are
not successful because they lack a flexible binding technique in the grammar: “It was
not possible to restructure the abstract grammar; a limitation which proved to be
annoying in actual language definition.” [JY01]. So DCOs have an unacceptable degree
of coupling between their basic concerns.

Only IP and Macros support a fine-grained granularity down to the level of a single
language construct. In IP it is rather unclear how the grammar of the intentions is

A.1. SEPARATION OF BASIC CONCERNS 333

exactly defined. As there is no real notion of a language in IP (a language is merely a
set of intentions), we cannot also no access the degree of coupling between the intentions.

Macros are in that regard much mare tangible. They are compile-time rewrite rules
using concrete syntax. Their syntactic definitions do not refer to other macros. Hence,
macros separate the syntax of their language constructs. Unfortunately macros can
be arbitrarily combined. In other words, macros define a trivial language and thus
do not define a language as well. A macro could perform some tests on the bound
code fragments to enforce the grammar of the language, but this would embed the
grammar within the translational semantics of the macro. As our goal is to modularize
the syntax, clearly this is unacceptable.

A.1.2 R0a - Partial Values Using the Bottom Value (⊥)

Only attribute grammars and template based approaches enforce that terms should be
complete upon construction, and as such do not support a bottom value. LDTs which
are embedded in the target language like macros, some compositional generators (like
GenVoca and SOP) and template-based approaches entirely depend on the ability of
the target language to represent incomplete program fragments. Likewise, these LDTs
also depend on language features to support the completion of those fragments. In
most languages this is very constrained. For example, the body of a method can be
omitted in case its class and the method itself is declared abstract. For some cases
ad-hoc solutions exist such as attaching an empty body to a method. However, the
intention is not explicitly stated, which complicates the logic of further manipulations
of the code (see the integration of multiple results). In both tree or graph rewrite rules,
an additional symbol could be introduced which denotes the ⊥ element. Unfortunately,
the grammars used in tree based rewrite rules would have to be changed so that terms
which contain a ⊥ value remain syntactically correct. The change in the grammar is
not only invasive, it also complicates the generation of a parser. Ad-hoc LDTs and
the compositional generator ICG use general-purpose data structures to represent the
target program. Most of these languages offer a ⊥ element.

A.1.3 R0b - Completable Values

Completable values are important prerequisites for the definition of basic and special-
purpose concerns. More precisely, basic concerns uses bottom values, and produces
results that must be integrated in the values produced by other concerns. Completable
values are supported by the bulk of LDTs, except for LDTs with implicit target struc-
tures like template-based approaches, GenVoca (see multiple results - identification in
Section A.4.2 and A.4.1). An exception to the above is ICG. ICG offers an interface
which allows program parts to be changed in a controlled fashion.

In addition, there is one other LDT which values are immutable, that is attribute
grammars. By using higher order attribute grammars, multiple transformation stages
can be concatenated, offering a way to alter values once they are produced. Staging
transformations scatters the semantics of the basic language concerns and is thus also
not an acceptable solution.

334 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

Note that although in functional approaches a value is not changeable, this can be
solved with monads.

A.1.4 R0c - Semantics to Preserve the Local Consistency

As any language concern might change the result of any another language concern, a
language concern should enforce the local consistency of its produced values. Contem-
porary LDTs, except the compositional generator ICG, do not offer support to ensure
the local consistency. ICG takes an extreme approach in which changes to a value
are strictly controlled by the transformation module. Only changes anticipated by the
modules are allowed. This extreme view ensures complete consistency, at the cost of
reusability and unanticipated change by other concerns for example for optimization,
and integration of nonlocal results.

A.1.5 R1 - Compositionality

Every LDT adheres to the principle of compositionality i.e. the semantics of a program
fragment is defined in terms of its parts, and exposes a composition rule which produces
the target program fragment.

In some systems such as tree rewrite rules the composition rules might be a bit
obfuscated but are never the less present. In tree rewrite rules a composition rule
is manifested in the conditional clause of the rule. Requirement R1c which prohibits
access to the nested parts of a program fragment is violated in all LTDs except for
those in which the target program is implicit (see multiple results - identification in
Section A.4.2 and A.4.1).

In all LDTs composition rules have access to the source language construct, and
thus violate (R1a). In Section A.3 we discuss to what extent LDTs offer support to
avoid this access.

Whether or not transformation modules need to cope with compositionality conflicts
(requirement R1b) is discussed in Section A.2.

A.1.6 R2 - Multiple Inputs

Transformation modules of every contemporary LDT can consume extra information
(R2a).

The need for extra information cannot always explicitly be stated by transforma-
tion modules. In the worst case, requirement R2d and R2b is violated and the input is
implicitly collected upon consumption by the language concerns themselves. Template-
based approaches and target-driven approaches in general fall in that category. The
transformation modules (called templates) of XSLT for instance, embed direct XPath
and/or XQuery rules. Note that newer versions of template-based approaches and
target-driven approaches support parameterized transformation modules next to em-
bedded queries.

Less severe are the LDTs which cannot distinguish between what information is
locally available and what information is external to the module. Although there are
clear advantages to be able to treat both kinds of information similar, totally lacking

A.1. SEPARATION OF BASIC CONCERNS 335

the ability to distinguish at all complicates matters a lot. This is the case for the
tree and graph rewrite rules and for compositional generators like GenVoca and SOP.
These LDTs solely operate on their input, respectively the terms and the components
to compose. Consequently, when more information is necessary, the input of the trans-
formation modules is extended. In the extended input, the additional information is
not distinguishable from the original inputs. This complicates the provision of inputs
(see multiple inputs).

Other LDTs distinguish but nevertheless create implicit dependencies between the
language concerns, the transformation modules and the overall language implementa-
tion. The transformation modules directly invoke an auxiliary function to retrieve the
information. This function must be available in the implementation of the language for
the language concern to work. Examples of such LDTs are rewrite rules with helper
functions, conditional rewrite rules and attribute grammars. Rewrite rules with helper
functions explicitly call auxiliary functions, conditional rewrite rules explicitly invoke
other rewrite rules or traversals, and attribute grammars simply request the name of an
attribute from either their parents or children. In all these LDTs the language concerns
and the transformation modules must be able to respond to the call issued.

Attribute grammars are actually a bit more troublesome. Although they locally
declare their attributes, they also request attributes from other language concerns.
Therefore they cannot be considered to be specific for a language concern. We will see
that they provide ways to partially reduce this problem (see identification and obtention
of multiple inputs in Section A.3). Also information provision gets more complicated
(see provision of multiple inputs in Section A.3.5).

In order to preserve the separation of basic concerns when consuming additional
information, the need for information must by explicitly declared. As such, the basic
concerns remain completely independent from the language implementation allowing
concerns to be used in a changing language. Primary examples of such LDTs are the
ad-hoc approaches and ICG which are based on general purpose languages. General
purpose languages offer abstraction and modularization mechanisms to define interfaces
for code. Using these interfaces, a module can indicate its need for extra information.
ICG explicitly exposes empty program parts which need to be provided by other trans-
formation module. However, the source program is directly queried from within other
the transformation modules.

Whether essential additional information, required for other language constructs,
can be produced (R2c) is discussed in Section A.1.7.

A.1.7 R3 - Production of Multiple Results

There are LDTs which prohibit the production of more than one result of a trans-
formation module (R3a). Tree-based rewrite rules can only produce one single term
which substitutes the matched term. Macros boil down to compile-time rewrite rules,
which render them incapable as well. Template-languages and macros are embedded
in the target language, so a transformation module cannot produce artificial structures
containing multiple results such as cons-cells (see next).

Most LDTs do allow a transformation module to produce more than one result.

336 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

Unfortunately, the bulk of these systems do not offer explicit support or mechanisms
to produce them. Consider the work-around to implement multiple results in rewrite
rules [Cle05]. The idea is to produce an intermediate representation (for example with
pairs, cons cells or extended terms) which combine local and nonlocal results. Interme-
diate structures complicate the resolution of the multiple results (see Section A.4) and
scatter the semantics of the basic language concerns across several phases. Extensions
of the rewrite rule formalism which support dynamically scoped rewrite rules, allow a
rewrite rule to define new dynamically created rewrite rules. These rules can rewrite
other terms to include an additional result. As such, multiple results can be produced.
Ad-hoc approaches which are based on general purpose languages possess the ability
to define them.

Graph rewrite rules, attribute grammars and ICG offer explicit support for multi-
ple results. Graph rewrite rules can produce any number of results, but these results
need to be attached to other nodes. As such, the production of results directly involves
integration, breaking the separation between mutual basic concerns and between base
and special-purpose concerns. Graph rewrite rules with implicit node creation do not
need to attach all their results to the main graph on condition that they must be
uniquely identifiable. If they are not identifiable, then there is no way of retrieving the
results and integrating them. Hence, this interaction strategy is severely constrained
and therefore not feasible. Graph rewrite rules use their flexible data structures to pro-
duce intermediate graphs. Compared to tree rewrite rules, the flexible data structures
do no impose typing issues, but do not resolve the complexities due to rewriting.

Higher order attribute grammars can produce an intermediate version of the target
program and subsequently produce the final program. Most attribute grammars choose
to store their different results in different attributes. Anyhow, attribute grammars can
produce multiple values while ignoring their further processing and thus respecting the
separation of the base concerns.

ICG and DCOs produce larger program fragments. Unlike DCOs, in ICG transfor-
mation modules offer an integration interface which publishes the results produced by
the transformation modules.

In LDTs where nonlocal results can be produced, nonlocals can also be consumed in
order to express the semantics of a language construct (R3b). However, only essential
nonlocal results may be consumed, and thus the challenge is to be able to handle these
nonlocals separately from the transformation modules that produce them. Although,
LDTs do not provide explicit support for this, work-arrounds are possible by phasing
the transformations. We describe such a work-arround in [Cle05] for (graph) rewrite
rules.

A.2. SEPARATION OF COMPOSITIONALITY CONCERNS 337

A.2 Separation of the Special-Purpose Concern

- Compositionality

A.2.1 SP1 - Localized Interventions

Localized interventions are interesting because their effects are not visible to other con-
cerns. Hence, such interventions preserve the separation among the different concerns
of the language implementation.

In LDTs where the source program is mutable as in tree and graph rewrite rules,
one way of implementing interventions is to change the source program. However, they
obviously fail to localize their interventions. A rewrite rule can rewrite the source
language program prior to applying the rewrite rules which encode the translational
semantics. As rewrite rules are destructive, the changes in the source program are visi-
ble to all other transformations i.e. basic concerns, and other special-purpose concerns.
Hence, these changes create dependencies. Graph rewrite rules can easily create new
data structures. They could thus create a dual representation of the source program,
to preserve the original graph. However, it is unclear how we can force a rewrite rule
to operate on either of the two structures without hard-coding it into the rewrite rule.

In the remaining LDTs, where the source program is immutable, a localized inter-
vention requires altering the behavior of the transformation modules with additional
logic in order to cope with the conflicts. Except for some ad-hoc approaches (see later),
there are no LDTs which currently offer an external mechanism for resolving compo-
sitionality conflicts. Transformation modules must either be designed to cope with a
number of conflicts or must be altered when a language is to be constructed out of a
given set of transformation modules. This approach is pushed to the extreme by ICG.
ICG produces a larger program component out of smaller program parts. These parts
are each implemented with a logic program which may yield different solutions. Each
solution is an adaptation of the part to avoid a conflict.

DCOs are able to solve compositionality conflicts in an interesting way. As the
grammar is chopped up into coarse grained fragments, the composition of these gram-
mars is an opportunity for solving composition conflicts. A grammar production can be
overridden by another grammar. Now, suppose the latter grammar is the composition
grammar, a production can be altered to refer to a dummy production, which in turn
refers to the actual non-terminal. In a later phase of the compilation process, these
dummy productions serve as hooks to resolve composition conflicts.

Ad-hoc approaches have the potential to exploit general purpose language features
(like higher order functions, inheritance, higher order logic) which are proven ways to
influence the behavior of a module while respecting its modularization. Despite this
potential no use of these features has been reported in ad-hoc approaches, except in
functional languages and macros. Functional languages use monads to intervene in the
composition of basic language concerns. More details are given in Section A.2.2. Higher
order macros can produce other macros which are tailored to a specific context. Hence,
resolution of compositionality conflicts can be provided. However, macros still have to
be explicitly designed to be adapted with compositionality resolution logic.

338 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

A.2.2 SP2 - Global Interventions

Global interventions affecting the composition of multiple basic concerns are only possi-
ble in LDTs with mutable data structures. The most simple but rather crude approach
is to change the source program before transforming it into another program, so one
can globally intervene. Besides its crudeness, this approach is not always feasible be-
cause global interventions require much more subtle and more complicated logic. In
other words, the logic requires details about the results produced by the transformation
modules.

LDTs with mutable data structures therefore use intermediate versions of a trans-
formed program in order to resolve composition problems after an initial transformation
has taken place. Consider for instance the interaction strategy of producing multiple re-
sults in tree rewrite rules. In the first transformation phase, the results are contained in
an intermediate representation, say cons cells. Resolving these compositionality prob-
lems is handled in successive rewriting phases. Having mutable data structures is not
sufficient. Global interventions are not possible in ICG, SOP and ad-hoc approaches as
one lacks the ability to post-process the intermediate structure within the boundaries
of a LDT.

Global interventions can be externally defined with monads. The monad determines
how combined computations form a new computation and frees the programmer from
having to code the combination manually each time it is required [New]. As such,
the recursive application of the compile function can be controlled by a monad. The
translational semantics of language constructs can be made oblivious to the monads,
hereby improving the separation of concerns (SOC). This kind of control is exactly
what is required to implement global interventions.

A.3 Separation of the Special-Purpose concern

- Multiple Inputs

A.3.1 SP3 - Identification with Abstract Names

In most transformation systems a transformation module captures a single task, i.e. the
production of new terms. We have seen that external information is indispensable to
perform that task. Controlling the information flow for a specific external information
request by using a separate concern requires a way to identify the derived information:
the requesting concern and the other concerns involved to compute the information.

Identifying the need for external information is only possible in cases where the
consumption of external information is explicitly declared (see basic concern - multiple
inputs in Section A.1.6). Tree rewrite rules and macros plainly state the required
information as parts, with no distinction between what is external and what is local.
The requested information is a derived value. One of the challenges in this task of the
concern is to keep the logic to compute the derived value which is specific to a concern
local to that concern. This logic thus needs an abstract name, so as to be able to use
the information and provide it to the requesting concern. The issue of keeping the

A.3. SEPARATION OF MULTIPLE INPUTS CONCERNS 339

specific logic local and the provision of the information is discussed in multiple inputs
- provision of information in Section A.3.5.

Abstractly identifying the derived information is supported by adhoc approaches,
graph rewrite rules, rewrite rules, macros, ICG and attribute grammars. Adhoc ap-
proaches use general purpose language constructs. Graph rewrite rules can easily create
new nodes and edges. Hence, they can label nodes with an abstract name in order to
obtain the value. Rewrite rules equipped with helper functions, can call a helper func-
tion. Rewrite rules with traversals could misuse an accumulating traversal that does
not traverse, but computes an additional value. The integration interface of transfor-
mation modules in ICG provide abstract names for its program parts. They can be
accessed as such.

Attribute grammars and ad-hoc approaches that employ a symbol table offer the
best support, because the names are location independent and thus completely preserve
the isolation of the concern even during communication. Attributes are known to every
term. Attribute computations use attribute names to retrieve attribute values and
attribute computations use names to assign the computed the value of that attribute.
Identifying and using the value is thus location independent. Symbol tables are very
effective as the requestor of a value simply accesses the symbol table and retrieves a
value by means of an agreed upon key. The key abstracts the concrete location and
whereabouts of the information.

Oddly, template-based approaches do not support identification via an abstract
name. A template transformation module can only produce target program fragments,
not derived information from an arbitrary information domain.

A.3.2 SP4 - Obtention of External Information

External information is one of the most simple forms of information to locate. The
information is external to the input program and must be made globally accessible.
Globally accessing information was the very first thing programming languages could
do. So, for ad-hoc approaches or other LDT which are closely related with a general
purpose language such as compositional LDTs or macros accessing global information
does not pose a challenge.

LDTs especially designed to implement a language according to a particular paradigm
have been striving to keep their transformation module as modular as possible (cfr. ba-
sic concern - consume multiple inputs in Section A.1.6 and produce multiple results in
Section A.1.7). As a result, accessing global information has been limited. The prime
examples are rewrite rules and attribute grammars, which can only consume values
which are part of the input program. The ease of accessing this information depends
on query facilities and identification facilities. Rewrite rule systems need to traverse
the input program and provide the information where necessary by rewriting the source
program. Rewriting of the source program tree is fragile in case of multiple information
requests (see multiple inputs - obtention of information of an another language con-
cern in Section A.3.3). Conceptually global information poses no problem to attribute
grammars as they retrieve location independent information. However, the attribute
copy rule still has to be provided either manually or by the system. Template-based

340 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

languages, for example, are known for their powerful query facilities. Retrieving a value
from anywhere in the source program is thus not a problem.

A.3.3 SP5 - Obtention of Information of Another Lan-
guage Concern

In order to obtain information located in another language concern, the input pro-
gram needs to be traversed and the derived value computed. Macros and rewrite rules
can only access the matched subtree. Equipped with traversals, rewrite rules can de-
scribe complicated traversals. Equipped with rewrite strategies, several strategies and
rewrites can be combined to describe descending paths. However, so as to gain access
to information contained in the parent, a five step process needs to be followed:

• Determine a source program term that is a common ancestor of the matched
node (pivot) and the terms that contain the information. This term serves as a
starting point for subsequent operations.

• Find all the terms starting from the common ancestor.

• Collect the information contained in the terms.

• Propagate the collected information to the pivot node.

• Rewrite the pivot node to provide the collected information

Tree rewrite rules are destructive. The matched term is replaced by another term. Be-
cause terms can be removed, basic concerns that depend on that term to obtain infor-
mation must first be executed. Moreover, multiple information requests get implicitly
scheduled by the signature of the terms. This scheduling is an additional complex-
ity which erects dependencies that cripple the separation of base and special-purpose
concerns.

In macros, a similar process has to be used. There is one way to get the whole
program reified that is defining a top-level macro that behaves like the identity function,
something like (with-top-macro ... the whole program ...).

First class attribute grammars or attribute grammars with attribute templates can
externally control the flow of information from one concern to another. There is how-
ever, a very limited form of control over the direction of information flow. Basic control
can be exercised by either accessing the attribute values of the parent or one of the
children. Even with templates or first class attribute grammars, the direction of a flow
needs to be manually enforced by formulating attribute computations for specific pro-
ductions. Furthermore, complex paths for retrieving information of another concern
need to be specified by a set of attribute definitions scattered in several concerns.

The values of the keys in the symbol table must first be computed before the values
can be accessed. Unfortunately, the maintenance of the symbol table (e.g. storing and
removing the values) is embedded in the translational semantics of the basic concerns
that produce the value. In some cases it can be argued that the manipulation of the
symbol table can be considered as part of translational semantics (cfr. requirement

A.3. SEPARATION OF MULTIPLE INPUTS CONCERNS 341

R2c). However, arbitrary information that is requested by a concern should in general
not enforce additional behavior in the concerns that own the requested information.

General-purpose languages typically provide good implementations to query tree
structured data if a suitable representation is used. Some require a meta-structure (e.g.
container - element structure) to facilitate queries like traversals in OO, in Prolog and in
functional languages like Haskell. Some require developers to use these metastructures,
some generate them and others use reflection.

Template-based approaches and graph rewrite rules are by far the best equipped
LDTs for retrieving information. Plain graph rewrite rules have a limited scope, but as
arbitrary information can be added in the graph, information retrieval is often defined
as a recursive process where each rewrite rule builds upon the results of another. Such
implementations can rapidly become quite complex in case a well-defined path must be
followed in the graph. Matching with general morphisms is a solution, but is difficult
to manage. XML-based LDT like XSLT offer powerful query mechanism like XPaths
or XQuery that allow precise paths to be described, but without requiring us to detail
the concrete path that needs to be followed.

A.3.4 SP6 - Obtention of Distributed Information among
Several Concerns

One of the characteristics of a concern is its high cohesion. All semantics that is directly
related to that concern should therefore also be part of that concern. In the retrieval
of distributed information, every concern involved performs a part of the computation
which is specific for that concern. These computations should logically become part
of those concerns. Hence, concerns should be modifiable or extendable with additional
logic once we use a concern in a particular language.

Of the LDTs like DCOs, IP and macros that offer transformation modules which
define an entire basic concern i.e. its grammar and its semantics, none have the ability
to externally alter the modules with new behavior.

The best equipped LDTs are attribute grammars. New attribute definitions can
be stated separately for each nonterminal which can override or complement existing
definitions.

The remaining LDTs also perform rather poorly, only considering the translational
semantics of a transformation module. In tree and graph rewrite rules, a number of
successive rewrites must be used to traverse the input tree and make the necessary
computations. As we said earlier, traversals improve the elegance but remain limited
because they cannot access context terms. Template-based LDTs call different tem-
plates to act upon a term. The additional rules or templates are totally unrelated to the
basic concerns. Except for ad-hoc approaches, all other systems simply call auxiliary
module to perform the computation, and thus fail to be extensible.

Ad-hoc approaches have the potential to extend modules, due to the extension and
parameterization mechanisms of general purpose languages: higher order functions,
inheritance, etc. A clear need for these mechanisms is present in the symbol table
strategy which is favored by some ad-hoc approaches. As the maintenance of the
symbol table (e.g. storing and removing the values) is embedded in the translational

342 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

semantics of other basic concerns, all basic concerns involved must be altered with this
responsibility.

A.3.5 SP7 - Provision of Information

The mechanism to provide information depends on whether the request for additional
information is implicit or explicit.

Providing information by a special-purpose concern to a base-concern is not trivial.
An important issue here is scheduling, i.e. making sure that the value is available when
required. There are several ways of providing information, but all are based on the
flexibility of a tranformation module or its data structures.

First, the base language concern is a flexible data structure which can be changed.
There are not many LDTs which support flexible data structures. The only one is graph
rewrite rules. Unfortunately, additional information is not explicitly stated, which
render graph rewrite rules less useful for these purposes. Rewrite rules are excluded
because in order to add information to a term in rewrite rule systems, the signature of
the term needs to be changed. Rewriting the source tree introduces implicit scheduling
between multiple information requests.

Second, the base language concern is extensible with additional semantics. In the
latter case, the additional semantics can trigger the special-purpose concern to obtain
the information. So there are less scheduling problems with the second solution. The
only LDTs that qualify are attribute grammars and ad-hoc approaces. We refer to
the previous section about distributed information in which this form of extensibility
is detailed.

Third, a special-purpose concern can respond to a need and create an information
flow when the information is requested. There is only a single LDT in which this is truly
the case and to a certain extent the family of LDTs to which the LDT belongs. The
LDT we are talking about is an attribute grammar supporting forwarding. Forwarding
redirects requests for undefined attributes to its produced translational semantic value.
In plain attribute grammars attribute copy rules are implicitly provided by the system.
These rules redirect requests for undefined attributes to either the parent or one of its
children. Extensions of attribute grammars provided explicit copy rules, but hereby
lost the ability for an external concern to act upon an attribute request.

A.4 Separation of the Special-Purpose concern

- Multiple Results

A.4.1 SP8 - Identification via the Source Language Pro-
gram

Identification steered by the source program requires modifications to the producing
source language concerns to enable changes to their produced results. The basic re-
quirement is accessing the basic concerns and these basic concerns provide read-write
access to their results. Higher order attribute grammars are ruled out because they

A.4. SEPARATION OF MULTIPLE RESULTS CONCERNS 343

produce immutable values. Except for ICG, most of the LDTs with implicit target
programs do not fulfill this minimum requirement.

Having an explicit target program is not sufficient either. Due to scheduling issues,
transformation modules may or may not have already been triggered. This has several
implications. First, the source structure must be preserved during the execution of
the transformation. Tree-based rewrite rules and macros do not ensure this. Second,
changes due to integration must be reflected in the target program, the concerns must
yield the same value representing the target program fragment when called. Except ICG
and graph rewrite rules, no LDT has been encountered that supports this. ICG explic-
itly support this through its integration interface. In graph rewrite systems equipped
with implicit node creation, a similar effect could be implemented by explicitly linking
the produced target nodes to the source nodes upon rule execution.

ICG features a static identification, which in cases of multiple integration locations
causes a lot of scattering because it is statically determined where nonlocal results
should be integrated.

A.4.2 SP9 - Identification via the Target Language Pro-
gram

Embedded LDTs like template-based approaches and other LDTs like ICG, GenVoca
which use an implicit target language program do not expose the target language pro-
gram constructed while the transformation is executed. Hence, it is not possible to use
the target language program to identify the term where a nonlocal result should be
integrated. In macros, it is close to impossible, as in macros only the parameters are
deconstructed. The rest of the program cannot be traversed.

SOP offers identification rules to define which program fragments need to be com-
bined. The interaction strategy used to combine the fragments is separated from the
identification rules. The rules can relate program fragments by uniquely identifying the
program parts. The kind of identifiable program parts depend on the target language
concepts down to the level of individual methods.

The remaining LDTs with an explicit target language program expose the data
structures which can be accessed by other language concerns. Identifying a term in
a target program with adhoc approaches, tree or graph rewrite rules is (technically
speaking) rather simple, as the mechanism to obtain additional information from the
source program can also be used to identify target program terms (see multiple inputs
- obtention of information in Section A.3). What complicates matters is scheduling.
The resolution of the nonlocal results must be scheduled carefully to ensure that the
terms in which nonlocals are to be integrated, exist. The result is scattered integration
logic over multiple rules and stages in the transformation process [Cle05].

Rewrite rule LDTs extended with dynamic rewrite rules produce a rule which con-
tains the identification of the results. Although the mechanism to deal with nonlocal
results is a separate mechanism implemented by the LDT, the identification is a fixed
part of the rule. There are two ways of dealing with this issue: lightweight rules, or
heavyweight rules. Both have their limitations. When opting for lightweight rules,
rewrite strategies are necessary to control the application of the rules. Unfortunately

344 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

rewriting strategies also statically determine the terms in which these ought to be ap-
plied. In cases of multiple potential integration locations, statically deciding where the
results should be integrated causes a lot of scattering. When opting for heavyweight
rules, the identification cannot be altered externally if the language implementation
changes. Moreover, the identification is constrained because the context of a term
cannot be accessed.

Dynamic rewrite rules advocate an asymmetric approach. There are rules that
create a term and there are rule that modify (rewrite) the term. However, it is in
general undecidable which rule will be fired and thus undecidable which rule must be
made responsible for the production of a target program fragment. In order to solve
this issue, the notion of aspect-driven transformations was introduced in graph rewrite
rules to obtain a more symmetric model. Aspect-driven transformations rely on implicit
node creation. Implicit node creation in graph rewrite rules identifies the terms which
need to be combined based on the ability to uniquely identify concepts. This ability
depends on identification mechanisms of the target program language at hand and
on the requirement that translational semantics always produce uniquely identifiable
entities.

Higher order attribute grammars can produce an intermediate program of an in-
termediate attribute grammar. The latter contains the semantics for retrieving the
nonlocals and integrate them. The identification is statically determined and tangled
in the language concerns which produce the terms in which nonlocals must be inte-
grated. As we said earlier, in case of multiple integration locations, statically deciding
where the results should be integrated causes scattering.

A.4.3 SP10 - Scheduling

The complexity of scheduling largely depends on the ability to change produced program
fragments on which previous computations (execution of special-purpose concerns or
basic concerns) depend. If such is the case, proper scheduling must ensure that either no
changes can be made to terms on which previous computation depend or that changes
cannot invalidate previous computations. One of the two most powerful systems in this
respect are ICG and rewrite rule strategies. ICG computes the correct integration of
program fragments using a constraint network based on a manual composition. Alter-
native solutions are selected and propagated in the network when integration should
fail. Rewrite rule strategies offer powerful rewrite strategies and traversals to manually
specify the desired schedule of execution.

LDTs which have immutable target language programs are confronted with far less
complex scheduling. Attribute grammars is one of the prime examples. Scheduling has
always been considered a non-declarative issue, therefore attribute grammar systems
must deduce a suitable scheduling. Immutability does not solve all scheduling issues.
A prime issue is ensuring that upon identification, the term to find must already be
produced. In systems were the separation between special-purpose and base-concerns
is not properly kept, this is an issue that needs to be tackled by the base concerns.
Such systems are attribute grammars. Another issue arises when nonlocals are nested.
In this case, a breadth-first or depth-first strategy to resolve the nonlocals may easily

A.4. SEPARATION OF MULTIPLE RESULTS CONCERNS 345

yield different results. Rewrite strategies are the only mechanisms in which this issue
can be properly addressed as a correct scheduling external to language concerns can be
defined.

Other systems must hardcode scheduling logic into the identification part of the
transformation module.

A.4.4 SP11 - Integration - a Three-party Contract

Ideally, integration should be a three-party contract between the concerns that produce
the nonlocal results, the concerns that produce the terms in which the nonlocals ought
to be integrated, and an integrator dictating the composition. There are no LDTs in
which such a contract can be implemented.

In LDTs with implicit target programs or immutable target programs, the base
language concerns must be altered to handle the nonlocal results. This is the case or
ICG and attribute grammars. In ICG, a base language concern allows controlled access
to the produced program in order to ensure that integration is computed correctly.
Attribute grammars use attributes that retrieve nonlocal results. In macros, GenVoca
and template-based approaches no multiple results can be produced. In these cases, the
production of the additional results becomes the responsibility of the concerns which
produce the terms in which the nonlocals must be integrated. Clearly, the separation
between basic concerns is violated.

ICG and SOP do offer external composition rules which serve as external actors
that direct the integration. ICG shifts more control to the basic concerns. As a result
the semantics of the integration rules of ICG is defined in the basic concerns, whereas
the integration rules of SOP have their own semantics.

Integration with rewrite rule systems starts from an intermediate representation
(for example with cons cells or extended terms) which combine local and nonlocal
results. This intermediate representation is afterwards rewritten until the nonlocal
results are correctly integrated in the target program. Rewriting this intermediate tree
is a complicated process [Cle05]. In type safe tree-based rewrite rules should be altered
such that the cons cells or extended terms are valid. The major drawback remains
the fragility of the strategy: controlling successive rewriting is complicated and the
semantics is based on naming conventions. Rewrite rule LDTs extended with dynamic
rewrite rules produce a rule which contains the integration of the results. There is
no way of excluding the integration of the term from the nonlocal result. So nonlocal
results are packaged in heavyweight rules. As a result, integration is dictated and
entirely controlled by the nonlocal result.

Integration of nonlocal results is either embedded in graph rewrite rules (see basic
concerns - production of multiple results), or a similar strategy such as tree-based
rewrites is followed (see above). Implicit node creation in graph rewrite rules integrates
the terms which need to be combined based on the ability to uniquely identify concepts.
The only actual integration operator is a union: different target program fragments
are combined by merging the program fragments. Duplicate subfragments must be
explicitly anticipated by the designer of the rules.

Higher order attribute grammars can produce an intermediate program of an inter-

346 APPENDIX A. SOC OF LANGUAGE IMPLEMENTATIONS

mediate attribute grammar. The latter contains the semantics to retrieve the nonlocals
and integrate them. The integration is statically determined and tangled in the lan-
guage concerns which produce the terms in which nonlocal must be integrated.

Integration of nonlocal results can be implemented with monads. As monads con-
trol the recursive application of the compile function, the produced results can be
integrated with nonlocal results after each invocation. The translational semantics of
language constructs can be oblivious to the monads, thereby improving the SOC. For
each integration a specialized monad needs to be written that ensures the consistency
and the semantics of both the nonlocal result and the term in which to integrate the
nonlocal. As such, these specialized monads break the separation of concerns of the
involved basic concerns as they need to be aware of the details of the translational
semantics of those concerns. The same conclusion was formulated by Brichau [Bri05]
”the challenge remains in identifying the possible locations in a program that permit
integration and prevent the breaking of existing functionalities in each transformation.”

DCO acknowledges the need to resolve four kinds of interferences, but does not
further specify how to deal with them.

A.4.5 SP12 - Integration - Context-dependent Integration

Besides the three concerns of the thee party contract, context-dependent integration
involves an arbitrary number of other concerns which influence the integration seman-
tics. So the integration logic must already be partially active during the identification
step.

No LDT actually supports context-dependent integration. Due to the variable num-
ber of concerns it is basically tackled with the same mechanisms to retrieve distributed
information. The major implication of this decision is the scattering of integration logic.
Consider for example graph or tree based rewrite rules, these integrations are tackled
by a traversal, traversing either the source program or the target program to extract
the necessary information in order to compute the correct integration semantics.

Attribute grammars are by far best equipped with respect to other LDTs. Their
ability to compute distributed information can be applied to compute the context-
dependent integration over the target tree. Unfortunately, the integration itself is not
supported and remains scattered over the target language concerns.

Appendix B

Analysis of Interaction Strategy
Applicability

In this appendix we present a detailed analysis of the applicability of the interaction
strategies found in contemporary LDTs.

We compare the interaction strategies that improve the separation between inter-
acting basic concerns by focussing on the same task or challenge of the same special-
purpose concern. There are four such tasks or challenges for which there is more than
one interaction strategy (see Table 4.4):

1. obtention of information of the special-purpose concern multiple inputs

2. identification of information of the special-purpose concern multiple inputs

3. identification of the location of nonlocal results of the special-purpose concern
multiple results

4. integration of nonlocal results of the special-purpose concern multiple results.

Needless to say that the task or challenge which only has one interaction strategy
is also not generally applicable. The tradeoffs of these interaction strategies can be
found in the discussion in Section 4.5.1. In the remainder of this section we show that
interaction strategies implementing the same task or challenge of a special-purpose
concerns have different tradeoffs and are not simply interchangeable.

1. Obtention of information of the special-purpose concern multiple inputs by traver-
sals, morphisms, structure-shy queries, attribute propagation rules and monads.
In order to illustrate the decision process, let us evaluate which interaction strat-
egy is best suited to obtain additional information.

Retrieving information from arbitrary locations is best supported by structure-
shy queries. Such complex queries can easily be expressed locally in a single defi-
nition without needing to change the other concerns. On the downside, structure-
shy queries still explicitly reference other concerns.

Retrieving information encoded in a complex pattern between source and/or
target language nodes is best expressed with graph rewrite rules using morphisms.

347

348APPENDIX B. ANALYSIS OF INTERACTION STRATEGY APPLICABILITY

The left-hand side of a graph rewrite rule can contain an arbitrary number of
nodes and interconnecting edges. The complexity of computing a morphism
ranges from simple subgraph matching to more complex delta rewrite rules.

Retrieving distributed information among several concerns is best expressed with
attributes in conjunction with attribute copy rules. In attribute grammars, one
simply requests an attribute value instead of having to define which concerns
define the attribute. By using copy rules, the concern which defined the attribute
is reached and in turn, the necessary computation involving information of other
concerns is triggered. The distributed nature of attribute computations can also
be its major drawback as it scatters the logic to compute a value and the path
to reach the value in case of complex queries.

Retrieving information which involves the entire hierarchical structure of a term
in a controlled fashion is best tackled by traversals. Traversals locally define the
actions that need to be applied to each encountered subterm, and declaratively
specify the properties of a traversal i.e. the order, when the recursion should be
continued or broken off, and the direction. However, the acquisition of infor-
mation along a subtree does not suffice to retrieve information elegantly from
arbitrary places in the tree, as traversals can only descend.

Sharing information along the execution trail of basic concerns is best achieved
with monads. For example, the state monad propagates state information from
one function application to the next one. This way, the translational semantics of
language constructs can be oblivious of state, thereby improving the separation
of basic concerns. Information flows that go against the execution trail are not
handled elegantly in a monad.

2. Identification of information of the special-purpose concern multiple inputs by
symbol tables, attributes and attribute forwarding. In order to illustrate the deci-
sion process, let us evaluate which interaction strategy is best suited to identify
additional information.

Identifying information that depends on the context of a language construct is
best expressed with attributes or with symbol tables. There is in essence no
difference between a symbol table and an attribute, except in their computation.
Symbol tables are always computed whereas attributes are computed upon re-
quest. Attributes and symbol tables are global defined, but their value(s) are
computed in a local context.

Identifying information that depends on the program fragments being the trans-
lational semantics of language constructs is best expressed with attribute for-
warding. Requests for attributes which are unknown to a basic language concern
are redirected to the values produced by its translational semantics. As such, a
basic concern “inherits” these attributes without having to redefine them.

3. Identification of the location of nonlocal results of the special-purpose concern
multiple results by dynamic rewrite rules, morphisms, implicit node creation,
identification rules of SOP and ICG. In order to illustrate the decision process,

349

let us evaluate which interaction strategy is best suited to identify the location
where nonlocal results must be integrated.

Identifying the location of nonlocal results, in case of multiple integration sites,
is best expressed by dynamic rewrite rules. By encoding nonlocal results into
dynamic rewrite rules, the nonlocals can be integrated each time the left hand-
side of the rewrite rule matches. Identifying the location of nonlocal results
within a complex set of relationships is best expressed with morphisms. We
use the same reasoning as in the obtention of information of the special-purpose
concern multiple inputs.

Identifying the location of nonlocal results with unique identifiers is best ex-
pressed by implicit node creation. Implicit node creation identifies the terms
which need to be combined based on the ability to identify concepts uniquely.
This ability depends on the identification mechanisms of the target program
language at hand and on the requirement that translational semantics always
produce uniquely identifiable entities.

Identifying the location of nonlocal results in a fixed and upfront known set
of generators is best expressed by compositional systems. SOP and ICG offer
rules to establish whether two fragments correspond. SOP rules can establish
correspondences between fixed number of uniquely identifiable program parts.
Whereas in ICG arbitrary program parts can be exposed or hidden to deal with
fine-grained and flexible compositions. However, due to the unrestricted access to
the program parts, SOP is able to shift the composition logic out of the consuming
concern into the composition rule.

4. Integration of the location of nonlocal results of the special-purpose concern mul-
tiple results by implicit node creation, ICG, monads, SOP and dynamic rewrite
rules. In order to illustrate the decision process, let us evaluate which interaction
strategy is best suited to identify the location where nonlocal results must be
integrated.

Interaction strategies differ in the weight of the integration which respectively lies
in the concerns that produce nonlocals, in the concerns that consume nonlocals,
in the external actor, in separate composition rules ensuring the target language
semantics and (again) in concerns that produce nonlocals. As you can see, none
of them actually support the three-party contract, but each of the interaction
strategies achieves a certain degree of separation.

Interaction strategies also differ in their support to integrate two target program
fragments. Implicit node creation poorly supports the integration of two target
program fragments. The only actual integration operator is a union. Composition
rules provide a rich set of semantics for combining the program fragments. In
ICG, the rules must be explicitly defined by the developer. In SOP a set of
generic operators are defined which ensure the target language semantics. A
suitable operator must be chosen for the fragment at hand. Monads are a vehicle
which can be used to express the integration of nonlocal results, but do not assist
nor provide specific mechanisms to perform the integration (see Section A.4).

350APPENDIX B. ANALYSIS OF INTERACTION STRATEGY APPLICABILITY

Dynamic rewrite rules are also merely a vehicle. We therefore do not consider
the later two as a special case in the decision process.

Interaction strategies also differ in their assumptions concerning scheduling. Com-
position rules are applied in compositional generators with a fixed and upfront
known set of target program fragments. That is the case in ICG, SOP and dy-
namic rewrite rules. The generators are fixed and known upfront, and so are
their target program fragments. Implicit node creation is an interaction strategy
which is constructed for exactly the opposite scenario. In graph rewrite rules, it
is in general undecidable which rule will be fired and thus undecidable which rule
must be made responsible for the production of a target program fragment. The
interaction strategy composes behind the scenes what should be composed.

Appendix C

KALA Language Specification

KALA [Fab05] is the language we use to define advanced transaction specifications.
KALA was specifically created to allow for the separate specification of transactional
properties of Java methods. In KALA, the programmer declaratively states the trans-
actional properties of a Java method in one block of statements.

We first introduce the main language constructs in KALA. The formalism we use
is LTS. So each of the language constructs is defined in a single linglet. The language
specification of KALA is presented in Section C.2, combining all the introduced linglets
together into a language. We omitted their translational semantics because the seman-
tics of KALA is beyond the scope of this dissertation. We refer the reader to [Fab05]
for a more in depth discussion regarding the formal background of the language and
its translational semantics to Java. We conclude this chapter by listing some example
KALA specifications for ATMS.

C.1 Language Constructs

Most language constructs are derived from its formal model ACTA. There are also
additional constructs present in the KALA language supporting secondary transactions,
termination of transactions and groups of transactions.

C.1.1 Transaction

A transaction declaration consists of a name and a series of transactional properties.
The Tx Declaration linglet, shown below, defines this declaration.

Linglet Tx_Declaration {
syntax { signature "{" body "}" }

}

Transactions coincide with methods in the application. Hence, the signature of a
transaction is the signature of a method. Transactional properties are associated with

351

352 APPENDIX C. KALA LANGUAGE SPECIFICATION

the significant events in the lifecycle of transactions. The typical events are begin,
commit and abort.

Transactional properties establish relationships between two ore more transactions.
As such, transactions need to refer to other transactions, by using a public name service.

C.1.2 Naming

KALA programs can declare transactional properties of a method separately from that
method’s definition. Therefore, a static naming scheme is required to identify for which
method a block of properties is intended.

Statically, KALA identifies a transaction via a method signature. In order to name
the method, the full class name and the method signature, separated by a dot, are
given. This is defined by the Signature linglet, which is shown below.

Linglet Signature {
syntax { (package ".")* class "." method

"(" !(parameter ("," parameter)*) ")" }
}

To set properties on transactions at run-time, KALA offers dynamic naming. To
obtain a reference to a registered transaction at run-time, KALA code uses the naming
service. The transactions are registered with keys which are computed at run-time.

Lookup is performed in KALA by using an alias statement (see below), which
takes as first argument the variable serving as the name of the transaction, and as
second argument the key for the lookup operation. The latter can be computed by a
Java expression. Within this expression, existing aliases can be used, along with the
keyword self, which stands for the transaction to which this declaration applies at
run-time.

Linglet Alias {
syntax { "alias" "(" name "," key ")" }

}

Registration of transactions with names is performed by the name statement, with
as first argument a variable containing the transaction to be registered and second a key.
The transaction to be registered, is either the result obtained through an alias state-
ment, or the self pseudo variable. Registering a transaction overwrites the previously
held binding.

Linglet Name {
syntax { "name" "(" name "," key ")" }

}

C.1. LANGUAGE CONSTRUCTS 353

C.1.3 Grouping

Some transactional properties affect a group of transactions. The population of groups
may depend on application logic, and is therefore, in general, impossible to determine
statically. Hence, two additional statements are provided to subscribe and unsubscribe
transactions in a group.

A transaction can be subscribed to a group with the groupAdd statement. The
statement takes the same arguments as an name statement: the first argument is a
transaction to be registered, the second is a key of the group. The group key is com-
puted by a Java expression. References to groups are obtained though the groupAlias
statement, which is analogous to the alias statement above, but now looks groups
that have been previously registered using the groupName statement.

Linglet GroupAlias {
syntax { "groupAlias" "(" name "," key ")" }

}
Linglet GroupAdd {

syntax { "groupName" "(" name "," key ")" }
}

C.1.4 Significant Events

In KALA, the programmer declaratively states the transactional properties of a Java
method in a block of statements, using the constructs provided by the ACTA formal
model. In other words, in KALA, dependencies, views, and delegation of a given
transaction are defined through statements which are attached to the corresponding
method. Such statements can be set to coincide with any of the significant events
of a transaction, i.e. begin, commit and abort. Therefore, the main body of KALA
declarations for a given method contains begin, commit, and abort statements, and
each of these statements contains a nested block of dependency, view and delegation
statements.

A significant event is defined by the Event linglet.

Linglet Event {
syntax { name "{" body "}" }

}

The three significant events that KALA currently supports are defined in the lan-
guage specification by reusing the same Event linglet and binding its name to the three
linglets "begin", "commit" and "abort".

name KALA
base KALA

Begin=Event
name: "begin"

354 APPENDIX C. KALA LANGUAGE SPECIFICATION

body: ...
Abort=Event

name: "abort"
body: ...

Commit=Event
name: "commit"
body: ...

The behavior of multiple, possibly concurrent, transactions is governed by con-
straints between the significant events of these transactions. To facilitate reasoning
about these constraints, a first abstraction was created, called dependencies. Views
relax the conservative visibility between transactions, and delegation relaxes the con-
servative ownership of the data accessed and modified by a transaction.

C.1.5 Dependencies

A dependency is added by a triplet of the source, the type of dependency, and the
target of the dependency. Source and target are transaction identifiers. A dependency
statement consists of the keyword dep, followed by such a triplet, enclosed between
parenthesis.

Linglet Dependency {
syntax { "dep" "(" source operator target ")" }

}

KALA supports the dependencies of the underlying transaction monitor. The trans-
action monitor ATPMos [Fab05] supports five dependencies: commit dependency, weak-
abort dependency, begin-on-commit dependency, begin-on-abort dependency and com-
pensation dependency. These are respectively modeled by the CD, WD, BCD, BAD and
CMD operator. A detailed discussion about the semantics falls outside the scope of this
dissertation. We refer the reader to [Fab05].

C.1.6 View

In a number of ATMS, isolation between different transactions is relaxed and it is
possible for one running transaction Ti to see the results of another transaction Tj

while Tj is still executing. Isolation is relaxed by the view statement.
The statement view, defined below, consists of two parts, respectively declaring the

source and destination. Views are removed by prepending the destination identifier
with the minus sign -.

Linglet View {
syntax { "view" "(" !("-" [ast minus:true]) source target ")" }

}

C.1. LANGUAGE CONSTRUCTS 355

C.1.7 Delegation

The delegate statement delegates the responsibility for the accessed and change data
of a transaction to another transaction.

Delegation is specified with the del keyword, and takes a tuple of source and target
transaction identifiers, as in the dependency specification.

Linglet Delegation {
syntax { "del" "(" source target ")" }

}

C.1.8 Termination

Transactions are not automatically removed from the constraint model when it ends.
This is because other, running, transactions may need to place dependencies on this
transaction that need to remain in place even after the transaction has ended. Hence,
the programmer must therefore manually declare that these references are no longer
needed when this is the case. For this, KALA offers the terminate and groupTerminate
statements which can be used in begin, commit or abort significant events.

Linglet Terminate {
syntax { "terminate" "(" name ")" }

}
Linglet GroupTerminate {

syntax { "groupTerminate" "(" name ")" }
}

C.1.9 Autostart

Separately from the main control flow of the application, some ATMS require to ex-
ecute secondary transactions. The execution of these transactions are controlled via
dependencies.

Secondary transactions are spawned by the autostart statement. The arguments
are the values which are used to execute the associated method (name). The variables
are the primitive values which are called by reference, such that the secondary and the
enclosing transaction share their values. Finally, a list of KALA declarations can be
attached to this spawned transaction.

Linglet AutoStart {
syntax { "autostart" "("

name
"<" arguments ("," arguments)* ">"
!("(" vars ("," arguments)*) ")")
!("{" body "}")

")" }
}

356 APPENDIX C. KALA LANGUAGE SPECIFICATION

C.2 KALA Language Specification

The language specification on the next page describes the KALA language. We nested
the composition of the linglets to reflect the hierarchical layout of the AST representing
KALA programs.

name KALA
base KALA

TxDeclaration
signature: Signature name: ID parameter: ID..
expression: ID.
body: Name name: ID. key: Expression..

GroupAdd name: ID. key: Expression..
Alias name: ID. key: Expression..
GroupAlias name: ID. key: Expression..
Begin=Event

name: "begin"
body:

Dependency left: ID. dependency: ID. right: ID..
View source: ID. target: ID..
Delegation source: ID target: ID..
Terminate name: ID..
GroupTerminate name: ID..
Name.
GroupAdd..

Commit=Event
name: "commit"
body: Dependency.View.Delegation.

Terminate.GroupTerminate.
Name.GroupAdd..

Abort=Event
name: "abort"
body: Dependency. View. Delegation.

Terminate.GroupTerminate.
Name.GroupAdd..

Autostart
argument: Expression.
name: Signature.
body: Dependency. View. Delegation.

Terminate.GroupTerminate.
Name.GroupAdd...

C.3. ATMS KALA SPECIFICATIONS 357

C.3 ATMS KALA Specifications

C.3.1 Saga KALA Specification

The KALA specification to declare a Saga is given by means of the following example
banking application which is discussed in Section 7.5.2.

class Cashier {
public void moneyTransfer (Account from, Account to, int amount){

this.transfer(from, to, amount);
this.printReceipt(from, to, amount);
this.logTransfer(from, to, amount);

}
private void transfer (Account from, Account to, int amount)
{ ... }
private void printReceipt(Account from, Account to, int amount)
{ ...}
private void logTransfer(Account from, Account to, int amount)
{ ... }

}

The KALA specification, shown below, declares for the above example a Saga trans-
action for the moneyTransfer(...) method comprising of three steps corresponding
to the methods transfer(...), printReceipt(...) and logTransfer(...). All,
except for the last step, are compensated by the secondary transaction transfer(...)
and printReceipt(...) respectively, which invokes a compensating action in case the
step must be roll backed.

Cashier.moneyTransfer(BankAccount, BankAccount, int) {
name(self <Thread.currentThread()>)
commit {

groupTerminate(<""+self+"Comp">)
groupTerminate(<""+self+"Step">)
terminate(self)

}
abort {

groupTerminate(<""+self+"Comp">)
groupTerminate(<""+self+"Step">)
terminate(self)

}
}

Cashier.transfer(BankAccount, BankAccount, int) {
alias (Saga <Thread.currentThread()>)
groupAdd (self <""+Saga+"Step">)
autostart (transfer(BankAccount, BankAccount, int)

358 APPENDIX C. KALA LANGUAGE SPECIFICATION

<dest, source, amount> {
name(self <""+Saga+"Comp">)
groupAdd(self <""+Saga+"Comp">)

});
begin {

alias (Comp <""+Saga+"Comp">)
dep(Saga ad self, self wd Saga, Comp bcd self)

}
commit {

alias (Comp <""+Saga+"Comp">)
dep(Comp cmd Saga, Comp bad Saga)

}
}

Cashier.printReceipt(Account, Account, int) {
alias (Saga <Thread.currentThread()>)
alias (CompPrev <""+Saga+"Comp">)
groupAdd (self <""+Saga+"Step">)
autostart (Cashier.printTransferCancel(Account,Account,int,int)

<source, dest, amount, num_receipt> (num_receipt) {
name(self <""+Saga+"Comp">)
groupAdd(self <""+Saga+"Comp">)

})
begin {

alias (comp <""+Saga+"Comp">)
dep(saga ad self, self wd saga, comp bcd self)

}
commit {

alias (comp <""+Saga+"Comp">)
dep(CompPrev wcd comp, comp cmd saga, comp bad saga)

}
}

Cashier.logTransfer(BankAccount, BankAccount, int){
alias (Saga <Thread.currentThread()>)
groupAdd(self <""+Saga+"Step">)
begin {

dep(Saga ad self, self wd Saga, Saga scd self)
}

}

Bibliography

[ADK+98] William Aitken, Brian Dickens, Paul Kwiatkowski, Oege de Moor, David
Richter, and Charles Simonyi. Transformation in Intentional Program-
ming. In ICSR ’98: Proceedings of the 5th International Conference on
Software Reuse, page 114, Washington, DC, USA, 1998. IEEE Computer
Society. 87

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern
Language: Towns, Buildings, Construction (Center for Environmental
Structure Series). Oxford University Press, New York, August 1977. 325

[Amb02] Scott W. Ambler. Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process. John Wiley & Sons, Inc., New
York, NY, USA, 2002. 4, 327

[ANV05] Scott W. Ambler, John Nalbone, and Michael J. Vizdos. The Enterprise
Unified Process: Extending the Rational Unified Process. Prentice Hall
PTR, 2005. 327

[App98] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge
University Press, 1998. 9, 122, 163, 247

[Ayc03] John Aycock. A Brief History of Just-in-time. ACM Comput. Surv.,
35(2):97–113, 2003. 34

[BB02] Anders Berglund and Scott Boag. XML Path Language (XPath) 2.0 W3C
Working Draft, November 2002. 232

[BBG+60] John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John Mc-
Carthy, Alain J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard
Vauquois, Joseph H. Wegstein, Adriaan van Wijngaarden, and Michael
Woodger. Report on the Algorithmic Language ALGOL 60. Commun.
ACM, 3(5):299–314, 1960. 11, 31, 101, 151

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman
Meyrowitz, editor, Proceedings of the Conference on Object-Oriented

359

360 Bibliography

Programming: Systems, Languages, and Applications / Proceedings of
the European Conference on Object-Oriented Programming, pages 303–
311, Ottawa, Canada, 1990. ACM Press. 223

[BCD+00] Peter Borovanský, Horatiu Cirstea, Hubert Dubois, Claude Kirchner,
Hélène Kirchner, Pierre-Etienne Moreau, Christophe Ringeissen, and
Marian Vittek. ELAN: User Manual. Loria, Nancy, France, v3.4 edition,
January 2000. 55

[BD] Jan Bosch and Yvonne Dittrich. Domain-Specific Languages for a Chang-
ing World. 6, 85, 87

[BDKT03] Kim B. Bruce, Robert L. Scot Drysdale, Charles Kelemen, and Allen
Tucker. Why math? Commun. ACM, 46(9):40–44, 2003. 2

[BFG95] Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Practical Use of
Graph Rewriting. Technical Report Technical Report No. 95-373, Queen’s
University, Department of Computing and Information Science, January
1995. 57

[BGW93] Daniel G Bobrow, Richard G. Gabriel, and Jon L. White.
CLOS in Context - The Shape of the Design Space. In
Object-Oriented Programming: The Clos Perspective. MIT Press, 1993.
214

[BHW97] James M. Boyle, Terence J. Harmer, and Victor L. Winter. The TAMPR
Program Transformation System: Simplifying the Development of Nu-
merical Software. In Modern Software Tools for Scientific Computing,
pages 353–372. Birkhauser Boston Inc., Cambridge, MA, USA, 1997. 55

[Bie04] Celeste Biever. Language may Shape Human Thought. Science Express.
Pages 1-10., August 2004. 1

[BL02] Noury Bouraqadi and Thomas Ledoux. Aspect-Oriented Programming
Using Reflection. Technical Report 2002-10-3, Ecole des Mines de Douai,
2002. 328

[BLS98] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools
for Implementing Domain-specific Languages. In Proceedings Fifth
International Conference on Software Reuse, pages 143–153, Victoria,
BC, Canada, 2–5 1998. IEEE. 27, 33, 88

[Boi06] Paul Du Bois. Game Developers Con-
ference. Lua in Games Roundtable. 2006
https://www.cmpevents.com/GD06/a.asp?option=G&V=3&id=384048,
2006. 4

[Bos97] Jan Bosch. Delegating Compiler Objects: Modularity and Reusability in
Language Engineering. Nordic Journal of Computing, 4(1):66–92, Spring
1997. 6, 7, 85, 101

Bibliography 361

[Bri05] Johan Brichau. Integrative Composition of Program Generators. PhD
thesis, Vrije Universiteit Brussel, 2005. 13, 33, 67, 71, 80, 81, 124, 323,
346

[BST+94] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci,
and Marty Sirkin. The GenVoca Model of Software-System Generators.
IEEE Softw., 11(5):89–94, 1994. 33, 80

[Bud86] Timothy Budd. A little Smalltalk. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1986. 166

[CAE+76] Donald D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patri-
cia P. Griffiths, Raymond A. Lorie, James W. Mehl, Phyllis Reisner, and
Bradford W. Wade. SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control. IBM Journal of Research and Development,
20(6):560–575, 1976. 118, 150

[Cam97] Grady H. Jr. Campbell. Domain-specific Engineering. In Proceedings of
the Embedded Systems Conference, 1997. 4

[CB05] Thomas Cleenewerck and Johan Brichau. An Invasive Composition Sys-
tem for Local-to-Global Transformations. In Proceedings of LDTA 2005
(Fifth Workshop on Language Descriptions, Tools, and Applications) To
appear in Electronic Notes of Theoretical Computer Science, Elsevier,
pages 44–63, 2005. 51

[CDE+05] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Mart́ı Oliet, José Meseguer, and Carolyn Talcott. Maude Manual
(Version 2.1.1), April 2005. 24

[CDMS01] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A.
Schneider. Software Engineering by Source Transformation - Experience
with TXL. SCAM’01 - Int. Workshop on Source Code Analysis and
Manipulation, pages 168–178, November 2001. 47

[CDMS02] James Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schnei-
der. Grammar programming in TXL. SCAM’02 - IEEE 2nd International
Workshop on Source Code Analysis and Manipulation, Montreal, Octo-
ber 2002. 51

[CF04] Ryan Culpepper and Matthias Felleisen. Taming macros. In Gabor Kar-
sai and Eelco Visser, editors, GPCE, volume 3286 of Lecture Notes in
Computer Science, pages 225–243. Springer, 2004. 6

[CFW85] William D. Clinger, Daniel P. Friedman, and Mitchell Wand.
A Scheme for a Higher-Level Semantic Algebra, pages 237–250. Cam-
bridge University Press, 1985. 110

362 Bibliography

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transfor-
mation Approaches. OOPSLA 2003 Workshop on Generative Techniques
in the Context of Model-Driven Architectures, October 2003. 36

[CH05] Pascal Costanza and Robert Hirschfeld. Language Constructs for
Context-oriented Programming: An Overview of ContextL. In DLS ’05:
Proceedings of the 2005 conference on Dynamic languages symposium,
pages 1–10, New York, NY, USA, 2005. ACM Press. 322

[Cho56] Noam Chomsky. Three Models for the Description of Language. IRE
Transactions on Information Theory, IT-2 no. 3:113–124, 1956. 99

[CI84] Robert D. Cameron and M. Robert Ito. Grammar-Based Definition of
Metaprogramming Systems. ACM Trans. Program. Lang. Syst., 6(1):20–
54, 1984. 28

[CK07] Thomas Cleenewerck and Ivan Kurtev. Separation of concerns in transla-
tional semantics for dsls in model engineering. In Yookun Cho, Roger L.
Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan Koo, editors,
SAC, pages 985–992. ACM, 2007. 209, 324, 327

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0 W3C Recom-
mendation 16 November, 1999. 66, 67

[Cle03] Thomas Cleenewerck. Component-based DSL Development. In
Proceedings of GPCE’03 Conference, Lecture Notes in Computer Science
2830, pages 245–264. Springer-Verlag, 2003. 50

[Cle05] Thomas Cleenewerck. Disentangling the Implementation of Local-to-
Global Transformations in a Rewrite Rule Transformation System. In
Proceedings of the Symposium on Applied Computing Conference, 2005.
51, 336, 343, 345

[Cod72] Edgar F. Codd. Relational Completeness of Data Base Sublanguages.
In: R. Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM
Research Report RJ 987, San Jose, California, 1972. 150

[CX03] Chiyan Chen and Hongwei Xi. Implementing Typeful Program
Transformations. In PEPM ’03: Proceedings of the 2003 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation, pages 20–28, New York, NY, USA, 2003. ACM
Press. 323

[Cza98] Krzysztof Czarnecki. Generative Programming: Principles and
Techniques of Software Engineering Based on Automated Configuration
and Fragment-Based Component Models. PhD thesis, Technical Univer-
sity of Ilmenau, 1998. 80

[Dea97] Terrence W. Deacon. The Symbolic Species: The Co-evolution of
Language and the Brain. W.W. Norton, 1997. 1

Bibliography 363

[Dev98] Kris Devolder. Type Oriented Logic Meta Programming. PhD thesis,
Vrije Universiteit Brussel, 1998. 66

[DGL+03] Keith Duddy, Anna Gerber, Michael Lawley, Kerry Raymond, and Jim
Steel. Model transformation: A declarative, reusable patterns approach.
In EDOC, pages 174–185. IEEE Computer Society, 2003. 60

[Dij76] Edsger W. Dijkstra. Executional abstraction. Prentice-Hall, 1976. 5, 98

[Dij99] Edsger W. Dijkstra. Computing science: Achievements and challenges.
SIGAPP Appl. Comput. Rev., 7(2):2–9, 1999. 2

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed
Grammars. In ECOOP, pages 144–169, 2004. 159, 328

[EJ01] Rober Esser and Joern Janneck. A Framework for Defining Domain-
specific Visual Languages. In Workshop on Domain Specific Visual Lan-
guages, in conjunction with ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), 2001. 244

[Ekm04] Torbjörn Ekman. Rewritable Reference Attribute Grammars: design,
implementation and applications. Master’s thesis, Lund University, 2004.
329

[Ekm06] Torbjörn Ekman. Extensible Compiler Construction. PhD thesis, Lund
University, 2006. 324, 329

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. The Benjamin/Cummings Publishing Company, Inc., 1994. 150

[Ern03] Erik Ernst. Separation of Concerns. In Proceedings of Software
Engineering Properties of Languages for Aspect Technologies, SPLAT
2003, in assoc. with AOSD 2003, page 6 pages, 2003. 132

[ERT99] Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. The AGG ap-
proach: language and environment. Handbook of graph grammars and
computing by graph transformation: vol. 2: applications, languages, and
tools, pages 551–603, 1999. 57

[Fab05] Johan Fabry. Modularizing Advanced Transaction Management. PhD
thesis, Vrije Universiteit Brussel, 2005. 265, 266, 267, 269, 278, 279, 306,
351, 354

[Fai98] Rickard E. Faith. Debugging Programs after Structure-Changing
Transformation. PhD thesis, Dept. of Computer Science, Univ. of North
Carolina at Chapel Hill, 1998. 327

[FC05] Johan Fabry and Thomas Cleenewerck. Aspect-Oriented Domain Specific
Languages for Advanced Transaction Management. In Proceedings of the
International Conference on Enterprise Information Systems, pages 428–
432, 2005. 270

364 Bibliography

[Fel91] Matthias Felleisen. On the Expressive Power of Programming Languages.
Science of Computer Programming, 17(1–3):35–75, December 1991. 3, 4,
24, 26, 101, 106, 207

[FK92] Robert G. Fichman and Chris F. Kemerer. Object-Oriented and Con-
ventional Analysis and Design Methodologies. Computer, 25(10):22–39,
1992. 30

[FNTZ98] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story
Diagrams: A new Graph Transformation Language based on UML and
Java. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Proc. Theory and Application to Graph Transformations (TAGT’98),
Paderborn, volume 1764 of LNCS. Springer, November 1998. 57

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain Spe-
cific Languages?, June 2005. 29, 31

[FP88] Alan Ford and F. David Peat. The Role of Language in Science.
Foundations of Physics, 18(1233), 1988. 1

[FP06] Steve Freeman and Nat Pryce. Evolving an embedded domain-specific
language in java. In Peri L. Tarr and William R. Cook, editors, OOPSLA
Companion, pages 855–865. ACM, 2006. 5

[Fra02] David Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, Inc., New York, NY, USA, 2002. 326

[Gab91] Richard P. Gabriel. LISP: Good news, bad news, how to win big. AI
Expert, 6(6):30–39, June 1991. 24

[GAS98] Stefanos Gritzalis, George Aggelis, and Diomidis Spinellis. Programming
Languages for Mobile Code: A Problems Viewpoint. In Proceedings of
the First International Network Conference INC ’98, pages 210–217. IEE,
Internet Research, July 1998. 322

[GdM03] Jeremy Gibbons and Oege de Moor. The Fun of Programming. Palgrave
Macmillan, March 2003. 91

[Ghu06] Abdulaziz Ghuloum. An Incremental Approach to Compiler Construc-
tion. Scheme and Functional Programming Workshop 2006 - Report,
2006. 98

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD ’87:
Proceedings of the 1987 ACM SIGMOD international conference on
Management of data, pages 249–259, New York, NY, USA, 1987. ACM
Press. 267

[Gor04] Peter Gordon. Numerical Cognition Without Words: Evidence from
Amazonia. Science Express, October 2004. 1

Bibliography 365

[Gra94] Paul Graham. On Lisp: advanced techniques for Common Lisp. Pren-
tice-Hall, Englewood Cliffs, NJ 07632, USA, 1994. 5, 169, 171

[Gro92] Josef Grosch. Multiple Inheritance in Object-Oriented Attribute Gram-
mars. Technical Report Compiler Generation Report 28, GMD Karlsruhe,
Februari 1992. 74, 76, 155

[Gro02a] Object Management Group. Meta Object Facility (MOF) Specification
1.4., 2002. 326

[Gro02b] Object Management Group. Object Management Group. MOF 2.0
Query/Views/Transformations RFP, 2002. 324

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architec-
ture. In Vincenzo Ambriola and Genoveffa Tortora, editors, Advances
in Software Engineering and Knowledge Engineering, pages 1–39. World
Scientific Publishing Company, Singapore, 1993. 30, 153

[GST01] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: Type-safe, generative, binding macros in macroml. In
International Conference on Functional Programming, pages 74–85, 2001.
5

[Ham] Graham Hamilton. Evolving the Java Platform. Sunday Times. May 15,
2005. 4

[HE92] H. Kreowski H. Ehrig, A. Habel. Introduction to Graph Grammars with
Applications to Semantic Networks. International Journal of Computers
and Mathematical Applications, 23(6-9):557–572, 1992. 61

[Hed89] Görel Hedin. An Object-Oriented Notation for Attribute Grammars. In
ECOOP, pages 329–345, 1989. 74

[Hed92] Görel Hedin. Incremental Semantic Analysis. PhD thesis, Lund Univer-
sity, Lund, Sweden, 1992. 74, 77, 155

[Hed99] Görel Hedin. Reference Attributed Grammars. In D. Parigot and
M. Mernik, editors, Second Workshop on Attribute Grammars and their
Applications, WAGA’99, pages 153–172, Amsterdam, The Netherlands,
1999. INRIA Rocquencourt. 73, 78, 155

[HHKR89] Jan Heering, Paul R. H. Hendriks, Paul Klint, and Jan Rekers. The Syn-
tax Definition Formalism SDF - Reference Manual. SIGPLAN Notices,
24(11):43–75, 1989. 101

[HM03] Görel Hedin and Eva Magnusson. JastAdd: An Aspect-oriented Compiler
Construction System. Sci. Comput. Program., 47(1):37–58, 2003. 6, 74,
76, 77, 155

[HO93] William Harrison and Harold Ossher. Subject-oriented Programming: A
Critique of Pure Objects. SIGPLAN Not., 28(10):411–428, 1993. 80

366 Bibliography

[IdFC07] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Ce-
les. The evolution of lua. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 2–1–
2–26, New York, NY, USA, 2007. ACM Press. 4

[Jan96] Theo M. V. Janssen. Compositionality. In Johan van Benthem and Alice
ter Meulen, editors, Handbook of Logic and Language, pages 417–473.
Elsevier, Amsterdam, 1996. 99, 101, 103

[JD93] Mark P. Jones and Luck Duponcheel. Composing monads. Technical
report, 1993. 26

[Jef] Ron Jeffries. Thoughts and Actions: Beyond Haskell.
http://www.xprogramming.com/xpmag/dbcBeyondHaskell.htm, July,
2006. 2

[Jet] JetBrains. Meta-Programming System. 2005. 31

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In
Proceedings of Model Transformations in Practice Workshop, part of the
MoDELS 2005 Conference, October 2005. 324

[JKN95] Esa Jarnvall, Kai Koskimies, and Maarit Niittymaki. Object-oriented
Language Engineering with TaLE. Object Oriented Systems, pages 77–
98, 1995. 86, 98

[Joh79] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
Programmer’s Manual, volume 2, pages 353–387. Holt, Rinehart, and
Winston, New York, NY, USA, 1979. 8, 28

[JY01] Gilt Joseph and Tsoglin Yuri. JAMOOS A Domain-Specific Language for
Language Processing. Journal of Computing and Information Technology,
pages 305–321, september 2001. 86, 98, 101, 332

[KC86] Setrag N. Khoshafian and George P. Copeland. Object Identity. In
Proceedings of the ACM Conference on Object Oriented Programming
Systems, Languages and Applications, 1986. 175

[Kel07] Andy Kellens. Co-design and co-evolution of source code and its
structural regularities using Intensional Views. PhD thesis, Vrije Uni-
versiteit Brussel, 2007. 77

[Kic01] Gregor Kiczales. The Future of Reflection. Invited talk at the Third
Interna- tional Conference on Metalevel Architectures and Advanced Sep-
aration of Concerns (Reflec- tion 2001), September 2001., 2001. 328

[KK83] Paul Kay and Willett Kempton. What is the Sapir-Whorf hypothesis?
Technical Report COGSCI-83-08, 1983. 1

Bibliography 367

[KLG91] Simon M. Kaplan, Joseph P. Loyall, and Steven K. Goering. Specify-
ing Concurrent Languages and Systems with D-grammars. In Fourth
International Workshop on Graph Grammars and Their Application to
Computer Science, volume 532 of Lecture Notes in Computer Science,
pages 475–489. Springer Verlag, 1991. 61

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Mehmet Akşit and Satoshi Matsuoka, editors,
Proceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997. 78, 322, 328

[Klo92] Jan W. Klop. Term Rewriting Systems. In Handbook of Logic in
Computer Science, Volumes 1 (Background: Mathematical Structures)
and 2 (Background: Computational Structures), Abramsky & Gabbay &
Maibaum (Eds.), volume 2. Clarendon, 1992. 8, 47

[Knu68] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical
Systems Theory, 2(2):127–145, 1968. 8, 72, 325

[KRB91] Gregor Kiczales, Jim d. Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, 1991. 214

[Kru00] Philippe Kruchten. The Rational Unified Process: An Introduction,
Second Edition. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000. 327

[KV01] Tobias Kuipers and Joost Visser. Object-oriented Tree Traversal with JJ-
Forester. In Mark van den Brand and Didier Parigot, editors, Electronic
Notes in Theoretical Computer Science, volume 44. Elsevier Science Pub-
lishers, 2001. Proc. of Workshop on Language Descriptions, Tools and
Applications (LDTA). 33

[KW94] Uwe Kastens and William M. Waite. Modularity and Reusability in
Attribute Grammars. Acta Informatica, 31(7):601–627, 1994. 99, 328

[Lai] Cameron Laird. XSLT Powers a New Wave of Web Applications.
http://www.linuxjournal.com/article/5622, 2002. 226

[Lan66] Peter J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966. 3, 24

[Leh96] Manny M. Lehman. Laws of Software Evolution Revisited. In EWSPT
’96: Proceedings of the 5th European Workshop on Software Process
Technology, pages 108–124, London, UK, 1996. Springer-Verlag. 4, 324,
327

[LH89] Karl J. Lieberherr and Ian M. Holland. Assuring Good Style for Object-
Oriented Programs. IEEE Softw., 6(5):38–48, 1989. 70

368 Bibliography

[Lie96] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, 1996. 70

[LV03] Ralf Lämmel and Joost Visser. A Strafunski Application Letter. In Proc.
of PADL’03, January 2003. 91

[Mae87] Pattie Maes. Concepts and Experiments in Computational Reflection. In
OOPSLA ’87: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 147–155, New York, NY,
USA, 1987. ACM Press. 214

[MB97] Kai-Uwe Mätzel and Walter R. Bischofberger. Designing Object Systems
for Evolution. Theor. Pract. Object Syst., 3(4):265–283, 1997. 143, 175

[Mic] Sun Microsystems. New features and enhancements j2se 5.0.
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html. 5

[MM] Jishnu Mukerji and Joaquin Miller. Model Driven Architecture,
http://www.omg.org/cgibin/doc?ormsc/2001-07-01, July 2001. 326

[Mog97] Eugenio Moggi. Metalanguages and applications. In Andrew M. Pitts and
Peter Dybjer, editors, Semantics and Logics of Computation, volume 14,
pages 185–239. Cambridge University Press, Cambridge, 1997. 26

[Mon74] Richard Montague. Universal grammar. In Richmond Thomason, editor,
Formal Philosophy: Selected Papers of Richard Montague, pages 222–
246. Yale University Press, New Haven, CN, 1974. 101, 103

[Mos81] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. Technical report, Cambridge, MA, USA, 1981. 267

[Mos04] Peter Mosses. Modular Language Descriptions, volume 3286/2004, pages
489–490. Springer Berlin / Heidelberg, 2004. 45

[MuLA99] Marjan Mernik, Viljem Z̆umer, Mitja Lenic̆, and Enis Avdic̆aus̆evié. Im-
plementation of Multiple Attribute Grammar Inheritance in the Tool
LISA. SIGPLAN Not., 34(6):68–75, 1999. 74, 78, 155, 328, 329

[New] Jeff Newbern. All about Monads.
http://www.nomaware.com/monads/html/. 91, 122, 338

[Nie01] Lasse R. Nielsen. A Selective CPS Transformation. Electr. Notes Theor.
Comput. Sci., 45, 2001. 110

[OdMS00] Kevin Backhouse Oege de Moor and S. Doaitse Swierstra. First Class At-
tribute Grammars. Informatica: An International Journal of Computing
and Informatics, 24(2):329–341, June 2000. Special Issue: Attribute
grammars and Their Applications. 6, 9, 74, 77, 329

Bibliography 369

[OKK+96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, and
Vincent Kruskal. Specifying Subject-oriented Composition. Theor. Pract.
Object Syst., 2(3):179–202, 1996. 33, 80, 238, 244

[OV05] Karina Olmos and Eelco Visser. Composing Source-to-Source Data-Flow
Transformations with Rewriting Strategies and Dependent Dynamic
Rewrite Rules, volume 3443/2005 of Lecture Notes in Computer Science,
pages 204–220. Springer Berlin / Heidelberg, 2005. 329

[Paa95] Jukka Paakki. Attribute Grammar Paradigms. A High-level Methodology
in Language Implementation. ACM Comput. Surv., 27(2):196–255, 1995.
6, 7, 8, 28, 72, 76, 138, 155

[Pae93] Andreas Paepcke. User-Level Language Crafting. In Object-Oriented
Programming : the CLOS perspective, pages 66–99. MIT Press, 1993.
219

[Par72] David L. Parnas. A Technique for Software Module Specification with
Examples. Communications of the ACM, 15(5):330–336, May 1972. 45

[PR04] Magnus Petersson and Thomas Raneland. Java 1.5 as modular language
extensions, 2004. 324

[PtMW90] Barbara H. Partee, Alice ter Meulen, and Robert E. Wall.
Mathematical Methods in Linguistics. Kluwer, Dordrecht, 1990. 104

[Rey93] John C. Reynolds. The Discoveries of Continuations. LISP and Symbolic
Computation, 6(3–4):233–247, 1993. 110

[SAA99] S. Doaitse Swierstra and Pablo R. Azero Alcocer. Fast, Error Correct-
ing Parser Combinators: A Short Tutorial. In Jan Pavelka, Gerard
Tel, and Miroslav Bartosek, editors, SOFSEM’99 Theory and Practice
of Informatics, 26th Seminar on Current Trends in Theory and Practice
of Informatics, volume 1725 of LNCS, pages 111–129, November 1999.
217, 247

[SB98] Yannis Smaragdakis and Don S. Batory. Implementing Layered Designs
with Mixin Layers. In ECCOP ’98: Proceedings of the 12th European
Conference on Object-Oriented Programming, pages 550–570, London,
UK, 1998. Springer-Verlag. 80

[Sch91] Andy Schürr. PROGRESS: A VHL-Language Based on Graph
Grammars. In Proceedings of the 4th International Workshop on
Graph-Grammars and Their Application to Computer Science, pages
641–659, London, UK, 1991. Springer-Verlag. 57

[SD02] Vytautas Stuikys and Robertas Damasevicius. Taxonomy of the Program
Transformation Processes. Information technology and control, Kaunas,
Technologija, 22(1):39 – 52, 2002. 36

370 Bibliography

[Ser99] Manuel Serrano. Wide Classes. In European Conference on
Object-Oriented Programming, ECOOP’99, June 1999. 159

[Sim95a] Charles Simonyi, 1995. 6

[Sim95b] Charles Simonyi. The Death of Computer Languages, the Birth of In-
tentional Programming. In The Future of Software, Proceedings of the
Joint International Computers Limited/University of Newcastle Seminar,
University of Newcastle, 1995. 31, 87

[Sim96] Charles Simonyi. Intentional Programming - Innovation in the Legacy
Age, IFIP WG 2.1 meeting, Microsoft Research, 1996. 6, 31, 87

[SLB+99] Marcelo Sant’Anna, Julio Leite, Ira Baxter, Dave Wile, Ted Biggerstaff,
Don Batory, Prem Devanbu, and Liz Burd. International workshop on
software transformation systems (sts ’99). In ICSE ’99: Proceedings of
the 21st international conference on Software engineering, pages 701–702,
Los Alamitos, CA, USA, 1999. IEEE Computer Society Press. 28

[Smi84] Brian Cantwell Smith. Reflection and Semantics in LISP. In Principles
of programming languages (POPL84), January 1984. 214

[Spe04] Elizabeth Spelke. Which Comes First, Language or Thought? Harvard
University Gazette, 2004. 1

[Ste94] Patrick Steyaert. Open Design of Object-Oriented Languages, A
Foundation for Specialisable Reflective Language Frameworks. PhD the-
sis, Vrije Universiteit Brussel, 1994. 214, 222

[Ste99] Guy L. Jr. Steele. Growing a language. Higher-Order and Symbolic
Computation, 12(3):221–236, 1999. 4

[Sul01a] Gregory T. Sullivan. Aspect-oriented Programming Using Reflection and
Metaobject Protocols. Commun. ACM, 44(10):95–97, 2001. 328

[Sul01b] Gregory T. Sullivan. Aspect-Oriented Programming using Reflection.
OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-
Oriented Systems, Oct. 14-18, 2001, Tampa Bay, Florida, USA, 2001. 328

[Swi] S. Doaitse Swierstra. Attribute grammars: A Short Tutorial. Dept of
Computer Science Utrecht University, 2003. xvii, 6, 74

[SWW+88] V. Seshadri, S. Weber, D. B. Wortman, C. P. Yu, and I. Small. Semantic
Analysis in a Concurrent Compiler. In PLDI ’88: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, pages 233–240, New York, NY, USA, 1988. ACM Press.
8, 30

[SZJ02] Myat Swe Soe, Hongyu Zhang, and Stan Jarzabek. XVCL: A Tuto-
rial. In Proc. 14 th Int. Conf. on Software Engineering and Knowledge
Engineering SEKE02, pages 341–349. ACM Press, 2002. 66

Bibliography 371

[TB03] Dave Thomas and Brian M. Barry. Model Driven Development: The
Case for Domain Oriented Programming. In OOPSLA ’03: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 2–7, New
York, NY, USA, 2003. ACM Press. 4, 326

[Ten76] R. D. Tennent. The denotational semantics of programming languages.
Commun. ACM, 19(8):437–453, 1976. 108

[Ten91] R.D. Tennent. Semantics of Programming Languages. Prentice-Hall,
1991. TEN r 91:1 1.Ex. 102

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton
Jr. N degrees of separation: Multi-dimensional separation of concerns. In
International Conference on Software Engineering, pages 107–119, 1999.
45

[vdBK02] Mark G.J. van den Brand and Paul Klint. ASF+SDF Meta-Environment
User Manual. Centrum voor Wiskunde en Informatica (CWI), Kruislaan
413, 1098 SJ Amsterdam, The Netherlands, July 2002. 50, 169, 171, 322

[vDHK96] Arie van Deursen, Jan Heering, and Paul Klint, editors. Language
Prototyping: An Algebraic Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific Publishing Co., 1996. 47

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. SIGPLAN Notices, 35(6):26–36,
2000. 4, 27, 28, 33, 184, 244

[Vel03] Velocity. Velocity 1.3.1, The Apache Jakarta Project, March 2003,
http://jakarta.apache.org/velocity/, 2003. 66, 67, 169, 171

[Vis01a] Eelco Visser. Scoped Dynamic Rewrite Rules. Electronic Notes in
Theoretical Computer Science, 59(4), 2001. 54, 324, 329

[Vis01b] Eelco Visser. Stratego: A Language for Program Transformation Based
on Rewriting Strategies. Lecture Notes in Computer Science, 2051:357–
361, 2001. 47, 55, 329

[VKV03] Mark G. J. Van Den Brand, Paul Klint, and Jurgen J. Vinju. Term
Rewriting with Traversal Functions. ACM Trans. Softw. Eng. Methodol.,
12(2):152–190, 2003. 9, 52

[VSK89] Harald H. Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher or-
der attribute grammars. In PLDI ’89: Proceedings of the ACM SIGPLAN
1989 Conference on Programming language design and implementation,
pages 131–145. ACM Press, 1989. 73

[vW03] Jonne van Wijngaarden. Code Generation from a Domain Specific Lan-
guage Designing and Implementing Complex Program Transformations.
Master’s thesis, Universiteit Utrecht, July 2003. 138, 329

372 Bibliography

[VWKSB07] Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin.
Attribute Grammar-based Language Extensions for Java. In European
Conference on Object Oriented Programming (ECOOP), Lecture Notes
in Computer Science. Springer Verlag, July 2007. To Appear. 324

[vWV03] Jonne van Wijngaarden and Eelco Visser. Program Transformation Me-
chanics. Technical Report UU-CS-2003-048, Universiteit Utrecht, 2003.
36, 39, 43, 67, 69, 101

[Wad92] Philip Wadler. Comprehending Monads. Mathematical Structures in
Computer Science, 2(4), 1992. (Special issue of selected papers from 6’th
Conference on Lisp and Functional Programming.). 91

[Wan84] Mitchell Wand. A Semantic Prototyping System. In SIGPLAN ’84:
Proceedings of the 1984 SIGPLAN symposium on Compiler construction,
pages 213–221, New York, NY, USA, 1984. ACM Press. 28

[WdMBK02] Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski.
Forwarding in Attribute Grammars for Modular Language Design. In
Proc. 11th International Conf. on Compiler Construction, volume 2304
of Lecture Notes in Computer Science. Springer-Verlag, 2002. 9, 76, 78,
325

[WdMS+01] Erik Van Wyk, Oege de Moor, Ganesh Sittampalam, Ivan Sanabria-
Piretti, Kevin Backhouse, and Paul Kwiatkowski. Intentional Program-
ming: A Host of Language Features. Technical Report PRG-RR-01-21,
Computing Laboratory, University of Oxford, 2001. 87, 200

[WGRM05] Hui Wu, Jeff Gray, Suman Roychoudhury, and Marjan Mernik. Weaving
a Debugging Aspect into Domain-Specific Language Grammars. In ACM
Symposium for Applied Computing (SAC) - Programming for Separation
of Concerns Track, pages 1370–1374, 2005. 327

[Whi02] Ray Whitmer. Document Object Model (DOM) Level 3 XPath Specifi-
cation W3C, March 2002. 9

[Who56] Benjamin Whorf. Language, Thought, and Reality: Selected Writings.
MIT Press, Boston, MA, 1956. 1

	Abstract
	Nederlandstalig Abstract
	Acknowledgments
	Introduction
	Research Context
	Programming Languages
	Growing Languages

	Growing a Compiler
	Problem Statement: Modularization
	Major Challenges
	Modularization Problems in Contemporary Language Development Techniques

	Thesis Statement
	Approach of the Dissertation
	Modularization Model
	Modularized Implementation of Language Constructs
	Language Specification
	Language Implementation Interaction Strategies

	Contributions
	Survey of Contemporary Language Development Techniques
	Modularization of Language Constructs Model
	Kernel Transformation System
	Metafacilities for Defining Interaction Strategies
	New Strategies

	Outline

	Language Implementations
	Modularization of Language Constructs
	Expressiveness
	Expressiveness Formalized
	Modularization

	Language Development Techniques
	Unifying Terminology
	Typical Architecture
	Implementation Approaches

	Translational Semantics
	Granularity of Transformation Modules
	Direction of Transformations
	Scope of Transformations
	Discussion

	Conclusion

	Language Development Techniques
	Tree-Based Rewrite Rules
	Data Structures
	Transformation Modules
	Traversals
	Scoped Dynamic Rewrite Rules with Rewrite Strategies

	Graph Rewrite Rules
	Data Structures
	Transformation Modules

	Macros
	Data Structures
	Transformation Modules

	Template-based Approaches
	Data Structures
	Transformation Modules

	Attribute Grammars
	Data Structures
	Transformation Modules

	Compositional Generators
	Data Structures
	Transformation Modules

	Ad-hoc Approaches
	Delegating Compiler Objects, JAMOOS and TaLe
	Intentional Programming
	Jakarta Tool Suite
	Functional Languages

	Discussion
	Conclusion

	Modularization of Language Constructs
	Modularization Model
	Setting the Stage
	Phenomena Described by the Model
	Compositionality Requirement (R1)
	Multiple Inputs Requirement (R2)
	Multiple Results Requirement (R3)
	Representation Requirement (R0)
	Formalization of the Valuation
	Higher-Order Grammar Requirement (R4)
	Conclusion

	Three Language Implementation Concerns
	Basic Concerns
	Special-purpose Concerns
	Language Specification Concerns

	Separating Special-purpose Concerns
	Challenges to Separate the Resolution of Compositionality Conflicts
	Challenges to Separate the Handling of Multiple Inputs.
	Challenges to Separate the Handling of Multiple Results

	Evaluation of the Separation of Concerns
	Interaction Strategies
	SOC of Language Implementations
	A Definition of Interaction Strategies
	Interaction Strategy Space
	Interaction Strategy Shortcomings
	Metafacilities

	Conclusion

	Linglets : The basic language concerns
	A Running Example: T2SQL Language
	LTS Architecture
	Linglets
	Linglet Declaration
	Linglet Data
	Syntactical Methods
	Semantical Methods
	Standard Namespace base
	#-Construct
	Standard Part nonlocals
	Specialization

	Language Specification
	Grammar
	Overall Language Semantics
	LTS at Work

	LTS Requirements
	R0 - Program Representation
	R0a - Partial Program Fragments in Linglets
	R0b - Completable Program Fragments in Linglets
	R0c - Local Consistency in Linglets
	SP0 - Concern-specific Logic: Cooperation and Coherence in Language Specifications

	R1 - Compositionality
	R1 - Compositionality in Linglets
	SP1-SP2 - Resolving Compositionality Conflicts in Language Specifications

	R2 - Multiple Inputs
	R2 - Declaring Multiple Inputs in Linglets
	SP3-SP7 Acquisition of Multiple Inputs in Language Specifications

	R3 - Multiple Results
	R3 - Producing Multiple Results in Linglets
	SP8-12 Handling Multiple Results in Language Specifications

	Conclusion

	The MetaObject Protocol for LTS
	MetaObject Protocol
	Specifying Languages
	Specifying Linglets
	Specifying Programs
	Constructing Target Programs
	Retrieving Information
	Consistency
	Putting It All Together

	Interaction Strategies
	Situating Interaction Strategies in LTS
	Implementing Interaction Strategies

	Experiments with Interaction Strategies
	Existing Interaction Strategies: Structure-shy Queries
	Adjustment of Existing Interaction Strategies
	New Interaction Strategies for Multiple Results

	Advanced Experiments: Compile-time MOP
	LTS in LTS
	Compile-time Strategies

	Strategies for Special-purpose Concerns
	Special-purpose Concern - Compositionality
	Special-purpose Concern - Multiple Inputs
	Special-purpose Concern - Multiple Outputs

	Discussion
	Conclusion

	Building a Family of Languages with LTS
	Advanced Transaction Models
	ATMS
	KALA

	Domain-specific Transaction Languages
	Case Study
	Incremental Development of Three DSTLs

	Initial Language: Classical Transactions
	DSTL Translational Semantics
	The Tx Language Construct
	The ID Language Construct
	The Entire ClassicalTx Language

	First Increment: Nested Transactions
	Nested Transactions ATMS
	Simple Nested Transactions DSTL by Example
	DSTL Translational Semantics
	Overview of the Language Implementation in LTS
	The Extends Language Construct
	The TxRegistration Language Construct
	The Entire SimpleNestedTx Language
	Root Transactions: Compositionality Conflict
	Nested Transactions: Composition Deficit
	Integration of Transaction Fragments: INR strategy

	Second Increment : Sagas
	Sagas ATMS
	Saga DSTL by Example
	DSTL Translational Semantics
	Overview of the Implementation in LTS
	The Saga Language Construct
	The Step Language Construct
	The Compensate Language Construct
	The Entire Saga Language
	Application-specific Interaction Strategies
	Source-steered Integration
	Resolving Duplicate Code Fragments

	Discussion
	Conclusion

	Conclusion
	Research Context
	Summary
	Thesis
	Survey of Contemporary Language Development Systems
	Modularized Language Construct Model
	Kernel Transformation System
	Metafacilities for Defining Interaction Strategies
	New Interaction Strategies

	Limitations and Future Work
	Sandbox Isolation Model
	Global Consistency Management
	Incremental Language Development
	Application in other Language Development Techniques
	Interaction Strategy Library
	Modular Interpreters
	Model-driven Development
	Debugging
	Advanced Object-oriented concepts
	Interaction Strategies for Aspects of the Semantic Behavior of Compilers

	Perspectives

	SOC of Language Implementations
	Separation of Basic Concerns
	R4 - Higher Order Grammars
	R0a - Partial Values Using the Bottom Value ()
	R0b - Completable Values
	R0c - Semantics to Preserve the Local Consistency
	R1 - Compositionality
	R2 - Multiple Inputs
	R3 - Production of Multiple Results

	Separation of Compositionality Concerns
	SP1 - Localized Interventions
	SP2 - Global Interventions

	Separation of Multiple Inputs Concerns
	SP3 - Identification with Abstract Names
	SP4 - Obtention of External Information
	SP5 - Obtention of Information of Another Language Concern
	SP6 - Obtention of Distributed Information among Several Concerns
	SP7 - Provision of Information

	Separation of Multiple Results Concerns
	SP8 - Identification via the Source Language Program
	SP9 - Identification via the Target Language Program
	SP10 - Scheduling
	SP11 - Integration - a Three-party Contract
	SP12 - Integration - Context-dependent Integration

	Analysis of Interaction Strategy Applicability
	KALA Language Specification
	Language Constructs
	Transaction
	Naming
	Grouping
	Significant Events
	Dependencies
	View
	Delegation
	Termination
	Autostart

	KALA Language Specification
	ATMS KALA Specifications
	Saga KALA Specification

	Bibliography

