
Behavioral Similarity Matching using Concrete Source Code
Templates in Logic Queries

Coen De Roover ∗

Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel, Belgium
{cderoove,tjdhondt}@vub.ac.be

Johan Brichau
Département d’Ingénierie Informatique

Université catholique de Louvain,
Belgium

johan.brichau@uclouvain.be

Carlos Noguera
Laurence Duchien

INRIA - Futurs, Jacquard Project
LIFL, UMR CNRS 8022, Equipe GOAL

- Lille, France
{noguera,duchien}@lifl.fr

Abstract
Program query languages and pattern-detection techniques are
an essential part of program analysis and manipulation systems.
Queries and patterns permit the identification of the parts of interest
in a program’s implementation through a representation dedicated
to the intent of the system (e.g. call-graphs to detect behavioral
flaws, abstract syntax trees for transformations, concrete source
code to verify programming conventions, etc). This requires that
developers understand and manage all the different representations
and techniques in order to detect various patterns of interest. To al-
leviate this overhead, we present a logic-based language that allows
the program’s implementation to be queried using concrete source
code templates. The queries are matched against a combination of
structural and behavioral program representations, including call-
graphs, points-to analysis results and abstract syntax trees. The
result of our approach is that developers can detect patterns in the
queried program using source code excerpts (embedded in logic
queries) which act as prototypical samples of the structure and
behavior they intend to match.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.2.2 [Software Engi-
neering]: Coding Tools and Techniques; D.1 [Programming Tech-
niques]: Logic Programming

General Terms Design, Languages, Algorithms, Verification

Keywords Source code templates, program querying, pattern de-
tection, logic meta programming, program analysis, program vali-
dation.

1. Introduction
Modern software development environments are generally equipped
with advanced code analysis and verification tools in support of
software quality management. Such tools often verify coding styles

∗ Ph.D. scholarship funded by the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

and conventions, detect possible bugs and bad smells [13] or pro-
duce a set of metrics about the code [15]. In most cases, the full
potential of such tools can only be realized if developers themselves
can implement which styles, conventions, bugs, bad smells, etc. are
to be detected and verified by these tools. Coding conventions and
styles, for example, are often specific to a project development con-
text. Therefore, a tool that checks coding conventions must provide
means to both express the conventions and select program elements
that need to adhere. Similarly, a tool that checks for possible run-
time errors should provide a means to detect application-specific
errors (for example, in case of an API of which the functions must
be called in a particular order).

Program query and pattern languages have already proven valu-
able for the detection of user-defined conventions [18], code smells,
errors [17, 6], design patterns [25], best-practice patterns [5], etc.
In general, these meta-programming systems allow implementation
patterns to be detected by querying or matching a particular repre-
sentation of the program under investigation. This representation is
defined by a meta model and it is most often fine-tuned for a partic-
ular purpose. Systems that focus on the verification of coding con-
ventions and styles generally only require a structural meta model,
conveying only the static structure of the program. In contrast, the
detection of run-time errors requires a behavioral meta model that
exposes run-time behavior of the program, such as its control flow,
call-graph, etc. Nevertheless, many pattern detection problems can
benefit from the availability of structural as well as behavioral in-
formation about the application. A general-purpose program inves-
tigation tool would thus need to provide different representations,
according to different meta models, of the application. However,
such an approach will typically hamper the adoption by develop-
ers since they must have detailed knowledge about different meta
models and the implementation of the queries can easily become
complex.

To reconcile the need for different meta models with the ease
of specification of queries and pattern detection problems, we
have extended a logic program query language with a template-
based pattern specification mechanism. This template-based meta-
programming system allows the detection of patterns in software
that require diverse representations of the code (i.e. structural as
well as behavioral representations). Developers can specify tem-
plates that represent prototypical implementations of the patterns
they wish to detect. The system then matches these templates on the
static source code structure of the system as well as on a call-graph
and a points-to analysis of the code. In particular, the call-graph
and points-to analysis-based representations allow to conceal the
matching of a sequence of statements and expressions into the
matching on control-flow and run-time values respectively. As a

class Y {
private X var;
public X getVar { return var; }
public void setVar(X val) { var = val; }

}

Figure 1. Prototypical getter and setter method best practice pat-
tern implementations in Java.

result, the system allows the detection of structural code patterns
as well as run-time errors in the program and provides a uniform
and simple pattern specification mechanism to express both. Fur-
thermore, the templates can be embedded in logic queries, thereby
still enabling developers to compose different patterns using logic
operators and resort to pure query programs whenever the need
arises. Most importantly, developers are not required to understand
the intricate details of the structural and behavioral representations
of the program that are required to perform the pattern detection.

Outline of the paper Section 2 starts the exposition of our ap-
proach to pattern detection with the prime motivations to reconcile
a program query language with concrete source code templates.
How these templates are resolved against a wide range of program
representations is described in Section 3. Section 4 demonstrates
how different variants of some interesting patterns can be detected
using templates in logic queries. Related work will be reviewed in
Section 5 and we will conclude our discussion in Section 6.

2. A Logic Pattern Detection Language
A substantial amount of the software development process pertains
to the application of diverse kinds of patterns that describe already
known solutions to particular implementation problems. Design
patterns, coding conventions, protocols, best-practice patterns and
even anti-patterns such as bad code smells or coding habits are but a
few kinds of patterns that represent a vast body of knowledge avail-
able to the software engineer. Although there exist many possible
descriptions of such patterns, developers primarily think of them by
means of examples or prototypical implementations that focus on
the essential parts of the pattern. For example, Figure 1 contains a
prototypical implementation of the well-known accessor methods1

pattern. When applying or discovering such a pattern in an applica-
tion, developers tend to do so in terms of the example implemen-
tation they already know. However, when they need to automate
the pattern-detection process, they need to convey their declarative
knowledge into operational queries or other intricate descriptions
that cope with the various possible instantiations and variations of
the same pattern. This is because it is expected that a query discov-
ers implementations of the pattern that are not formulated exactly
as the prototype, but that stay true to the spirit of the prototype.
In the case of the getter prototype, the query engine should also
discover getter method instances that apply lazy-instantiation, for
example, as long as the method still is a getter. Furthermore, an ad-
ditional burden is often caused by the intricate details of the query
language and the diverse representations of the program that are
required to detect diverse kinds of patterns.

We can lessen this burden imposed on developers by bringing
the description of these queries closer to the prototypical example
implementations of the queried pattern. In doing so, it is however
important not to lose the expressive power of query languages that
allows the detection of the different variations of the pattern. In the
remainder of this section, we present our approach that reconciles
the advantages of query languages and diverse representations of

1 Also know as getter and setter methods.

1 isAncestorOf(?root, ?directSubclass) if
2 isSubClassOf(?directSubclass, ?root).

3 isAncestorOf(?root, ?indirectSubclass) if
4 isSubClassOf(?indirectSubclass, ?parent),
5 isAncestorOf(?root, ?parent).

6 if isAncestorOf(java.lang.Object, FooBar)
7 if isAncestorOf(?superclass, FooBar)
8 if isAncestorOf(java.lang.Object, ?subclass)
9 if isAncestorOf(?superclass, ?subclass)

Figure 2. Rules describing the ancestor-relation between two
classes in the logic programming paradigm.

the same program with pattern detection based on prototypical
example implementations.

2.1 A Logic Program Query Language
We rely on a logic programming language [9] to query the object-
oriented program under investigation. In such a logic meta pro-
gramming approach, descriptions of implementation patterns are
expressed as logic conditions over the object-oriented program’s el-
ements. Detecting the presence of an implementation pattern there-
fore amounts to initiating a search for program elements adher-
ing to these conditions. In logic programming, such conditions are
grouped into reusable logic rules while the search for solutions is
initiated by launching a logic query.

The use of a logic programming language for meta program-
ming purposes has several well-established advantages [2, 25]. In
imperative programming languages, programmers specify exactly
how the solution to a problem is to be found using step-by-step al-
gorithmic descriptions. In contrast, logic programming languages
allow the problem itself to be specified. The programming language
will find a solution on its own, relying on a specific problem solving
strategy employed by the language.

To illustrate the practical difference between these two pro-
gramming paradigms for meta-programming purposes, consider
the problem of finding all ancestors of a particular class. As shown
in Figure 2, it suffices to describe2 what it means for one class to
be an ancestor of another class in the logic programming paradigm.

The first rule expresses that a class ?root is the ancestor of a
class ?directSubclass when the latter is a subclass of the ancestor
class. The second rule expresses that a ?root class is also the
ancestor of a subclass of a class it is already the ancestor of. To find
all ancestor of a class FooBar, one can launch the logic query on
line 9 and the logic programming system will present us bindings
for the ?superclass logic variable for which the isAncestorOf/2
relation holds.

In the imperative paradigm, we can easily find all ancestors of
a class as well — this time through an algorithm which retrieves
superclasses, for instance using the Java code shown in Figure 3.
Solving meta-programming problems using a logic programming
language however has some distinct benefits. First of all, logic rules
describe relations between their arguments in a declarative instead
of an operational manner. A single logic rule can therefore be used
to verify whether there is an ancestor relation between two classes
(line 8), to find all superclasses of a given class (line 9), but also
to find all subclasses of a given class (line 10), or even to find all
class pairs for which there exists an ancestor relation (line 11). As

2 The syntax of the SOUL logic program query language, which has some
specialized features to support meta-programming purposes, slightly differs
from the one of the prototypical logic programming language Prolog. Logic
variables start with a question mark, standalone question marks denote
anonymous variables, while lists are denoted as: <1,?number,?,2>.

Class subclass;
LinkedList superclasses = new LinkedList();
Class superclass = subclass.getSuperclass();
while (superclass != null) {

superclasses.add(superclass);
subclass = superclass;
superclass = subclass.getSuperclass();

}

Figure 3. Algorithm gathering the superclasses of a class in the
imperative programming paradigm.

class Bar {
 float x;
 public void foo() {
 x = 42 + 3.14d;
 }
}

<assign('float',
 '=',
 variable('float', 'x'),
 binaryExp('double',
 '+',
 literal('int', '42'),
 literal('double', '3.14d')))>

reified
 method

statements

reification
according to
meta-model

return(?expression)
variable(?type,?identifier)
assign(?type, ?operator, ?lhs, ?rhs)
for(?init, ?expression, ?update, ?body)
send(?type, ?receiver, ?message ?argumentList)
binaryExp(?type, ?operator, ?lOperand, ?rOperand)
...

source code
meta model

class

Figure 4. Logic representation of a typical Java method according
to a source code meta model.

one has to specify a solution strategy instead of an expressive de-
scription of the problem itself, one has to write different algorithms
for each of these queries in the imperative paradigm. Logic pro-
gramming languages are, furthermore, extremely suited to program
querying purposes thanks to their advanced pattern matching abil-
ities, built-in support for non-determinism, logic connectives and
powerful programming concepts such as recursion and backtrack-
ing.

Over the years, the logic meta programming approach has been
applied successfully to a variety of problems in object-oriented
software engineering. Some examples include reasoning about
object-oriented design [25] and enforcing implementation patterns
[18].

2.2 Detecting Implementation Patterns
To support the use of the isAncestorOf/2 predicate in logic
queries, a logic program query language has to represent the object-
oriented program as logic facts according to a basic structural
meta model. These facts state the classes and methods present in
the program, as well as the basic relations between them such
as one class being the subclass of another —the latter being in-
dicated by the isSubClassOf/2 predicate. However, in order to
describe and detect implementation patterns, a more fine-grained
meta model is needed. To detect the accessor method or array-
walk implementation patterns, knowledge about the statements in
each method’s body is required. For Java programs, such informa-
tion is for instance provided by the Irish source code meta model
presented in [8]. As illustrated by Figure 4, it reifies the depicted
method’s body as a singleton list containing a logic functor of the
form assign(?type, ?operator, ?lhs, ?rhs) which repre-
sents the method’s assignment statement.

Using the information offered by this source code meta model,
we can attempt to describe and detect concrete instances of the
getter method implementation pattern. The logic rule shown in

1 getterMethod(?class, ?method, ?field) if
2 isMethodInClass(?method, ?class),
3 fieldInClassChain(?field, ?class),
4 fieldName(?field, ?fname),
5 methodStatements(?method, ?slist),
6 ?slist = <return(variable(?vtype, ?fname))>)

Figure 5. Logic rule for the the getter method implementation
pattern.

Figure 5 expresses what it means for a method ?method to be a
getter method for a field ?field in a class ?class. The first two
lines state that a getter method ?method needs to be part of a class
?class in whose hierarchy a field ?field is defined. In addition, the
method’s reified statement list is required to match the one of the
prototypical getter method implementation shown in Figure 1. It
has to be a list containing a single return statement of which the
expression part matches a variable named exactly after the field’s
name ?fname.

The multi-directional nature of rules in the logic programming
paradigm allows for the getterMethod/3 predicate to be used in
queries verifying whether a method is a getter method as well as in
queries detecting all getter methods in the application as a whole,
a specific class or for a specific field. Such use of a logic program
query language to describe and detect implementation patterns is
however not without its problems.

First of all, we have lost the highly desirable separation between
a problem description and an algorithm that searches for solutions
to this problem. It is easy to imagine a real-life getter method which
cannot be detected using this rule. A getter method might for in-
stance log a message to a file before returning the field it is protect-
ing. Since its statement list won’t faithfully match the one of the
prototypical getter method, it won’t be recognized as such. One ad-
hoc solution to this problem might be to alter the logic rule to tra-
verse the method’s parse tree in search for the correct return state-
ment. Be that as it may, before long end-users will no longer be de-
tecting implementation patterns using a declarative description, but
in an operational manner describing different techniques to search
for implementation variants of the pattern —effectively negating
our prime motivation to use a logic program query language.

Moreover, while the information provided by the structural
meta model (e.g. isSubClassOf/2, isMethodInClass/2, . . .)
was reasonably straightforward to use, this is no longer true for the
source code meta model. The logic representation of the concrete
syntax elements of a programming language is often more com-
plex than the elements themselves. Users already familiar with a
programming language, need to learn its logic reification in order
to describe and detect implementation patterns. This represents a
major hurdle to the system’s widespread adoption. In fact, the logic
rule in Figure 5 is an arguably less declarative description of the
getter method pattern than its prototypical implementation outlined
in Figure 1.

Finally, a base program can be represented according to mul-
tiple candidate meta models. Which meta model offers the most
efficacious representation usually depends on the actual implemen-
tation patterns that are to be detected. Often a combination of the
information from multiple meta models is needed. Returning to our
running example, imagine a getter method in which the expression
part of its return statement is not a variable named after the field
the method is protecting, but rather a complex expression whose
run-time value matches the value of the field. In order to correctly
recognize this concrete instance of the getter method pattern, we re-
quire information about the run-time behavior of the program. Such
behavioral information could be offered either by a meta model ob-
taining its information through a dynamic or through a static anal-

ysis of the program under investigation. As the former extracts its
information from an execution trace, it is precise but only valid for
one of many possible program executions. As the latter extracts its
information from a conservative approximation of all possible ex-
ecutions, it is in contrast often less precise but always valid. How-
ever, most users are not acquainted with the specific manner in
which this behavioral information is extracted, nor with the way it
is presented as logic facts. Moreover, previous logic meta program-
ming experiments with a source code meta model [8, 18], static [5]
or dynamic analysis behavioral meta model [6, 7], have shown that
the nature of the meta model is of great influence on how and even
if a pattern can be expressed in a logic rule. This requires devel-
opers to understand the different program representations and even
use different strategies to describe and detect a wide range of im-
plementation patterns.

To summarize this section, we have identified a number of de-
sirable properties for a logic pattern query language, which aren’t
exhibited by a plain logic program query language. First of all, the
use of a plain logic program query language often results in an op-
erational definition of the search for a pattern rather than the desired
declarative specification of its essence. Secondly, this specification
should resemble the pattern’s prototypical source code implemen-
tation familiar to developers in stead of unfamiliar logic predi-
cates which moreover depend on one specific representation of the
base program. Thirdly, source code pattern specifications need to
integrate seamlessly with the logic program query language. As
such, they should support the language’s multi-directionality, non-
determinism and unification of logic variables. In addition, it must
be possible to compose specifications using the usual logic connec-
tives and, or, and not. Finally, given a declarative specification of
a sought pattern, the pattern query language should employ a search
strategy that recognizes concrete instances of the pattern, possibly
against multiple base program representations.

2.3 Source Code Templates
In order to support the declarative description and efficacious de-
tection of implementation patterns, we have extended the SOUL
logic program query language with a source code template con-
struct. These templates support the declarative specification of im-
plementation patterns in the syntax of the base program language.
An implementation pattern is thus described using its prototypical
source code implementation with provisions for variability. Source
code templates resemble concrete source code with “cutouts” de-
marcated by logic variables. We support five different types of
source code templates: statements, expressions, field declarations,
method declarations and class declarations. We will briefly intro-
duce each template type using an example query.

Statement Templates A number of logic source code template
constructs for Java statements are depicted in Figure 6. Each tem-
plate comprises a single-argument predicate jtStatement/13,
followed by a sequence of concrete syntax elements delimited
by braces. These are exactly those elements recognized by the
Statement production rule in the Java Language Specification’s
grammar [10]. Source code templates can be used in the logic pro-
gram query language anywhere a logic condition is allowed: e.g. in
the body of logic rules or in a logic query. While the next section
will detail how source code templates are resolved, it suffices to
say for now that a template’s concrete syntax elements are matched
against the program under investigation and that any matching pro-
gram element will be bound to —or more precisely, unified with—
the argument in the template’s predicate. When the logic program-
ming language is asked for all solutions to the first logic query in

3 The functor of the jtStatement/1 predicate stems from Java Template
Statement.

1 if jtStatement(?statement){ var = val; }

2 if jtStatement(?statement){ return ?e; }
3 if jtStatement(?statement){ return ?e; },
4 isReturn(?statement), isExpression(?e)
5 if jtStatement(?statement){ ?x = (?type) ?e; }

6 if jtStatement(?s){ if(?cond) ?t; else ?e; },
7 or(isBlock(?t), isReturn(?t))
8 if jtStatement(?s){ if(?cond) {?t;} else ?e; }

9 if jtStatement(?statement){ ?statement; }
10 if jtStatement(?statement){ ?s; },
11 equals(?s,?statement)

Figure 6. Some example logic queries involving source code tem-
plates for statements.

Figure 6, it will present bindings for the logic variable ?statement
matching the Java source code between the template’s braces. In
other words, through the template’s predicate argument we will be
presented all Java statements assigning a variable val to a variable
var.

The second example query illustrates that logic variables can
be used as placeholders for productions originating from a non-
terminal in the Statement grammar production rule. Solutions to
this query will have a return statement bound to the ?statement
logic variable, while the expression-part of this statement will be
bound to the ?e logic variable. The logic query on lines 4–5 com-
prises the same template and two additional logic conditions which
explicitly check the bindings for the template’s variables. These
conditions are however redundant as the constraints on the variable
bindings are already implicitly implied by the template itself. Line
6 has another example of a source code template containing logic
variables: upon evaluation, ?statement will be bound to any assign-
ment statement assigning to a left hand side ?x the value of a cast of
an expression ?e to a type ?type. The queries in lines 8–10 involve
if-statement templates. Given a program containing the statements
if(true) return true; else return false; and if(true) {return 1;}

else return 0;, it is interesting to note the difference between the
solutions given for the first and second query. The results for the
first query will contain both if-statements, binding ?t either to the
statement return true; or to the block statement. In contrast, the
results for the second query won’t include the first if-statement,
binding ?t only to the statement return 1;. Finally, the query on
line 12 illustrates that a logic variable followed by a semicolon is
allowed in lieu of concrete syntax elements as well. It will match
any statement in the program under investigation. As the query on
lines 13–14 demonstrates, this logic variable will always equal the
argument of the statement template’s predicate.

Expression Templates Figure 7 lists a number of logic queries
involving source code templates for Java expressions. Once more,
the argument of the jtExpression/1 predicate will be bound to
those expressions from the actual base program matching the con-
crete syntax elements between the template’s braces. While these
elements must adhere to the Expression production rule in the
Java grammar, logic variables are allowed as placeholders for pro-
ductions originating from a non-terminal in the production rule. As
the first example query illustrates, a logic variable is also allowed
as the single element between a template’s source code braces. In
this case, the variable ?expression will match any expression in the
program under investigation. The logic queries on lines 3–7 all in-
volve source code templates matching cast expressions. The first
query will match any cast to the Object class, binding the logic
variable ?e to the expression whose value is being cast. The second

1 if jtExpression(?expression){ ?expression }

2 if jtExpression(?cast){ (java.lang.Object) ?expression }
3 if class(?type),
4 jtExpression(?expression){ (?type) ?e }
5 if jtExpression(?expression){ (?type) ?e },
6 jtFieldDeclaration(?d){ ?type ?name; }

7 if jtExpression(?expression){ ?x.?f }
8 if jtExpression(?base){ this },
9 jtExpression(?expression){ ?base.?f }

10 if jtExpression(?e){ new java.lang.Integer(?argument) }
11 if jtClassDeclaration(?c){ class Integer {} },
12 jtExpression(?e){ new ?c(?argumentList) }

13 if jtExpression(?e){ this.?selector(?argumentList) }
14 if jtExpression(?e){ ?receiver.?selector(?a1, ?a2) }
15 if jtExpression(?e){ ?x.?selector(?arg1, (?type) ?e2) }

Figure 7. Some example logic queries involving source code tem-
plates for expressions.

query recognizes only casts to a class found in the base program’s
source code. For this it relies on the class/1 predicate from the
structural meta model to restrict the template’s ?type variable. The
query on lines 6–7 will in contrast only report casts to a type of a
field declaration in the base program. The logic variable ?expres-
sion in the query on line 9 will be bound to field access expressions
whose base corresponds to the value of the variable ?x and field
corresponds to the value of the variable ?f. Likewise, the query on
lines 10–11 will report only accesses to expressions recognized by
the template on line 10 as matching the this special variable. In
solutions to both of the queries on lines 13–15, the logic variable
?e will always be bound to expressions creating an instance of the
Integer class. However, the value of the ?argument variable in
solutions to the first query will match the instance creation expres-
sion’s single argument expression. The value of the ?argumentList
variable will however be a singleton list containing this argument
expression. The template differentiates between both cases on the
basis of a List-suffix naming convention for logic variables. Fi-
nally, lines 17–19 contain examples of templates matching method
invocation expressions. The first template matches all this-sends
of a message with name ?selector and argument list ?argumentList.
The second template matches only two-argument message sends of
?selector to any receiving expression ?receiver, binding the first
argument expression to the logic variable ?a1 and the second ar-
gument expression to the logic variable ?a2. The template on the
last line will match any two-argument sends where the second ar-
gument expression is a cast of an expression ?e2 to a type ?type.

Declaration Templates Figure 8 concludes our discussion on the
syntax of the new logic source code template construct. It lists a
number of example queries involving the three remaining types of
templates we haven’t discussed yet: class declarations, field decla-
rations and method declarations. In solutions to the first logic query,
the logic variable ?c will be bound to the java.lang.Object
class. Solutions to the second query will comprise all class ?c -
superclass ?super pairs in the queried base program. The query on
line 4 illustrates a property of the logic variables in source code
templates we haven’t encountered before: they might function as
placeholders for productions from multiple non-terminals in a pro-
duction rule. In this case, the logic variable ?member in the body
of a class ?c might represent a field declaration or a method decla-
ration or even an inner class. The source code template in the query
on line 5 is an example of a “recursive” template. It will match any
class having a public field ?f of its own type. The query on line 7

1 if jtClassDeclaration(?c){ class Object {} }
2 if jtClassDeclaration(?c){ class ?cn extends ?super {} }

3 if jtClassDeclaration(?c){ class ?cn { ?member } }
4 if jtClassDeclaration(?c){ class ?cn { public ?c ?f; } }

5 if jtFieldDeclaration(?f){ public Integer foo; },
6 jtClassDeclaration(?c){ class ?cn { ?f } }

7 if jtMethodDeclaration(?m){ public int ?name() { ?s;} }
8 if jtMethodDeclaration(?m){ public ?type ?name() {
9 ?x = ?y;

10 return e;
11 }
12 }

Figure 8. Some example logic queries involving source code tem-
plates for class and class member declarations.

will match any class ?c with a field ?f matching the field public

Integer foo;. Finally, the method declaration template on line 10
matches any method named ?name containing a statement ?s. The
last method declaration template matches any method of type ?type
named ?name containing an assignment statement followed by a
return of an expression ?e.

3. Resolving Source Code Template Queries
Now the syntax of the logic source code template construct has
been established, it is time to detail the way these templates are
matched against the program under investigation.

As pointed out in section 2.2, one of the main objectives for our
logic pattern query language was to support the description of an
implementation pattern in a declarative manner using its prototyp-
ical implementation. To this end, we introduced logic source code
templates as new syntactic elements in the logic program query lan-
guage. Solutions to a logic query involving such a template consist
of bindings for the template’s predicate argument adhering to the
constraints imposed by the template’s source code. Given a source
code template describing a pattern’s prototypical implementation,
the logic language should however also recognize as many of the
pattern’s implementation variants as possible. The constraints a
template imposes on the bindings for its predicate argument are
therefore not solely syntactic in nature. Instead, these constraints
demand that a positive match gives rise to run-time behavior that is
comparable to the behavior the template’s source code implements.
This way, although logic templates contain concrete source code,
they are able to capture the intention of the code.

3.1 Non-behavioral Constraints
We will start our exposition with the non-behavioral constraints
imposed by a template on its predicate argument. These are con-
straints which rely only on the structural and source code meta
models introduced in section 2.1. Given our flexible program
querying goal, we have made the deliberate decision to include
only constraints for those concrete syntax elements that are ex-
plicitly listed in a template’s source code. This design decision
accounts for the previously highlighted difference between the so-
lutions for the if-template queries on lines 8–10 of Figure 6. As
a block statement is listed among the source code in the second
query’s template, it is also required in bindings for its predicate
argument. The same design decision explains why a solution for
the first class declaration template in Figure 8 binds the variable
?c to the class java.lang.Object even though the template’s
class body is empty. Likewise, an empty body in a method decla-
ration template is interpreted as if no constraints are desired on the

statements in the matching methods4. In contrast, if a statement is
present in a method declaration template’s body, it should also oc-
cur in bindings for its predicate argument. Whenever the template
body comprises multiple statements, some additional constraints
enforce their ordering. As we will see later on, these sequencing
constraints are however behavioral in nature.

3.2 Behavioral Constraints Imposed by Expressions
Section 2.2 used a particular implementation variant of the getter
method pattern to point out the necessity of including behavioral
information in a query language’s search strategy. In this imple-
mentation, the return statement’s expression is not just the name of
the protected field, but rather an arbitrary expression whose run-
time value coincides with the value of the field. Detecting such a
variant requires information about the run-time values to which ex-
pressions evaluate.

A behavioral meta model As this run-time information should be
valid for every possible run of the program under investigation, an
analysis has to introduce some approximations in the information
it computes. Informally, many static analyses can be regarded as
if they were executing the analysed program with abstract descrip-
tions of the concrete values that appear during an ordinary program
execution. To make this idea somewhat more tangible, an integer
expression’s parity can for instance be used as an abstract descrip-
tion of the set of it’s possible run-time values. Of course, parity
abstract value descriptions are of little use when run-time informa-
tion is needed to resolve general-purpose template queries.

As run-time interactions between objects shape a program’s
overall behavior in the object-oriented paradigm, statically-obtained
knowledge about the objects an expression might evaluate to is cru-
cial in resolving template queries about this program. This knowl-
edge can be derived through a points-to analysis [21]. Such a static
analysis computes at compile-time the set of all heap objects a ref-
erence might point to during an execution of the program. We will
use these points-to sets as abstract value descriptions for reference
expressions in the program’s behavioral meta model.

To obtain points-to sets, we rely on the Spark [16] toolkit of the
Soot Java Optimization Framework. It implements a conservative
flow-insensitive, context-insensitive points-to analysis for Java. Al-
though flow-insensitiveness and context-insensitiveness are one of
the major sources of imprecision in the analysis of object-oriented
programs, they also guarantee a reasonably efficient computation
[12] —whereas the precision of the analysis results has until now
been sufficient for our purposes.

Resolving expression templates While the above describes the
nature of the necessary behavioral information, we have not yet
detailed how this information is involved in the resolution of ex-
pression templates. After all, logic template constructs contain a
mixture of concrete source code and logic variables describing a
pattern’s prototypical implementation. For the sake of simplicity,
we’ll concentrate on the resolution of cast expression templates.
Other expression templates are resolved analogously.

Both the type and the subexpression part of the code in a cast
expression’s template impose constraints on the bindings for the
template’s predicate argument. A first constraint demands this ar-
gument to be bound to a cast in the program under investigation.
A second constraint requires the compatibility of the type the tem-
plate’s subexpression is cast to and the type the program’s subex-
pression is cast to. As these constraints are still exclusively syn-
tactic, they can be verified against the source code meta model.

4 At this point, it should be noted that the design of our template language is
still a work in progress. In the future, we would for instance like to include
features to query the base program for methods with an empty body.

present in a method declaration template’s body, it should also oc-
cur in bindings for its predicate argument. Whenever the template
body comprises multiple statements, some additional constraints
enforce their ordering. As we will see later on, these sequencing
constraints are however behavioral in nature.

2.4.2 Behavioral Constraints Imposed by Expressions
Section 2.2 used a particular implementation variant of the getter
method pattern to point out the necessity of including behavioral
information in a query language’s search strategy. In this imple-
mentation, the return statement’s expression is not just the name of
the protected field, but rather an arbitrary expression whose run-
time value happens to coincide with the value of the field. Detect-
ing such a variant requires information about the run-time values
expressions evaluate to.

A behavioral meta model For run-time information to be valid
for every possible program execution, a static analysis however
has to introduce some abstractions. Informally, many static anal-
yses can be regarded as if they were executing the analysed pro-
gram with abstract descriptions of the concrete values that appear
during an ordinary program execution. This is especially true for
those analyses constructed according to the abstract interpretation
methodology [4]. To make this idea somewhat more tangible, an
integer expression’s parity can for instance be used as an abstract
description of the set of it’s possible run-time values. Of course,
parity abstract value descriptions are of little use when run-time
information is needed to resolve general-purpose template queries.

As run-time interactions between objects shape a program’s
overall behavior in the object-oriented paradigm, statically-obtained
knowledge about the objects an expression might evaluate to is cru-
cial in resolving template queries about this program. This knowl-
edge can be derived through a points-to analysis [24]. Such a static
analysis computes at compile-time the set of all heap objects a ref-
erence might point to during an execution of the program. We will
use these points-to sets as abstract value descriptions for reference
expressions in the program’s behavioral meta model.

To obtain points-to sets, we rely on the Spark [15] toolkit of the
Soot Java Optimization Framework. It implements a conservative
flow-insensitive, context-insensitive points-to analysis for Java. In-
formally, a flow-insensitive analysis disregards the order of state-
ments in a method and is thus unable to take strong updates to
variables into account (e.g. an assignment overriding a previous
variable assignment). A context-insensitive analysis on the other
hand, doesn’t perform a separate analysis for the different calling
contexts of a method. Although flow-insensitiveness and context-
insensitiveness are one of the major sources of imprecision in the
analysis of object-oriented programs, they also guarantee a reason-
ably efficient computation [12] —whereas the precision of the anal-
ysis results has until now been sufficient for our purposes.

Resolving expression templates While the above describes the
nature of the necessary behavioral information, we have not yet
detailed how this information is involved in the resolution of ex-
pression templates. After all, logic template constructs contain a
mixture of concrete source code and logic variables describing a
pattern’s prototypical implementation. For the sake of simplicity,
we’ll concentrate on the resolution of cast expression templates.
Other expression templates are resolved analogously.

Both the type and the subexpression part of the code in a cast
expression’s template impose constraints on the bindings for the
template’s predicate argument. A first constraint demands this ar-
gument to be bound to a cast in the program under investigation.
A second constraint requires the compatibility of the type the tem-
plate’s subexpression is cast to and the type the program’s subex-
pression is cast to. As these constraints are still exclusively syn-

tactic, they can be verified against the source code meta model.
This is however no longer the case for the constraint imposed by
the template’s subexpression. This constraint does not demand the
syntactic equivalence of both cast subexpressions, but demands the
abstract descriptions of their possible run-time values to be com-
patible instead. With points-to sets being the designated abstract
value descriptions, this constraint amounts to determining whether
both intersect. Put differently, although the casts’ subexpressions
might deviate syntax-wise, the constraint isn’t violated in case the
behavioral meta model indicates they might evaluate to overlap-
ping sets of objects at run-time. However, as templates can contain
logic variables as well, in reality there’s a full-fledged unification
procedure behind this constraint [21].

The same constraint-based resolution applies to expressions
within a statement template. This way, logic templates resolve to
base program elements implementing similar behavior. The fol-
lowing query highlights this property of our logic pattern query
language:

if jtStatement(?s1){ return ?expression; },
jtStatement(?s2){ return ?expression; },
differs(?s1, ?s2)

It resolves to the set of all return statements ?s1 and ?s2 that syn-
tactically differ, but might return overlapping sets of objects at
run-time. For the second return statement’s expression, any com-
plicated expression is allowed provided it possibly evaluates dur-
ing a program execution to the first return statement’s expression.
The second template’s ?expression variable effectively introduces
a constraint on the possible values returned by any matching return
statement.

2.4.3 Behavioral Constraints Imposed by Statement
Sequences

As illustrated by Figure 8, a method declaration template’s body
may contain several statements that must be resolved. In the pre-
vious section, we have briefly described the resolution of a logic
template for an individual statement and the expressions it con-
tains. However, on the resolution of multiple statements within a
block or method body template, two additional types of constraints
have to be imposed. The resolution for each individual statement in
the template must in some way be contained by the resolution of the
template itself, i.e. the value bound to its predicate argument. This
is enforced by a containment constraint. Moreover, the resolved
statements must be executed in an order compatible with the order
that was specified in the template. This is enforced by an ordering
constraint. As we will see, the validation of these constraints in a
program querying setting calls for yet another behavioral program
meta model. The following template query for a block statement
?block containing three consecutive statements ?s1, ?s2 and ?s3
will illustrate this need:

if jtStatement(?block){ ?s1; ?s2; ?s3;}

Recalling our design decision to impose constraints only for
the concrete syntax elements explicitly specified in a template,
the ordering constraint should take into account the possibility of
other statements between the resolved ?s1, ?s2 and ?s3 statements.
Likewise, the containment constraint should take possible layers of
indirections into account.

{
a();
{ ?s2; };
b();

}

6 2006/10/26

a() {
?s1;

}

b() {
c();

}

c() {
?s3;

}

behavioral
also
simplest call graph is obtained through class hierarchy analysis,

while correct it is also pretty imprecise and large as it assumes that
all refercnes can point to any object of the correct type however, as
we already had to compute points-to analysis information for the
behavioral meta model used to resolve expression templates, the
same information can be used to

for each method reachabl
In contrast, if a statement is present in a method declaration

template’s body, it should also occur in bindings for its predicate
argument. Whenever the template body comprises multiple state-
ments, some additional constraints enforce their ordering. As we
will see later on, these sequencing constraints are however behav-
ioral in nature.

2.5 An Open Implementation
To conclude our exposition, we think it is useful to mention that
the entire matching process of the source code templates can be
adapted in a straightforward way. Each of the templates is actually
translated automatically to a logic query that expresses the con-
straints described in the template. This translation process is again
executed by a logic program which can be changed to change the
semantics of the source code templates. We can, for example, adapt
the translation such that the queries no longer use the behavioral
information of the code, or we can include additional meta mod-
els and incorporate their use in the matching process. In essence,
we have set up an environment where we can now easily exper-
iment with different matching processes and meta models. The
open-ended implementation of the translation process is an integral
part of the last version of the SOUL language [25].

3. Practical Detection of Interesting
Implementation Patterns

In this section, we demonstrate the detection of some interesting
implementation patterns by means of our source code templates.
In particular, we apply them to the detection of accessor meth-
ods, inadvertent method invocations on null and erroneous behavior
during iterations over collections. Although there exist dedicated
techniques for the detection of each of these patterns, we primar-
ily intend to demonstrate how our technique provides a uniform
language to describe them all. In doing so, we illustrate how de-
velopers can use our technique to detect patterns that are specific to
their development context. Each of the examples illustrates how the
declarative description of a source code template can detect multi-
ple instantiations of the same pattern, as long as the pattern adheres
to the intention that is expressed in the template. The combination
of behavioral and structural similarity matching is an important en-
abling technique in all of these examples.

3.1 Detecting and Enforcing Accessor Methods
The use of accessor methods is an example of good practice in
object-oriented software development. Accessor methods provide

disciplined access to the data fields contained in the objects and are
useful to invoke additional behavior upon each access or update to
the data fields. In order for accessors to work correctly, developers
need to be enforced to use them. A tool that assists in their enforce-
ment needs to detect any references to variables that do not occur
within the scope of an accessor method. However, since there are
many ways to implement an accessor method, the specification of
detection rules that find all these styles of accessor methods can be
a hard and complex process.

In figure 9, we show some typical accessor methods that each
exhibit different structure and behavior. The setHour method first
verifies the incoming value and, if appropriate, assigns the value
to the hour variable. Next, it also triggers the dependency up-
date mechanism. The gethourlazy method is an example of a
lazy accessor method, i.e. the variable is only assigned a value
upon the first execution of the accessor method. Similarly, the
gethourlazytoo method is a variation of the same behavior,
but with some different structure. Finally, the getBuffer and
setBuffer methods are accessor methods for the buffer vari-
able. These are yet another example of accessor methods in which
we implement the behavior of a buffer: the buffer variable can
only be assigned a new value if it is emptied, which occurs upon a
retrieval of its value.

The detection of all these different styles of accessor methods
can be relatively straightforward, as we show in figure 10 which
contains two separate queries to achieve this purpose. The first
query (lines 1–6) detects the getter methods and the second query
(lines 8–13) detects the setter methods. Both queries make use of a
complete class template because they need to match both the actual
accessor method as well as the declaration of the field it references.
This is because the getter methods are detected as those methods
that return the value of a private instance variable of the class.
This can be observed on lines 3 and 4, because the ?field logic
variable must both bind to the declaration of the instance variable
as well as to the expression that is returned. In other words, the
field and the expression need to be the same. However, because
the template is not only matched using structural matching on the
source code, but also through behavioral similarity, all methods
that eventually may return the value of the field are detected as
getter methods. This template thus does not restrict that the method
body must syntactically return the variable, but rather imposes
a behavioral similarity constraint on the value returned by the
method. Furthermore, the getter method’s signature must have no
arguments and its return type needs to be identical to the type of the
field. Again, this is expressed in the template because we use the
same logic variable ?type to bind to the return type of the method
and to the type of the field. This part of the template does require
structural matching on the source. Likewise, the setter methods are
detected as those methods that assign their sole argument to the a
private field, and the type of the argument needs to be identical to
the type of the field.

These queries can be further refined with additional constraints
that verify the naming conventions or other possible coding conven-
tions that are agreed upon by the development team. Furthermore,
a tool can use the results of these queries to verify if all direct field
accesses occur in a method that is detected as an accessor method.

3.2 Finding ”Inadvertent Invocation on null” bugs
A software development environment often signals the developers
about incorrect syntax, inexistent method names, incorrect variable
references, etc. Many development environments are even extensi-
ble in the sense that they permit to write plugins that can produce
additional warnings which are otherwise only detected at compile-
time or even at run-time. One such a run-time error is the invocation
of a message on the null value. Such an error typically occurs in

7 2006/10/26

a() {
?s1;

}

b() {
c();

}

c() {
?s3;

}

behavioral
also
simplest call graph is obtained through class hierarchy analysis,

while correct it is also pretty imprecise and large as it assumes that
all refercnes can point to any object of the correct type however, as
we already had to compute points-to analysis information for the
behavioral meta model used to resolve expression templates, the
same information can be used to

for each method reachabl
In contrast, if a statement is present in a method declaration

template’s body, it should also occur in bindings for its predicate
argument. Whenever the template body comprises multiple state-
ments, some additional constraints enforce their ordering. As we
will see later on, these sequencing constraints are however behav-
ioral in nature.

2.5 An Open Implementation
To conclude our exposition, we think it is useful to mention that
the entire matching process of the source code templates can be
adapted in a straightforward way. Each of the templates is actually
translated automatically to a logic query that expresses the con-
straints described in the template. This translation process is again
executed by a logic program which can be changed to change the
semantics of the source code templates. We can, for example, adapt
the translation such that the queries no longer use the behavioral
information of the code, or we can include additional meta mod-
els and incorporate their use in the matching process. In essence,
we have set up an environment where we can now easily exper-
iment with different matching processes and meta models. The
open-ended implementation of the translation process is an integral
part of the last version of the SOUL language [25].

3. Practical Detection of Interesting
Implementation Patterns

In this section, we demonstrate the detection of some interesting
implementation patterns by means of our source code templates.
In particular, we apply them to the detection of accessor meth-
ods, inadvertent method invocations on null and erroneous behavior
during iterations over collections. Although there exist dedicated
techniques for the detection of each of these patterns, we primar-
ily intend to demonstrate how our technique provides a uniform
language to describe them all. In doing so, we illustrate how de-
velopers can use our technique to detect patterns that are specific to
their development context. Each of the examples illustrates how the
declarative description of a source code template can detect multi-
ple instantiations of the same pattern, as long as the pattern adheres
to the intention that is expressed in the template. The combination
of behavioral and structural similarity matching is an important en-
abling technique in all of these examples.

3.1 Detecting and Enforcing Accessor Methods
The use of accessor methods is an example of good practice in
object-oriented software development. Accessor methods provide

disciplined access to the data fields contained in the objects and are
useful to invoke additional behavior upon each access or update to
the data fields. In order for accessors to work correctly, developers
need to be enforced to use them. A tool that assists in their enforce-
ment needs to detect any references to variables that do not occur
within the scope of an accessor method. However, since there are
many ways to implement an accessor method, the specification of
detection rules that find all these styles of accessor methods can be
a hard and complex process.

In figure 9, we show some typical accessor methods that each
exhibit different structure and behavior. The setHour method first
verifies the incoming value and, if appropriate, assigns the value
to the hour variable. Next, it also triggers the dependency up-
date mechanism. The gethourlazy method is an example of a
lazy accessor method, i.e. the variable is only assigned a value
upon the first execution of the accessor method. Similarly, the
gethourlazytoo method is a variation of the same behavior,
but with some different structure. Finally, the getBuffer and
setBuffer methods are accessor methods for the buffer vari-
able. These are yet another example of accessor methods in which
we implement the behavior of a buffer: the buffer variable can
only be assigned a new value if it is emptied, which occurs upon a
retrieval of its value.

The detection of all these different styles of accessor methods
can be relatively straightforward, as we show in figure 10 which
contains two separate queries to achieve this purpose. The first
query (lines 1–6) detects the getter methods and the second query
(lines 8–13) detects the setter methods. Both queries make use of a
complete class template because they need to match both the actual
accessor method as well as the declaration of the field it references.
This is because the getter methods are detected as those methods
that return the value of a private instance variable of the class.
This can be observed on lines 3 and 4, because the ?field logic
variable must both bind to the declaration of the instance variable
as well as to the expression that is returned. In other words, the
field and the expression need to be the same. However, because
the template is not only matched using structural matching on the
source code, but also through behavioral similarity, all methods
that eventually may return the value of the field are detected as
getter methods. This template thus does not restrict that the method
body must syntactically return the variable, but rather imposes
a behavioral similarity constraint on the value returned by the
method. Furthermore, the getter method’s signature must have no
arguments and its return type needs to be identical to the type of the
field. Again, this is expressed in the template because we use the
same logic variable ?type to bind to the return type of the method
and to the type of the field. This part of the template does require
structural matching on the source. Likewise, the setter methods are
detected as those methods that assign their sole argument to the a
private field, and the type of the argument needs to be identical to
the type of the field.

These queries can be further refined with additional constraints
that verify the naming conventions or other possible coding conven-
tions that are agreed upon by the development team. Furthermore,
a tool can use the results of these queries to verify if all direct field
accesses occur in a method that is detected as an accessor method.

3.2 Finding ”Inadvertent Invocation on null” bugs
A software development environment often signals the developers
about incorrect syntax, inexistent method names, incorrect variable
references, etc. Many development environments are even extensi-
ble in the sense that they permit to write plugins that can produce
additional warnings which are otherwise only detected at compile-
time or even at run-time. One such a run-time error is the invocation
of a message on the null value. Such an error typically occurs in

7 2006/10/26

a() {
?s1;

}

b() {
c();

}

c() {
?s3;

}

behavioral
also
simplest call graph is obtained through class hierarchy analysis,

while correct it is also pretty imprecise and large as it assumes that
all refercnes can point to any object of the correct type however, as
we already had to compute points-to analysis information for the
behavioral meta model used to resolve expression templates, the
same information can be used to

for each method reachabl
In contrast, if a statement is present in a method declaration

template’s body, it should also occur in bindings for its predicate
argument. Whenever the template body comprises multiple state-
ments, some additional constraints enforce their ordering. As we
will see later on, these sequencing constraints are however behav-
ioral in nature.

2.5 An Open Implementation
To conclude our exposition, we think it is useful to mention that
the entire matching process of the source code templates can be
adapted in a straightforward way. Each of the templates is actually
translated automatically to a logic query that expresses the con-
straints described in the template. This translation process is again
executed by a logic program which can be changed to change the
semantics of the source code templates. We can, for example, adapt
the translation such that the queries no longer use the behavioral
information of the code, or we can include additional meta mod-
els and incorporate their use in the matching process. In essence,
we have set up an environment where we can now easily exper-
iment with different matching processes and meta models. The
open-ended implementation of the translation process is an integral
part of the last version of the SOUL language [25].

3. Practical Detection of Interesting
Implementation Patterns

In this section, we demonstrate the detection of some interesting
implementation patterns by means of our source code templates.
In particular, we apply them to the detection of accessor meth-
ods, inadvertent method invocations on null and erroneous behavior
during iterations over collections. Although there exist dedicated
techniques for the detection of each of these patterns, we primar-
ily intend to demonstrate how our technique provides a uniform
language to describe them all. In doing so, we illustrate how de-
velopers can use our technique to detect patterns that are specific to
their development context. Each of the examples illustrates how the
declarative description of a source code template can detect multi-
ple instantiations of the same pattern, as long as the pattern adheres
to the intention that is expressed in the template. The combination
of behavioral and structural similarity matching is an important en-
abling technique in all of these examples.

3.1 Detecting and Enforcing Accessor Methods
The use of accessor methods is an example of good practice in
object-oriented software development. Accessor methods provide

disciplined access to the data fields contained in the objects and are
useful to invoke additional behavior upon each access or update to
the data fields. In order for accessors to work correctly, developers
need to be enforced to use them. A tool that assists in their enforce-
ment needs to detect any references to variables that do not occur
within the scope of an accessor method. However, since there are
many ways to implement an accessor method, the specification of
detection rules that find all these styles of accessor methods can be
a hard and complex process.

In figure 9, we show some typical accessor methods that each
exhibit different structure and behavior. The setHour method first
verifies the incoming value and, if appropriate, assigns the value
to the hour variable. Next, it also triggers the dependency up-
date mechanism. The gethourlazy method is an example of a
lazy accessor method, i.e. the variable is only assigned a value
upon the first execution of the accessor method. Similarly, the
gethourlazytoo method is a variation of the same behavior,
but with some different structure. Finally, the getBuffer and
setBuffer methods are accessor methods for the buffer vari-
able. These are yet another example of accessor methods in which
we implement the behavior of a buffer: the buffer variable can
only be assigned a new value if it is emptied, which occurs upon a
retrieval of its value.

The detection of all these different styles of accessor methods
can be relatively straightforward, as we show in figure 10 which
contains two separate queries to achieve this purpose. The first
query (lines 1–6) detects the getter methods and the second query
(lines 8–13) detects the setter methods. Both queries make use of a
complete class template because they need to match both the actual
accessor method as well as the declaration of the field it references.
This is because the getter methods are detected as those methods
that return the value of a private instance variable of the class.
This can be observed on lines 3 and 4, because the ?field logic
variable must both bind to the declaration of the instance variable
as well as to the expression that is returned. In other words, the
field and the expression need to be the same. However, because
the template is not only matched using structural matching on the
source code, but also through behavioral similarity, all methods
that eventually may return the value of the field are detected as
getter methods. This template thus does not restrict that the method
body must syntactically return the variable, but rather imposes
a behavioral similarity constraint on the value returned by the
method. Furthermore, the getter method’s signature must have no
arguments and its return type needs to be identical to the type of the
field. Again, this is expressed in the template because we use the
same logic variable ?type to bind to the return type of the method
and to the type of the field. This part of the template does require
structural matching on the source. Likewise, the setter methods are
detected as those methods that assign their sole argument to the a
private field, and the type of the argument needs to be identical to
the type of the field.

These queries can be further refined with additional constraints
that verify the naming conventions or other possible coding conven-
tions that are agreed upon by the development team. Furthermore,
a tool can use the results of these queries to verify if all direct field
accesses occur in a method that is detected as an accessor method.

3.2 Finding ”Inadvertent Invocation on null” bugs
A software development environment often signals the developers
about incorrect syntax, inexistent method names, incorrect variable
references, etc. Many development environments are even extensi-
ble in the sense that they permit to write plugins that can produce
additional warnings which are otherwise only detected at compile-
time or even at run-time. One such a run-time error is the invocation
of a message on the null value. Such an error typically occurs in

7 2006/10/26

1

2
2.1

if jtStatement(?block){ ?s1; ?s2; ?s3;}

Figure 9. Multiple layers and kinds of indirection for the contain-
ment and ordering constraint to take into account.

This is however no longer the case for the constraint imposed by
the template’s subexpression. This constraint does not demand the
syntactic equivalence of both cast subexpressions, but demands the
abstract descriptions of their possible run-time values to be com-
patible instead. With points-to sets being the designated abstract
value descriptions, this constraint amounts to determining whether
both intersect. Put differently, although the casts’ subexpressions
might deviate syntax-wise, the constraint isn’t violated in case the
behavioral meta model indicates they might evaluate to overlap-
ping sets of objects at run-time. However, as templates can contain
logic variables as well, in reality there’s a full-fledged unification
procedure behind this constraint [5].

The same constraint-based resolution applies to expressions
within a statement template. This way, logic templates resolve to
base program elements implementing similar behavior. The fol-
lowing query highlights this property of our logic pattern query
language:

if jtStatement(?s1){ return ?expression; },
jtStatement(?s2){ return ?expression; },
differs(?s1, ?s2)

It resolves to the set of all return statements ?s1 and ?s2 that syn-
tactically differ, but might return overlapping sets of objects at run-
time. The statements return foo; and return this.getFoo(); repre-
sent possible bindings for the ?s1 and ?s2 logic variables. Any
complicated expression is allowed for the second return statement’s
expression, provided it possibly evaluates during a program execu-
tion to the first return statement’s expression. The second template’s
?expression variable effectively introduces a constraint on the pos-
sible values returned by any matching return statement.

3.3 Behavioral Constraints Imposed by Statement Sequences
In the previous section, we have briefly described the resolution of
a logic template for an individual statement and the expressions it
contains. However, two additional constraints need to be imposed
on the resolution of a block statement or method body template.
The resolution for each individual statement in the template must
in some way be contained by the resolution of the template itself,
i.e. the value bound to its predicate argument. This is enforced by
a containment constraint. Moreover, the resolved statements must
be executed in an order compatible with the order specified in
the template. This is enforced by an ordering constraint. As we
will see, the validation of these constraints in a program querying
setting calls for yet another behavioral program meta model.

Figure 9 illustrates this need using a template query for a block
statement ?block containing three consecutive statements ?s1, ?s2
and ?s3. In order to detect as many implementation variants as pos-
sible, the containment constraint should take multiple layers of pos-
sible indirections into account. Depicted is a matching block state-
ment wherein statement ?s2 resides in another block statement and
wherein statement ?s3 is amongst the statements in a method called
from a method called from within the matching block statement.

Statements can thus be contained within any other statement reach-
able from the template’s ?block binding. In addition to these indi-
rections, the ordering constraint has to take into account the pos-
sibility of other statements between the resolved ?s1, ?s2 and ?s3
statements —recalling our design decision to impose constraints
only for the concrete syntax elements explicitly specified in a tem-
plate.

Another behavioral meta model Accommodating the needs of
the containment constraint, the second behavioral program meta
model offers information about the methods reachable from a par-
ticular source statement. This information corresponds to all tar-
get methods within the application found on a transitive call chain
starting at the source statement. To accommodate the needs of the
ordering constraint, every edge along this call chain has a number
representing its position in the chain. Statement ?s3 can be reached
taking the first invocation in the method found by following the
second invocation in the ?block statement.

This kind of information can be obtained statically through a
call graph analysis. For this, we are once more relying on the Soot
Java Optimization Framework. Since it already had to perform a
points-to analysis for our previous behavioral meta model, it is
moreover able to compute a reasonably precise call graph for each
polymorphic call site by pruning method invocation candidates
based on the site’s points-to set. Less precise analyses have to resort
to elimination based on the call site’s declared type.

3.4 An Open Implementation
To conclude our exposition of the template constructs, we think
it is useful to mention that their entire resolution strategy can be
adapted in a straightforward way. Each of the templates is actually
translated automatically to a logic query expressing the constraints
specified in the template. This translation process is again executed
by a logic program which can be changed to alter the semantics of
the source code templates. We can, for example, adapt the trans-
lation such that the queries no longer use behavioral information
about the code, or we can include additional meta models and in-
corporate their use in the matching process. In essence, we have
set up an environment where we can now easily experiment with
different resolution strategies and meta models. The open-ended
implementation of the translation process is an integral part of the
latest version of the SOUL logic program query language [22].

4. Practical Detection of Interesting
Implementation Patterns

In this section, we demonstrate the detection of some interesting
implementation patterns by means of our source code templates.
In particular, we apply them to the detection of accessor meth-
ods, inadvertent method invocations on null and erroneous behavior
during iterations over collections. Although there exist dedicated
techniques for the detection of each of these patterns, we primar-
ily intend to demonstrate how our technique provides a uniform
language to describe them all. In doing so, we illustrate how de-
velopers can use our technique to detect patterns that are specific to
their development context. Each of the examples illustrates how the
declarative description of a source code template can detect multi-
ple instantiations of the same pattern, as long as the pattern adheres
to the intention that is expressed in the template. The combination
of behavioral and structural similarity matching is an important en-
abling technique in all of these examples.

4.1 Detecting and Enforcing Accessor Methods
The use of accessor methods is an example of good practice in
object-oriented software development. Accessor methods provide
disciplined access to the data fields contained in the objects and are

private Integer hour;
private Integer buffer;

public void sethour(Integer i) {
if(i.intValue()<0 || i.intValue()>23) {

// do something
} else {

hour = i;
this.notifyDependents();

}
}
public Integer gethour() {

return hour;
}
public Integer gethourlazy() {

if(hour==null)
hour = this.currentHour();

return hour;
}
public Integer gethourlazytoo() {

if(hour==null) {
hour = this.currentHour();
return hour;

}
else

return hour;
}
public Integer getBuffer() {

Integer temp;
temp = buffer;
buffer = null;
return temp;

}
public boolean setBuffer(Integer i) {

if(buffer==null) {
buffer = i;
return true;

}
else return false;

}

Figure 10. Some typical accessor methods.

useful to invoke additional behavior upon each access or update to
the data fields. In order for accessors to work correctly, their use
should be enforced. A tool that assists in their enforcement needs
to detect any references to variables that do not occur within the
scope of an accessor method. However, since there are many ways
to implement an accessor method, the specification of detection
rules that find all these styles of accessor methods can be a hard
and complex process.

In Figure 10, we show some typical accessor methods that each
exhibit different structure and behavior. The setHour method first
verifies the incoming value and, if appropriate, assigns the value
to the hour variable. Next, it also triggers the dependency up-
date mechanism. The gethourlazy method is an example of a
lazy accessor method, i.e. the variable is only assigned a value
upon the first execution of the accessor method. Similarly, the
gethourlazytoo method is a variation of the same behavior,
but with some different structure. Finally, the getBuffer and
setBuffer methods are accessor methods for the buffer vari-
able. These are yet another example of accessor methods in which
we implement the behavior of a buffer: the buffer variable can
only be assigned a new value if it is emptied, which occurs upon a
retrieval of its value.

The detection of all these different styles of accessor methods
can be relatively straightforward, as we show in Figure 11 which
contains two separate queries to achieve this purpose. The first

1 if jtClassDeclaration(?c){
2 class ?c {
3 private ?type ?field;
4 public ?type ?name() { return ?field; }
5 }
6 }

7 if jtClassDeclaration(?c){
8 class ?c {
9 private ?type ?field;

10 public ?rt ?name(?type ?var) { ?field = ?var; }
11 }
12 }

Figure 11. Detect accessor methods

query (lines 1–6) detects the getter methods and the second query
(lines 8–13) detects the setter methods. Both queries make use of a
complete class template because they need to match both the actual
accessor method as well as the declaration of the field it references.
This is because the getter methods are detected as those methods
that return the value of a private instance variable of the class.
This can be observed on lines 3 and 4, because the ?field logic
variable must both bind to the declaration of the instance variable
as well as to the expression that is returned. In other words, the
field and the expression need to be the same. However, because
the template is not only matched using structural matching on the
source code, but also through behavioral similarity, all methods
that eventually may return the value of the field are detected as
getter methods. This template thus does not restrict that the method
body must syntactically return the variable, but rather imposes
a behavioral similarity constraint on the value returned by the
method. Furthermore, the getter method’s signature must have no
arguments and its return type needs to be identical to the type of the
field. Again, this is expressed in the template because we use the
same logic variable ?type to bind to the return type of the method
and to the type of the field. This part of the template does require
structural matching on the source. Likewise, the setter methods are
detected as those methods that assign their sole argument to the a
private field, and the type of the argument needs to be identical to
the type of the field.

These queries can be further refined with additional constraints
that verify the naming conventions or other possible coding conven-
tions that are agreed upon by the development team. Furthermore,
a tool can use the results of these queries to verify if all direct field
accesses occur in a method that is detected as an accessor method.

4.2 Detecting Concurrent Modification Exceptions
A possible bug in Java programs happens when a modification
is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 12. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 13 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and

public List list;

public void initializeContainer() {
List l = new LinkedList();
list = l;

}
public void insertElement(Object x) {

Iterator i = list.iterator();
while(i.hasNext()) {

Object o = i.next();
operation(x, (Collection) this.self().list);

}
}
public void operation(Object o, Collection c) {

c.add(o);
}
public Example self() {

return this;
}

Figure 12. Modification of a container during iteration.

1 if jtStatement(?s) {
2 while(?iterator.hasNext()) {
3 ?collection.add(?element);
4 }
5 },
6 jtExpression(?iterator){?collection.iterator()}

Figure 13. Detect additions to a container during iteration.

that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 12. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any
expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4.3 Finding “Inadvertent Invocation on null” bugs
A software development environment often signals the developers
about incorrect syntax, inexistent method names, incorrect variable
references, etc. Many development environments are even extensi-
ble in the sense that they permit to write plugins that can produce
additional warnings which are otherwise only detected at compile-
time or even at run-time. One such a run-time error is the invocation
of a message on the null value. Such an error typically occurs in

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

public void willSendToNull(Integer x) {
if (x == null)

this.performOperation(x);
}
private void performOperation(Integer y) {

y.floatValue();
}

Figure 14. Inadvertent method invocation on null.

1 if jtStatement(?stat){
2 if(x == null) x.?message();
3 },
4 not(jtStatement(?stat){
5 if(x == null) { x = ?exp; x.?message();}
6 }),
7 javaMethodContainsStatement(?method,?stat)

Figure 15. Detect method invocations on null.

systems that use the null value as a special return value, indicat-
ing specific events. Figure 14 illustrates some code that features this
bug. In order to prevent such errors as much as possible, we can use
our approach as a plugin to a development environment and let the
developers write a set of queries that try to detect such errors.

The query of this experiment, shown in Figure 15, can detect
certain inadvertent invocations on the null value. It detects these
by finding all method invocations on variables that are guaranteed
to contain a null value. The first condition detects all the method
invocations on a variable x in the then-branch of an if-statement
that contains the condition (x==null). Next, the second condition
in the query removes all found statements where an assignment to
x occurs on a possible execution path in-between the condition and
the method invocation on x. In other words, we will not find those
places in the code where the variable may be assigned a value after
the null-check. Finally, the last line retrieves the method in which
the statement occurs, which facilitates finding the statement that
leads to the bug.

Once again, this example experiment shows that we are able
to express the simplest implementation of the pattern we wish to
detect in the source code and rely on our matching algorithm to
detect all similar implementations. However, this experiment also
reveals a shortcoming in the current status of our technique. It’s
quite clear that developers would prefer to find all places where the
variable x may contain the null value. In other words, we should
rather write our query such that any possible execution path leading
to the invocation must contain an assignment to the variable. Such
a semantics would detect all method invocations on variables that
may contain a null value. Unfortunately, because of the current
semantics of the matching process for statement sequences, this is
not possible. We do intend to enable the implementation of such
a query as part of our ongoing work with respect to the template
language and the matching process.

Nevertheless, this query shows how the combination of struc-
tural and behavioral matching is necessary to easily detect certain
patterns. First of all, the structural matching allows us to match the
condition in an if-statement. Next, we need behavioral matching to
detect any method invocation in the entire control-flow of the then-
branch. Obviously, if our matching algorithm would only match the
then-branches that directly contain a single method invocation, we
would not find many bugs using this query. Because of the behav-
ioral matching of statement sequences using the call-graph anal-
ysis, we can safely restrict the template to those statements that

are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

5. Related Work
The use of Prolog to query a base program for implementation pat-
terns has received some attention in the past [14, 18]. ASTLOG
[3] is a Prolog-based language for examining abstract syntax trees.
It evaluates logic conditions against ambient parse tree nodes en-
countered during a tree traversal, thus avoiding the need to reify
the base program as logic facts. CodeQuest [11] focuses on scal-
ability issues by translating the Datalog subset of Prolog to SQL
queries. None of these works support concrete syntax templates in
logic queries, nor do they match queries against non-syntactic pro-
gram representations.

Several works have been presented on the use of templates for
code base querying. Works that are closely related to our approach
are the LogicAJ2 [23] and Spoon [19] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [1] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [4], a transformation
is specified as a left hand side template, that must match to the el-
ements which will be transformed, and a right hand side template
which will be used instantiated to replace the matched elements.
SmPL [20] follows a similar principle, it is specified not as a LHS
- RHS rule, but as a Unix diff file that on a single template defines
the changes that must occur on matching elements. SmPL allows
for more semantic matches than JaTS by relaying on the function’s
control flow to match on sequences of statements, and on code
isomorphisms to cope with the different ways to specify a behav-
ior (for example, in C, X == null ↔ !X). The analysis done in
SmPL, however, is intraprocedural only, and does not take into ac-
count aliasing between variables on its matching; nevertheless, the
use of isomorphisms permit a greater, albeit limited, degree of vari-
ability than what our approach offers. In [24], the use of concrete
syntax was generalized from the Stratego program transformation
language to arbitrary meta-languages. We have integrated source
code templates with a logic meta language while focusing on the
resolution of the resulting queries against multiple behavioral pro-
gram representations.

Finally, PQL [17] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-
guage in the sense that it does not represent structural code ele-
ments, thereby limiting the type of source code patterns queried to

behavioral ones. Finally, our code templates are embedded in the
logic query language and rely upon full unification for the matching
process, as opposed to the templates in PQL that consist of source
code only.

6. Conclusion
The detection and identification of implementation patterns is an
essential but often complex issue in program analysis and manipu-
lation. At the core of this problem lies the observation that patterns
do not prescribe a single implementation structure or behavior, but
can rather have diverse implementation variations. Nevertheless,
software developers tend to understand patterns by means of tan-
gible examples and prototypical implementations. To achieve au-
tomatic detection, this dichotomy requires that developers convey
their example-driven knowledge into operational queries or com-
plex descriptions that effectively deal with the detection of diverse
variations. This is often further complicated with the fact that the
detection requires diverse structural and behavioral representations
of the program. We have reconciled the example-driven knowl-
edge of developers with the expressive power of program queries
by means of embedding concrete source code templates in a logic
query language. These templates permit to detect many implemen-
tation variations of patterns merely through a specification of a pro-
totypical example implementation. We obtain this resolution strat-
egy through an automatic translation of the template to queries that
act upon diverse structural and behavioral representations.

The open-ended nature of the template translation process al-
lows a thorough analysis of different resolution strategies and pro-
gram representations in future and ongoing work. To alleviate the
expressiveness problem identified in the last practical example, we
intend to extend the template language with operators to indicate
whether a template should match one, all or a user-defined set of
possible execution paths and program contexts. To demarcate the
latter, we are considering temporal logic programming which we
have already successfully applied in previous work involving dy-
namic analysis [6]. In other previous work [5], we have experi-
mented with fuzzy logic programming to handle in a consistent
manner the impreciseness inherent to static analysis results. We in-
tend to incorporate these approximate reasoning techniques in the
template resolution strategy to compute an indication of the simi-
larity between a template and matching base program elements.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-
ful comments.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to AspectJ. In Proc. of the
20th Conf. on Object-oriented Programming, Systems, Languages,
and Applications, pages 345–364, 2005.

[2] J. Cohen and T. J. Hickey. Parsing and compiling using prolog.
Transactions on Programming Languages and Systems, 9(2):125–
163, 1987.

[3] R. F. Crew. ASTLOG: A language for examining abstract syntax
trees. In Proc. of the Conf. on Domain-Specific Languages, pages
229–242, 1997.

[4] M. d’Amorim, C. Nogueira, G. Santos, A. Souza, and P. Borba.
Integrating code generation and refactoring. In Proc. of the ECOOP
Workshop on Generative Programming, 2002.

[5] C. De Roover, J. Brichau, and T. D’Hondt. Combining fuzzy logic and
behavioral similarity for non-strict program validation. In Proc. of the

8th Symp. on Principles and Practice of Declarative Programming,
pages 15–26, 2006.

[6] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and T. D’Hondt. An
approach to high-level behavioral program documentation allowing
lightweight verification. In Proc. of the 14th IEEE Int. Conf. on
Program Comprehension, pages 202–211, 2006.

[7] S. Ducasse, M. Freidig, and R. Wuyts. Logic and trace-based object-
oriented application testing. In Proc. of the Int. Workshop on Object-
Oriented Reengineering, 2004.

[8] J. Fabry and T. Mens. Language-independent detection of object-
oriented design patterns. Elsevier Int. Journal on Computer
Languages, Systems & Structures, 30(1-2):21–33, 2004.

[9] P. Flach. Simply Logical. John Wiley, 1994.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification, Second Edition: The Java Series. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[11] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable source
code queries with datalog. In Proc. of the 20th European Conf. on
Object-Oriented Programming, volume 4067 of Lecture Notes in
Computer Science, pages 2–27, Berlin, Germany, 2006. Springer.

[12] M. Hind. Pointer analysis: haven’t we solved this problem yet? In
Proc. of the 2001 Workshop on Program Analysis for Software Tools
and Engineering, pages 54–61, 2001.

[13] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN
Notices, 39(12):92–106, 2004.

[14] C. Krämer and L. Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Proc. of the
3rd Working Conf. on Reverse Engineering, 1996.

[15] C. Lewerentz and F. Simon. A Product Metrics Tool Integrated
into a Software Development Environment. In Proc. of the ECOOP
Workshop on Object-Oriented Technology, volume 1543, pages 256–
257, 1998.

[16] O. Lhoták. Spark: A flexible points-to analysis framework for java.
Master’s thesis, McGill University, December 2002.

[17] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using PQL: a program query language. ACM SIGPLAN
Notices, 40(10):365–383, Oct. 2005.

[18] K. Mens, I. Michiels, and R. Wuyts. Supporting software develop-
ment through declaratively codified programming patterns. In Proc.
of the 13th Int. Software Engineering and Knowledge Engineering
Conf., 2001.

[19] C. Noguera and R. Pawlak. Open static pointcuts through source code
templates. In Proc. of the AOSD Workshop on Open and Dynamic
Aspect Languages, 2006.

[20] Y. Padioleau, R. R. Hansend, J. Lawall, and G. Muler. Semantic
patches for documenting and automating collateral evolutions in
linux drivers. In Proc. of the Workshop on Linguistic Support for
Modern Operating Systems, 2006.

[21] B. G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In Proc. of the 12th Int. Conf. on
Compiler Construction, volume 2622, pages 126–137, 2003.

[22] The Smalltalk Open Unification Language (SOUL). http://prog.vub.ac.be/SOUL/.

[23] M. A. Tobias Rho, Günter Kniesel. Fine-grained generic aspects.
In Proc. of the AOSD Workshop on Foundations of Aspect-Oriented
Languages. 2006.

[24] E. Visser. Meta-programming with concrete object syntax. In
Generative Programming and Component Engineering, volume 2487
of Lecture Notes in Computer Science, pages 299–315. Springer-
Verlag, 2002.

[25] R. Wuyts. A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation. PhD
thesis, Vrije Universiteit Brussel, Belgium, January 2001.

