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Abstract. We introduce an object-oriented referencing abstraction to express co-
ordination between objects hosted on mobile devices interconnected by a wireless
ad hoc network. On the one hand, we notice that the most popular communica-
tion paradigms for mobile ad hoc networks, such as publish/subscribe and tuple
space architectures, promote loose coupling of collaborating participants. On the
other hand, the paradigm in which many applications are developed is object-
oriented, and traditional object referencing abstractions typically lack the ben-
eficial loose coupling properties of aforementioned paradigms. This paper pro-
poses to close the paradigmatic gap between an object-oriented language and
its distributed communication infrastructure by introducing ambient references:
loosely-coupled remote object references designed for mobile ad hoc networks.

1 Introduction

The flourishing of research fields such as pervasive and ubiquitous computing [1] has
lead to a tremendous increase in research on mobile ad hoc networks – networks com-
posed of portable, mobile devices interconnected by wireless communication media.
Such networks are often regarded as the ideal hardware infrastructure to support perva-
sive and ubiquitous computing scenarios [2]. The network’s wireless capabilities, com-
bined with the mobility of the devices, results in applications where software entities
spontaneously detect one another, engage in various collaborations, and may disappear
as swiftly as they have appeared. Example applications range from modest, already
commonplace applications like collaborative text-editors, to more futuristic scenarios
such as warehouses equipped with digital infrastructure allowing customers to interact
with products, their shopping carts, etc.

This paper focuses on distributed programming language support for mobile net-
works. In distributed programming, communication paradigms based on loose coupling
between the participants have been especially promoted in the context of mobile ad hoc
networks [3–6]. Interestingly, none of these approaches is object-oriented in nature,
while most mainstream programming languages in which applications are developed
are. One of the reasons for this paradigm mismatch is that remote object references
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have not been as successful in achieving loose coupling between collaborating parties
as other paradigms, such as publish/subscribe [7] and tuple space [8] architectures.

The contribution of this paper is the proposition of a loosely coupled object-oriented
coordination abstraction for mobile networks, named an ambient reference. This ab-
straction eliminates the paradigm mismatch between object-oriented applications and
loosely coupled distributed coordination infrastructure, because it allows object-oriented
programs to interact without leaving the paradigm, while keeping the benefits of loose
coupling promoted by established collaboration paradigms. Ambient references have
been implemented in a distributed object-oriented language called AmbientTalk, which
we will briefly describe as well.

2 Motivation

Based on the fundamental characteristics of mobile hardware, we discern a number of
phenomena that set mobile networks apart from their traditional, fixed counterparts. We
show how these phenomena have motivated the choice of loosely coupled interaction
paradigms for use in mobile networks. Next, we will highlight why traditional object-
oriented distributed computing does not promote loose coupling and hence requires the
use of other communication paradigms, leading to a paradigm mismatch.

2.1 Characteristics of Mobile Networks

There are two discriminating properties of mobile networks, which clearly set them
apart from traditional, fixed computer networks: applications are deployed on mobile
devices which are connected by wireless communication links with a limited commu-
nication range. Such networks exhibit two phenomena which are rare in their fixed
counterparts, and which will be shown to be the main instigators for loosely-coupled
interaction:

Volatile Connections. Mobile devices equipped with wireless media possess only a
limited communication range, such that two communicating devices may move out
of earshot unannounced. The resulting disconnections are not always permanent:
the two devices may meet again, requiring their connection to be re-established.
Quite often, such transient disconnections should not affect an application, allow-
ing both parties to continue their collaboration where they left off. Although deal-
ing with disconnection is not a new ingredient of distributed systems, these more
frequent transient disconnections do expose applications to a much higher rate of
partial failure than that which most distributed languages or middleware have been
designed for.

Zero Infrastructure. In a mobile network, devices that offer services spontaneously
join with and disjoin from the network. As a result, in contrast to stationary net-
works where applications usually know where to find collaborating services via
URLs or similar designators, applications in mobile networks have to find their re-
quired services dynamically in the environment. Services have to be discovered on
proximate devices, possibly without the help of shared infrastructure (e.g. a wire-
less base station), requiring a peer-to-peer network topology.



Any application designed for mobile ad hoc networks will have to deal with the
above phenomena. Moreover, these phenomena are not easily hidden within a standard
programming language or middleware because their effects pervade the entire applica-
tion. In the following section, we show how dedicated communication paradigms can
drastically ease the burden of dealing with these phenomena.

2.2 Loosely-coupled Collaboration

In this section, we describe requirements for communication paradigms that, when ad-
hered to, significantly reduce the impact of the above phenomena on software. The first
three requirements pertain to decoupling the communicating parties along three dimen-
sions as explained in detail in [7]. For each requirement, we state why it is critical in
the context of mobile ad hoc networks.

Requirement 1 (Decoupling in Time) The communicating parties do not need to be
online at the same time.

Requirement 1 states that a sender may send a message to a recipient that is off-
line, and a recipient may receive and process a message from a sender that is offline.
This makes it possible for communicating parties to interact across volatile connec-
tions. Decoupling in time is directly inspired by the need to deal with the intermittent
disconnections inherent to mobile ad hoc networks.

Requirement 2 (Decoupling in Space) The communicating parties do not need to know
each other beforehand.

Requirement 2 states that communicating parties do not necessarily need to know
one another’s exact address or location. It implies that communicating parties can rely
on some mechanism other than precise addresses or URLs to get to know one another.
Decoupling in space is an important property in mobile ad hoc networks because they
have a minimum of shared infrastructure, making reliance on servers to mediate collab-
orations impractical.

Requirement 3 (Synchronization Decoupling) The control flow of communicating par-
ties is not blocked upon sending or receiving.

Requirement 3 states that a sending party can employ a form of asynchronous mes-
sage passing, such that the act of message sending becomes decoupled from the act of
message transmission. Likewise, allowing recipient parties to process messages asyn-
chronously decouples the act of message reception from the act of message processing.
Message transmission and reception require a connection between sender and receiver,
but message sending and processing can be decoupled, allowing communicating par-
ties to abstract over the fact whether the other party is online or not. This requirement is
again directly derived from the volatile connections phenomenon in mobile networks.
It allows parties to perform useful work while being disconnected.

Requirement 4 (Connection Awareness) Communicating parties must be able to keep
an up-to-date view of which participants are (dis)connected.



At first glance, requirement 4 seems to somewhat contradict the above three require-
ments, because it seems to state that a process is no longer able to abstract over the state
of the connection with communicating parties. However, this is not necessarily the case
if the aspect of communication can be separated from the aspect of failure handling by
means of orthogonal mechanisms. Being aware of the state of the connection of a partic-
ipant is important because due to the limited infrastructure in mobile ad hoc networks,
delivery guarantees for exchanged messages are often very weak. Hence, communicat-
ing parties must sometimes take explicit action when a participant disconnects.

2.3 A Paradigm Mismatch

In object-oriented distributed computing, objects distributed across several machines
may refer to and communicate with one another by means of remote object references.
A remote object reference represents a communication channel to a particular remote
object. In its most simple form, distributed message passing is a straightforward adapta-
tion of local message passing, known as remote method invocation (RMI). Using RMI,
distributed request/response interaction is very easily expressed. Unfortunately, RMI
does not decouple objects in time, space or synchronization [7]. However, asynchron-
ous adaptations of RMI (e.g. Rover’s Queued RPC [9]) have achieved decoupling in
time and synchronisation.

Other communication paradigms have been more successful at achieving loose cou-
pling between participants. For example, in publish/subscribe communication publish-
ers asynchronously publish events on channels which leads to the asynchronous notifi-
cation of registered subscribers [7]. Quite often, an event service acts as a middle man
between publishers and subscribers, allowing them to be decoupled in space. Publishers
may publish events even if no subscribers are registered on a channel and vice versa,
making them decoupled in time. Tuple spaces, discussed in more detail in section 6.2,
achieve a similar decoupling between participants.

In practice, object-oriented programs that require loosely coupled distributed com-
munication abandon the remote reference and message passing abstractions in favour
of paradigms such as publish/subscribe and tuple spaces. This requires object-oriented
code to be adapted to the communication paradigm. For example, rather than sending
messages to remote objects, publishers publish event objects on an event channel [10]
or processes insert tuple objects into a shared space. Method invocation is replaced by
subscribing event handlers on channels or by querying a tuple space using a template
object, as in JavaSpaces [11].

These adaptations achieve better decoupling of objects, but at the price of giving up
on the advantage of remote references to easily express request/response interactions.
For example, messages sent via a remote reference have an explicit receiver, so multiple
messages sent via the same reference are processed by the same receiver. Without ad-
ditional programming, this property no longer holds when broadcasting events or pub-
lishing tuples. Also, messages invoke methods which have a return value. In contrast,
matching an event or tuple that represents a request with its corresponding response
event or tuple must be done explicitly in the code.

The contribution of this paper lies in an integration of the above requirements in an
object-oriented language, such that distributed communication can still be expressed in



terms of objects sending messages to one another. Before introducing ambient refer-
ences, we first introduce the object-oriented programming language in which they have
been developed.

3 The AmbientTalk Language

Ambient references have been implemented as part of the AmbientTalk programming
language. AmbientTalk is an object-oriented distributed programming language specif-
ically designed for distributed programming in mobile ad hoc networks [12]. The lan-
guage has been implemented as an interpreter written on top of the Java Virtual Ma-
chine. A J2ME version exists which can be deployed on PDAs.

We will use a typical collaborative ad hoc networking application to illustrate the
language and the ambient reference abstraction. After a short description of this running
example, we describe standard, sequential programming in AmbientTalk to familiarise
the reader with the language’s syntax and semantics. Subsequently, we cover concurrent
and distributed programming.

3.1 Running Example

Consider a music player running on mobile devices such as PDAs or cellular phones.
The music player contains a library of songs. When two people running the music player
enter one another’s personal area network (delineated by e.g. the bluetooth communi-
cation range of their cellular phones), the music players exchange their music library’s
index (not necessarily the songs themselves). After the exchange, the music player can
calculate the percentage of songs both users have in common. If this percentage is high
enough, the music player can e.g. warn the user that someone with a similar taste in
music is nearby and display those songs in the other user’s library which are not in its
user’s library.

3.2 Sequential Computation

AmbientTalk is a dynamically typed object-oriented language. Computation is expressed
in terms of objects sending messages to one another. The following code excerpt shows
the definition and use of a simple Song object in AmbientTalk:

def Song := object: {
def artist := nil;
def title := nil;
def timesPlayed := 0;
def init(artist, title) {

self.artist := artist;
self.title := title;
self.timesPlayed := 0;

};
def play() { timesPlayed := timesPlayed + 1; /* play the song */ };

};
def s := Song.new("U2", "One");
s.play();



In this example, a prototypical song object is assigned to the variable Song. A
song object has three fields, a constructor (always called init in AmbientTalk), and a
method play to play the song. Sending new to an object creates a copy of that object,
initialised using its init method.

3.3 Distributed Computation

AmbientTalk’s concurrency model is based on that of communicating event loops as
featured by the E programming language [13]. This concurrency model has its roots
in the actor model of computation [14] and its incarnation in stateful active objects
in languages such as ABCL/1[15]. In the model, regular objects are associated with at
most one actor (a vat in E terminology) and each actor has an associated message queue.
Every actor is associated with exactly one thread, the event loop which perpetually
takes messages from its message queue and invokes the corresponding methods on its
associated objects. Within the confines of an actor, computation happens sequentially
and objects communicate using sequential message sending, as in Java or Smalltalk.
AmbientTalk actors process incoming messages in a serial manner, to ensure that no
race conditions can occur on the internal state of their associated objects.

Asynchronous Message Passing An object a owned by one actor can acquire a refer-
ence to an object b owned by another actor. In that case, a can only send messages to b
asynchronously. When a sends a message to b, the message is placed in the incoming
message queue of b’s actor. Only when the actor processes the message at a later point
in time is b’s method invoked.

In the example scenario, each music player is modelled as an actor. Each such music
player actor contains a music library, represented as a set of Song objects. When two
such actors discover one another in the local ad hoc network, they exchange their music
library index. Before a music player downloads the library index, it first asks for the
size of the remote library. Given that remotePlayer denotes a reference to a remote
music player (see section 4), this can be expressed as follows:

def sizeFuture := remotePlayer<-getSizeOfLibrary();

AmbientTalk borrows from the E language the syntactic distinction between se-
quential message sends (expressed as o.m()) and asynchronous message sends (ex-
pressed as o<-m()). An asynchronous message send always immediately returns a
future, which is a placeholder for the actual return value. Once the return value is com-
puted, it “replaces” the future object; the future is then said to be resolved with the value.
Futures (also known as promises) are a frequently recurring abstraction in concurrent
languages (e.g. in ABCL [15], Argus [16], E [13] and recently also in Java).

Futures are objects which can in turn be sent asynchronous messages. Those mes-
sages are accumulated within the future as long as it is unresolved. When the future is
resolved, these messages are then forwarded to the resolved value. In the E language, it
is possible to register a block of code with a future, which is executed asynchronously



when the future becomes resolved. AmbientTalk also allows the expression of such “in-
line event handlers”, which are very useful when access to the actual return value of a
message send is required. For example, if the user must be informed of how many songs
another user is sharing, the size of the other user’s music library must be printed on the
screen. This can only happen when the sizeFuture from the previous example is
resolved to an integer value:

when: sizeFuture becomes: { |size|
// execution of this code is postponed until the future is resolved
system.println("User is sharing ", size, " songs.");

} catch: { |exception| ... };
// code following when: is processed normally

If the asynchronously invoked method raises an exception, rather than returning a
result, the corresponding future is resolved with the exception and the catch clause
rather than the when clause of the above code is executed. This enables applications to
catch asynchronously invoked exceptions in a way similar to the well-known try-catch
abstraction of sequential languages.

Exporting Objects In order to make some objects available to remote actors and their
objects, an actor can explicitly export objects that represent certain services. Because
remote objects do not necessarily know the name or address of the exported service
object, a service object is always exported together with a service type. A service type
is a subtype of one or more other service types. Service types are not associated with
a set of methods and are merely used to categorise which objects export what kinds of
services1.

In the music player example, each music player actor exports an interface ob-
ject that can be used by other music players to start a communication session to ex-
change libraries. This object is exported with the service type MusicPlayer, as fol-
lows:

deftype MusicPlayer;

def interface := object: {
def openSession(remotePlayer) {
// return a session object (explained later)

};
def getSizeOfLibrary() { ... };

};

export: interface as: MusicPlayer;

From the moment an object is exported by its actor, it is discoverable by other actors
by means of ambient references via its service type. This is explained in detail in the
following section.

1 Service types are best compared with empty Java interface types, like the typical “marker”
interfaces used to merely tag objects. Example interfaces are java.io.Serializable
and java.lang.Cloneable.



4 Ambient References

An ambient reference is a remote object reference that transparently discovers and binds
to a remote object by means of a service type. For example, to discover a proximate
music player, one creates an ambient reference initialised with the MusicPlayer
service type, as follows:

def musicPlayerFuture := ambient: MusicPlayer;

The expression ambient: MusicPlayer initiates a service discovery request
for a remote object exported as a MusicPlayer and immediately returns a future.
When a matching object has been discovered, the future is resolved with an ambient
reference bound to the discovered object. As usual, objects can start sending messages
to the future before it is resolved, causing the future to accumulate those messages until
a remote object has been discovered. One can regard this future as a dangling or un-
bound remote reference. When the future becomes resolved with an ambient reference,
we refer to the remote object to which the ambient reference is bound as the ambient
reference’s principal.

Figure 1 depicts the situation where an ambient reference is asked for, but where
no matching principal has yet been found. It shows two actors A and B. The wireless
communication links of their host devices are represented as dotted circles which de-
limit their communication range. Each actor hosts a number of objects (white circles).
B has exported an object using a service type symbolized as a diamond. A contains
a future (gray circle) for an ambient reference that will bind to objects whose service
type “matches” the diamond shape. Although the ambient reference does not yet exist,
conceptually the future represents a dangling remote reference. Any messages sent to
this future will be accumulated by the future until it is resolved.

A B

Fig. 1. A future for an ambient reference

Figure 2 depicts the situation where both devices move into one another’s commu-
nication range. Because a matching service object has been found, A creates an ambient
reference bound to this remote object and resolves the outstanding future with the bound
ambient reference. Any messages that were accumulated in the future are forwarded to
the ambient reference.



A B

Fig. 2. A connected ambient reference

When the two host devices move back out of one another’s communication range,
the ambient reference does not break. Rather, it maintains the bond with the remote
service, as depicted in figure 3. It follows that an ambient reference can be in two
states: it can either be connected to its principal or disconnected from its principal. The
influence of these states on message passing is explained in the following section.

A B

Fig. 3. A disconnected ambient reference

As explained in section 3.3, the resolved value of a future can be awaited using a
when block. Because the discovery mechanism immediately returns a future for the
ambient reference, objects can take explicit action when proximate services appear in
their environment by attaching a when block to the future for the ambient reference:

def musicPlayerFuture := ambient: MusicPlayer;
when: musicPlayerFuture becomes: { |ambientReference|
system.println("discovered new music player: ", ambientReference);

};

It is important to note that the code that exports the interface object, and the
code above that creates an ambient reference is executed by all music player actors in
the network. This enables music players to engage in true peer-to-peer communication:
when a music player A and a music player B enter one another’s communication range,
A will discover B’s interface object via its ambient reference and B will discover A’s
interface object via its ambient reference. The discovery is successful because the ser-



vice type of the ambient references, MusicPlayer, matches (i.e. is a subtype of) the
corresponding service type of the exported interface object.

An ambient reference created by an actor will not bind to an object exported by that
same actor. Indeed, if the object is local to the actor, it can be passed around by means of
regular message passing without the need for a decoupled communication channel such
as an ambient reference. Hence, in the example above, the ambient reference created
by a music player will never bind to its own interface object. If multiple matching
remote objects are available when an ambient reference is created, the reference binds
to one single arbitrary matching object. Ambient references that may bind to multiple
matching objects are not considered in this paper and are left as future work.

4.1 Message Passing

Ambient references follow the rules for inter-actor message passing and operate asyn-
chronously. When a client object sends a message to an ambient reference, it does not
wait for the message to be forwarded by the ambient reference to its principal. If the
ambient reference is connected to its principal upon message reception, it forwards the
message to the principal; if it is disconnected upon message reception, it accumulates
the message internally and forwards it whenever it becomes reconnected at a later point
in time. Hence, messages sent to ambient references are never lost, regardless of the in-
ternal state of the reference. Messages are guaranteed to be forwarded to a principal in
the same order as they were received by the ambient reference. Recall that the principal
is associated with an actor which ensures that incoming messages (sent by one or more
ambient references) are executed serially.

In the music player example, once one music player has a reference to the interface
object of another music player, it can ask the remote player to open a library exchange
session by sending it the openSession message. The interface object imple-
ments this message as follows:

def openSession(remotePlayer) {
def senderLib := Set.new(); // to store sender’s music library
object: {

def downloadSong(artist, title) {
senderLib.add(Song.new(artist, title));
"ok"; // tell sender that song was successfully received

};
def endExchange() {
// myLib and THRESHOLD are instance variables of this actor
def matchRatio := (myLib.intersect(senderLib)).size() / myLib.size();
if: (matchRatio >= THRESHOLD) then: {

system.println("Found user with similar taste in music.");
};

};
};

};

Note that the openSession method returns a new object which implements two
methods which are used by a remote music player to send song information (download-
Song) and to signal the end of the library exchange (endExchange). A music player
sends all of its own songs one by one to this session object after it has discovered a
music player:



def musicPlayerFuture := ambient: MusicPlayer;
when: musicPlayerFuture becomes: { |ambientReference|
system.println("discovered new music player: ", ambientReference);
def session := ambientReference<-openSession(self);
def iterator := myLib.iterator(); // to iterate over own music library
def sendSongs() { // auxiliary function to send each song

if: (iterator.hasNext()) then: {
def song := iterator.next();
when: session<-downloadSong(song.artist, song.title) becomes: { |ack|

sendSongs(); // recursive call to send the rest of the songs
} catch: { |exception| /* stops exchange (see section 4.2) */ };

} else: {
session<-endExchange();

};
};
sendSongs();

};

The session object is again a future which will be resolved with an ambient
reference that is bound to the object returned by the openSession method. The
auxiliary function sendSongs sends the music player’s songs one by one to the re-
mote session object. This serial behaviour is guaranteed, because each subsequent
downloadSong message is only sent after the previous one returned an acknowl-
edgement (the simple "ok" string returned by the downloadSong method defined
above).

4.2 Partial Failure Handling

The example application described above illustrates how the use of a loosely coupled
communication abstraction (in this case an ambient reference) allows the application
developer to abstract over transient disconnections: once the music players have es-
tablished a library exchange session, they can disconnect from and reconnect to the
network without hampering the control flow of exchanged messages. Note that the
catch: clause in the previous code excerpt is normally not triggered when the ambi-
ent reference disconnects, it is only triggered if the invoked method raised an exception.
Below, we describe how to trigger this catch: clause upon disconnection, such that it
can also be used to perform failure handling if necessary.

Although an ambient reference allows a client object to safely abstract from its
internal connection state, it is often useful for an application to be informed when a
connection with a remote object is lost or reconnected. To this end, it is possible to in-
stall observers on an ambient reference which are triggered when the reference becomes
disconnected or reconnected. The code below shows how a music player can notify the
user whenever a proximate music player moves in and out of communication range:

when: musicPlayerFuture becomes: { |ambientReference|
...
when: ambientReference disconnects: {
system.println("music player disconnected: ", ambientReference);

};
when: ambientReference reconnects: {

system.println("music player reconnected: ", ambientReference);
};

};



The behaviour of ambient references is designed to allow the developer to abstract
over transient network failures. However, a developer may want to perform failure han-
dling from the moment an ambient reference has been disconnected for longer than a
certain timeout period. The question then becomes how the developer can reasonably
deal with all of the messages that have accumulated in the ambient reference while it
was disconnected.

To deal with failures, ambient references support one final operation: a developer
may rebind an ambient reference to point to another principal object. This object may
be another remote object, but often it will be a local object that acts as a failure handler
for all of the messages that were accumulated by an ambient reference and for all of the
messages sent to the ambient reference from the moment it has been rebound.

In order to adapt the music player to terminate the library exchange upon discon-
nection, the ambient reference can be rebound to a failure handler object by means of
a disconnects: observer (perhaps only after a certain timeout period). This failure
handler can then reply to every message by raising an exception. This will resolve each
message’s future with that exception, which in turn triggers the catch: clause of any
registered when blocks on that future. In the second code excerpt of the previous sec-
tion, this would trigger the catch: clause for the downloadSong message, which
enables the library exchange protocol to terminate smoothly.

5 Evaluation

Now that ambient references have been properly introduced, we can evaluate them with
respect to the requirements postulated in section 2.2.

Requirement 1 Ambient references decouple the communicating objects in time. When
a client object first requests an ambient reference, it will immediately get a future
for the reference, allowing it to continue its computation until a suitable service
object has been found. Moreover, clients are not obliged to send messages via an
ambient reference only when it is connected, because an ambient reference properly
accumulates messages while it is disconnected.

Requirement 2 Ambient references decouple the communicating objects in space by
means of service types. Objects address one another by means of the services they
describe and do not know or need to know the address of the hosting device. An
exported service object also does not necessarily know which or how many client
objects refer to it via an ambient reference. Thanks to the use of futures, a ser-
vice can easily reply to its clients without referring to them explicitly simply by
returning values from its invoked methods. These return values implicitly resolve
the futures held by clients, allowing them to process replies asynchronously.

Requirement 3 Ambient references decouple the control flow of client and service
objects. Client objects send messages asynchronously and can await results asyn-
chronously by registering blocks of code with the futures. Exported service objects
are hosted by an actor, whose incoming message queue ensures that messages can
be received even while the service object is busy processing another message.

Requirement 4 Via the registration of dedicated observers which trigger upon the dis-
connection or reconnection of a principal, an application can have an up-to-date



view of the internal state of an ambient reference without affecting other applica-
tion code that sends messages and receives replies via that ambient reference. Fail-
ure handling can be performed by rebinding the ambient reference to a dedicated
failure handler object. Any undelivered messages accumulated by the ambient ref-
erence are then forwarded to that object.

Because they adhere to the first three requirements, ambient references form a
loosely coupled communication channel between objects, without sacrificing the re-
mote object referencing abstraction. The contribution of the ambient reference abstrac-
tion lies in the combination of:

1. An abstract type-based discovery mechanism that immediately returns a future
when a discovery request is made. The future represents a “not yet discovered”
object. This enables a client object that needs to interact with a remote object to
immediately interact with the future as if that future already is the remote object.

2. Asynchronous message passing semantics which allows one to abstract over the
state of the connection with the remote object. This is achieved by implicitly accu-
mulating messages within the remote reference itself while it is disconnected.

3. Using observers to keep track of changes in the state of the connection of the refer-
ence, such that failure handling can be performed separately from the main use of
an ambient reference as a time- and space-decoupled communication channel.

While none of these mechanisms are by themselves novel, the contribution of am-
bient references lies in the combination of service discovery and asynchronous com-
munication into one coherent language construct and its application to mobile ad hoc
networks.

6 Related Work

We categorise related work into 1) object-oriented referencing abstractions, 2) tuple
space architectures and 3) publish/subscribe architectures. For each approach, we sum-
marise their applicability to mobile networks and how they resemble or differ from
ambient references.

6.1 Object-oriented Referencing Abstractions

M2MI The design of ambient references has been inspired by the notion of a handle in
the many-to-many invocations (M2MI) paradigm [17]. M2MI is a paradigm for building
collaborative systems deployed on wireless proximal ad hoc networks. M2MI handles
use Java interfaces to decouple remote objects in space. M2MI handles also employ
asynchronous message passing.

Although M2MI has influenced the design of ambient references, there are some
important differences. First, M2MI handles do not decouple participants in time: if a
message is sent to an object which is not in communication range at that time, the
message is lost. Second, M2MI invocations require that asynchronous messages do



not return a value or throw an exception. This makes it more cumbersome to express
request/response interactions due to the lack of futures.

Actors In the actor model of computation [14], actors refer to one another via mail
addresses. When an actor sends a message to a recipient actor, the message is placed in a
mail queue and is guaranteed to be eventually delivered by the actor system. One can re-
gard a mail address as a “remote actor reference”. Although such a reference decouples
actors in time and in synchronisation (actors communicate strictly asynchronously), it
does not decouple them in space. A mail address represents a unique actor and does not
allow actors to discover one another by means of an abstract description.

E The E language [13, 18] is designed for writing secure peer-to-peer distributed
programs in open networks. Our notion of distinguishing intra-actor communication
(synchronous message passing) from inter-actor communication (asynchronous mes-
sage passing) is directly derived from E’s similar message passing semantics. E pio-
neered the when construct to deal with the resolution of futures (or promises) in an
entirely non-blocking, event-driven manner.

E was designed for open distributed systems, but not specifically for mobile ad hoc
networks. This shows in a number of important differences with respect to the semantics
of remote references in AmbientTalk. First, a network disconnection in E immediately
breaks the remote reference: any message sent after the disconnection is not stored,
and the message’s promise is resolved with an exception. Hence, E’s remote references
do not decouple participants in time and are not designed to express communication
over volatile connections. E does feature a hook similar to the one introduced in Ambi-
entTalk to enable the programmer to react upon the disconnection of a remote reference.
There is no corresponding hook for reconnection in E, because once broken, a remote
reference in E remains broken.

To regain connectivity after a network failure, E features special references, known
as sturdy references, which do survive network failures. Sturdy references, however, are
created by means of an explicit address (in the form of a URL) and are meant to denote
specific objects, so they do not decouple objects in space.

Jini The Jini architecture for network-centric computing [19, 20] is a platform for
service-oriented computing built on top of Java. Jini introduces the notion of lookup
services. Services may advertise themselves by uploading a proxy to the lookup service.
Clients search the network for lookup services and may launch queries for services they
are interested in. Clients can download the advertised proxy of a remote service and
may interact with the remote service through the proxy. Java interface types are used to
describe and discover services. Our use of service types to describe to which kinds of
objects an ambient reference may bind has been inspired by this mechanism.

Jini is primarily a framework for bringing clients and services together in a net-
work with minimal administrative infrastructure. Once a client has downloaded a ser-
vice proxy, the proxy is the communication channel to the service. This proxy may be
implemented however the service sees fit. For example, it is possible to construct proxy
references which e.g. accumulate messages when the remote service is disconnected to
achieve decoupling in time. Hence, Jini’s architecture is flexible enough to accomodate
ambient references. However, to the best of our knowledge, Jini does not by default



offer any advanced remote “service” references. By default, the proxies advertised by
services communicate synchronously with their service.

6.2 Tuple Spaces

Linda and LIME Tuple spaces as originally introduced in the coordination language
Linda [8] have received renewed interest by researchers in the field of mobile comput-
ing. Adaptations of tuple spaces for mobile computing, such as LIME [4], feature tuple
spaces local to each device which are merged into a federated transiently shared tuple
space when joining the network. In the tuple space model, processes communicate by
inserting and removing tuples from the shared tuple space, which acts like a globally
shared memory. Decoupling in time is achieved because processes can insert and retract
tuples independently. Decoupling in space is achieved because the publisher of a tuple
does not necessarily specify, or even know, which process will consume the tuple. Syn-
chronisation decoupling is not adhered to in the original Tuple space model: although
tuple insertion is asynchronous, there exist synchronous (blocking) operations to extract
tuples from the tuple space.

As the need for total synchronization decoupling became apparent for mobile net-
works, extensions of the model such as LIME provide reactions which are callbacks that
trigger asynchronously when a matching tuple becomes available in the tuple space.
LIME adheres to requirement 4, connection awareness, by introducing a read-only,
system-maintained tuple space whose tuples represent metadata, such as the hosts that
are currently connected. Registering reactions on such tuples achieves a connection
awareness strategy similar to one using the observers introduced in section 4.2.

The main difference between LIME and ambient references lies in their employed
communication paradigm. Ambient references foster a more object-oriented program-
ming style because communication is one-to-one rather than one-to-many and happens
by means of asynchronous message sends (which capture the communication of both
request and reply in one single abstraction).

ActorSpace The inability of mail addresses to represent unknown, undiscovered
actors have been addressed in the ActorSpace model [21]. This model is a unification
of concepts from both the actor model and the tuple space model of Linda. Callsen and
Agha note that, on the one hand, the actor model provides a secure model of commu-
nication as an actor may only communicate with actors whose mail address it has been
explicitly given via message passing. On the other hand, this disallows actors to get
acquainted with other actors in a time- and space-decoupled manner.

The ActorSpace model augments the actor model with patterns, denoting an ab-
stract specification of a group of actors. The actor model’s send primitive, which nor-
mally takes a receiver mail address and a message and sends the message to the corre-
sponding mail address, is changed such that send now also accepts a pattern rather than
a mail address. For example, send("MusicPlayer", "getSizeOfLibrary")
can be received by any actor whose own name matches the pattern within the con-
text of a so-called actorspace. The send primitive delivers the message to a non-
deterministically chosen matching actor. Although this behaviour is good when it does
not matter to the sender which specific actor receives the message (e.g. when the re-



ceiver is a replicated file server), it is not similar to an ambient reference in the sense
that multiple messages sent to the same pattern may be received by different actors.

6.3 Publish/Subscribe Architectures

LPS Location-based Publish/Subscribe (LPS) [6] is a publish/subscribe architecture
designed specifically for the collaboration of mobile ad hoc applications. The main
difference between LPS and traditional publish/subscribe architectures is that event
dissemination and reception is bounded in physical space: a publisher defines a pub-
lication range and a subscriber defines a subscription range. Only when the publication
range of the publisher and the subscription range of the subscriber overlap is an event
disseminated to the subscriber.

STEAM Scalable Timed Events and Mobility (STEAM) is an event-based middle-
ware designed for supporting collaborative applications in mobile ad hoc networks [22,
2]. STEAM builds upon the observation that the physically closer an event consumer
is located to an event producer, the more interested it may be in those events. It allows
events disseminated by producers to be filtered based on geographical location using
proximities. Proximities are first-class representations of a physical range, which may
be absolute or relative (i.e. a relative proximity denotes a surrounding area relative to a
mobile node).

Both LPS and STEAM are publish/subscribe middleware and have no notion of
remote object references. Applications are structured as a suite of event handlers and
do not use the message passing abstraction to engage in distributed communication.
As publish/subscribe architectures, they naturally decouple participants in time, space
and synchronization. It is not immediately clear how the models allow applications to
perform failure handling when publishers or subscribers disconnect.

7 Research Status and Future Work

Ambient references have been implemented as part of the AmbientTalk programming
language2. The mobile music player used as a running example in this paper is also
available for download as an example AmbientTalk program.

We are currently investigating a family of ambient reference abstractions with slight
variations on the semantics presented here. For example, we are experimenting with am-
bient references that bind to all available matching services (rather than a single one).
Such ambient references form a group communication channel which broadcast mes-
sages to all matching objects. Other kinds of ambient references vary in their binding
semantics with their principal. As explained in section 4, when the remote principal be-
comes disconnected, the ambient reference remains bound to it. Sometimes it is more
appropriate to clear the binding when a disconnection occurs, such that the ambient
reference can rebind to other available matching objects (e.g. in the case of a repli-
cated service where the identities of the replicated exported objects themselves are not
important).

2 The language is available at http://prog.vub.ac.be/amop/at/download



Another aspect of ambient references which has currently not yet been thoroughly
addressed is the garbage collection of exported objects. For the purposes of this paper,
it is assumed that exported service objects are long-lived objects which have to be unex-
ported explicitly in order to be reclaimed. Once an exported object is advertised on the
network, it can no longer be reclaimed automatically because at any point in time an am-
bient reference may bind to it. Moreover, in mobile ad hoc networks where relationships
between devices are short-lived, traditional cooperative distributed garbage collection
approaches become impractical. As illustrated by networking technology such as Jini,
the notion of a leased reference provides more robust garbage collection in the face
of both transient and permanent disconnections [19]. In future work, we would like to
integrate leasing with ambient references. Using leases, exported objects can be unex-
ported when their lease expires, while ambient references that still refer to the exported
object are responsible for renewing the lease in time.

8 Conclusions

This paper put forward ambient references as a loosely coupled object-oriented coor-
dination abstraction for mobile ad hoc networks. The conception of this abstraction is
motivated by the observation that: a) mobile networks require loosely coupled commu-
nication abstractions and b) traditional distributed object-oriented computing abstrac-
tions do not fit these requirements which c) requires object-oriented programs to leave
the object-oriented paradigm when performing distributed communication.

The contributions of this paper are: a) an analysis of the requirements for coordina-
tion abstractions for mobile ad hoc networks and b) the introduction of a coordination
abstraction for mobile ad hoc networks in the guise of a language construct which is
both object-oriented (it is an object reference carrying messages) and loosely coupled.
We have exemplified ambient references by means of a typical collaborative applica-
tion, developed in the AmbientTalk programming language.
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