
The Context-Dependent Role Model

Jorge Vallejos, Peter Ebraert�, Brecht Desmet,
Tom Van Cutsem��, Stijn Mostinckx�, and Pascal Costanza� � �

Programming Technology Lab – Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium

{jvallejo, pebraert, bdesmet, tvcutsem,
smostinc, pascal.costanza}@vub.ac.be

Abstract. Implementing context-dependent behaviour of pervasive
computing applications puts a great burden on programmers: Devices
need to continuously adapt not only to their own context, but also to
the context of other devices they interact with. We present an approach
that modularises behavioural adaptations into roles. Role selection takes
the context of all the devices involved in an interaction into account,
ensures an unambiguous scope of adaptation even in the presence of
concurrency, and protects the privacy of the devices. Thus, our context-
dependent role (CDR) model facilitates expressing interactions between
applications in different, possibly conflicting contexts.

1 Introduction

Context-awareness is commonly defined as the ability of an application to per-
ceive and dynamically adapt its behaviour to the surrounding environment [20].
This definition, however, only seems halfway correct, especially in the presence
of distribution. Context-dependent adaptations have particular effects on the in-
teractions between devices, and thus are more difficult to coordinate in pervasive
computing systems.

Consider the scenario of the context-aware cellphone, in which a person at-
tending an important meeting does not want to be disturbed by incoming calls.
Therefore, his cellphone should, for example, automatically signal incoming calls
in a discreet way only. The definition of context-awareness given above suffices
for this scenario since the cellphone may adapt its behaviour based on informa-
tion inferred from its surroundings by means of sensors, like the user’s location.
However, assume further that this person has a relative who is currently in the
hospital, and that he wants to be sure that he does not miss any call from the
hospital although he is in an important meeting. The issue here is that he may
not know what is the phone number or even the identity of the person who

� Author funded by a doctoral scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

�� Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.).
� � � Author funded by the Institute for the Promotion of Innovation through Science

and Technology in Flanders (IWT-Vlaanderen).

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 1–16, 2007.
c© IFIP International Federation for Information Processing 2007



2 J. Vallejos et al.

would call him from the hospital. In this case, his cellphone cannot derive the
necessary information to decide the kind of signal required for such a special call.
The only information it can actually rely on is found in the context of the calling
device, which is the fact that the call originates from the hospital. Conversely, if
the adaptation were decided at the calling device, it would not only inhibit the
callee’s ability to discern the calls he wants to receive. It would probably even
conflict with the requirements at the callee’s phone, as the caller may not, and
probably should not, be aware of the callee’s context.

The scenario above reveals the problems of distribution for context-dependent
adaptations. First, the behavioural adaptation of a device (i.e. signalling calls
loud or discreetly) may not only depend on its own context (i.e. “user is in
meeting room”) but also on the context of all the participants of an interaction
(i.e. “call originates from the hospital”). Second, different interactions require
adaptations that do not necessarily fit together, such as the different call signals
in the cellphone (i.e. loud and discreet signals cannot be combined). Last but
not least, external decisions of adaptations can be more vulnerable to context
changes and hamper the privacy of the devices.

We propose a role-based object-oriented programming model, called the
context-dependent role (CDR) model, to facilitate the development of context-
dependent adaptations in mobile distributed systems. In this model, (1) roles
represent the different behavioural adaptations a software application can dy-
namically adopt according to the context, (2) an application autonomously de-
cides on an appropriate role based on the context of all the participants, and (3)
an adaptation is strictly delimited by the scope of an interaction.

We validate the CDR model by implementing it as an extension to Ambi-
entTalk [16], a programming language especially designed for pervasive com-
puting applications. We use this extension for implementing the scenario of the
context-aware cellphone described above.

2 Context-Dependent Adaptations in Mobile Distributed
Systems

We now briefly discuss the main properties of context-dependent adaptations in
pervasive computing environments to later introduce the specific requirements of
distribution for such adaptations. We derive these requirements from the analysis
of the scenario of the context-aware cellphone.

Since we focus on context-dependent adaptations in this paper, we do not
explicitly deal with the context acquisition, i.e. the way in which software sys-
tems obtain information from their surroundings. We rather assume that every
application has the necessary support to derive unambiguous context informa-
tion from potentially unreliable low-level sensor data, like the Context Toolkit
framework [24]. We also require that all participants in a mobile distributed sys-
tem agree on a common representation of the particular context information of
interest, like for example the ontology introduced in [22].



The Context-Dependent Role Model 3

2.1 Context-Dependent Adaptations

A context-aware application has to be able to deal with dynamic changes that
often lack any periodicity or predictability. The presence of unexpected context
changes may lead us to additionally presume that adaptations have to be applied
at arbitrary unanticipated points in time. However, adaptations do not neces-
sarily have to happen right after a context change. The context-aware cellphone,
for instance, needs to adapt signalling calls only when receiving an incoming
call, not necessarily when the user enters the meeting room. This means that an
adaptation has a delimited scope of action: The adaptation is only required for
a specific operation (e.g. a method execution in an object-oriented system) and
thus its impact can be limited to the execution of this operation.

In most cases, a context-dependent adaptation affects only parts of the pro-
gram. The example of the context-aware cellphone illustrates this partial adap-
tation of behaviour: The adaptation required in this scenario involves exclusively
the signals for incoming calls, but leaves other functionality intact. An important
requirement for using partial adaptations is that the resulting behaviour of the
application should be a consistent composition of its default behaviour and the
adaptations.

The dependency of the application behaviour on its context does not imply
that the code required to reason about the context should get entangled with the
rest of the application program. Reasoning about the context inside of the pro-
gram would lead to undesirable situations such as scattered context-dependent
if-statements, resulting in cluttered code that is hard to maintain [12]. Context-
dependent adaptations, as well as the reasoning process that they require, should
be modularised to avoid their entanglement and scattering in the program.

To summarise, context-dependent adaptations:

– occur dynamically, with arbitrary frequency, and within a delimited
scope of action.

– generally affect only part of the program. In this case a consistent com-
position with the rest of the program should be ensured.

– should be modularised in such a way that they do not get entangled with
the base program.

2.2 Distribution Conditions for Context-Dependent Adaptations

In this section, we analyse the implications for context-dependent adaptations
of the distributed nature of pervasive computing environments.

Multiple Influence of Context. The context is not a monolithic and homoge-
neous set of information for all the participants of a pervasive computing system.
It can vary with time and from one device to another. This variability implies
that applications might be interacting with others in completely different con-
texts. The question concerning our focus on context-dependent adaptations is
thus how this context heterogeneity may influence the behavioural adaptations
of such applications. In the scenario of the context-aware cellphone, for instance,



4 J. Vallejos et al.

we observe that the behavioural adaptation on the user’s cellphone is not only
influenced by its location, but also by the location of the calling device.

Conflicting Adaptations. The problem of conflicting adaptations stems from
applications that may be involved in several interactions with different remote
applications at the same time. Since presumably these interactions require also
different adaptations, there is a high probability that applications end up with
adaptations that conflict with each other. The context-aware cellphone, for ex-
ample, cannot adopt two different call signals at the same time, even if the
signals are the appropriate adaptations for two different incoming calls. Part of
this problem is directly related to the natural concurrency of the mobile devices.
Therefore, adaptations must be circumscribed to a delimited scope of action that
is unambiguous even in the presence of concurrent interactions.

Privacy Issues. In a distributed system, the decision whether and how to
adapt its components can be made at different physical locations. In pervasive
computing systems, however, this condition may raise privacy issues. A context-
dependent adaptation decided in a different device from the one affected by the
adaptation is neither always possible nor always desirable for the users of mobile
devices. In the scenario of the context-aware cellphone, for instance, if the caller
could decide that the callee’s cellphone should be switched to loud signalling
mode, the person at the meeting would lose the possibility to discern the calls
he wants to receive.

The same argument can be used to rule out centralised adaptation and de-
cision schemes, developed to coordinate the adaptations of collaborative appli-
cations [11,9]. If such a cooperation scheme is required, it should also take into
account the privacy of each device involved in a common task. We call this the
non-intrusiveness principle.

Summary. The distribution requirements for context-dependent adaptations
introduced in this section are listed below.

– The behavioural adaptation of an application may depend on multiple con-
texts, especially in the case of interactions with other applications.

– Context-dependent adaptations should be circumscribed to a delimited
scope of action, in a way that is consistent with concurrency to avoid
conflicting adaptations.

– Context-dependent adaptations should comply with the non-intrusiveness
principle to preserve the privacy of mobile applications. This principle is also
valid for cooperation schemes of adaptations.

To the best of our knowledge, no existing middleware or programming lan-
guage offers a solution to deal with all of the properties and which satisfies all
distribution requirements for context-dependent adaptations presented in this
section. We further discuss the related work in Section 5.



The Context-Dependent Role Model 5

3 The Context-Dependent Role (CDR) Model

To address the requirements discussed in the previous section, we now intro-
duce the CDR model for context-dependent adaptations in mobile distributed
systems. It extends the actor model [1] of concurrency and distribution with the
notion of context-dependent roles. In this section, we describe the semantics for
creating, selecting, and adopting context-dependent roles.

We use the context-aware cellphone application identified in this paper to
illustrate the different components of our model. We implement this application
in AmbientTalk [16], an actor-based programming language especially designed
for pervasive computing in which we have developed our model. For the sake
of conciseness, we do not present an in-depth discussion of AmbientTalk itself.
Instead, we introduce specific features as necessary in the course of this section
and refer the reader to dedicated publications [14,15] for more information about
this language.

3.1 Flexible Composition of Behavioural Adaptations

In the CDR model, a context-aware application is represented as an actor whose
behaviour encapsulates the default functionality of the application and all of its
context-dependent adaptations. The default behaviour and the adaptations are
modelled as objects and organised in a delegation hierarchy. Such a hierarchical
delegation structure, originally presented in [21], enables the adaptations to ex-
tend the default behaviour of the application – placed at the root of the hierarchy
– or any other more general adaptation situated higher up the delegation tree.
Figure 1 shows the behaviour of the actor that implements the context-aware
cellphone application, specifically its feature to receive incoming calls.

In a delegation hierarchy, an object can either override or share behaviour
with its parent. This is especially beneficial for modelling partial adaptations.
In the context-aware cellphone, for instance, the loud and discreet adaptation
objects each have a specialised implementation of the signal method, while
they share the behaviour of the call method, which is defined in the default

signal()

family

general

signal()

signal()

friends

signal()

loud discreet

forwarder

signal() signal()

notifier

as(loud) signal()

call(n)
signal()

Fig. 1. Context-dependent behaviour of the cellphone actor



6 J. Vallejos et al.

behaviour (the general object). At the same time, the delegation semantics
ensures a consistent interaction between objects that delegate to each other [21].
The following listing presents a definition of the behaviour of the context-aware
cellphone actor:

contextCellphone: contextActor({
general: object({

signal():: {
playTone("normal-tone")

};
playTone(tone):: {...};
blinkLights():: {...};
...

});
loud: extend(general,{

signal():: {
playTone("noisy-tone");
blinkLights()}

});
discreet: extend(general,{

signal():: {blinkLights()}
});
...

})

Different from normal AmbientTalk actors, whose behaviour is represented by
a unique object, actors in our model (created using the dedicated contextActor
construct) contain multiple behaviour objects. In the code above, the adaptations
of the cellphone actor are represented by the discreet and loud objects which
extend the general object, overriding the signal method.

3.2 Dynamic Adaptation Based on Roles

In the CDR model, the behaviour objects cannot receive messages directly be-
cause these objects correspond to the internal state of an actor and, as such,
they should only be accessed by the actor. Instead, actors receive messages and
respond to them by first selecting the appropriate role and then executing the
corresponding method in the adaptation object of that role. The adaptation re-
quired by a role-specific message not only involves the object that denotes this
role, but also its delegation chain. In the context-aware cellphone, for example,
if the loud role is specified in an incoming message, the application will respond
according to the delegation chain composed of the loud and general objects
(marked by the dotted line in Figure 1).

3.3 Context-Dependent Role Selection

The selection of which role an actor has to adopt to respond to a message is a
decision made autonomously by the actor receiving the message but based on
the context of both the message sender and receiver. This means that the sender
must not indicate the role required for the message execution but rather passes
part of its own context information along with the message. The part of the
context included in the message is autonomously chosen by the message sending



The Context-Dependent Role Model 7

Sender's device

signal()

family

general

signal()

call(n)
signal()

signal()

friends

signal()
loud discreet

forwarder

signal() signal()

notifier

Receiver's device

Context-dependent
behaviour of the actor

Sender actor

as(loud) signal()with(<loc:hospital>) signal()

Context-dependent role
selector

"sender is in hospital" "receiver is in meeting-room"

Rules

Fig. 2. Context-dependent role selection

actor (discussed later in Section 3.5). Figure 2 illustrates the context-dependent
role selection process in the scenario of the context-aware cellphone.

The role selection process is supported by a dedicated entity within the actor,
called the context-dependent role selector. This role selector is a logic reasoning
engine that takes as input the context information of the sender and receiver,
together with programmer-defined rules that describe under which conditions
a given role can be selected for an incoming message. The output, then, corre-
sponds to the message provided with the role that is most appropriate for the
context conditions.

The advantage of designing the role selector as a logic engine is that it offers
the developer the expressiveness of the logic programming paradigm. Using a
logic programming language, the developer can declaratively specify when a
role is applicable, rather than having to specify imperatively when roles become
active or inactive by tracking changes in the context.

The rules that the role selector uses to decide on a role have the following
structure:

role aRole for receiver, message if
condition1 & ... & conditionN

The role selector chooses the role indicated in the head of a rule only if all
its conditions are accomplished. The information that these conditions require is
retrieved from the logic variables receiver and message, which are bound to the
receiver actor and the message respectively. For instance, we add the following
rule to the definition of the context-aware cellphone actor presented in Section
3.1 (by using the addRule primitive), indicating that this actor should adopt the
discreet role when it is at the meeting room:

contextCellphone: contextActor({
general: object({ ... });
discreet: extend(general,{ ... });
...
// Don’t signal calls at the meeting room.
addRule({role discreet for receiver, message if

receiver.getContext("location") = "meeting-room"})
})



8 J. Vallejos et al.

There can be cases where more than one rule matches the context conditions
of the receiver and the message that was sent. It means that several roles could
be adopted for the same message execution. In our model, however, actors can
adopt only one role at the same time, and for this reason, the rules in the context-
dependent role selector have a priority order. Only the role that corresponds to
the rule with the highest priority is returned as a result. This is the way, for
instance, in which the context-aware cellphone application can determine that,
although it is in the meeting room, the calls from the hospital should be signalled
loudly. In this case, the programmer should add an extra rule for such a new
condition with a higher priority than the rule about the receiver in the meeting
room described above. The new rule looks as follows:

// Signal the calls from the hospital loud.
addRule({role loud for receiver, message if

message.getContext("location") = "hospital"});

In the current implementation of the CDR model, the priority of the rules is
determined by the order in which they are defined in the actor, as in the Prolog
logic programming language (in Section 4, we propose some alternatives to this
basic way of defining priorities). Conversely, it could be that none of the rules
matches the current sender’s and receiver’s context. For this specific case we have
defined a default rule without any condition that returns the role corresponding
to the default behaviour of the application (the general role).

3.4 Delimited Scope of Adaptations

A behavioural adaptation is delimited by the scope of the execution of a message,
which means that an actor adopts the role indicated in a message exclusively
to process that message. This delimited scope is ensured by the asynchronous
message passing mechanism of actors [2] which explicitly separates the message
reception from the message execution by using a message queue. This separation
enables the actor to adapt its behaviour to individual messages without the risk
of affecting or being affected by the adaptations required for other message exe-
cutions. This separation also enables actors to include the context-dependent role
selection as an extra step between the reception and the execution of a message.
Figure 3 illustrates the actor with all its components: the context-dependent
behaviour, the context-dependent role selector, and the message queue.

Within the scope of the message execution, we can find other information in
addition to the sender and receiver’s contexts. The receiver’s state and the mes-
sage itself are also part of the context of the communication and hence they can
also be used in the definition of the rules and the methods. For instance, assume
that the user in the meeting room wants to send back an explanation about why
he is not answering the call to all the callers that have an entry in his address
book. We define a caller to be a buddy if the caller corresponds to an entry in
the user’s address book. So then the rule would also be implemented in terms



The Context-Dependent Role Model 9

Sender's device

with(<loc:hospital>) signal()signal()

Context
reference

getContext("location")

signal()

family

general

signal()

call(n)
signal()

signal()

friends

signal()
loud discreet

forwarder

signal() signal()

notifier

Receiver's device

Context-dependent behaviour

as(loud) signal()

Context-dependent
role selector

Message
queue

Rules

Receiver actorSender actor

Rules

Fig. 3. The implementation of the CDR model in AmbientTalk

of the “inAddressBook” method. The implementation of such a requirement in
the actor is as follows:

contextCellphone: contextActor({
...
notifier:: extend(discreet,{

signal():: {
buddy: getContact(thisMessage.getContext("name"));
// Send the explanation in a text message.
buddy<-receiveText("I’m in a meeting until 11:30");
// Use the signal method defined in the discreet role
// (the parent of this role).
super.signal()}

});

// Notify only to my buddies that I am in a meeting.
addRule({role notifier for receiver, message if

receiver.getContext("location") = "meeting-room" &
senderName: message.getContext("name") &
receiver.inAddressBook(senderName)});

...
})

We benefit from the visibility of the information contained in the message
(accessed via the pseudovariable thisMessage) in the implementation of the
notifier role to reply to the message.

3.5 Context Selection

The CDR model preserves the privacy of the receiver actor by allowing it to
autonomously decide its adaptations. To also protect the privacy of the message
sender we should enable this actor to autonomously select the context that it
sends to the message receiver. We introduce context references for this purpose.
A context reference is a dedicated proxy for a remote actor, whose main respon-
sibility is to get sender’s context information and include it in the message sent
to the remote actor. Figure 3 illustrates the place of the context reference in the
interaction between the two context-aware cellphone applications.



10 J. Vallejos et al.

The following listing shows the use of a context reference in the implementa-
tion of the context-aware cellphone application, now at the calling device:

contextCellphone: contextActor({
general: object({

addressBook : makeHashmap();
addContact(nickname,visibleCtx):: {

addressBook.put(nickname,makeContextRef(nickname, visibleCtx))
};
callContact(nickname):: {

buddy: getContact(nickname);
buddy<-signal()

};
... };

... })

A context reference is defined using the makeContextRef construct. Its de-
finition comprises the identification of the remote actor1 (represented by the
nickname of the cellphone’s user in our example), and the context accessible for
the reference. Similar to the context-dependent role selector presented in Sec-
tion 3.3, a context reference enables developers to declaratively specify the part
of the context that will be sent to the remote actor. Using the implementation
above, for instance, the cellphone’s user can add a contact to his address book
and reveal his location only during working hours, as follows:

contextCellphone<-addContact("Tom",
{addRule({send location of sender if

time: sender.getContext("time") &
time > 8.00 & time < 17.00})})

The information that the conditions of the rules for the context reference re-
quire, is retrieved from the logic variable sender which is bound to the sender
actor2. These rules are evaluated each time the sender actor sends a message
through the context reference. The context reference takes into account the con-
text information indicated in the head of all the rules that accomplish their
conditions. If none of the rules succeeds, the context reference does not add any
context information to the message.

Another benefit of the context references is that they enable the sender actor
to abstract from the passing of the context required in the CDR model. This
means that programmers do not have to manually include the context informa-
tion whenever they send messages (e.g. see the signal message sent inside the
call method). The inclusion of the context information occurs transparently in
the context reference. At the same time, a context reference is a central place
for configuring what context information to expose to the remote actor.

4 Discussion and Future Work

In summary, in the CDR model: an actor encapsulates a delegation hierarchy
composed of a default behaviour and its different context-dependent adaptations,

1 In AmbientTalk such identification corresponds to an intensional description of
the service provided by the actor in terms of its properties [16].

2 We do not consider the receiver for these rules at this stage. In Section 4, we
discuss some extensions to this context selection process.



The Context-Dependent Role Model 11

all of them represented as roles; actors respond to messages by first selecting the
appropriate role and then executing the corresponding method in the adap-
tation object of that role; the role required for the execution of a message is
autonomously selected by the actor that receives the message, using the context-
dependent role selector and based on the context of both the sender and receiver
of the message; adaptations have a delimited scope of action which is defined by
the execution of a message; and a context reference enables the message sender
to be aware of the part of the context exposed to the message receiver.

This model accomplishes the properties of context-dependent adaptations
identified in Section 2.1 as follows:

Dynamic adaptations. Dynamic adaptations of behaviour occur transpar-
ently for the programmer as a result of the selection of a context-dependent
role. This role indicates the behavioural adaptation (object) to which the
actor has to address the message.

Delimited scope. Behavioural adaptations are only active within the scope of
a message execution. This means that an actor only adopts a certain role to
process a single message.

Consistent composition. The composition of behavioural adaptations is de-
fined by the delegation hierarchy. This hierarchy is a flexible structure in
which the adaptations can specialise and consistently share behaviour.

Modularisation. Behavioural adaptations in this model are modular since they
are encapsulated in objects whose only interaction with the other adaptations
is regulated by the semantics of the delegation mechanism. The context
reasoning is also concentrated in a single entity called the context-dependent
role selector.

The CDR model also copes with the distribution requirements presented in
Section 2.2:

Multiple context influence. This model takes the context of all the entities
involved in a common task explicitly into account. The execution of a mes-
sage does not only depend on the application that receives the message (its
context and state), but also on the context information of the message sender
that is passed along with the message.

Delimited scope and concurrency. Actors communicate by asynchronous
message passing which enables them to adapt their behaviour to a message
without conflicting with other interactions.

Non-intrusiveness. An actor autonomously decides on the role that it will
adopt to process a certain incoming message. This decision is made by its
context-dependent role selector. The actor that sends the message also de-
cides autonomously the context information that is passed along with the
message.

Although the CDR model can help in tackling some of the challenges for
context-dependent adaptations faced in pervasive computing, a number of chal-
lenging issues needs to be further explored. For instance, in this model the default



12 J. Vallejos et al.

behaviour of a context-aware application is represented as a single object. We
are currently investigating an extension to this model that enables programmers
to also deal with application behaviours composed of multiple objects. The roles
of an application, in this case, do not represent the adaptations of one object but
rather modules of adaptations for several objects. The essence of these modules
of adaptation can be found in the notions of class families in CaesarJ [3], class-
boxes [6], or layers in ContextL [12]. So far, none of these approaches provide
support to deal with pervasive computing systems.

In this paper, we illustrate the benefits of delimiting the scope of an adaptation
to the execution of one message. We are currently also investigating how the
adaptation scope needs to be propagated in case of having interactions that
involve more than one message.

We also propose in this work the use of a delegation hierarchy to model com-
positions of context-dependent adaptations. In this structure, the adaptations
have a predefined location which gives clarity to the behaviour composition, but
at the same time restricts the possibilities of adaptations to those denoted by
the delegation chains in the hierarchy. A possible alternative to this delegation
hierarchy is to have a set of unwired behavioural adaptations, similar to mixins
[8] or traits [26], which can be dynamically composed whenever they are used.

In the logic reasoning process of context-dependent role selection, we need
to ensure that only one role is chosen. For this reason, we establish priorities
between the rules that in the current implementation of the CDR model rely on
their order of definition. We are currently exploring Choice Logic [29], Ordered
Logic [19] and dynamic preferences in Extended Logic programming [10], as more
expressive and dynamic ways of defining priorities.

In the CDR model, we define context references as the entities that centralise
the context selection process at the message sender’s device. A context reference
decides the part of the context that is sent to the message receiver based on the
sender’s context conditions. We are currently working on an extension that also
considers the message receiver in the context selection process, e.g. to reason
about the context conditions of the receiver or to enable it to prompt the sender
for specific pieces of context.

Finally, we are exploring different ways of optimising the logic reasoning
process required in the CDR model (context and role selection). We investi-
gate some techniques for caching information [18] and therefore avoiding the
recalculation of the role in every message reception.

5 Related Work

Context-Aware Frameworks. There is a huge amount of research on frame-
works that support the development and deployment of context-aware systems
like WildCAT [13], ContextToolkit [25] or Java Context Awareness Framework
[5]. The aim of these frameworks is to provide a generic programming infrastruc-
ture that deals with common functionalities like uniform interfaces to access sen-
sor data, event-based system to signal context changes, and reasoning mechanism
to aggregate context information. Context-aware frameworks are useful for both



The Context-Dependent Role Model 13

pro-active and reactive systems. In the former case, callback methods are used,
as part of an event-driven system, to automatically invoke some behaviour in
response to relevant context changes. Additionally, framework solutions also pro-
vide the ability to query for actual context information such that reactive systems
can adopt their behaviour accordingly. Developers have to rely on traditional dis-
patching constructs like conditional statements or polymorphism to establish the
behavioural adaptation. As soon as context-dependent behaviour appears to be
the rule rather than the exception, these language constructs become unman-
ageable. We therefore argue that context-aware frameworks and our role-based
model are actually complementary. Whereas the framework solutions provide
the required functionalities to develop context-aware systems, our role-based
programming model focuses on how context-dependent adaptations can be de-
cently modelled inside of software systems. The synergy between both proposals
supports the development of pervasive systems.

The CORTEX [27] is a middleware architecture that exploits the sentient
object paradigm: so-called sentient objects receive events as input (from other
sentient objects or sensors), process the events by means of an inference en-
gine and generate further events as output. The communication between sen-
tient objects happens asynchronously via an event layer which hides the
network and the transformation process of real-world events. Although our model
incorporates concepts that also appear in CORTEX, like asynchronous com-
munication and a reasoning system, both approaches address different applica-
tion domains. The sentient object model of CORTEX is intended for pro-active
context-aware systems that autonomously invoke some action in response to rel-
evant context changes. In contrast, our model deals with reactive systems. That
is, upon the reception of a message, the behaviour of the most appropriate role is
executed.

Actors in Open Distributed and Pervasive Systems. There exists a num-
ber of research proposals that extend the actor model to address the software
development issues found in open distributed and pervasive environments. Al-
though so far these approaches do not directly deal with context-dependent be-
havioural adaptations, some of their coordination and adaptation mechanisms
may be useful for developing context-aware applications. SALSA [28], for in-
stance, is an actor-based programming language designed for internet and grid
computing. This language enables application’s adaptation by means of reflec-
tion. The basic operations of the actors (communication and message processing)
can be freely manipulated at the meta-level of SALSA. These reflective capa-
bilities are mainly used to fulfil a set of default policies like resource profiling,
secure communication and coordination, but new policies can also be defined.

ARC [23] is a role-based coordination model for open, distributed and embed-
ded systems. This model also uses a meta-level but in this case to map quality
of service (QoS) requirements to coordination constraints. These constraints are
transparently imposed to the actors through message manipulation. Unlike roles
in the CDR model, roles in the ARC model are totally independent entities
(meta-actors) that provide abstractions for actor functional behaviours and that



14 J. Vallejos et al.

can be shared by multiple actors. The local coordination between actors is con-
ducted by the roles whereas the distributed coordination is conducted by other
meta-actors called coordinators.

Models of Composition and Conditional Selection of Behaviour. The
CDR model also shares a number of properties with some object models of com-
position and conditional behaviour selection. Split objects [4] is a programming
model that uses the delegation mechanism of prototype-based languages for role
modelling. Similar to an actor in the CDR model, a split object encapsulates a
collection of objects structured in a delegation hierarchy that hold part of the
description of the split object (state and behaviour) and represent the different
roles the split object can adopt to respond to a message. The difference with the
actor is that the split object does require that the messages sent to it indicate a
role. This means that the split object cannot autonomously decide its adaptation
which contradicts the non-intrusiveness principle defined in Section 2.2.

Composition filters [7] is a composition model that enables programmers to
modify the behaviour of object-based components through the manipulation of
incoming and outgoing messages. As in the CDR model, object behaviours are
fully encapsulated, and the behavioural adaptations are exclusively performed
inside the component (by using filters).

Predicate dispatching [17] generalises a diversity of method dispatching pro-
posals into a unified theory of dispatch. This is established by permitting arbi-
trary predicates to control the applicability of methods. The authors paid special
attention to static typechecking to ensure that there always exists a single most-
specific method. Our model can be regarded as a specific application of predicate
dispatch in which predicates are associated with roles.

6 Conclusion

Within the domain of pervasive computing, we focus on the capacity of soft-
ware applications to adapt to their dynamically reconfigurable environments.
We describe a number of properties for context-dependent adaptations and then
establish some specific requirements of distribution for such adaptations, derived
from the analysis of a concrete scenario of context-aware cellphone applications.
We observe that context-dependent adaptations occur dynamically and within a
delimited scope of action. In addition, these adaptations should be consistently
combined with the default behaviour of the application, and clearly modularised
to avoid the entanglement between the adaptations and the application behav-
iour. To cope with the effects of distribution on context-dependent adaptations,
an adaptation should take into account the context of all the applications in-
volved in an interaction, have an unambiguous scope of action even in the pres-
ence of concurrent interactions, and finally protect the privacy of the interacting
applications.



The Context-Dependent Role Model 15

In this paper, we propose the context-dependent model to deal with the prop-
erties and distribution requirements described above. In this model, context-
aware applications are represented as actors provided with a set of behavioural
adaptations organised in a delegation hierarchy. Each adaptation is represented
as a role that an actor can adopt to respond to a message. The actor au-
tonomously selects a role for each message based on the context of the message
sender and receiver. The context information of the sender that is used for this
selection, is passed along with the message and is also autonomously chosen by
the sender.

Currently, we are investigating different extensions of our model, like increas-
ing the units of adaptations, making more flexible composition structures of
adaptations, propagating the adaptation scope for multiple-actor interactions,
and enhancing the expressiveness and efficiency of the context and role selection
process.

References

1. Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Agha, G., Hewitt, C.: Concurrent programming using actors. Object-oriented con-
current programming, pp. 37–53 (1987)

3. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: Overview of caesarj. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Develop-
ment I. LNCS, vol. 3880, pp. 135–173. Springer, Heidelberg (2006)

4. Bardou, D., Dony, C.: Split objects: a disciplined use of delegation within ob-
jects. In: Proceedings of the 11th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pp. 122–137. ACM Press,
New York (1996)

5. Bardram, J.E.: The java context awareness framework (jcaf) - a service infrastruc-
ture and programming framework for context-aware applications. In: Pervasive,
pp. 98–115 (2005)

6. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Classboxes: controlling visibility
of class extensions. Computer Languages, Systems and Structures 31(3-4), 107–126
(2004)

7. Bergmans, L.: The composition filters object model. Technical report, Dept. of
Computer Science, University of Twente (1994)

8. Bracha, G., Cook, W.: Mixin-based inheritance. In: Meyrowitz, N. (ed.) Proceed-
ings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications / Proceedings of the European Conference on Object-Oriented Pro-
gramming, pp. 303–311, Ottawa, Canada, ACM Press (1990)

9. Brewer, E.A., Katz, R.H., Amir, E., Balakrishnan, H., Chawathe, Y., Fox, A.,
Gribble, S.D., Hodes, T., Nguyen, G., Padmanabhan, V.N., Stemm, M., Seshan,S.,
Henderson, T.: A network architecture for heterogeneous mobile computing. Per-
sonal Communications, IEEE (1998)

10. Brewka, G.: Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research 4, 19 (1996)

11. Correa, C.D., Marsic, I.: A flexible architecture to support awareness in heteroge-
neous collaborative environments. In: Fourth International Symposium on Collab-
orative Technologies and Systems (CTS 2003), pp. 109–116 (November 2003)



16 J. Vallejos et al.

12. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming - An overview of ContextL. In: Dynamic Languages Symposium (2005)

13. David, P.-C., Ledoux, T.: Wildcat: a generic framework for context-aware applica-
tions. In: MPAC ’05. Proceedings of the 3rd international workshop on Middleware
for pervasive and ad-hoc computing, pp. 1–7. ACM Press, New York (2005)

14. Dedecker, J.: Ambient-Oriented Programming. PhD thesis, Vrije Universiteit
Brussel (2006)

15. Dedecker, J., Van Belle, W.: Actors for Mobile Ad-hoc Networks. In: International
Conference on Embedded and Ubiquitous Computing EUC2004 (2004)

16. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
Oriented Programming in Ambienttalk. In: Proceedings of the 20th European Con-
ference on Object-Oriented Programming (ECOOP) Nantes, France (2006)

17. Ernst, M.D., Kaplan, C.S., Chambers, C.: Predicate dispatching: A unified theory
of dispatch. In: ECOOP ’98, the 12th European Conference on Object-Oriented
Programming, pp. 186–211, Brussels, Belgium (July 20-24, 1998)

18. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

19. Gabbay, D., Laenens, E., Vermeir, D.: Credulous vs. sceptical semantics for or-
dered logic programs. In: Kaufmann, M. (ed.) Second International Conference on
Principles of Knowledge Representation and Reasoning, pp. 208–217 (1991)

20. I.A. Group. Ambient intelligence: from vision to reality (September 2003)
21. Lieberman, H.: Using prototypical objects to implement shared behavior in object-

oriented systems. In: Conference proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, pp. 214–223. ACM Press, New York (1986)

22. Preuveneers,D.,VandenBergh, J.,Wagelaar,D.,Georges,A.,Rigole,P.,Clerckx,T.,
Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible con-
text ontology for ambient intelligence. In: Ambient Intelligence, pp. 148–159 (2004)

23. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., Shen, L.: Actors, roles and
coordinators - a coordination model for open distributed and embedded systems.
In: COORDINATION, pp. 247–265 (2006)

24. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of
context-enabled applications. In: A. Press (ed.) CHI 99: Proceedings of the SIGCHI
conference on Humon factors in computing systems, pp. 434–441. New York, USA
(1999)

25. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of
context-enabled applications. In: CHI ’99. Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 434–441. ACM Press, New York
(1999)

26. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: ECOOP 2003 – Object-Oriented Programming, LNCS, vol. 2743,
pp. 248–274, Springer, Heidelberg (2003)

27. Sørensen, C.-F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-
Limon, H.: A context-aware middleware for applications in mobile ad hoc environ-
ments. In: MPAC ’04. Proceedings of the 2nd workshop on Middleware for pervasive
and ad-hoc computing, pp. 107–110. ACM Press, New York (2004)

28. Varela, C.A., Agha, G.: A hierarchical model for coordination of concurrent activi-
ties. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594,
pp. 166–182. Springer, Heidelberg (1999)

29. Vos, M.D., Vermeir, D.: Choice logic programs and nash equilibria in strate-
gic games. In: Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic,
vol. 1683, pp. 266–276. Springer, Heidelberg (1999)


	Introduction
	Context-Dependent Adaptations in Mobile Distributed Systems
	Context-Dependent Adaptations
	Distribution Conditions for Context-Dependent Adaptations

	The Context-Dependent Role (CDR) Model
	Flexible Composition of Behavioural Adaptations
	Dynamic Adaptation Based on Roles
	Context-Dependent Role Selection
	Delimited Scope of Adaptations
	Context Selection

	Discussion and Future Work
	Related Work
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


