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Abstract
In mobile ad hoc networks, distributed programming is substan-
tially complicated by the fact that nodes in the network only have
intermittent connectivity and the lack of any centralized coordina-
tion facility. Because transient disconnections are so omnipresent
in mobile networks, we assume a distributed object-oriented pro-
gramming model in which remote object references abstract over
network disconnections by default. However, this language design
decision has repercussions on distributed memory management, as
disconnected remote references can prevent an object from being
reclaimed. To address this issue, we integrate memory management
based on leasing directly into the remote object reference abstrac-
tion, leading to the concept of a leased object reference. We explore
the language design issues, the integration with other language fea-
tures and illustrate the applicability of the language construct by
means of a concrete example.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors—Memory management (garbage collec-
tion)

General Terms Languages, Design, Experimentation

Keywords mobile ad hoc networks, distributed garbage collec-
tion, leasing, language design, remote object references

1. Introduction
The recent progress in the field of wireless technology has pro-
liferated a growing body of research that deals with mobile ad
hoc networks. Such networks have two discriminating properties,
which clearly set them apart from traditional, fixed computer net-
works: applications are deployed on mobile devices which are con-
nected by wireless communication links with a limited communica-
tion range [12]. Example mobile network applications range from
modest, already commonplace applications like collaborative text-
editors, to more futuristic pervasive and ubiquitous computing [23]
scenarios. Mobile ad hoc networks exhibit a number of phenomena
which are rare in their fixed counterparts [6]:

∗ Research Assistant of the Fund for Scientific Research Flanders, Belgium
(F.W.O.)

Volatile Connections. Mobile devices equipped with wireless me-
dia possess only a limited communication range such that two
communicating devices may move out of earshot unannounced.
The resulting disconnections are not always permanent: the two
devices may meet again, requiring their connection to be re-
established. Often, such transient disconnections should not af-
fect an application, allowing both parties to continue their col-
laboration where they left off. Because transient disconnections
are so omnipresent in mobile networks, a disconnection should
no longer be treated as a “failure” by default.

Zero Infrastructure. Mobile networks are often unadministered:
devices usually spontaneously join with and disjoin from the
network due to their physical mobility. As a result, in contrast
to stationary networks, it is more difficult to rely on server
infrastructure (e.g. a name server to manage service discovery)
which may not be available when some devices meet and set
up spontaneously a so-called ad hoc network. A peer-to-peer
collaboration model is often more appropriate due to the limited
infrastructure and communication range.

Any application designed for mobile ad hoc networks has to
deal with the above phenomena. Because the phenomena are uni-
versal, an appropriate computational model should be developed
that eases distributed programming in a mobile network by tak-
ing these phenomena into account from the ground up. One im-
portant observation is that, to deal with volatile connections in
an object-oriented model, remote object references should toler-
ate network disconnections: a disconnected remote reference is not
a “dangling” reference, it may always become reconnected when
the network connection is restored. This paper specifically focuses
on the repercussions of this design decision on distributed memory
management and subsequently introduces the concept of leasing
[9] into remote object references to cope with them, leading to the
concept of leased object references.

We describe an abstract model for leased object references in
section 3. In previous work, we have described the distributed
object-oriented programming language AmbientTalk, which is de-
signed specifically for mobile networks [6]. We describe an instan-
tiation of the leased object reference model in this language in sec-
tion 5. We use this language to illustrate leased object references as
it already provides remote object references that tolerate network
disconnections.

2. Motivation
The main motivation for incorporating leasing into the program-
ming language stems from the characteristics that set mobile ad
hoc networks apart from traditional computer networks. Before dis-
cussing the repercussions of mobile networks on distributed mem-
ory management by means of a concrete scenario, we first intro-



duce some terminology and concepts from the area of distributed
object-oriented computing.

We assume an object-oriented system where objects can be ex-
ported in the network either explicitly or implicitly by passing them
as a parameter or return value in a message sent to a remote ob-
ject. We denote such remotely accessible objects as server objects.
Server objects can be referenced from other machines by means of
remote object references.

2.1 Case Study: the Mobile Music Player
In order to illustrate the issues of distributed garbage collection in
mobile ad hoc networks on a concrete example, we first present a
small case study in the form of a music player running on mobile
devices such as PDAs or cellular phones. Consider a mobile mu-
sic player containing a library of songs. When two people using
the music player enter one another’s personal area network (de-
lineated by e.g. the bluetooth communication range of their cellu-
lar phones), the music players exchange their music library’s index
(not necessarily the songs themselves). After the exchange, the mu-
sic player can calculate the percentage of songs both users have in
common. If this percentage is high enough, the music player can
e.g. warn the user that someone with a similar taste in music is
nearby. This example, although relatively small, is a typical collab-
orative ad hoc networking application and illustrates some of the
key properties of collaborations in mobile ad hoc networks:

Discovery The so-called service objects that represent the music
player application have to discover one another in a peer-to-
peer manner. Once they have discovered one another, they need
to set up a session to exchange their music libraries.

Communication Once the service objects have established a ses-
sion, they need to transmit their library index in the face of
volatile connections. A transient network partition should not
cause the exchange to fail immediately. Hence, remote object
references between both music players should tolerate transient
disconnections by default.

Failure handling If a network partition does persist, remote object
references still referring to the session should be eventually
cleared such that it becomes possible to reclaim the allocated
session object together with other resources allocated during
the session, such as e.g. the partially downloaded library index
of the remote party.

An implementation of this example and a more thorough dis-
cussion on the distributed garbage collection issues is postponed
until section 4.

2.2 Reclaiming Remote Objects in Mobile Networks
A distributed garbage collector has to make trade-offs between
soundness and completeness: when a client machine containing
references to a server’s objects disconnects from the network, the
server either has to keep the objects exported until the client recon-
nects (sacrificing completeness – the client may never reconnect,
keeping the object from being reclaimed) or it eventually takes the
object offline such that it can be reclaimed (sacrificing soundness
– the client may reconnect and still refer to the object) [1]. These
problems are exacerbated in mobile ad hoc networks because due to
the characteristics outlined in the previous section, network failures
arise much more frequently and are often only temporary.

Traditionally, remote object references do not abstract over tem-
porary network failures: when a network failure occurs, the remote
reference becomes unusable and is considered “dangling”. This se-
mantics has the advantage that the remote server object can be un-
exported if all remote object references that referred to it have be-
come disconnected. For example, in a distributed garbage collector

based on reference listing, the reference can be directly removed
from the reference list upon disconnection so that the remote ob-
ject can be eventually reclaimed [16]. Because of the frequent dis-
connections in mobile networks, remote object references that do
tolerate network failures are much more suitable as they remain
valid during a disconnection, decoupling client and server objects
in time. The expected behaviour is that such time-decoupled remote
references are reconnected once the network connection is reestab-
lished. However, this means that a disconnected remote object ref-
erence can no longer be regarded as “dangling”, i.e. the server ob-
ject it points to should not be reclaimed prematurely.

Because it is impossible to distinguish a transient network fail-
ure from a permanent (network or machine) failure, the lifetime of
the remote object reference should be limited such that the remote
object can eventually be reclaimed if the network failure persists.
Leasing provides a robust mechanism to manage reclamation of re-
mote objects in a fault-tolerant fashion [21]. A lease is granted by
a lease grantor to a lease holder, and grants the holder access to a
resource managed by the lease grantor for a limited period of time
that is negotiated by grantor and holder when the access is first re-
quested. The advantage of leasing is that the lease grantor remains
in control of the resource by maintaining the right to reclaim the
resource once all of its leases have expired. Because of the lease
time associated with a lease, the lease holder knows when its access
rights have expired meaning it can no longer access the resource.
Leasing solves the tension between soundness and completeness
by weakening the notion of soundness: expired leases essentially
denote “dangling references”, but they are now admitted as a valid
state of the distributed system.

2.3 Language Support for Leasing
We observe that on the one hand, leases have already been in-
tegrated into programming languages for managing the lifetime
of remote objects (e.g. in Java RMI [18] and .NET Remoting
[13]). However, in these approaches leases are not used for man-
aging disconnected remote references. Rather, they are used to
reclaim unused connected references. These systems do not pro-
vide time-decoupled remote references that tolerate failures. On the
other hand, distributed computing frameworks (e.g. Jini [20] and
one.world [10]) do employ leases for managing resources in the
face of network failures. However, these approaches do not provide
time-decoupled references either, and do not integrate leasing in
the underlying language. Our contribution lies in integrating leases
as they are used in e.g. Jini into the programming language as is
done in e.g. .NET Remoting to specifically allow remote object
references to tolerate network failures. In other words, we combine
leasing with time-decoupled remote object references and provide
the resulting leased object references as a first-class language ab-
straction.

Our goal is to provide language support for leasing, such that
low-level leasing management details can be abstracted away as
much as possible. Therefore, the focus of this research is on what
features of a leasing framework to expose to the programmer, and
what features to integrate in the language. As is always the case
with language abstractions, a trade-off must be made between a
decrease in customisability for the programmer and an increase in
conciseness and properties that can be enforced by the language.
Integrating leases into the language as leased object references,
rather than offering them as a general library abstraction has the
following advantages:

• Tedious boilerplate code, such as explicit lease renewal code, is
no longer required. Rather, lease renewal is done implicitly by
means of other language constructs, such as message sending,
as will be described later.



• The language can enforce desirable properties and semantic
constraints. For example, leased object references have dedi-
cated parameter-passing semantics; expired leased references
are treated uniformly as disconnected remote references; a pro-
grammer can express the semantic constraint that an object
should be “pass-by-lease”, ensuring that only leased references
can remotely refer to the object. All of these properties are also
explained in more detail later.

• A dedicated syntax for specific concerns in a language improves
conciseness and readability of code, making the code easier to
understand.

3. Leased Object References
In this section, we describe our leased object reference model
which integrates leasing into time-decoupled remote object refer-
ences. Although the description of this model is quite abstract, we
will instantiate it in a concrete programming language in section 5.

A leased object reference is a remote object reference that trans-
parently grants access to a remote service object for a limited pe-
riod of time. When a client first references a server object that is
leased, a leased object reference is created and associated to the
server object. From that moment on, the client accesses the server
object transparently via the leased reference until it expires. Figure
1 illustrates an allocated leased reference. Each side of the leased
reference has a timer initialized with a time period which keeps
track of the lease time left. When the time period has elapsed, the
access to the server object is revoked, i.e. the leased reference ex-
pires. A server object can have explicit control of its leases’ lifetime
by renewing or revoking them explicitly before they expire. When
no renewal is performed due to a network partition or merely in the
absence of utilization, the leased reference expires once its lease
time elapses. Once a leased reference expires, both client and server
object know that the client access to the server object is terminated.

In order to abstract over the transient disconnections inherent
to mobile ad hoc networks, a leased reference decouples the client
object and the server object it refers to in time. This means that
a client object can send a message to the server object even if
the leased reference is disconnected at that time. Client objects
can only send messages to server objects asynchronously: when a
client object sends a message to the server object, the message is
transparently buffered in the leased reference and the client does
not wait for the message to be delivered. When the leased reference
is connected and active, i.e. there is network connection and the
lease has not yet expired, it forwards the buffered messages to the
remote object. While disconnected, messages are accumulated in
order to be transmitted when the reference becomes reconnected at
a later point in time. When the lease expires, the client loses the
means of accessing the server object via the leased reference. Any
attempt in using it will not result in a message transmission since
an expired leased reference behaves as a permanently disconnected
remote reference.

Clients objects can register a listener with a leased reference,
which is notified asynchronously when the reference expires. This
is especially useful for client objects since it allows them to clear
other resources and to perform failure handling if necessary. Mul-
tiple leased object references with different lease times can refer to
the same server object. Only when all of the leased object refer-
ences to a server object have expired can the server object become
a candidate for local garbage collection.

Interactions with a leased server object are always subject to
leasing. When a lease to a server object is passed to a client, both
sides of the leased reference keep track of the remaining lease time
as depicted in figure 1. Hence, no communication with the server is
required in order for a client to detect the expiration of a leased ref-

VM BVM A

client object server object 

Figure 1. A leased reference

erence. However, having both a client-side and server-side timer
introduces issues of clock synchronisation. Keeping clocks syn-
chronised is a well known problem in distributed systems [19].
This issue is somewhat more manageable with leases since they use
time intervals rather than absolute time and the degree of precision
is expected to be of the magnitude of seconds, minutes or hours.
At worst, the asynchrony causes the server to revoke the lease too
early. To the client, it will appear as if the remote object has dis-
connected due to a network failure and the lease will expire soon.
Once the leased reference is established between the two parties,
the server periodically sends the current remaining time by piggy-
backing it onto application-level messages.

A client renewal request is delegated to the server-side which
ultimately decides the actual renewal time since it is responsible
for the server object’s lifetime. If the renewal time has not been re-
turned to the client side within a certain period of time, the client-
side timer remains untouched and expires when the original time
interval elapses. A client revocation request results in the cance-
lation of both the client and the server timers. If the client cannot
communicate the revocation to the server, the server-side timer will
eventually expire, causing the lease to be revoked anyhow.

As is the case in other leasing mechanisms, determining the
proper lease renewal period is not straightforward and may even
depend on system parameters such as the number of clients. We de-
scribe two variants on leased object references which transparently
adapt their lease time under certain circumstances. The first variant
is a renew-on-call leased reference which automatically prolongs
the lease upon each method call received by the server object. They
are based on similar leases in the .NET Remoting framework [13].
As long as the client uses the server object, the leased reference is
transparently renewed by the interpreter. The default call time re-
newal is the initial time period of the leased reference. The second
variant is a single call leased object reference which automatically
revokes the lease upon performing a successful method call on the
server object. Such leases are useful for objects which adhere to a
single call pattern such as callbacks. For example, in asynchronous
message passing schemes, callback objects are often passed along
with a message in order for server object to be able to return values.
Such callback objects are typically remotely accessed only once by
server objects with the computed return value.

4. Mobile Music Player Implementation
In the previous section, we have introduced a model for integrat-
ing leasing into time-decoupled remote object references. Before
describing an instantiation of this model in the AmbientTalk lan-
guage, we discuss the distributed garbage collection issues in more
detail by means of a concrete implementation of the mobile music
player described in section 2.1. We first briefly introduce Ambi-
entTalk in the following section.

4.1 The AmbientTalk Language
AmbientTalk is an object-oriented distributed language. The fol-
lowing code excerpt shows the definition and use of a simple Song
object in AmbientTalk:



def Song := object: {
def artist := nil;
def title := nil;
def init(artist, title) {
self.artist := artist;
self.title := title;

};
def play() { /* play the song */ };

};
def s := Song.new("Garbage", "Stupid Girl");
s.play();

In this example, a prototypical song object is assigned to the
variable Song. A song object has two fields, a constructor (always
called init in AmbientTalk), and a method play. Sending new
to an object creates a copy of that object, initialised using its init
method.

In AmbientTalk, concurrency is not spawned by means of
threads but rather by means of actors [2]. AmbientTalk actors
are based on the communicating event loops model of the E pro-
gramming language [14]. Each actor owns a set of regular objects.
Objects owned by the same actor communicate using sequential
message sending, as in Java or Smalltalk. Objects owned by dif-
ferent actors can only send asynchronous messages to one another.
AmbientTalk borrows from the E language the syntactic distinc-
tion between sequential message sends (expressed as o.m()) and
asynchronous message sends (expressed as o<-m()).

In order to make some objects available to remote actors and
their objects, an actor can explicitly export objects that represent
certain services. In AmbientTalk, a service object is always ex-
ported together with a service type. Service types serve as general
descriptors merely used to categorise which objects export what
kinds of services. In the music player example, each music player
is modelled as an actor which exports an interface object that
can be used by other music players to start a communication ses-
sion to exchange libraries. This object is exported with the service
type MusicPlayer, as follows:

deftype MusicPlayer;
def interface := object: {

def openSession(sessionCallback) {
// return a session object (explained later)

};
};
export: interface as: MusicPlayer;

From the moment an object is exported by its actor, it is discov-
erable by other actors by means of its service type. One can define
event handlers that are triggered whenever a remote object of a cer-
tain service type has become available in the network. For example,
when a music player actor discovers another one in the local ad hoc
network, it opens a session to exchange its music library index:

whenever: MusicPlayer discovered: { |remotePlayer|
system.println("discovered new music player");
// open a session to remotePlayer

}

The remotePlayer parameter of the event handler is a re-
mote object reference to the exported interface object of an-
other music player. The event handler can use the remote reference
to asynchronously communicate with the discovered object. Am-
bientTalk’s remote object references are time-decoupled. A remote
reference may either be connected to or disconnected from the re-
mote object. While disconnected, asynchronous messages sent via
the reference are buffered and transmitted when the reference re-
connects. This enables client objects to abstract over transient net-
work failures.

Note that the code that exports the interface object, and
the code above that discovers other such objects is executed by all
music player actors in the network. Hence, music players engage in
peer-to-peer communication: when a music player A and a music
player B enter one another’s communication range, A will discover
B’s interface object and B will discover A’s interface object.

4.2 The Mobile Music Player
In this section, we describe the implementation of the library ex-
change protocol between two music players. The implementation
described here, however, will not deal with distributed memory
management yet. At the end of this section, we will describe the
garbage collection issues that the example application exhibits.
Language support for dealing with these issues in AmbientTalk is
then introduced in section 5.

In the music player example, once one music player has a
reference to the interface object of another music player, it
can ask the remote player to open a library exchange session by
sending it the openSession message. The interface object
implements this message as follows:

def openSession(sessionCallback) {
// store sender’s music library in a set
def senderLib := Set.new();
def session := object: {

def downloadSong(artist, title, ackCallback) {
senderLib.add(Song.new(artist, title));
ackCallback<-acknowledge();

};
def endExchange() {
// calculate match percentage with my library
def matchRatio := calcMatchRatio(senderLib);
if: (matchRatio >= THRESHOLD) then: {
// notify user of match

};
};

};
// return the session object
sessionCallback<-receive(session);

};

The openSessionmethod asynchronously returns a new ses-
sion object which implements two methods which are used by a
remote music player to send song information (downloadSong)
and to signal the end of the library exchange (endExchange). A
music player sends all of its own songs one by one to this session
object after it has discovered a music player:

whenever: MusicPlayer discovered: { |remotePlayer|
system.println("discovered new music player");
remotePlayer<-openSession(object: {

def receive(session) {
// iterate over own music library
def iterator := myLib.iterator();
// auxiliary function to send each song
def sendNextSong() {

if: (iterator.hasNext()) then: {
def song := iterator.next();
session<-downloadSong(song.artist,song.title,
object: {

def acknowledge() {
// recursive call to send next song info
sendNextSong();

}
});

} else: {
session<-endExchange();

};
};
sendNextSong();

}
});

};



The argument to the openSessionmessage send is an anony-
mous callback object which is designated to receive the remote mu-
sic player’s session object, as shown previously in the code for
openSession. The auxiliary function sendNextSong sends
the music player’s songs one by one to the remote session ob-
ject. This serial behaviour is guaranteed, because each subsequent
downloadSong message is only sent after the previous one re-
turned an acknowledgement. Each acknowledgement is handled by
an anonymous callback object.

whenever:discovered: 
event handler@VM A interface@VM B

session@VM B

ackCallback
@VM A

openSession(sessionCallback)

receive(session)

downloadSong(artist,title,ackcb)

acknowledge()

notify(remotePlayer)
sessionCall-
back@VM A1 2

3

4

Figure 2. The library exchange protocol

Figure 2 gives a graphical overview of the library exchange
protocol. Note that for purposes of clarity the figure only describes
the protocol from the point of view of the music player on virtual
machine A. In reality, this protocol is executed simultaneously on
both virtual machines. The numbers correspond to the acquisition
of a new remote reference to an object. They are discussed in the
following section.

4.3 Distributed Garbage Collection Issues
Four different kinds of remote object references, and hence four
different kinds of remotely accessible objects, are involved in the
example application introduced above:

• The remotePlayer variable contains a remote reference
to the explicitly exported interface object of the other music
player.

• The session variable in the previous code excerpt contains
a remote reference to the session object created by the remote
music player.

• The sessionCallback variable in the method openSes-
sion contains a remote reference to the anonymous callback
object that is used to asynchronously receive the session object.

• The ackCallback variable in the method downloadSong
contains a remote reference to the anonymous callback object
used to process the acknowledgement.

Figure 3 gives a graphical overview of each of these remote ref-
erences. The numbers correspond to those in figure 2 and indicate
at what stage of the protocol the remote reference is created.

VM A

event handler
interface

session

sessionCallback

ackCallback

VM B1

2
3

4

Figure 3. The exchanged remote object references

For each of these remote references and the objects they point
to, we should consider whether and when they can be correctly re-
claimed. First, the interface object of each music player has been

explicitly exported. Note that from the moment such objects have
been exported, they will not become subject to garbage collection
unless explicitly unexported. Hence, no special memory manage-
ment provisions must be taken for the remotePlayer reference.
The session object, on the other hand, is clearly only relevant
within the context of a single music library exchange. If – due to
a persistent network partition or a crash – the exchange cannot be
completed, this object and the resources it transitively keeps alive
(such as the senderLib variable to store incoming songs) should
become garbage. This indicates that the remote reference to this
session object should be leased, such that both music players can
gracefully terminate the exchange process if the lease expires.

Because the anonymous objects serving as callback objects
are parameter-passed in the openSession and downloadSong
messages, they too are implicitly exported, such that the remote
music player may refer to them. This means that they introduce
additional memory management concerns. The anonymous object
referred to by the sessionCallback variable should not be put
online indefinitely. Rather, the callback only serves to process the
incoming reply. If this reply does not arrive after some period of
time, it makes sense to take the object offline and further ignore
the music player, as the library exchange has not even started.
Hence, the sessionCallback object should either be taken
offline when the reply comes in or after a certain timeout period.

For the ackCallback object the situation is only slightly
different. This object should also only be exported for a limited
period of time. The callback can be taken offline and discarded
when either the acknowledgement arrives or the session times out.
The difference with the sessionCallback is that the timeout
period to use can be derived from the session timeout, rather than
picking an arbitrary timeout value.

The example code shown previously does not take these issues
into account at all: when two music players disconnect, the objects
referred to by the remote music player will remain exported and
hence kept alive by the pointers in the actor’s object table. This be-
haviour is due to the design decision of making remote object ref-
erences resilient to network failures by default. In the next section,
we describe the required changes to this default behaviour and ap-
ply the concept of leased object references to the example in order
to take the above distributed garbage collection issues into account.

5. Language support for leasing
We now describe a concrete instantiation of the leased object ref-
erence model introduced in section 3. We have added support for
leased object references to the AmbientTalk language. We describe
AmbientTalk’s leased object references by applying them to the
case study to solve the garbage collection issues identified in the
previous section. A description of how leased object references
have been implemented in AmbientTalk is postponed until the next
section.

Our language support features three different language con-
structs for creating leased object references which correspond to
basic leased object references and the two variations described in
section 3. The most basic form of a leased reference is created by
the lease construct. As shown below, the construct requires two pa-
rameters: an object corresponding to the server object to which the
leased reference grants access, and an initial time period.

lease: timeout for: object

The leased reference created with this lease construct only lasts
for the given time interval unless a renewal or revocation is explic-
itly issued. The dedicated language constructs for explicitly renew-
ing or revoking a leased reference are detailed later.



In order to create renew-on-call and single-call leases, our lan-
guage support also provides the renewOnCallLease and single-
CallLease constructs, respectively. The renewOnCallLease con-
struct creates a leased reference which is automatically prolonged
on every message invocation on the server object. In the mobile
music player previously introduced, a renew-on-call lease can be
used for the session object that represents the exchange process
between two music players as follows:

def session := renewOnCallLease: minutes(10) for: (
object: {
def downloadSong(artist, title, ackCallback) {

/* as before */
};
def endExchange() {

revoke: session;
/* as before */

};
};

});

As explained in section 4, once a music player establishes a
reference to another music player, it can ask the remote player to
open a library exchange session by sending it the openSession
message which returns a session object. The session object
should be subject to leasing in order for both music players to
properly terminate the exchange process in the presence of network
failures. The session object is exported using a lease for 10 minutes
that is automatically renewed each time it receives a message. As
long as the exchange is active, i.e. downloadSong messages
are received, the session remains active. The leased reference is
revoked either explicitly when a client sends the endExchange
message to indicate the end of the library exchange, or implicitly if
the lease time has elapsed. Since the anonymous session object was
only referred to by the leased reference, it can be reclaimed once
the lease has expired. Any resources it transitively occupied such as
the partially downloaded library of songs can be reclaimed as well.

By default, the renewal time applied on every call is the initial
interval of time specified at creation. However, developers can also
determine their renewal time by means of an extended version of
the construct which takes as parameter a given renewal time.

The singleCallLease construct allows developers to create
leased references that remain valid for only a single call. In other
words, the leased reference expires after the server object receives
a single message. However, if no message has been received within
the specified time interval, the leased reference also expires. As
shown in the code above, an ackCallback object is parameter-
passed in the downloadSong message in order for a session
object to acknowledge that a song has been properly downloaded.
A single-call lease can be used for unexporting this callback object
upon receipt of the acknowledge message as follows:

session<-downloadSong(song.artist, song.title,
singleCallLease: (leaseTimeLeft: session) for: (
object: {
def acknowledge() { /* as before */ }

}));

Since the callback is only useful in the context of the current li-
brary exchange session, it only makes sense to export the callback
for the remaining duration of the session (which can be acquired
from a leased object reference by means of the leaseTimeLeft
construct). The callback can become candidate for garbage collec-
tion either once it has processed its acknowledge method or
when the session expires. If the callback’s lease expires, the library
exchange is stopped without requiring additional cleanup code.

Similar to the acknowledgement callback, the sessionCallback
is parameter-passed in the openSession message to asyn-

chronously receive a session object. The session callback object
can also be exported with a single call lease as follows:

whenever: MusicPlayer discovered: { |remotePlayer|
system.println("discovered new music player");
remotePlayer<-openSession(
singleCallLease: minutes(10) for: ( object: {
def receive(session) { /* as before */ }

}));
};

A lease time of 10 minutes is specified to wait for the reply.
If a disconnection would occur after the openSession message
was transmitted but before the receive reply was received, the
session object could have already been allocated. Since a session’s
lease only lasts 10 minutes by default, it does not make sense to
wait any longer for the reply. If the session callback’s lease ex-
pires, the library exchange protocol terminates before it was actu-
ally started, again requiring no additional cleanup code. By default,
any message received revokes a single-call leased reference. How-
ever, an extended version of the singleCall construct exists that
allows developers to specify explicitly which messages cause an
immediate revocation.

Explicit manipulation of the lifetime of a leased reference is
provided by means of the renew and revoke language constructs.
The renew construct requests a prolongation of the specified lease
reference with a new interval of time which can be different than
the initial time. When a lease is renewed, the specified renewal
time is not directly added to the initial time interval. Rather, the
renewal time is used to determine a new expiration time by taking
the maximum of the current time left in the leased reference and
the renewal time specified. The construct looks as follows:

renew: aLeasedRef for: period

The revoke construct cancels the given leased reference. Can-
celing a lease is in a sense analogous to a natural expiration of the
lease, but it requires communication between the client and server
side of the leased reference. The revoke construct has been already
introduced in the code example for the session object where it
is used to revoke the session’s lease when a client signals the end
of the library exchange.

In order to allow client objects to properly react to expired
leased references, the when-expired construct is provided. The
code below shows how a music player can detect when a session
with a remote music player expires.

when: session expired: {
system.println("session timed out.");

}

The construct takes as parameters a leased reference and a block
of code that is executed upon the expiration of the lease. When the
leased reference expires, all of the registered when-expired event
handlers are notified and their associated block of code is triggered.
These event handlers are only notified when the lease has expired,
not when it has been revoked explicitly.

The case study of the mobile music player application illustrates
how developers can concisely define and manipulate leased refer-
ences. This case study features a simple yet representative example
how language support for leasing eases the development of mo-
bile ad hoc applications that properly reclaim their server objects.
Without the language constructs presented, coding this application
would have required to manually deal with concerns such as the re-
newal of the session leased reference or the revocation of the lease
when a reply is received in the callback objects.



6. Implementation
Leased object references have been implemented as part of the
AmbientTalk language1. The language has been implemented as an
interpreter written on top of the Java Virtual Machine. It runs on the
J2ME platform such that the language can be used in actual mobile
networks. The mobile music player used as a case study in this
paper has been implemented and tested on QTek 9090 smartphones
connected by a WiFi network.

AmbientTalk does not have a built-in distributed garbage col-
lector. Instead, a minimal set of low-level primitives for distributed
memory management have been implemented in its kernel in Java.
Rather than defining one specific garbage collector directly in the
kernel, we have opted to enable the experimentation of distributed
garbage collection techniques from within AmbientTalk itself. To
this end, leased references have been implemented reflectively on
top of the low-level support of the kernel. Before explaining the re-
flective implementation of leased references, we first describe the
interpreter support for distributed memory management.

6.1 Remote Object References
The AmbientTalk data structures for distributed memory manage-
ment have been based on reference listing [17] and the network
objects framework [5]. Similar to these techniques, remote object
references are implemented by means of a proxy at client-side,
which encapsulates a wire representation of the exported object
and whose methods are stubs that transform local message sends
into distributed message sends. Messages sent to the server include
method invocation information, as well as the wire representation
of the receiver. Each actor maintains an object table which maps
wire representations onto local references to exported objects. This
table is used to transform distributed message sends back into local
message sends.

As explained in section 4.1, AmbientTalk’s remote references
are by default resilient to disconnections. At a distributed garbage
collection level, this implies that an exported server object remains
part of the root set in the presence of disconnections since remote
references remain valid and still refer to the server object while dis-
connected. We have implemented kernel support in order to make
server objects subject to garbage collection in spite of such time-
decoupled remote references. As the goal of our work is to uncover
the necessary language abstractions for distributed garbage collec-
tion in mobile networks, the AmbientTalk kernel provides two low-
level primitives named takeOffline and when-takenOffline to ma-
nipulate the object table.

The takeOffline primitive takes as parameters an object which
is removed from the export table of the actor where the code is
executed. When the object is removed from the export table, it
no longer belongs to the set of root objects and as such, it can
be eventually reclaimed by Java’s local garbage collector once it
is no longer locally referenced. Although the actual reclamation
of an unexported object may be triggered at a later point in time,
any attempt to access it via a remote reference will result in an
ObjectOffline exception. At the client side, remote references
to an object taken offline behave as permanently disconnected ref-
erences. Despite having network connection, messages sent to the
remote references are thus not forwarded to the server object. We
further illustrate the usage of the takeOffline primitive in the im-
plementation of leased references described in the next section.

AmbientTalk’s asynchronous message sending semantics en-
sure that a message will be eventually received, but it does not
ensure that the message is actually executed by the receiver of the
message and returns a result. For AmbientTalk developers, a remote
reference to an object taken offline behaves as a disconnected ref-

1 The language is available at http://prog.vub.ac.be/amop/at/download

erence. However, at the meta-level, developers can distinguish be-
tween a disconnection engendered by a network partition and one
engendered by a remote object that was taken offline. The when-
takenOffline primitive allows developers to install event handlers
on a remote reference that are notified when the object pointed to
is taken offline.

The takeOffline primitive can be considered the equivalent to
the so-called delete operation provided by some sequential lan-
guages without built-in local garbage collection. As previously
mentioned, we have opted for a minimal distributed memory man-
agement support in the interpreter so that leased object references
can be reflectively built in the language. Regular AmbientTalk de-
velopers should make use of higher-level abstractions, rather than
using the takeOffline primitive.

6.2 Leased Object References
As explained in section 3, a leased reference conceptually is a
unidirectional communication link from a client to a server object
as depicted in figure 4 with a dotted line. At the implementation
level, a leased reference actually consists of an ensemble of object
references as also shown in figure 4. More specifically, a leased
reference is composed of a proxy object in the client host, denoted
as the client lease proxy (CLP), referring to a lease object which
grants the actual access to the server object, denoted as the server
lease proxy (SLP). Note that both client and server lease proxies are
transparent to the regular AmbientTalk developer.

Figure 4 illustrates the internal details of the remote reference
between CLP and SLP according to the implementation of remote
references explained in section 6.1. On the client side, the CLP
encapsulates the wire representation of the server object denoted
by the SLW key. On the side of the server object, the object table
maps the wire representation SLW to the SLP.

VM BVM A

CLP

client lease proxy

client object server object SLP

server lease 
proxy

Conceptual leased reference Implementation references

wireRep

... ...
SLW

wireRep object

SLW

Figure 4. Implementation of a leased object reference

A CLP is responsible for transparently intercepting client mes-
sages sent to the server object and for forwarding them to the SLP.
In addition, it also manages the client when-expired subscriptions.
As also shown in figure 4, the client lease maintains its own timer
which is kept in synchronization with the SLP’s timer. When the
timer expires, the CLP cleans the reference to the wire representa-
tion of SLP.

On the other side, the SLP intercepts the messages received
from the client lease and forwards them to the actual server ob-
ject. The SLP also maintains a timer and removes its entry in the
object table once its time elapses. The expiration of the server timer
terminates the actual access to a server object. This has been imple-
mented by means of the takeOffline primitive as follows:

timer.schedule(timeout,
object: {

def run() {
notifyExpiredEventHandlers();
expired := true;
takeOffline: slp;

}
}

);



The above excerpt of code schedules a new task object passed
as parameter which is triggered when timeout elapses. More
precisely, the run method of the task object is executed after the
specified time interval. The run method is responsible for notify-
ing the when-expired event handlers and unexporting the server
lease proxy slp. At the implementation level, a server object itself
is not exported to clients. Rather, its server lease proxies are the
ones remotely accessible on behalf of the server object. All inter-
actions with a server object are ensured to be subject to leasing and
as such, the server object can be eventually reclaimed. Since each
time a client establishes a remote reference to a server object, a new
leased reference will be created, once all leased references expire,
the server object is no longer referenced from any SLP and hence,
from the object table.

Server lease proxies respond to a set of methods to manipulate
the lease life time, i.e. to get the time left, renew and revoke a
lease, and install the when-expired observers. Note that when-
expired observers can also be installed on server lease proxies so
that server objects are able to clean other resources created during
the interaction with a client object once its leased reference expires.

Leased reference proxies obey a pass-by-lease semantics to en-
sure that interactions with a leased server object is always subject
to leasing. When a SLP to a server object is passed to a client, the
server lease is wrapped in a placeholder object which upon arrival
at the client side creates the CLP referring to the SLP. In order
to properly implement such expected behaviour, a SLP overwrites
certain methods forming part of the metaobject protocol of Am-
bientTalk, namely receive and pass meta methods which reify the
receipt of messages and the serialization of objects, respectively.

The receive method is called at the meta level each time an
object receives an asynchronous message. The SLP created by
means of the lease construct, replaces the default AmbientTalk
semantics by the following code so as to forward the messages
buffered to the referenced server object provided that the lease has
not already expired.

def receive(msg) {
if: !(expired) then: {
forward(msg, serverObject)

}
}

The pass meta method is called when a SLP is serialized when
handed over to a remote client object. On the client side, the re-
solve meta method is called when an object is received in order
to properly deserialize it. Server lease proxies override the pass
meta method to apply pass-by-lease semantics instead of the de-
fault pass-by-reference semantics applied to regular AmbientTalk
objects. When a lease server object is handed over to the client
object, pass returns a pass-by-copy wrapper object whose only be-
haviour is to overwrite the resolve meta method that is executed
upon receipt at the client virtual machine. When resolve is called
at the client side, such wrapper object creates a CLP that points to
the actual SLP residing at the server side.

As explained in section 3, our leasing model also provides
single-call and renew-on-call leased references. At the implementa-
tion level, the common behaviour to all kinds of leased references is
represented by a core leased reference which corresponds to those
created by means of the lease construct. The core leased reference
is implemented by the SLP and CLP described above. Single-call
and renew-on-call server and client lease proxies are implemented
as an extension to the core server and client lease proxies, respec-
tively. More concretely, such proxies overwrride the receipt of mes-
sages and the serialization of objects inherited from the core objects
with specific strategies.

In the case of a renew-on-call leased reference, its SLP renews
its timer before delegating the forwarding of the message to the core
object. The renew-on-call lease object overrides receive as follows:

def receive(msg) {
self.renew(renewalTime);
super.receive(msg);

};

As we mentioned in section 5, the renewal time is by default the
initial lease timeout. Similar to renew-on-call leases, a single-call
SLP delegates the forwarding of the message to the core object.
As shown in the code below, the single-call lease then revokes the
leased reference either if the selector of the message corresponds to
a message name contained in the forSelectors array or if the
array is empty which means that any message selector revokes the
lease.

def receive(msg) {
def result := super.receive(msg);
if: !(expired) then: {

if: (forSelectors.isEmpty().or: {
forSelectors.contains(msg.selector)}) then: {
self.revoke();

}
};
result;

};

Renew-on-call and single-call server leases override the pass
meta method as well in order to create the CLP that use their
equivalent strategies at the client side. Client lease proxies behave
slightly different than their server counterparts. The key difference
is that client lease proxies do not adhere to the pass-by-lease se-
mantics since they are not actually granting access to the server
object but to the SLP.

Finally, we detail the interaction between client and server prox-
ies in terms of renewal and revocations originated by the client ob-
ject. Intercepted client renewals or revocations on the CLP are del-
egated to the server lease reference. If a client revokes the leased
reference, this does not pose much challenges: the client lease first
cancels its timer and then flushes the request to the server lease. If
the request is lost, the server lease will in any case eventually be
collected when the original time interval elapses. However, client
renewal requests only prolong the timer of the CLP upon successful
renewal acknowledgment from the SLP.

Due to space constraints, a comprehensive explanation of the
reflective implementation of leased references cannot be covered
in this paper. However, the complete reflective source code can be
found in the system library shipped with AmbientTalk.

7. Discussion and Future work: Variations on
Leasing

As explained in the introduction, our goal is to incorporate leasing
into the programming language. In section 5 we have illustrated
three concrete instances of such language support. However, these
particular language constructs do not always suit the need of the
developer. Other variations on the semantics of leased object refer-
ences are definitely possible. Because leased references have been
implemented reflectively, defining variations on the described lan-
guage constructs is relatively easy, as it can be done in the high-
level language itself. Our future work consists of a) investigating
other language constructs for leasing, b) finding novel, useful re-
newal strategies of leased references, and c) integrating leased ref-
erences with other language constructs. We give a concrete example
of each of these research directions below.



The language abstractions for leased references described in this
paper are applied on a per-object basis. However, identifying each
remote reference and applying language constructs separately still
places considerable burden on developers. To alleviate this, we are
currently exploring new language constructs to allow developers to
delimit a scope of action so that all objects exported within this
scope are transparently exported as leased references.

In the spirit of renew-on-call leases, we are investigating leased
references with built-in renewal policies where the renewal of the
lease depends on changing context parameters of the system. For
instance, a leased reference can be created that remains valid only
while the battery level of the device hosting the server object is
above an acceptable limit. This is particularly relevant to the devel-
opment of context-driven adaptations in mobile ad hoc networks.
We believe that changes in context not only require adaptation in
the behaviour of the application but also permeate to distributed
memory management. In future work, we will thus explore self-
adaptive leasing techniques [7] to dynamically adapt the lease time
and the renewal frequency according to context parameters.

As an example of integrating leases with other language con-
structs, we are currently exploring how to integrate leased object
references with the concept of futures [3] or promises [11]. Futures
are a recurring language abstraction in concurrent languages with
asynchronous message sends (e.g. ABCL [24], E [14], Argus [11]).
A future is a placeholder for the return value of an asynchronous
message send. It allows the sender of an asynchronous message to
access the return value of that message at a later point in time. The
receiver either resolves the future with a return value or ruins the
future with an exception. In AmbientTalk, futures have been added
to the language reflectively, just like leased object references.

In our case study application, we have used callback objects
to circumvent the lack of return values in native asynchronous
message sends. With the introduction of futures, explicit callbacks
are no longer necessary: the future serves as an implicit callback.
We integrate futures with leasing by exporting a future attached
to an asynchronous message using a singleCallLease which either
expires due to a timeout or upon the reception of a resolve or
ruin message. When the future’s lease expires due to a timeout,
the future is automatically ruined with a TimeoutException.
For example, the asynchronous invocation of openSession in
section 5 can be rewritten using futures as:

def sessionFuture :=
remotePlayer<-openSession()@Timeout(minutes(10));

when: sessionFuture becomes: { |session|
// open session with remotePlayer

} catch: TimeoutException using: { |e|
system.println("session timed out.");

}

The timeout for the implicit renewOnCall lease on the fu-
ture can be set by annotating the asynchronous message (the
@Timeout annotation). AmbientTalk inherits from E the notion
of non-blocking futures [14]. It is impossible for code to block on
a future until its value is known. Rather, it is possible to register an
event handler with a future that is asynchronously triggered when
the future is resolved or ruined (by means of the when-becomes-
catch construct). This example shows how more low-level mem-
ory management concerns can be cleanly incorporated into more
high-level abstractions, decreasing the mental overhead for the de-
veloper.

8. Related Work
Distributed garbage collection has been thoroughly investigated
for traditional distributed systems [1, 16]. Most contemporary dis-
tributed garbage collection (DGC) algorithms stem from one of the

two well-known families derived from centralized systems, namely
tracing and reference counting. DGC algorithms based on tracing
often require a substantial amount of cooperation among the nodes
in the network. Because of the lack of reliable infrastructure and
administration in a mobile network, tracing algorithms are imprac-
tical in this context. DGC algorithms derived from reference count-
ing [15, 8, 4, 22] or reference listing [5, 17], on the other hand, offer
more scalable solutions but they are not directly applicable in mo-
bile ad hoc networks because they do not abstract over temporary
network failures: remote references break upon a network discon-
nection.

We have already argued that leasing provides a robust mecha-
nism to manage reclamation of remote objects in mobile ad hoc
networks. Leases were originally introduced as a fault-tolerant ap-
proach in the context of distributed file cache consistency [9]. In
the context of distributed computing platforms for ad hoc networks,
Jini [21, 20] was built from the ground up with the notion of leas-
ing. In Jini, leases are offered as a general programming abstraction
which can be used to mediate the access to any kind of resource:
objects, files, certificates that grant the lease holder certain capabil-
ities or even the right to request for some actions to execute while
the lease is valid. In distributed object-oriented frameworks like
Java RMI [18] and .NET Remoting [13] on the other hand, leases
are tightly coupled to the garbage collector and are used to describe
the lifetime of remote objects. However, non of these approaches
provide time-decoupled references that tolerate transient failures
inherent to mobile ad hoc networks. In the remainder of this sec-
tion, we discuss these leasing approaches and compare them with
the leased object references presented in this paper.

In Java RMI and .NET Remoting, leases were introduced as a
way to manage the lifetime of remote objects. Similar to our ap-
proach, Java RMI has been built based on Birrell’s network ob-
jects [5]. However, its leasing mechanism is less open to the devel-
oper since the lease time is controlled by the system by means of a
leaseValue parameter set to 10 minutes by default. Moreover,
language support is also more limited since all the interactions with
DGC are entirely based on the so-called dirty and clean calls. How-
ever, such methods are intended to be used by the DGC algorithm.
Unlike our approach, no dedicated language constructs are pro-
vided to developers for managing renewals of leases which can be
only accomplished by making additional dirty calls on the remote
references. Related to this, .NET Remoting framework incorporates
the concept of sponsorship in its distributed memory management
scheme. Sponsors are third party objects which are contacted by the
framework when a lease expires to check if that party is willing to
renew the lease. Clients can register a sponsor on a lease and thus
decide the lifetime of server objects. In contrast to .NET Remoting,
in our leasing model the life time of leased references is always
ultimately decided by the server lease object which does not ask
client objects for renewals. This was a deliberate design choice mo-
tivated by volatile connections and scarce infrastructure of mobile
ad hoc networks. Since client and service provider devices may not
encounter again after a disconnection, service provider devices are
expected to have the final decision on the reclamation of their ex-
ported objects. The .NET Remoting framework, on the other hand,
provides a RenewOnCallTime property to automatically extend
the lease on every call which formed the basis for our renewal-on-
call leases.

Jini provides direct support to deal with the fact that clients and
service providers may join with and disjoin from the network at
any time, without any prior warning. This phenomenon motivated
the introduction of the leasing so as to allow client and services to
leave the Jini federation easily without disrupting other members.
However, as previously explained, their leasing mechanism is part
not only of their distributed memory management model, but it is



also employed in other kinds of interactions. For instance, in or-
der for the lookup service to deal with unheralded disconnections,
services must explicitly renew their lease with the lookup service;
if they cannot, the lookup service will remove the service adver-
tisement such that it doesn’t provide stale information. Likewise,
clients should interact with services on the basis of a lease such
that a service may reclaim any resources allocated for the client
session whenever either one disjoins from the network. However,
Jini is a set of conventions to allow services and clients to from a
flexible distributed system built on top of Java RMI [20]. In other
words, Jini extends the semantic model of RMI with guidelines to
use leasing. This implies that although no conventions are placed
on the implementation of remote references, the communication
model of remote references is synchronous as in Java RMI. Instead
of just providing rules or guidelines for leasing as Jini, in our ap-
proach the integration of leasing at a language level is a crucial
design decision in order to enforce the semantics that leased ref-
erences must exhibit to properly determine the reachability of the
remote objects referred to.

9. Conclusion
This paper has described leased object references: time-decoupled
remote object references with built-in leasing semantics. The lan-
guage construct has been designed to overcome the difficulties of
distributed programming in mobile ad hoc networks. We have de-
scribed the benefits of time-decoupled remote object references in
this context, but also how this design decision impacts distributed
memory management.

Leased object references incorporate leasing directly into the
remote object reference abstraction. Rather than providing a gen-
eral leasing framework in which useful patterns can be expressed,
we have chosen a language approach where the useful patterns
are made available in the form of dedicated leased object refer-
ences, e.g. renew-on-call and single-call leases. We have described
the language construct’s design and (reflective) implementation in
the AmbientTalk language, and discussed other variations on the
semantics of the leased object references presented in this paper.
The applicability of the language constructs have been assessed by
means of a small but representative case study.
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