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ABSTRACT

Mirror-based systems are object-oriented reflective architectures
built around a set of design principles that lead to reflective APIs
which foster a high degree of reusability, loose coupling with base-
level objects and whose structure and design corresponds to the
system being mirrored. However, support for behavioral inter-
cession has been limited in contemporary mirror-based architec-
tures, in spite of its many interesting applications. This is due to
the fact that mirror-based architectures only support explicit reflec-
tion, while behavioral intercession requires implicit reflection. This
work reconciles mirrors with behavioral intercession. We discuss
the design of a mirror-based architecture with implicit mirrors that
can be absorbed in the interpreter, and mirages, base objects whose
semantics are defined by implicit mirrors. We describe and illus-
trate the integration of this reflective architecture for the distributed
object-oriented programming language AmbientTalk.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—Ob-
ject-oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Design, Languages
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1. INTRODUCTION

Computational reflection [23, 17] provides programs with a well-
defined interface to reason about themselves. Reflection is often
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further refined according to what kind of reasoning is allowed and
what parts of the program can be reasoned about. A reflective ar-
chitecture supports structural introspection if it allows programs
to inspect the structural aspects of a program. It allows for struc-
tural intercession if programs can modify their structure. It sup-
ports behavioral introspection if programs can inspect their runtime
behavior (e.g. a stack trace). It allows for behavioral intercession
if programs can change their behavior, using custom metaobjects
to change the semantics of the language itself. Computational re-
flection has been widely adopted in object-oriented languages (e.g.
Java, Self, Smalltalk, CLOS), although they differ greatly in terms
of the reflective power they convey.

In this paper, we present the metaobject protocol of AmbientTalk, a
distributed actor-based object-oriented language. In previous work,
we have explicitly presented AmbientTalk as a “language labora-
tory” for experimenting with novel language constructs in the con-
text of volatile, ad hoc networks [9]. More concretely, we realized
this “language laboratory” by making AmbientTalk a reflective lan-
guage, such that novel language constructs can be expressed within
the language itself. Whereas our previous metalevel architecture
provided adequate support for behavioral intercession, it lacked a
modular, stratified design.

Bracha and Ungar have proposed a set of design principles for
the design of a mirror-based metaobject protocol: a reflective API
which fosters a high degree of reusability, loose coupling with base-
level objects and whose structure and design directly corresponds
to the system being mirrored [5]. Therefore, mostly influenced
by Self’s mirrors [1], we decided to redesign the AmbientTalk ar-
chitecture in a mirror-based way. While mirror-based architec-
tures usually provide proper access to the structure of programs,
their support for behavioral intercession has been relatively limited.
However, behavioral intercession is a key enabler for the reflective
implementation of language constructs.

This paper reports on our experiments in reconciling AmbientTalk’s
mirror-based architecture with behavioral intercession. We intro-
duce the mirage: a base-level object whose semantics is described
by a custom implicit mirror, i.e. it is an object with a custom meta-
object protocol. We describe the design issues that arise from in-
troducing mirages in a mirror-based architecture, describe the in-
troduction of futures — a distributed language construct — as a use
case of mirages and show how mirages are implemented with mod-
erate effect on the overall performance of the system.

Availability An AmbientTalk interpreter with explicit support for
behavioral intercession through mirages is available at http://



prog.vub.ac.be/amop. The included standard library con-
tains the complete code for the futures language construct outlined
in this paper.

2. MIRROR-BASED REFLECTION

Bracha and Ungar define a mirror-based architecture as any reflec-
tive architecture that adheres to three key design principles, to wit
encapsulation, stratification and ontological correspondence[5]. In
what follows, we describe what is meant by each of these principles
in the context of a mirror-based reflective architecture.

2.1 Encapsulation

The principle of encapsulation states that metalevel entities should
encapsulate their implementation details [5]. In essence, it should
be possible to write metalevel programs (source code browsers,
pretty-printers, debuggers, object inspectors) against an abstract
API, which fosters a higher degree of reuse because the API can
serve as an abstraction barrier for multiple implementations. For
example, consider that we want to reuse as much code as possible
from existing metaprograms to be able to debug or inspect objects
on a remote virtual machine. When the metaprograms only code
against an interface, rather than a specific reflective implementa-
tion, large parts of the code can be reused without change.

To enable metalevel entities to encapsulate their implementation, a
necessary (but not necessarily sufficient) condition is that their type
should expose only their interface, not their implementation. This
rules out nominal type systems based on classes (implementation),
as e.g. employed by Java or C++. The Java reflection API, for
example, ties metalevel representations to a specific implementa-
tion, inhibiting reuse. On the other hand, the Java Debugger Inter-
face is a reflective API based on interface types. Hence, clients are
shielded from specific implementation classes [S]. Structural type
systems (as e.g. employed by StrongTalk [4]) or dynamically typed
languages inherently avoid such encapsulation breaches.

Of course, using e.g. a dynamically typed language does not nec-
essarily imply that a reflective API preserves encapsulation. For
example, if it is desirable that a reflective API can be used on both
local and remote objects without substantial changes in the client,
the API still has to be designed accordingly.

2.2 Stratification

The principle of stratification states that metalevel entities should
be cleanly separated from base-level functionality [5]. This sepa-
ration ensures among others that when a base-level method’s name
corresponds to a metalevel operation, this method is not acciden-
tally regarded as part of metaobject protocol.

A stratified design also implies less coupling between the base- and
metalevels. Reduced coupling has benefits in terms of deployment:
if access to the metalevel architecture can be easily trapped, it is
easier to deploy programs without reflective support if it can be
derived that programs never access it, or at least to postpone the
activation of reflective support until it is required by the application.

The principles of encapsulation and stratification are also innately
connected. In order for reflection to be stratified, base-level objects
should not contain any explicit reference to metalevel entities. The
very presence of such a link often breaks encapsulation and strat-
ification. For example, invoking obj.getClass () on a Java
object links the object directly to its metalevel representation. This

makes it hard for metalevel programs to uphold encapsulation. For
example, if ob j is an instance of a proxy class, perhaps a metalevel
program would like to hide this fact from its metalevel clients. This
is virtually impossible given the hard-wired link from the base- to
the metalevel.

Another example of a violation of stratification occurs in Smalltalk.
Performing obj class results in a reference to the class of an
object. In Smalltalk, classes play a dual role: they are used both
for base-level tasks such as instance creation (e.g. self class
new) and for metalevel tasks such as code browsing (e.g. obj
class subclasses). Because of this dual role, it becomes
hard to deploy Smalltalk applications without the reflective capa-
bilities of classes.

In a mirror-based architecture, access to the metalevel should be a
dedicated, explicit operation, such that it is not normally used by
regular base-level programs. Moreover, when metalevel programs
can intervene in the execution of this operation, they can preserve
the encapsulation of the metalevel representation of base-level ob-
jects. For example, in StrongTalk the reflective API can only be
accessed by performing Mirror on: obj [5]. Likewise, in
Self a mirror on an object is created by performing reflect:
obj [1]. These methods often serve as factory methods for the
creation of appropriate mirrors on objects. The downside is that
access to the metalevel is not a polymorphic message send, such
that methods like reflect : often have to perform some internal
dispatching based on the object’s type.

2.3 Ontological Correspondence

The principle of ontological correspondence states that the meta-
level should be structured according to the same concepts and rules
that govern the base-level [5]. Bracha and Ungar further distin-
guish between structural and temporal correspondence, which cor-
responds to the distinction between code (a description of a com-
putational process) and computation (the actual execution of that
process).

A mirror-based architecture that is temporally correspondent should
make the distinction between code and computation manifest in its
API. The advantage is that the API that reflects on code can be used
both for reasoning about pure source code, as well as for reason-
ing about code that has been turned into live objects. For example,
when writing a code browser against such an API, it becomes easy
to use the browser both for viewing code loaded from a database,
as well as for inspecting live objects or perhaps even serialized ob-
jects.

Structural correspondence implies that every language construct
has a reified representation at the metalevel [5]. In a truly struc-
turally correspondent mirror-based architecture, this principle re-
quires that even the body of a method should have a metalevel rep-
resentation. However, reasoning about the body of a method brings
us on dangerous grounds. If the method has been compiled into
e.g. bytecode, it does not suffice to provide a representation for
bytecodes in the reflective API: the bytecodes are concepts from a
different language, i.e. the virtual machine language. If exposed
directly to the reflective API of the high-level language, transfor-
mations employed by the compiler may present clients of the re-
flective API with inconsistent information. Hence, a structurally-
correspondent mirror architecture ideally provides separate APIs
for reasoning about each distinct language in the system [5].



2.4 Summary
An ideal mirror-based system:

e provides a reflective API based on interfaces which preserves
the encapsulation of metalevel objects.

e factors the link from base-level objects to metalevel objects
out of the base-level objects themselves. This stratifies base-
and metalevels, making it easier for metaprograms to pre-
serve encapsulation, and making it easier to disable reflection
when it is not required.

makes the distinction between APIs that manipulate code and
those that manipulate computation manifest. The API that
reflects on code does not require a running computation to
reflect upon.

e reifies every element of the base-level language. Language
features that are transformed, optimized or desugared should
remain intact when mirrored by the language’s reflective API.

3. THE AMBIENTTALK LANGUAGE

Having presented the design principles underlying a mirror-based
architecture, we present a concrete embodiment of these principles
in the reflective architecture of AmbientTalk, a distributed object-
oriented programming language. The language described here is
actually AmbientTalk/2, an updated version of the language whose
reflective API differs from the version presented in previous work
[9]. In the remainder of this paper, we will simply refer to the
updated language as AmbientTalk.

This section begins with a bird’s-eye overview of AmbientTalk’s
object model. Subsequently, we describe the introspective mirror
infrastructure which allows reflecting on standard objects. Sec-
tion 3.3 subsequently introduces AmbientTalk’s actor-based con-
currency model and illustrates how the actor mirror can be used to
group reflective behavior shared between all objects belonging to
the same actor. Finally, we demonstrate how the metalevel archi-
tecture conforms to the criteria outlined in the previous section.

3.1 Base-level objects

AmbientTalk is an object-based language. Objects are not instan-
tiated from classes. Rather, they are either created ex-nihilo or by
cloning and adapting existing objects. AmbientTalk objects consist
of field and method slots. Consider the definition of a prototypical
planar point object:

// Point is a prototypical point object

def Point := object: {
// define two fields
def x := 0;
def y := 0;

// definition of methods
// this method serves as the "constructor"
def init (newx, newy) {

X = newx;

Yy = newy;

;
def +(other) {
self.new (x+other.x, y+other.y)
}i
def distanceToOrigin() {
(x*x + yxy).sqrt();
}i

The above code defines a new anonymous object and binds it to a
variable named Point. This object serves as a prototypical point
object and can be used to create clones:

def p := Point.new(1l,2);

Every object understands the message new, which creates a clone
of the receiver object and initializes the clone by invoking its init
method with the arguments that were passed to new. This protocol
closely corresponds to that of class instantiation, but rather than
allocating a new empty object from a class, a clone is created from
a prototype.

By convention, when an object receives a message it does not un-
derstand, it delegates the message to the object bound to its slot
named super. We employ the delegation semantics of Self [26]
and Actl [15]: a delegated message is a message that is forwarded
to another object, but the se1f pseudo-variable remains bound to
the delegating object. Hence, AmbientTalk supports object-based
(single) inheritance. The super slot is assignable, such that the
“parent” of an object may change. This enables dynamic inher-
itance which is useful for implementing objects that can change
states [26]. A declarative syntax is provided for specifying that a
new object delegates to an existing prototype:

// the SpatialPoint prototype delegates to Point
def SpatialPoint := extend: Point with: {
def z := 0;

In the above example, SpatialPoint and Point remain sepa-
rate objects in their own right. The extends relationship between
a child and a parent object implies that the child’s super field is
initialized to the parent object and that when a child is cloned, the
clone’s super field is bound to a clone of the parent object. Hence,
when a SpatialPoint is cloned, the clone has its own Point
parent object with its own copies of the x and y fields.

AmbientTalk provides support for block closures reminiscent of
those in Self and Smalltalk. A block closure is an anonymous func-
tion object that encapsulates a piece of code and the bindings of
lexically free variables and self. Block closures are constructed
by means of the syntax { |args| body }, where the arguments
can be omitted if the block takes no arguments. The following code
excerpt shows a typical usage of blocks to remove all elements from
a collection that fail to satisfy a predicate:

def from: collection retain: predicate {
result := clone: collection; // shallow copy
collection.each: { |elt]
predicate (elt) .ifFalse: {
result.remove (elt)

}
}i
result;
}i

from: [1,-2,3] retain: { |el e > 0 }

Note that AmbientTalk supports both traditional canonical syntax
(e.g. o.m(a, b, c))aswell as keyworded syntax (e.g. dict.at:



k put: v) for method definitions and message sends. As a
general rule, we use keyworded syntax for control structures (e.g.
while:do:) orlanguage constructs (e.g. object :). The canon-
ical syntax is used for expressing application-level behavior.

3.2 Introspective Mirrors

AmbientTalk has a mirror-based architecture that has been inspired
by that of Self [1]. The following code excerpt gives some example
uses of introspecting objects by means of their mirror:

// retrieve a mirror by invoking reflect:
def mirrorOnP := (reflect: p);
// read the contents of a field via its mirror
mirrorOnP.grabField(‘x) .value; // 1
// retrieve a mirror on a method
mirrorOnP.grabMethod (‘'init); // <mirror on method:init>
// reflectively invoke a method
mirrorOnP.invoke (Message.new(p, ‘distanceToOrigin, []));
// print all method names
mirrorOnP.listMethods () .each: { |method|
system.println (method.name)
;
// add a z coordinate
mirrorOnP.addField (Field.new(‘z, 0));

As can be seen from the examples, mirrors support introspection
(retrieval of field and method mirrors), invocation (explicit invo-
cation of methods) and self-modification (addition of fields and
methods). The Message object passed to invoke encapsulates
a receiver (any object), a selector (a symbol) and actual arguments
(an array). The receiver parameter is the object to which self is
bound during method invocation.

Mirrors on objects are created by means of the reflect: con-
struct. This ensures that the creation of the appropriate kind of
mirror is separated from any base-level concerns. The reflect:
construct creates a mirror by calling a factory method, which can
be replaced by metaprograms. This is explained in more detail in
the following section.

3.3 Mirrors on Actors

AmbientTalk is a concurrent actor-based [2] language. While we
will not go into the details of AmbientTalk’s concurrency features,
we have to briefly describe actors in order to give a complete view
of the mirror architecture. AmbientTalk does not represent objects
as active objects. Rather, it adopts the communicating event loops
model of the E programming language [19], in which an actor is
conceived as an event loop which contains regular objects, shield-
ing them from harmful concurrent modifications. Each regular ob-
ject is said to be owned by exactly one actor. Only the owning actor
of an object may execute its methods.

Objects owned by one actor can only communicate with objects
owned by another actor by means of asynchronous message pass-
ing: a message sent to an object owned by another actor is en-
queued in the owner’s message queue and processed by the owner
itself at a later point in time. AmbientTalk borrows from E the
syntactic distinction between synchronous sends (e.g. o.m () ) and
asynchronous sends (expressed as o<-m () ). The beneficial con-
currency properties of this event loop architecture can be found
elsewhere [19].

Each actor hosts both base-level objects (representing an applica-
tion) and metalevel objects (mirroring base objects). Each actor

also hosts an actor mirror, a special object denoting the mirror on
the actor as a whole. This mirror is special in that it does not reflect
upon a concrete base-level object because an AmbientTalk actor is
an event loop rather than a concrete object. The actor mirror allows
manipulating the event loop without exposing its implementation,
justlike a java.lang.Thread object in Java allows for the ma-
nipulation of a thread without exposing its implementation. The
actor mirror also hosts metalevel behavior which is shared by all
of the objects it owns. The operations reified by the actor mirror
are those which transcend the scope of a single object (e.g. the cre-
ation and sending of asynchronous messages to communicate with
remote objects).

Actor

O reflect:\obj

actor

Meta level

Base level

Figure 1: Layout of an AmbientTalk actor.

Figure 1 gives an overview of the different objects that constitute
an actor. The actor mirror is bound to the act or field in the global
scope. An actor mirror can be accessed without passing via the
mirror factory. This does not violate stratification because actor
is already a pure metalevel entity.

The mirror factory method is defined in the actor mirror. reflect:
ob7j is implemented as actor.createMirror (obj). Meta-
level programmers may install a custom actor mirror at runtime.
By overriding createMirror in the custom actor mirror, it be-
comes possible to customize the mirrors of all objects owned by the
actor. As an example, consider the following code excerpt which
installs a custom actor mirror that overrides only the mirror factory
method. The custom factory returns “sealed object” mirrors which
disallow the explicit addition of fields to an object at the metalevel.

actor.install: (extend: actor with: {
def createMirror (onObj) {
extend: super.createMirror (onObj) with: {
def addField(field) {
raise: IllegalOperation.new(
"Sealed object: field addition prohibited.");

After the installation of a custom actor mirror, actor is bound
to the extended mirror, such that all calls to reflect: within
the same actor use the new mirror factory. Section 5.3 presents an
additional example where a custom actor mirror is installed to hook
into the asynchronous message sending protocol of the actor.

3.4 Evaluation

In this section, we briefly describe why AmbientTalk’s metalevel
architecture can be regarded as a mirror-based architecture, by show-
ing how it exhibits the three properties described in section 2.

AmbientTalk mirrors preserve encapsulation. This is primarily be-
cause AmbientTalk is a dynamically typed language. Hence, any



object can be returned from a call to reflect: as long as it im-
plements the metaobject protocol appropriately.

AmbientTalk’s mirror architecture is stratified: mirrors are not ac-
cessed from the base object they reflect, but rather need to pass via
a mirror factory which can be customized by metaprograms. Sim-
ilarly, the actor mirror is stratified, since it contains only metalevel
behavior.

AmbientTalk’s mirror architecture is structurally correspondent to
the base-level: mirrors reflect all operations applicable on objects.
Also, because AmbientTalk uniformly represents all base-level en-
tities (e.g. numbers, block closures, parse trees) as objects, every
element of the language can be mirrored. The issue of requiring
a separate API for high-level and low-level language does not ap-
ply to AmbientTalk: the interpreter currently uses the parse trees
themselves to evaluate method bodies, hence there is no low-level
language to reflect upon.

AmbientTalk’s mirror architecture is not temporally correspondent:
mirrors do not explicitly distinguish code from computation. It is
not possible to introspect on the source code of an object using the
same interface to introspect on the object itself.

4. MIRAGES: INTERCESSIVE
MIRROR-BASED REFLECTION

Behavioral intercession has traditionally been introduced in lan-
guages to allow programs to modify parts of their own seman-
tics [23, 17]. As such, it has a huge number of applications. In
particular, it can be used as a general framework to introduce new
data types in a programming language such as proxy objects (which
trap invocations and forward them to their principal), persistent ob-
jects (which trap slot assignments and update the persistent stor-
age accordingly), and so on [29]. As a language laboratory, Ambi-
entTalk relies on behavioral intercession to develop new language
constructs for mobile ad hoc networks [9].

Behavioral intercession requires a different kind of reflection from
that provided by mirror-based architectures such as the one de-
scribed in the previous section, or that of Self and Strongtalk. These
architectures allow for explicit reflection, that is, metacomputation
is triggered explicitly by programs using mirrors, whereas behav-
ioral intercession requires implicit reflection, where metacomputa-
tion is triggered implicitly by the interpreter as a result of evaluat-
ing base code [18]. In the following, we first illustrate this issue of
implicit reflection, and introduce a distinction between explicit and
implicit mirrors. Subsequently, in Section 4.2, we describe how
implicit mirrors can be absorbed by the interpreter by means of
dedicated mirage objects, thereby enabling behavioral intercession
in a mirror-based architecture.

4.1 Explicit vs. Implicit Mirrors

To illustrate the difference between explicit and implicit reflection,
and pinpoint what is lacking in mirror-based architectures, consider
the implementation of a simple metaprogram that logs all methods
invoked on an object. Because mirrors support the invoke oper-
ation, a metalevel programmer can install a custom mirror factory
returning mirrors that override the invoke method as follows:

actor.install: (extend: actor with: {
def createMirror (onObj) {
extend: super.createMirror (onObj) with: {

Meta level

explicit meta-

] implicit mirror
interpreter mirror

program

®‘i nvoke(msg)( )

—

;e =E =~ “default custom
\ / reflect: factory factory
mirage

L Base level |

Figure 2: Implicit versus Explicit Mirrors

def invoke (invocation) {
system.println("invoked "+invocation.selector);
super.invoke (invocation); // default behavior

However, the result of installing this mirror is that only invocations
performed explicitly upon the mirror are logged (e.g. (reflect:
0) .invoke (invocation)). When the interpreter is evaluat-
ing a standard base-level invocation on the referent of that mirror
(e.g. o.m()), no logging happens. This is because the interpreter
uses an implicit implementation of the invoke operation, rather
than consulting the mirror provided by the mirror factory. In other
words, the logging mirror is not absorbed by the interpreter.

One approach to introduce implicit reflection, and hence behav-
ioral intercession, in a mirror-based architecture would be to make
the interpreter consult the mirror factory rather than using implicit
implementations for metalevel operations. However, this approach
is impractical for a number of reasons. Perhaps the most obvious
one is related to performance: having the interpreter consult the
mirror factory for every meta-operation on every object would im-
pose an unacceptable performance penalty on the application. But
more importantly, having the interpreter absorb mirrors confuses
two fundamentally different kinds of reflection and could simply
break the interpretation of objects. Consider the sealed object mir-
ror introduced in section 3.3: it can be used to ensure read-only re-
flection by metaprograms such as object inspectors; however if it is
absorbed by the interpreter, the interpreter itself would be precluded
from adding slots to an object, making it impossible to instantiate
base-level objects.

Our solution to this dilemma is to introduce two kinds of mirrors:
i) explicit mirrors, for use by metaprograms, such as the sealed ob-
ject mirror; ii) implicit mirrors, to be absorbed by the interpreter,
enabling behavioral intercession, such as the log mirror. The dif-
ference between both kinds of mirrors is illustrated in figure 2. The
figure shows a mirage causally connected to its implicit mirror. The
implicit mirror is absorbed such that when the interpreter manipu-
lates the mirage, it uses its implicit mirror without consulting the
mirror factory. Metalevel programs on the other hand need to pass
via the mirror factory which may return the implicit mirror (as is
done by the default mirror factory), but can also return another ex-
plicit mirror, such as the sealed object mirror described previously.



Implicit and explicit mirrors can be distinguished according to the
following characteristics:

Reflection Type The fundamental distinction between explicit and
implicit mirrors is the type of reflection they enable: explicit
mirrors enable explicit reflection, while implicit mirrors en-
able implicit reflection.

Cardinality Since an implicit mirror is effectively absorbed by
the interpreter and henceforth used in the actual interpreta-
tion process of that object, there is a strict one-to-one corre-
spondence between an object and its unique implicit mirror!.
Conversely, objects can be reflected upon by multiple and
unrelated explicit mirrors, each providing a different form of
reflective access to its referent. For instance, when reflecting
upon a proxy object for a remote object, two explicit mirrors
can be conceived: one which reifies the proxy object itself
and one which reifies the remote object.

Completeness Unlike explicit mirrors whose interface is only con-
strained by their use in the program, implicit mirrors are re-
quired to provide a complete implementation of the meta-
object protocol. This is a direct consequence of the fact that
implicit mirrors are absorbed by the interpreter which can
invoke any method of the metaobject protocol.

Finally, note that an implicit mirror can be seamlessly used as an
explicit mirror. For example, the default mirror factory returns the
implicit mirror of an object as its default explicit mirror. As pre-
viously mentioned, the opposite relation does not necessarily hold
because an explicit mirror is not necessarily complete and may im-
pose restrictions that can break the interpreter.

4.2 Absorbing Mirrors using Mirages
Mirror-based architectures provide means to define new explicit
mirrors on objects by hooking into the mirror factory, yet they lack
the notion of an implicit mirror. To avoid having to absorb explicit
mirrors, implicit mirrors are not created by means of a mirror fac-
tory but rather introduced using the concept of a mirage. A mirage
is an “immaterial” object whose semantics is entirely described by
an implicit mirror. A mirage behaves as a regular object, but con-
sists of a special base-level object causally connected to an implicit
mirror that defines its MOP.

The causal connection between a mirage and its implicit mirror is
established in two steps. First, a prototype object must be created,
which will serve as the mirror object, defining the semantics of the
object it mirrors. Then, copies of that prototype can be used as the
implicit mirror of new mirages.

4.2.1 Mirror Prototypes

Any object can serve as an implicit mirror for a mirage as long as
it provides a complete implementation of the AmbientTalk meta-
object protocol. To facilitate the development of mirror objects
which require only small changes with respect to the default lan-
guage semantics, the actor mirror contains a prototypical mirror
object named the defaultMirror which encapsulates Ambi-

entTalk’s default metaobject protocol. The de faultMirror makes

'Of course, the implicit mirror bound to a base-object can be the
result of a composition of multiple implicit mirrors, however this
composition needs to be semantically coherent [20].

the native metaobject protocol implementation explicitly accessible
while keeping it encapsulated behind the MOP interface. Most im-
plicit mirrors extend the default mirror to implement their custom
semantics.

Reconsider the logging example from the previous section. In order
to log all messages sent to an object, it is necessary to first define
a prototypical logging mirror object which redefines the invoke
metalevel operation:

def LogMirror := extend: actor.defaultMirror with: {
// override invoke to log the message
def invoke (invocation) {
system.println ("invoked "+invocation.selector
+" on "+self.base);
super. invoke (invocation); // default behavior
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The above LogMirror serves as a prototypical logging mirror. It
has not been tied to a mirage yet, and hence has not yet been ab-
sorbed by the interpreter. The defaultMirror it extends simi-
larly is such a prototype mirror. Note that these prototype mirrors
are not causally connected to any object at this point. To be ab-
sorbed, a prototype mirror must be associated to a mirage.

4.2.2 Mirage Creation

A mirror object can only be absorbed by the interpreter when a
mirage object is defined to be explicitly mirrored by that mirror
object. The code excerpt below redefines the Point prototype
from section 3 as a mirage, whose behavior is now defined by the
LogMirror presented in the previous section.

def Point := object: {
def x := 0;
def v := 0;
def init (newx, newy) { ... };
def +(other) { ... };
def distanceToOrigin() { ... };

} mirroredBy: LogMirror

The object:mirroredBy: language construct first creates a
new, empty mirage object. The empty mirage needs to be asso-
ciated with an implicit mirror which describes its semantics. The
required implicit mirror is created by copying the specified mir-
ror object, passing the empty mirage to the constructor of the new
mirror. The mirror is then set as the implicit mirror of the empty
mirage. From that point on, the mirage and its mirror are causally
connected and the new instance of the mirror is effectively absorbed
by the interpreter. This is illustrated in Figure 3. Only after the mir-
ror has been absorbed is the initialization code of the object defini-
tion executed, such that this code is properly reflected by the new
implicit mirror. For example, the field definitions for x and y are
reified as addField invocations on the LogMirror.

In section 3.1, it was explained that when an object extends an-
other object, the parent object is cloned when the child object is
cloned. Because the LogMirror extends the defaultMirror,
the defaultMirror is also instantiated when the LogMirror
is used to create a new mirage. The constructor of the default—
Mirror initializes its base field to refer to the new, empty mirage



LogMirror defaultMirror
defaultMirror clone clone

LogMirror

mirage

Figure 3: Left: an unabsorbed mirror prototype. Right: a mi-
rage causally connected to an absorbed instance of the mirror
prototype.

object. This ensures that when an absorbed LogMirror instance
invokes self.base while logging an invocation, this field will
refer to a causally connected Point mirage.

To base-level code, the logged Point mirage behaves like any

other AmbientTalk object. This mirage may be instantiated or cloned.

The default cloning and instantiation semantics (that can be over-
ridden at the metalevel) uphold the one-to-one correspondence be-
tween the mirage and its implicit mirror. When a mirage is cloned,
its implicit mirror is cloned and vice versa. Hence, clones are al-
ways created in pairs such that they too can become causally con-
nected.

4.2.3  Summary

AmbientTalk introduces support for behavioral intercession in mirror-

based architectures by distinguishing implicit mirrors from explicit
mirrors. Unlike explicit mirrors, implicit mirrors are not defined
by adapting a mirror factory. Rather, they are absorbed by the
interpreter when a new mirage object is created by means of the
object:mirroredBy: language construct.

4.3 Mirages and Stratification

The introduction of mirages in a mirror-based architecture may at
first sight jeopardize its adherence to the design principles advo-
cated by Bracha and Ungar [5]. The encapsulation principle is up-
held: an implicit mirror properly encapsulates the metalevel behav-
ior of the mirage and a mirage need not be aware of the implemen-
tation details of its mirror. The stratification principle is upheld
even though there exists a one-to-one correspondence between mi-
rages and their implicit mirror. Although the metalevel mirror ob-
ject must be explicitly tied to the base-level mirage object, base-
and metalevel code remain strictly separated in different objects.
One advantage of this strict separation is that base-level methods
cannot accidentally override metaobject protocol methods and vice
versa.

Whether or not an object is a mirage is not leaked to other base-
level code. Once a mirage is created, it is indistinguishable from an
ordinary object. Since mirages are treated identical to ordinary ob-
jects, the only way to reflect upon them is by using the reflect :
construct. Since this ensures that the mirror factory is consulted, a
custom explicit mirror can be returned. For instance, when reflect-
ing upon a Point mirage (as defined in the previous section), the
returned explicit mirror may be the sealed object mirror presented
in section 3.3. This illustrates that mirages enjoy the same loose
coupling with their explicit mirrors as any other object.

As noted in section 2.2, the stratification principle facilitates the

deployment of base-level programs separate from the deployment
of reflection support. In spite of the fact that reflective access to
implicit mirrors is stratified, the use of mirages does necessitate the
presence of reflective infrastructure. With respect to deployment,
code that uses the object :mirroredBy: construct must be
regarded similar to code that uses the reflect : construct.

S. MIRAGES APPLIED: FUTURES

In this section, we demonstrate the use of behavioral intercession
by means of a concrete language construct, namely future-type
message passing [28]. Future-type message passing is a classic
technique to allow asynchronous messages to return a result, with-
out resorting to explicit callback messages. We first describe the
base-level behavior of futures in AmbientTalk. Subsequently, we
describe the role of behavioral intercession in the reflective imple-
mentation of futures. Finally, we show how to integrate futures
with the asynchronous message passing protocol of AmbientTalk
actors.

5.1 Future-type Message Passing

By default, an asynchronous message send has no return value (i.e.
it returns nil), forcing the programmer to rely on manual call-
back methods to obtain the result of an asynchronous computa-
tion. Future-type message passing reconciles asynchronous mes-
sage sends with return values, by making an asynchronous send
immediately return a future object [28, 16]. A future is a place-
holder object (i.e. a proxy) which is eventually resolved with the
return value. The code excerpt below illustrates future-type mes-
sage passing in AmbientTalk.

def database := DBManager<-connect ("myDB", "user", "pass");
def employees := database<-query ("SELECT * FROM Employee");

when: employees becomes: { |table|
system.println(table)

}

In the above example an asynchronous message is sent to create a
connection to a database. The resulting future object is stored in the
database variable. Subsequently, an asynchronous query mes-
sage is sent to the database future, which buffers the message
and forwards it to its resolved value once this value is available.
Note that only asynchronous messages can be sent to a future ob-
ject. This ensures that the message can be delayed by the future as
long as the return value is not yet available.

In traditional approaches, when code requires synchronous access
to the actual return value of an asynchronous send, the thread exe-
cuting the code is suspended until the future is resolved [7]. How-
ever, because AmbientTalk actors are event-driven (as explained in
section 3.3), the event loop of an actor should not be suspended.
Instead, one may register a block closure with the future which
encapsulates the code to be postponed until the future is resolved.
This is done using the when :becomes : construct which was first
introduced in the E programming language [19].

In the remainder of this section we describe how to integrate future-

type message passing in AmbientTalk using the behavioral inter-
cession techniques described in section 4.2.

5.2 Futures



Futures are proxy objects whose message reception semantics de-
viate from those of normal objects. Rather than implementing such
proxies by means of hooks such as Smalltalk’s doesNotUnder—
stand: protocol, we implement futures as mirages in order to re-
define their default message reception semantics. We describe two
changes to the semantics. First, the future’s implicit mirror should
disallow synchronous method invocations. Second, any asynchro-
nously received message is either buffered if the future is unre-
solved or forwarded if it is resolved. The code excerpt below shows
part of the definition of this future mirror. Asynchronous message
reception is reified by means of the receive operation.

def FutureMirror := extend: actor.defaultMirror with: {
def state := UNRESOLVED;
def resolvedvValue := nil;
def inbox := [];
def invoke (invocation) {
raise: IllegalOperation.new(

}i
}i
def receive (msg) {
// msg received by a resolved future?
if: (state == RESOLVED) then: {
// forward msg to the resolved value
msg.sendTo (resolvedValue);

"Cannot synchronously invoke methods on a future");

} else: {
// buffer message in this future’s inbox
inbox := inbox + [msg];
nil;

+i

}i

The future’s implicit mirror is either in an unresolved or in a re-
solved state, as indicated by its st ate field. Initially, the mirror is
unresolved. The transition from an unresolved to a resolved state
occurs when an asynchronous resolve message is sent to the fu-
ture’s implicit mirror. In addition to the resolve method, the
future mirror also extends the default metaobject protocol with a
subscribe method which allows registering closures to be ap-
plied when the future has been resolved. These additional methods
which are not part of AmbientTalk’s default MOP are shown below:

def FutureMirror := extend: actor.defaultMirror with: {

def subscribers := [];
def resolve(value) {
if: (state == UNRESOLVED) then: {

state := RESOLVED;
resolvedValue := value;
// forward all buffered messages
inbox.each: { |msg| msg.sendTo(value) };
subscribers.each: { |clo| clo<-apply([valuel) };

}i
;
def subscribe (closure) {

if: (state == UNRESOLVED) then: {
subscribers := subscribers + [closure];

} else: {
closure<-apply ([resolvedValue])

}

}
}i

When a future is resolved, all messages it accumulated while the
result was unavailable will be forwarded to the computed value.

Similarly, all subscribed closures are asynchronously applied to the
resolved value. Note that the resolve and subscribe meth-
ods reside at the meta level. This stratification of base and meta-
level methods has the advantage that metalevel messages are not
trapped and forwarded by the receive method shown before, as
this method only traps messages sent to the base-level future object.
The following code excerpt shows the auxiliary methods required
to construct and use such a base-level future object.

def makeFuture() {
object: { nil } mirroredBy: FutureMirror;

def when: future becomes: closure {
(reflect: future)<-subscribe (closure);

}

Because a future’s subscribe method resides at the meta level,
the when:becomes: language construct must send the sub-
scribe message to the future’s implicit mirror, rather than to the
base-level future object itself. This illustrates another advantage of
stratifying base and meta-level: base-level messages (sent to the fu-
ture itself) cannot be mistaken for metalevel messages (sent to the
future’s implicit mirror). For example, in an application involving
newsletters, a subscribe message sent to a future for a newslet-
ter object cannot be mistaken for the subscribe message which
is part of the future’s metaobject protocol.

At this point, futures have been introduced as a new data type into
the interpreter. However, we have yet to define how futures can be
integrated into the actor’s message sending protocol. This is the
topic of the next section.

5.3 Integration in Message Sending Protocol
In the previous section we have described how to create future mi-
rages based on a mirror object that describes their semantics. In
this section, we describe the definition of a custom actor mirror
which intercepts both message creation (to attach a future object to
the message to capture the return value) and message sending (to
return the attached future as a result rather than the default nil
value). Any base-level asynchronous message send is reified in
terms of these two operations by the actor mirror.

The code excerpt below shows the installation of a custom actor
mirror which overrides the default createMessage and send
operations. The createMessage operation is specialized to re-
turn future-type messages, asynchronous messages extended with
a future field and whose process method is overridden. The
overridden process method will be invoked when the asynchronous
message is received and is used to resolve the future with the return
value of the invoked method. Finally, the actor’s asynchronous
message sending semantics is modified by overriding send. An
asynchronous message send returns a message’s associated future
rather than the default nil value.

actor.install: (extend: actor with: {
def createMessage (sel, args,annotations) {
// first, create a regular message
def msg := super.createMessage (sel,args,annotations);

// 1f msg was annotated with the OneWayMessage

// annotation, simply return the regular message

if: (msg.annotatedAs (OneWayMessage)) then: {
msg;



} else: {
// turn msg into future-type message
extend: msg with: {
// attach a new future to the message
def future := makeFuture();
// process 1s invoked upon reception
def process (receiver) {
// delegate to actually invoke the method
def result := super.process(receiver);
// resolve the attached future

(reflect: future)<-resolve (result)@OneWayMessage;

result;
}i
}
}i
def send(msg) {
def result := super.send(msg);
if: (!msg.annotatedAs (OneWayMessage)) then: {
msg.future; // return the message’s future
} else: {
result;
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Asynchronous messages can be annotated with metadata. In the
above code, future-type message passing is disabled for messages
annotated as a OneWayMessage. This annotation is useful if no
return value is required for an asynchronous send. More impor-
tantly, the resolve meta-message sent to the future mirror re-
quires this annotation to avoid an infinite loop. Without this an-
notation, the resolution of one future would require the creation of
another future, whose resolution requires another future, and so on.

This section presented future-type message passing, an exemplar
language construct which relies on behavioral intercession at both
the object level (to define the future data type) as well as at the
actor level (to integrate futures in the message passing protocol).
The next section describes how mirages can be implemented in the
language with moderate effect on a system’s overall performance.

6. IMPLEMENTATION

As noted by Bracha and Ungar, a desirable software engineering
property is that when a feature is not used, it should not incur ad-
ditional performance penalties [5S]. When applied to behavioral in-
tercession, this gives rise to the notion of partial behavioral reflec-
tion [24]: the principle of limiting the scope of behavioral reflection
to where and when it is really needed. AmbientTalk supports two
forms of partial behavioral reflection, namely entity selection and
operation selection.

6.1 Entity Selection

Entity selection ensures that metalevel operations on entities which
do not use behavioral intercession are not reified. At the language
level, AmbientTalk already features a distinction between ordinary
objects created using object : (which use the default MOP) and
mirages created using object :mirroredBy: (which have a
custom MOP). As a consequence, only metalevel operations in-
voked on mirages are reified.

The object-oriented AmbientTalk interpreter distinguishes between
objects and mirages since they are implemented as distinct classes.
As a consequence, when the interpreter invokes metalevel opera-
tions (which are implemented as methods on the implementation-
level object representation), the dynamic dispatch algorithm of the
underlying language is used as a fast test to decide whether a meta-
level operation on the receiver should be reified or not.

6.2 Operation Selection

Next to performing entity selection, one may further limit the reifi-
cation of metalevel operations to only those operations that are ac-
tually overridden at the meta level. This is called operation selec-
tion [24]. In AmbientTalk, such a selection is made possible if the
implicit mirror of a mirage is an extension of the defaultMirror.
By analyzing the methods that the implicit mirror overrides from
the defaultMirror, we can derive which metalevel operations
should be reified, and which operations can proceed natively.

In the implementation of AmbientTalk, operation selection is re-
alized by synthesizing appropriate object representations at run-
time. Depending on which metalevel operations need reification,
the native methods that implement those operations are replaced by
methods which forward a reified operation to the implicit mirror of
a mirage.

The current implementation of operation selection in AmbientTalk
has some limitations. Currently, the code that analyzes which meta-
level operations require a reification assumes that the set of meth-
ods overridden by the implicit mirror remains constant. Hence, if
the mirror uses e.g. dynamic inheritance to change the set of meth-
ods it overrides, additional metalevel operations will not be reified,
yielding unexpected behavior.

6.3 Micro-benchmark

The combination of both forms of partial behavioral reflection is
depicted in figure 5. Each figure (circle, square, etc.) denotes a
particular metalevel operation. A grey background represents no
reification (the native implementation), a white background repre-
sent reification (forwarding to the mirror). Because of entity selec-
tion, native objects can be given a dedicated object representation
that does not need to store a reference to a mirror. Mirages, on
the other hand, have multiple representations, depending on what
metalevel operations need reification. All mirages store a reference
to their implicit mirror.

Native Intermediate Full
object mirage mirage
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o00)

£ o

Lo

\IJ

Implicit Implicit Implicit
mirror mirror mirror

Figure 5: Optimizing the implementation of mirages

We have assessed the performance optimization of partial behav-
ioral reflection in the current implementation by means of a small
benchmark. Figure 4 gives an overview of the obtained results. The
results show the average running time (in microseconds) to execute
the method invocation obj.m () on different kinds of objects”.
The columns distinguish between what kind of partial behavioral
reflection is applied. We distinguish three cases: 1) obj is a na-
tive object, 2) obj is a mirage mirrored by a mirror that does not

The results shown are obtained by taking the average running time
of 10.000 invocations on a Macbook Pro 2.33Ghz Intel Core2 Duo.



| Entity Selection | Entity + Operation Selection

Native Object | 3753us | 100,0 % | 371.5us 100,0 %
Mirage (default invoke) | 2207us | 588,06 % | 371.4us 99.97 %
Mirage (custom invoke) | 2553us | 680,26 % | 2524.8us 679.62 %

Figure 4: Microbenchmark testing the impact of partial behavioral reflection on method invocation.

override invoke, 3) obJj is a mirage mirrored by a mirror that
overrides invoke with a dummy method that simply delegates to
the native behavior via a super-send.

Although the measured results are obvious, they illustrate that par-
tial behavioral reflection is critical for keeping the performance
penalties of behavioral intercession in check. It should be men-
tioned that our approach to partial behavioral reflection is not the
only one to avoid unnecessary reifications. Other techniques such
as static analysis or just-in-time compilation can achieve the same
goal.

7. DISCUSSION

In this section we briefly discuss how the present architecture dif-
fers from the previous version of AmbientTalk [9], as well as re-
lated work in the area of behavioral reflection. We end by outlining
the current state of AmbientTalk and future work.

7.1 Previous Work

In previous work, we have discussed the metaobject protocol of
AmbientTalk/1 — the predecessor of the AmbientTalk language de-
scribed in this paper — to develop language constructs specifically
for mobile ad hoc networks [9]. In AmbientTalk/1, an actor is rep-
resented as an active object which executes in a thread of its own,
has a message queue and a dedicated behavior describing the meth-
ods that may be asynchronously invoked on the active object. This
behavior object contains base-level application methods as well as
metalevel methods used to hook into the metaobject protocol. Inter-
cession is made possible by making the active object implement a
metalevel method, which is only distinguishable from a base-level
method by name.

In AmbientTalk/1 reflection is neither stratified nor encapsulated:
base-level code can be affected by the implementation details of
metalevel constructs. For example, because the base- and meta-
levels are not partitioned into separate namespaces, name clashes
between the two levels could occur. For example, a base-level
method may accidentally be regarded as a metalevel method sim-
ply because its name accidentally matches that of a metalevel oper-
ation.

7.2 Related Work

Behavioral intercession —that is, the ability of a program to modify
its own execution semantics— has been present since the very first
work on reflection [23] and its incarnation to object-oriented pro-
gramming languages [17]. Since then, numerous proposals have
been made to introduce behavioral intercession in languages that
originally had few (if any) such capabilities.

It is indeed quite rare to see a programming language with a clean
reflective architecture for supporting behavioral intercession —such
as interception of message sending, object creation, etc.— from the
start. A notable exception is the CLOS MOP [13, 21], which can
still be considered as the most advanced metaobject protocol in use
to date. The difference between the metaobject protocols of CLOS

and AmbientTalk is that AmbientTalk’s MOP is object-based rather
than class-based and that the CLOS metaobject protocol is not en-
tirely stratified [5].

Because the interception of messages sent to objects is a common
use case of behavioral intercession, many languages have intro-
duced ad hoc approaches to achieve intercession for this specific
case. In Smalltalk, for example, several alternatives have been pro-
posed to control message passing semantics [11], such as method
wrappers [6] or using the doesNotUnderstand: protocol. In
Java, since there is no such thing as a doesNotUnderstand:
protocol, nor enough reflective facilities to intervene in the method
lookup process to define method wrappers, many proposals to in-
troduce behavioral reflection rely on proxies (such as the dynamic
proxies added to Java 1.3).

The downside of these approaches is that they implement new meta-
level behavior at the base level, thereby violating stratification. For

example, when a future is represented as an object overriding doesNotUnde:

or as a dynamic proxy, the future acts as both a base and a metalevel
object. Because both levels are indistinguishable, name clashes
can occur making it difficult to distinguish between e.g. sending
subscribe to a future and sending subscribe to the object de-
noted by the future. As exemplified in section 5.2, AmbientTalk’s
stratified mirror-based MOP avoids such name clashes.

Bytecode transformation is another technique for intervening in
the method lookup process of a language [8, 25, 27]. Recently,
techniques relying on bytecode transformation have been used to
add fine-grained behavioral reflection to Smalltalk [10, 22]. On
the one hand, these transformation-based approaches mostly ignore
the principles of mirror-based architectures, in particular the issue
of structural correspondence: applying standard introspection on
transformed code unfortunately reveals the implementation tricks
used by the transformation engine. On the other hand, the mirror-
based architectures that have been proposed up to now offer only
limited behavioral intercession [5]. The architecture presented in
this paper precisely reconciles mirrors with behavioral intercession.

Our work also relates to partial behavioral reflection [24]: the prin-
ciple of limiting the cost of behavioral reflection to where and when
it is really needed. We have discussed the implementation of Am-
bientTalk mirrors and mirages, which support both entity selection
and operation selection [24]. However, AmbientTalk does not sup-
port intra-operation selection, which is the ability to limit reifica-
tion to specific occurrences of a given operation. This feature is
particularly useful for supporting efficiently aspect-oriented exten-
sions [12, 24], and can be provided by the language processor [3].

7.3 Current Status and Future Work

An interpreter for the AmbientTalk language has been implemented
in Java®. The implementation can run on the Java 2 micro edition
(J2ME) platform, under the connected device configuration (CDC).

3This implementation can be downloaded at http://prog.
vub.ac.be/amop/at/download.



Hence, AmbientTalk can be executed on PDAs and high-end cel-
lular phones. Our current experimental setup consists of a number
of smartphones which communicate by means of a wireless ad hoc
WiFi network.

Currently, AmbientTalk’s metaobject protocol reifies among oth-
ers object instantiation and cloning, object serialization, field and
method access, message reception and method invocation. The re-
flectively implemented futures language construct of which a sim-
pler variant has been discussed in this paper is used as the actual
support for future-type message passing in AmbientTalk. The opti-
mizations discussed in section 6 have been achieved in the current
Java implementation by generating dedicated Java classes used to
represent mirage objects at runtime, using the BCEL bytecode gen-
eration toolkit.

Future work focuses on two different uses of the mirror-based ar-
chitecture. First, we want to employ the architecture to implement
more language constructs in the context of mobile ad hoc networks.
Second, we would like to apply the mirror-based architecture to de-
velop tool support for AmbientTalk, in the form of e.g. (remote)
object inspectors.

8. CONCLUSIONS

AmbientTalk has a mirror-based reflective architecture that sup-
ports behavioral intercession. Because of this, AmbientTalk brings
the benefits of mirror-based reflection to the realm of reflectively
implemented language extensions. First, to meta-level programs,
mirrors remain only accessible via the mirror factory, allowing an
object to encapsulate its meta-level behavior. Second, implicit mir-
rors are stratified with respect to base-level code, such that exten-
sions to the metaobject protocol do not interfere with application
code. We have illustrated these benefits in a reflective implementa-
tion of future-type message passing in AmbientTalk.

AmbientTalk reconciles traditional, structural mirrors with behav-
ioral intercession by dinstinguishing between explicit and implicit
mirrors. Explicit mirrors are used by metaprograms and can only
be acquired by means of a mirror factory, which is customizable by
the metalevel programmer. Implicit mirrors are used by the inter-
preter itself in order to intercess metalevel operations on base-level
objects. In order to absorb such mirrors, AmbientTalk introduces
mirages: objects whose MOP is implemented by a causally con-
nected implicit mirror. Finally, AmbientTalk provides support for
partial behavioral reflection to minimize the performance penalty
for objects which require limited or no support for behavioral inter-
cession.
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