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Abstract mainly focus on separating UI visualization (in a view) from

As current software systems evolve continuously, both
the application and its user interface (UI) have to be
adapted. However, Ul code is often scattered through and
entangled with the application code. In large and com-
plex Uls, this tangling renders the implementation complex
and hard to maintain. The Deuce framework (Declarative
User Interface Concerns Extrication) intends to reduce the
complexity of Ul implementations by applying separation of
concerns on three Ul concerns: presentation logic, business
and data logic, and connection logic. It does so by using a
declarative meta-language (SOUL) on top of an object ori-
ented language (Smalltalk) such that an adequate language
is provided to describe the entire structure and behavior of
the Ul, as well as linking it with the application.

1 Introduction

Current software systems have to show a continuous
ability to adapt to new system requirements. This does
not only affect the application’s source code and business
model, but also its user interface (UI). Evolving the appli-
cation code as well as adapting the Ul is complicated by the
fact that the UI code is often entangled with the underlying
application code. This makes creating and maintaining Uls
a difficult task for the programmer. We propose to separate
the UT and the application code as much as possible, result-
ing in a specific case of Separation of Concerns (SoC) [10].
More precisely, we focus on three different UI concerns:
presentation logic (both UI visualization and UI behavior),
business and data logic, and connection logic.

Some existing Ul approaches, including the ones based
on the Model-View-Controller (MVC) architecture [11] al-
ready support a limited form of SoC. Such approaches
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the application logic (in a model), and neglect the extrica-
tion of Ul behavior. As a result, evolving the UI’s behavior
often requires browsing the application source code, man-
ually adding new UI behavior and subsequently connecting
it to the application’s code where appropriate. Additionally,
the way Uls exhibit the appropriate visualization and behav-
ior given a certain context, has to be hard-coded throughout
the application.

We propose the DEUCE (Declarative User Interface
Concerns Extrication) framework to apply the aforemen-
tioned SoC on object oriented systems. This is done by
using a declarative Ul language (SOUL) containing logic
facts and rules which describe and manipulate the three Ul
concerns. The underlying application remains written in an
object oriented programming language.

As a running example throughout the paper we will use
the calculator application shown in Fig. 1. The standard
version (fig. 1a) has buttons for number input, buttons for
performing basic calculations and a log of previous calcu-
lations. A more minimalistic version (fig. 1b) works with
whole numbers only. Therefore, divisions leading to a frac-
tal result are prohibited by disabling all number buttons that
result in a decimal if used as a second argument. A scien-
tific version (fig. 1¢) extends the standard version with extra
operators.

In what follows we address separation of concerns for
Uls (section 2). Section 3 explains DEUCE at a concep-
tual level, while section 4 explains a proof-of-concept im-
plementation of DEUCE by means of scenarios for the cal-
culator example. Section 5 addresses related work and a
conclusion is given in section 6.

2 Separation of Concerns for Uls

We consider three concerns in Uls : presentation logic,
business and data logic, and connection logic. Ul presenta-
tion covers concerns regarding the visualization aspects and
the behavior aspects of the UI. Speaking in general terms,
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Figure 1. Three modes for a calculator : a) Standard b) Minimal c¢) Scientific

Ul visualization refers to how the Ul looks and the widgets
it contains (e.g. textboxes, buttons, labels). It also refers to
the visual properties such as color, enablement/disablement,
layout and state. Ul behavior specifies what actions take
place upon an event on a widget, as well as how widgets
influence each other. For instance, when clicking on the
equals button in the calculator (event), the result is calcu-
lated (action) and shown on the display (influence). Sec-
ondly, business and data logic with respect to the Ul, spec-
ifies ‘hooks’ in the underlying code that link the UI with
the application. These hooks describe where the application
and its UI are connected such that one can be called from
within the other. For instance, clicking the equals button
calls an application method for actually calculating the re-
sult. Finally, connection logic makes the actual connection
between the presentation logic and business and data logic.
These connections can depend upon the context. For in-
stance, in the minimal calculator the divide button does not
allow divisions that result in decimal numbers. The combi-
nation of the three concerns, with the underlying business
and data code, leads to the resulting application where both
UI and application interact with one another.

Inadequate support for separating the three UI concerns
results in the following main problems:

e Evolving and maintaining the application is compli-
cated. Since all Ul concerns are scattered through-
out the business logic, the developer needs to browse
through the code to make adaptations at different
places in the code. This could easily break or even
corrupt the existing functionality.

e Reuse is difficult or even impossible. Due to entangle-
ment there exists an intrinsic connection between the
presentation and the business logic. As a result it is
not possible to reuse either the one or the other.

3 Declarative User Interface Extrication

The programmer needs support for disentangling the
several Ul concerns. Therefore we put forward the follow-
ing requirements :

e Requirement 1: A separate high-level specification
for every concern.
Separating the concerns allows for changes to con-
cerns in isolation. Because of the absence of entan-
glement, specifications become possible reuse candi-
dates. High-level specifications provide for a better
understanding for the programmer since he now deals
with the ‘domain concepts’ of the UI instead of the
low-level technicalities of the UI components.

e Requirement 2: A mechanism to map the high-level
entities onto the actual code level entities.
The high-level specifications need to be translated into
the low-level UI specifics. Once a mapping between
the two is established, the actual translation happens
automatically. This allows for reusing the mapping,
either because the UI has evolved or the mapping is
reused amongst different high-level Uls that translate
to a same low-level platform.

e Requirement 3: A uniform medium for expressing all
the concerns involved.
This reduces the overhead for the programmer of hav-
ing to learn several formalisms or mechanisms to spec-
ify the concerns.

e Requirement 4: An automated way to combine the
different Ul concerns.
The resulting application is created by combining the
concerns with each other and the underlying business
application. Providing an automatic mechanism for
this combination is an important factor when offering
support to the programmer.



To meet these requirements, we propose the DEUCE
(Declarative User Interface Concerns Extrication) ap-
proach. It achieves a separation of concerns for UIs by using
a declarative meta-programming (DMP) language [19] for
expressing and combining the concerns.

3.1 A separate high-level specification

Fig. 2 shows how Uls are created with DEUCE. The pro-
grammer implements the underlying business application as
before (fig. 2, step 1) and specifies the declarative speci-
fications for each of the concerns separately (fig. 2, step
2). These higher-level specifications abstract away from the
low-level UI specifics and allow the programmer to better
understand the UI and its flow. DEUCE facilitates the spec-
ification of the concerns at different layers of abstraction. At
the highest-level, UI concern specifications are application-
specific. For instance, for the standard calculator:

e Presentation logic: the calculator has number buttons,
standard operator buttons, an input field, a log, etc. The
log is positioned left-of the operator buttons, the oper-
ator buttons are put in one column, etc.

e Business and data logic: the application’s divide
method will be called by the UI.

e Connection logic: upon clicking the divide button, the
divide method will be called.

A lower abstraction level expresses more-general rules,
such as ‘an input component consist of a label and an in-
put field’. These rules are reusable amongst several Uls.
The lowest level translates the high-level Ul into a platform
specific UI (see section 3.2). DEUCE combines the several
abstraction layers with the underlying application (fig. 2,
step 3) into the resulting application. This application uses
DEUCE interactively at runtime to continue reasoning on
the UI such that the Ul responds to possible context changes
(fig. 2, step 4).

3.2 From high-level to code-level entities

The high-level UI specifications are transformed into
low-level and device/platform specific Uls. These transfor-
mation rules can be reused by different high-level Uls that
translate to Uls on the same platform. Typically these ‘li-
braries’ are reused by a high-level UI programmer but not
implemented.

For instance, translations for the calculator into a
Smalltalk calculator application include:

e Presentation logic: a number button is implemented
with a Smalltalk actionButton.

e Business and data logic: the divide method is called
by sending the Smalltalk message divide to the appli-
cation behind the UI.

e Connection logic: Smalltalk code is plugged-in be-
hind the event-handler of the divide button such that
the right divide message is sent to the application, or
such that the reasoning engine is re-launched.

The DEUCE framework provides rule-bases (fig. 2, step
5,) to deify (up) the actual UI to the declarative level, to
reify (down) the declarative Ul to the actual low-level UlI,
to achieve an automated layout and to connect the UI with
the underlying application.

3.3 A uniform medium

As Uls are entangled with and scattered through the un-
derlying business logic, evolving and maintaining the UI of-
ten results in the programmer spending a reasonable amount
of time in browsing the code in order to get an understand-
ing of where and how to make the necessary adaptations. A
good separation of concerns eliminates this problem. Nev-
ertheless the programmer should not have to get acquainted
with several formalisms or mechanisms to specify the con-
cerns. A uniform medium avoids this overhead. DEUCE
uses the same declarative medium to express all of the con-
cerns.

3.4 Automated way to combine concerns

The declarative reasoning mechanism uses facts and
rules to come to a ‘solution’ (fig. 2, step 6). This pro-
cess happens automatically. As this solution is the resulting
application (with UI), the concerns are combined automati-
cally into this application. Note that depending on the con-
text, other rules will succeed and thus invoke other logic.
This means that the UI flow path is ‘calculated’ automat-
ically by the reasoning mechanism. Before, this path was
hard coded explicitly, for instance through ‘if-statements’.

4 Proof-of-concept Implementation

We currently have a proof-of-concept implementation
of DEUCE. We use SOUL [18] as a declarative meta-
programming language and the Cassowary constraint solver
[2] for supporting automated layout (as a part of the presen-
tation logic concern). We will shortly explain these declar-
ative mechanisms. Next we illustrate DEUCE with some
scenarios for the calculator example.

4.1 Declarative Mechanisms

Logic programming languages such as Prolog [7] typ-
ically involve facts for declaratively describing statements
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Figure 2. Creating Uls with DEUCE

that are true and rules for indicating how the facts inter-
act, and what implications may be taken from them. A
reasoning engine is responsible for determining the set of
applicable rules. A rule usually has the structure IF condi-
tion THEN action or conclusion or a variation thereof. The
engine tries to match a rule’s conclusion or condition with
facts and other rules in order to come to a valid ‘solution’.
The benefit of logic programming is that the focus lies on
what is to happen or to be described, and not on how this is
done.

Declarative Meta-Programming is an approach that
provides a logic programming language as a meta-language
on top of object-oriented programming languages. SOUL
makes it possible to retrieve information from the underly-
ing Smalltalk system and Smalltalk objects can be wrapped
in SOUL. Therefore, Smalltalk expressions can be used at
the SOUL level and be parametrised with logic variables
and evaluated during interpretation of the rules. Hence,
SOUL is in symbiosis with Smalltalk. This symbiosis lies at
the heart of the DEUCE implementation since it facilitates
connecting high-level and low-level entities.

The SOUL Reasoning engine makes use of a backward
chaining algorithm. For DEUCE we extended SOULSs back-
ward chainer with a constraint solver.

Automated layout is achieved in DEUCE by using a
constraint system to represent the UI layout. This idea
has shown to be very intuitive [13]. With DEUCE the
Ul is described at a higher logical level. This is also true

for the layout relations between components, which makes
adding/removing and repositioning components less time-
consuming. For instance, in Fig. 1 the scientific version ex-
tends the standard calculator. One could do this by making
components visible/invisible. However, making the obso-
lete components invisible for the standard calculator, would
create a gap between the operator buttons and the log. These
‘holes’ are undesired in a UI. Using the DEUCE constraint
solver, these ‘holes’ are avoided.

4.2 Scenarios for a Calculator Application

The scenarios introduced next, illustrate functionality
offered by the DEUCE framework. Each of these scenarios
contain a number of steps or actions on the calculator.
The user of the calculator will perform each of these
actions, while the programmer is the one that provided the
specifications of the UI and its behavior. For each step the
corresponding support and functionality of the DEUCE
framework is presented.

4.2.1 Scenario 1: Presentation logic visualization

Each calculator’s presentation is expressed in DEUCE by
specifying groups and components and layout relations. As
illustrated in Fig. 1 for the standard calculator, several but-
tons are grouped into component groups. The numbers are



placed below the display and from top to bottom: firstNum-
bers, secondNumbers, thirdNumbers, fourthNumbers. To
the left the operators are put in one column, and placed to
the left of the log.

The scenario describes the functionality of DEUCE for
supporting automated Ul layouting. Consider the calculator
example, initially in the standard mode.

e Step 1: The standard mode is changed to scientific
mode via the UL This requires changing the layout
such that advanced operator buttons are added in-
between the standard buttons and the log. [DEUCE
support]: With one rule it is specified which compo-
nents are part of the scientific Ul, as Fig. 3 shows.

usedComponentsinInterface (<firstNumbers,
secondNumbers, thirdNumbers, fourthNumbers, operators,
advancedOperators,result,display, paperTape>)

Figure 3. Scientific: Components

e Step 2: The programmer specified that the number but-
tons are to be displayed top-down instead of left-right.
The buttons in each number group are put in a col-
umn instead of a row. [DEUCE support]: This is done
through the advanced layout relation oneColumn in
the scientific layout specification, as shown in Fig. 4.

divideButtonsDisabling if
calculatorMode(standard),
disable(zero)

Figure 5. Standard: ‘/’ button behavior

to the previous scenario, the layout is automatically
adapted for the minimal mode.

o Step 4: The calculator user pushes the ‘5’ button. The
application is called to store the first operand.

e Step 5: The calculator user pushes the ¢/’ button. As
in the minimal mode of the calculator decimal numbers
are excluded, division results that are decimal numbers
are not shown to the user (Fig. 1, calculator a and b). 0
gets disabled together with all other numbers but 5 and
1. [DEUCE support]: The programmer specified an-
other rule expressing the Ul changes for this context,
namely when the calculator is in minimal mode. This
is shown in Fig. 6.

divideButtonsDisabling if
calculatorMode (minmal),
secondOperand( ?x),
disableButtonsForDivisionBy(?x, ?components),
findall(?comp, disable(?comp), ?components)

oneColumn (firstNumbers).
oneColumn(secondNumbers) .

oneColumn (thirdNumbers) .

oneRow (<firstNumbers, secondNumbers,thirdNumbers>)

Figure 4. Scientific: buttons top-down

4.2.2 Scenario 2: Presentation logic behavior

In this scenario we illustrate how the UI behavior is affected
by context. Again consider the calculator, initially in the
standard mode.

e Step 1: The calculator user pushes the ‘5’ button. The
application is called to store the first operand.

e Step 2: The user pushes the ‘/° button. The zero but-
ton gets disabled, since division by O is not allowed.
[DEUCE support]: The programmer specified that the
corresponding Ul logic to call for the calculator in
standard mode, disables the zero button. See Fig. 5.

e Step 3: The standard mode is changed to minimal
mode via the Ul. [DEUCE support]: analogously

Figure 6. Minimal: ‘/’ button behavior

4.2.3 Scenario 3: Business and Data logic

In this scenario we illustrate applying different business be-
havior in different contexts, by showing a different business
method to be called. Again consider the calculator, initially
in the standard mode, depicted in Fig. 1.

e Step 1: The calculator user types ‘5’ in the display.
The application is called to store the first operand.

e Step 2: The user pushes the °/* button. The application
awaits the second operand.

e Step 3: The user types ‘3’ in the display. The appli-
cation’s divide method calculates the result. [DEUCE
support]: The programmer specified that the method
to call when the divide button is clicked, is the ‘divide’
method. See Fig. 7.

e Step 4: The standard mode is changed to minimal
mode via the Ul. [DEUCE support]: analogously
to the previous scenario the layout is automatically
adapted for the minimal mode.




behaviour (divideButton, #divide)
calculatorMode(standard)

Figure 7. Standard: Business&data link

e Step 5: The calculator user types ‘5’ in the dis-
play field. The application is called to store the first
operand.

e Step 6: The calculator user pushes the °/* button. The
application awaits the second operand.

e Step 7: The user types ‘3’ in the display field. The
application’s division method will now first check
whether the second operand is valid before calculat-
ing the result. [DEUCE support]: The programmer
specified that the method to call when the divide but-
ton is clicked, is the ‘divideMinimal’ method. This is
expressed declaratively as shown in Fig. 8.

behaviour(divideButton, #divideMinimal).
calculatorMode (minimal) .

Figure 8. Minimal: Business&data link

4.2.4 Scenario 4: Connection logic

In this scenario we illustrate how business logic and appli-
cation logic are put together. Again consider the calculator.
The following scenario applies for all calculator modes.

e Step 1: The calculator user pushes the ‘5’ button. The
application is called to store the first operand.

e Step 2: The user pushes the ‘/° button. Both scenario
2 and 3 apply. [DEUCE support]: The programmer
specified (scenario 2 and 3) that the Ul has to disable
buttons and what method has to be called in the appli-
cation. The declarative reasoning mechanism decides
which rules apply. See Fig. 9.

divide if
divideButtonsDisabling,
behaviour (divideButton, ?x)

Figure 9. Presentation and Business logic

5 Related work

DEUCE brings several research areas together. First of
all it aims for separation of concerns. To a certain ex-
tent, other approaches have also applied this principle to
Uls. Automated layout in the presentation concern is cru-
cial if the programmer wants to specify high-level interfaces
and no longer needs to bother with low-level positioning of
components. As for connection logic, we mention two ap-
proaches that solve entanglement problems related to call-
back procedures.

Separation of Concerns for UIs The principle of separa-
tion of concerns has been applied, to a certain extent, to Ul
concerns by other approaches. The Model-View-Controller
(MVC) architecture [16, 11] for example is a well-known
approach, but is often misinterpreted such that MVC is
thought of separating certain concerns but actually does not
[8]. In MVC the controller handles input and transmits it
to model and view. The view covers the visualization as-
pect of the Ul. However, the behavior concern, the busi-
ness and data logic, and connection logic are captured by
the model. These remain entangled, which gets even more
stressed in Smalltalk’s implementation of the MVC pattern
[9]. Model-View-Presenter [15] is a generalization of the
MVC metaphor and is intended to overcome some of the
problems with MVC [5]. Unfortunately, MVP attributes the
same meaning to model and view as in MVC.

The User Interface Markup Language (UIML) is an
XML-compliant language designated to build interfaces
that can be deployed on multiple appliances [1]. UIML sep-
arates the several UI concerns and provides rules to describe
when to select what event. However these rules are fully
‘matched’ at specification time and cannot rely on a reason-
ing engine to reason with facts and other rules. Furthermore
dynamic changes to the Ul are not possible if not anticipated
in advance. If several conditions are combined in order for
an event to be triggered, they are combined statically and
can result in long complex structures.

Model-based UI development environments divide a Ul
into four declarative models [6]. The application model de-
scribes the properties of the application that are relevant to
the UL The task-dialogue model describes what tasks a user
can perform with the application as well as how these tasks
relate to each other. The abstract presentation model pro-
vides a conceptual description of structure and behavior of
the visual parts of the UL The concrete presentation model
describes the visual parts of the Ul in terms of widgets. Dif-
ferent model-based approaches provide different techniques
to specify (some of) these four models but not all of the ap-
proaches apply a same level of SoC. DEUCE can be consid-
ered to be a model-based approach where models are imme-
diately executable.



Automated layout Current research in automated lay-
out [12] focusses on constraint-based and machine learning
techniques, since both layout managers and templates are
too limited. With layout managers [17] designing complex
hierarchical layouts are difficult and tedious. Templates [13]
use simplistic placement policies that are overruled by most
users by placing the objects by hand. Constraint-based au-
tomated layout systems [4] deal with more advanced layout-
ing possibilities and enforce position and size restrictions on
components. A constraint solver is used to get to a solution,
and thus a valid layout. Machine learning techniques [20]
learn about what constraints to apply based on interaction
with the user or by learning from a large provided set of
presentations (i.e. layouts made by a layout-expert).

Connection logic Taps [3] are used to link the UI and
the application and provide an extra level of indirection be-
tween the two. However, we believe that the entanglement
that before resided at application level, now resides in the
tap.

Myers et al. [14] observe that a lot of call-back proce-
dures perform no actual application work, but rather one
of the following tasks : preparing data for the applica-
tion, preparing data to be shown to the user, error check-
ing and controlling connections between Ul components.
The authors present Gilt, a tool to generate expressions for
these tasks automatically. Call-backs that do call applica-
tion functions, are specified with high-level parameters in-
stead of low-level widget properties. This is an extra indi-
rection between the UI and application but only solves part
of the connection concern.

6 Conclusion

Separation of Concerns is said to lead to evolvable,
reusable and maintainable code. Although User Interfaces
would benefit from the same advantages, SoC is often lim-
ited or absent altogether. Three concerns related to Uls (pre-
sentation, business and data, and connection logic) are to be
separated from one another. To aid a programmer in achiev-
ing a full SoC we propose a framework called DEUCE. This
framework uses logic meta-programming for specifying the
UI concerns and uses its reasoning mechanism to construct
a valid UI out of this. A constraint solver is used to pro-
vide for automated layout, since otherwise reuse becomes
unfeasible for the programmer.

We believe that DEUCE will aid in a full separation of
concerns of the Ul concerns, such that the task of creating,
but especially maintaining and evolving, UIS becomes less
complex for the programmer.
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