
Open Unification for Program Query Languages

Johan Brichau
UCL

Louvain-la-Neuve, Belgium
johan.brichau@uclouvain.be

Coen De Roover
VUB

Brussels, Belgium
coen.de.roover@vub.ac.be

Kim Mens
UCL

Louvain-la-Neuve, Belgium
kim.mens@uclouvain.be

Abstract

Logic-based programming languages are increasingly
applied as program query languages which allow devel-
opers to reason about the structure and behaviour of pro-
grams. To achieve this, the queried programs are reified
as logic values such that logic quantification and unifica-
tion can be used effectively. However, in many cases, stan-
dard logic unification is inappropriate for program enti-
ties, forcing developers to resort to overly complex queries.
In this paper, we argue that such incidental complexity
can be reduced significantly by customizing the unifica-
tion algorithm. We present a practical implementation ap-
proach through inter-language reflection and open unifica-
tion. These techniques are at the core of the logic program
query language SOUL, through which we demonstrate cus-
tom unification schemes for reasoning over Smalltalk and
Java programs. Queries written in this tailored version of
SOUL can exploit advanced program matching strategies
without increasing the incidental complexity of the queries.

1. Introduction

The growing amount of program query languages —of
which SOUL [18], JQuery [9], CodeQuest [8] and PQL [13]
are only some examples— is testament to the significant
momentum on the investigation of a program’s structure
and/or behaviour by means of user-defined queries. Such
queries serve the identification of code exhibiting features
of interest which range from application-specific coding
conventions [14] over refactoring opportunities [17] and de-
sign patterns [5] to run-time errors [3, 13].

A large body of these query languages are logic pro-
gram query languages, meaning that they rely on the use
of an executable logic to query the program under investi-
gation. The use of a logic programming language to query
programs has several well-established advantages [1, 18].
In imperative programming languages, programmers spec-

ify exactly how the solution to a problem is to be found
using step-by-step algorithms. In contrast, logic program-
ming languages allow the problem itself to be specified. The
program will find a solution on its own, relying on a spe-
cific problem-solving strategy defined by the language. In
such an approach, program queries are expressed as logic
conditions over the program’s parts. These conditions are
grouped into reusable logic rules, while the search for solu-
tions is initiated by launching a logic query.

In order for the above-mentioned logic problem-solving
strategy to work, the program under investigation needs to
be reified as a value that can be manipulated in the logic
language. Such a reification enables the natural use of logic
quantification and unification to reason over the program
parts. Logic unification essentially establishes a pattern-
matching scheme over logic values. As a result, it imposes
the same matching scheme over reified program parts. Un-
fortunately, this predefined matching scheme is often not
appropriate for matching reified programs. For example,
most program query languages reify the program as a parse
tree in the form of logic facts. In such an approach, the
pattern matching defined by the logic unification defines a
purely syntactic matching of program parts. When reason-
ing about programs, however, the order of variable declara-
tions, for example, is often unimportant and the matching
of variables should also consider their scope. Depending on
the purpose of the program queries, there are many more
matching and unification strategies that can be envisioned
or required.

To cope with these requirements, program query lan-
guages often tailor the reified representation of the program
to their particular needs. The realisation of more complex
pattern-matching is left up to the developers which have to
quantify manually over the program to achieve the desired
result. Such an approach, however, complicates queries and
hampers their declarative nature because developers need
to define operational queries that implement the required
pattern-matching scheme.

In this paper, we argue that logic program query lan-
guages can counter this incidental complexity by opening



their unification scheme, essentially allowing a developer
to (reflectively) implement a custom definition of unifica-
tion. Once such custom unification definitions are in place,
developers can again rely on the problem-solving strategy
of the logic language instead of having to implement such
a scheme themselves in each query. We will demonstrate
this principle through a disciplined use of inter-language
reflection [7] as it constitutes a natural implementation to
achieve this “open unification” in logic program query lan-
guages. In addition, this technique also ensures a causal
connection between the reified logic representation and the
actual program from which it was derived. The absence of
such a causal link inhibits the direct use of query results by
other meta-programming systems and requires that the re-
sults exhibit sufficient information to reconstitute the actual
program element uniquely. This problem is apparent in pro-
gram query languages that use a set of generated logic facts,
for which no causal link is maintained.

The next section starts our exposition by introducing
SOUL, which is the program query language used through-
out the remainder of this paper. Section 3 discusses stan-
dard logic unification and describes its inconveniences for
reasoning and matching programs by means of some ex-
amples. SOUL’s open unification mechanism, described in
section 4, enables the introduction of a unification scheme
for Smalltalk programs which is covered by section 5. To
conclude, section 6 applies the same technique in the imple-
mentation of a unification scheme for Java programs.

2. The SOUL logic program query language

The “Smalltalk Open Unification Language”
(SOUL) [16] is a logic program query language im-
plemented in —and tightly integrated with— Smalltalk.
SOUL programs are a hybrid combination of Prolog and
Smalltalk, meaning that a SOUL program comprises Pro-
log conditions as well as Smalltalk expressions. This also
entails that SOUL programs can manipulate any Smalltalk
object as a logic value (i.e. as a constant term) and that
these values can be exchanged transparently between logic
conditions and Smalltalk expressions.

Its hybrid language characteristic is a crucial element in
SOUL’s design as a program query language. It provides
any SOUL program the ability to manipulate any Smalltalk
meta-object seamlessly and to invoke Smalltalk’s reflective
protocol. As a result, queries in SOUL can use the en-
tire Smalltalk meta-object protocol (MOP) to reason about
Smalltalk programs. In addition, SOUL is able to reason
about Java programs as well, using an interconnection li-
brary between Smalltalk and Java. We will focus on rea-
soning about Java programs using open unification later on.
First, we illustrate SOUL and its use as a program query
language by means of some examples.

1 ?c isClass if
2 ?c isMemberOf: [Smalltalk allClasses].

3 ?root isAncestorOf: ?directSubclass if
4 ?directSubclass isSubClassOf: ?root.

5 ?root isAncestorOf: ?indirectSubclass if
6 ?indirectSubclass isSubClassOf: ?parent,
7 ?root isAncestorOf: ?parent.

8 if [Object] isAncestorOf: [FooBar]
9 if ?superclass isAncestorOf: [FooBar]

10 if [Object] isAncestorOf: ?subclass
11 if ?superclass isAncestorOf: ?subclass

Figure 1. Example SOUL rules and queries.

2.1. Example queries

The SOUL programs presented in this paper employ
SOUL’s symbiotic syntax [4], which closely resembles
Smalltalk’s keyworded message syntax. An expression
such as ?a plus: ?b is: ?c is a logic condition
that imposes the predicate plus:is: over the logic vari-
ables ?a, ?b and ?c. It states that the value of ?c must be
the sum of the values of ?a and ?b. Apart from this par-
ticular syntax, SOUL logic programs are evaluated exactly
like Prolog programs. For example, we can use the afore-
mentioned predicate in the query if 2 plus: 3 is:
?result to calculate the sum of 2 and 3. Evaluation of
this query will produce the result 5, bound to variable ?re-
sult.

A more important distinction between SOUL and Prolog
lies in SOUL’s ability to embed Smalltalk expressions in the
logic program. Such Smalltalk expressions are delimited by
brackets and can contain logic variables in exactly the same
locations as they can contain Smalltalk variables. For ex-
ample, [3.4 asInteger], [1] and [?x > ?y] are
Smalltalk expressions embedded in a SOUL logic program.
They are evaluated as standard Smalltalk, after logic vari-
ables have been substituted by the values they are bound to.
Smalltalk expressions can be used both as a logic condition
and as a logic value (i.e. a logic term). While the former use
will result in its evaluation whenever the condition needs to
be proven by the inference process, the latter use will result
in its evaluation each time it is unified with another logic
term. We will discuss the unification of Smalltalk objects
later on. For now, it suffices to understand that they are
treated as constants.

Figure 1 presents some example SOUL logic rules and
queries. The logic rule on lines 1–2 implements the
isClass predicate, which can be used to query or check
all classes in the Smalltalk image. It concludes that a value
of ?c is a Smalltalk class if it is a member of the collec-
tion of all classes. This collection is obtained through the



evaluation of the expression Smalltalk allClasses.
SOUL’s isMemberOf: predicate, which is used to ‘it-
erate’ over the collection, behaves exactly like its Prolog
counterpart (i.e. member), except that it can operate on
Smalltalk collections as well as logic lists.

Lines 3 through 7 show the isAncestorOf: predi-
cate defined by two logic rules. The first rule expresses that
a class ?root is the ancestor of a class ?directSubclass if the
latter is a subclass of the ancestor class. The second rule
expresses that a ?root class is also the ancestor of a subclass
of a class it is already the ancestor of. To find all ances-
tors of a class FooBar, one can launch the logic query on
line 9 and the logic programming system will present us
bindings for the ?superclass logic variable for which the
isAncestorOf relation holds. The queries on lines 8 to
11 demonstrate how the same logic rule can be used to ver-
ify whether there is an ancestor relation between two classes
(line 8), to find all superclasses of a given class (line 9), but
also to find all subclasses of a given class (line 10), or even
to find all class pairs for which there exists an ancestor re-
lation (line 11).

2.2. Inter-language reflection

We already mentioned that SOUL’s hybrid language
characteristic is key to its program querying abilities. In
summary, because any Smalltalk object can be used as
a value in any SOUL program, we can trivially rely on
Smalltalk’s MOP to reify any Smalltalk program entity into
the logic language. The example implementation of the
isClass predicate in Figure 1 demonstrates exactly this
ability and reifies Smalltalk classes into the logic environ-
ment. This ability to reflect on Smalltalk programs us-
ing SOUL logic programs has been referred to as inter-
language reflection [7].

In inter-language reflection, and in reflection in general,
the reified representation of a program must be causally
linked to the program itself. This means that any change
made to the reified representation must be reflected in the
program itself, and vice-versa. This property is trivially up-
held in SOUL for all reified representations because these
are actually meta-objects of Smalltalk. The causal connec-
tion is especially practical when the results of a logic pro-
gram query in SOUL need to be used in other metaprogram-
ming tools. This is an important property for a program
query language as it is most often used to extract program
parts with the specific intent of performing other operations
on these parts (e.g. refactoring, browsing, weaving, etc. ).
A causal link enables the direct use of query results in such
operations. Without the causal link, results of a logic query
need to be processed in order to retrieve the actual program
parts required by the client tool.

3. Source-code reasoning with standard logic
unification

Logic-based program queries, such as those presented
in the previous section, rely upon a logic problem-solving
strategy for their evaluation. One of the essential operations
involved in this problem-solving strategy is unification. We
briefly recap the essence of logic unification and describe
how standard logic unification allows for source code rea-
soning but does not always exhibit the desired behaviour
requiring developers to implement workarounds manually.

3.1. Unification of logic terms

Unification is essentially a pairwise matching process
between logic terms that does not only establish an equiv-
alence between logic terms but also assigns values to vari-
ables. Two logic terms are said to unify if they match –or– if
an appropriate set of bindings can be found for the enclosed
variables such that they match when each variable’s bind-
ing substitutes for the same variable in both terms. Table 1
summarizes the default unification scheme as implemented
in SOUL. Since unification is a symmetric operation, we
only display the lower-left triangle of the table. The num-
bers in this table refer to the specifications mentioned in the
following paragraphs.

The matching process is straightforward in the case of
simple terms such as logic constants, i.e.: two logic con-
stants match if they are the same (#1). For example, the
logic constants a and a unify trivially. Similarly, the logic
variable ?x and the logic constant b unify if the unification
algorithm establishes a binding of ?x to b. If the variable
?x was already bound, then its value must unify with con-
stant b. The same scheme holds for unification of variables
with any other value (#2).

In the case of more complex logic terms, such as com-
pound terms (e.g. car(wheels,engine,seats)),
the unification algorithm is a recursive process. Com-
pound terms unify if they have an equal number
of constituents, if their functors unify and if each
constituent unifies with its pairwise counterpart (#3).
In the example compound term, the constituents are
wheels, engine and seats and the functor is car.
The logic compound terms car(wheels,engine,
seats) and car(wheels,engine, seats) triv-
ially unify and the terms boat(keel,engine,seats)
and car(wheels,engine,seats) obviously do not
unify. As a final example, consider the following terms con-
taining some logic variables: car(?w,engine,?s) and
car(wheels,?e,seats). These terms unify, given
that ?w,?e and ?s bind to wheels,engine and seats
respectively.



constant object compound variable
constant 1

object fail 5
compound fail fail 3

variable 2 2 2 4

Table 1. Standard logic unification in SOUL.

Finally, it is also important to note that two logic vari-
ables unify if their respective values unify. If one of the
variables is still free, the free variable is bound to the value
of the bound variable. If none of the variables are bound,
they become synonyms, which means that they will need to
be bound to the same value (#4).

3.2. Unification of Smalltalk objects

SOUL employs a modest extension of the above unifi-
cation scheme to accommodate the unification of Smalltalk
objects. We already mentioned that Smalltalk objects are
treated as logic constants in SOUL. Therefore, Smalltalk
objects in SOUL unify if they are equal (#5). Smalltalk ob-
jects define this equality themselves in the implementation
of their ‘=’ method. Table 1 summarizes the default unifi-
cation scheme as implemented in SOUL.

3.3. Source-code reasoning

Although SOUL’s default unification scheme often
works well for program elements (such as Smalltalk meta-
objects), it does suffer from a number of drawbacks which
complicate program querying. Identical meta-objects that
reify classes, meta-classes, methods, etc. are guaranteed to
be equal and can thus rely on the standard matching based
on ‘=’ comparison. However, an identity-based equality
of meta-objects that reify sub-method level program parts
(e.g. statements) leads to an exact syntactic comparison of
method bodies. A matching that is based on such an ex-
act syntactic correspondence is often too conservative for
comparing program statements. Issues caused by purely
syntactic matching include matching of variable references,
semantically-equivalent messages and temporary variable
lists.

Variable References: The purely syntactic comparison
of variable references merely compares variables by name.
Such a unification leads to query results where references
to different variables, but with identical names are equated.
In order to unify only references to identical variables, the
unification needs to take the scope of the variables into ac-
count.

The first query in Figure 2 illustrates the impact this
mismatch in the unification scheme has on logic program

1 if instanceVariable:?instvar inClass: ?class,
2 method: ?method referencesInstVar: ?instvar

3 if instanceVariable:?instvar inClass: ?class,
4 class: ?subclassOrClass inHierarchyOf: ?class,
5 method: ?method inClass: ?subclassOrClass,
6 method: ?method referencesInstVar: ?instvar,
7 method: ?method definesTemps: ?temps,
8 method: ?method hasArgs: ?args,
9 not(?instvar isMemberOf: ?temps),

10 not(?instvar isMemberOf: ?args)

Figure 2. Reasoning over variable references.

queries. The query initiates, in a declarative manner, a
search for all methods referring to a certain instance vari-
able. However, as variables are compared by name, this
query will in reality find all methods referring to variables
sharing the same name. This includes methods that refer to
completely different variables but which happen to have the
same name. To resolve this issue in the unification of vari-
able references, developers need to encode explicitly that a
search for variable references must only consider subclasses
of the class in which the variable is defined. Additionally,
the query must check that the instance variable isn’t shad-
owed by method arguments or temporary variable declara-
tions. This entire process is encoded in the query on lines
3–10 on Figure 2. In comparison with the query on lines 1–
2, it implements a much more operational search and must
rely on quantification instead of unification for matching
program parts.

Semantically Equivalent Messages: Standard
Smalltalk classes define a wide variety of syntacti-
cally different messages that perform exactly the same
behaviour. For example, the messages ifTrue:ifFalse
and ifFalse:ifTrue: are semantically equivalent but
their reified meta-objects will not match. Therefore, each
query that involves the comparison of messages cannot rely
on the standard unification and must manually implement
the desired matching through quantification over messages.
In this quantification, the developer needs to implement
a careful mapping such that corresponding arguments are
correctly unified.

Temporary Variable Declarations: A final example
drawback of pure syntactic comparison is the order of vari-
able declarations, which is generally unimportant. A list
of variable declarations can be considered equivalent with-
out considering the order in which the variables are listed.
Unfortunately, standard syntactic comparison of temporary
variable lists in Smalltalk does consider the order of decla-
ration.



3.4 Unification with compound terms

To deal with many of the above mismatches, method
bodies are often reified as compound logic terms
that represent the parse trees of the method bod-
ies. For example, this means that the Smalltalk state-
ment ˆ x > y is reified as the compound term
return(send(var(x),>,var(y))) . Using such a
reification, query developers can use unification to extract
parts of the method parse trees and implement a custom
comparison through quantification over those parts.

A similar reification of parse trees into logic facts is ac-
tually implemented by almost all program query languages.
However, it does not provide a general solution to the
matching problem. Although it permits query developers
to implement custom matching of program parts (instead of
relying on the matching defined by unification), it still intro-
duces an additional burden. In essence, developers need to
consistently implement the custom matching wherever ap-
propriate and required. An additional problem with parse
trees as logic compound terms is that during the traversal,
decisions often have to be made by taking the context of
the node into account. Maintaining such a context during
the traversal introduces additional complications. Finally,
the logic compound term representation does not maintain a
causal connection with the actual program. All these issues
essentially hamper the declarative nature of logic program
queries and often exposes developers to intricate details of
the reified representation.

In the following section, we present how SOUL over-
comes the aforementioned issues by allowing a developer
to tailor the unification process to the particular needs of
the program querying task at hand.

4. Open unification

SOUL’s unification algorithm has been designed and im-
plemented as a customizable implementation, much in the
spirit of open implementations [11]. Through this open uni-
fication mechanism, the developer can customize the unifi-
cation of Smalltalk objects as well as the unification of any
other logic term in the SOUL language. In essence, a cus-
tom unification can be defined for each class of objects in
the system. This mechanism has allowed us to incorporate
more appropriate matching strategies in the unification of
reified programs.

Open unification implementation: A specialization of
the unification algorithm is achieved by overriding the ap-
propriate methods on the desired class. This is because the
SOUL evaluator sends messages to the objects that need to
be unified. The implementation of SOUL already defines
the default scheme (using ‘=’ comparison) on the Object
superclass, which allows developers to customize the im-

Figure 3. The Open Unification Editor

plementation through overriding. Furthermore, the same
messages are also implemented by the Smalltalk class that
represents each logic SOUL value. Because Smalltalk al-
lows one to dynamically extend the implementation of these
classes, we can therefore also specialize the unification of
Smalltalk objects with any SOUL logic value.

The protocol’s implementation is essentially a double-
dispatch pattern that recursively traverses an object-tree rep-
resentation of the logic values to be unified. Due to space
limitations, we refer the interested reader to the SOUL web-
site [16], where the implementation is explained in detail.
Although the entire protocol can be customized manually
by an application developer, its implementation requires a
number of repetitive steps and, more importantly, the devel-
oper himself must ensure a correct and symmetrical imple-
mentation of the custom unification scheme. Therefore, the
open unification implementation is facilitated by a tool: the
Open Unification Editor.

Open unification editor: Using this tool, develop-
ers can edit a ‘unification matrix’ which establishes the
pairwise unification between reified program elements and
other (standard) logic terms. Figure 3 presents a screenshot
of the editor opened on Smalltalk’s parse tree classes. The
diagonal of the matrix identifies that a unification is defined
for all objects of the same class (light gray squares). Other
combinations either do not unify (dark gray squares) or they
inherit the definition of their superclass. The definition itself
is implemented by the developer using Smalltalk code but
the tool automatically generates the remaining code for the
double-dispatch implementation and ensures the symmetry
of the algorithm. This allows the developer to concentrate
on the implementation of the unification itself without car-
ing about the intricate double-dispatch details.

5. Unification of Smalltalk code

In this section, we describe the custom unification
scheme for reasoning over Smalltalk code, essentially tack-
ling the issues mentioned in section 3.3. We defer the pre-
sentation of example queries that rely on such a specialized
unification to the subsequent section that provides a more



elaborate description of a unification scheme for Java code.

5.1. Parse trees and compound terms

Parse trees represented as logic compound terms are ap-
pealing from a declarative perspective, especially for their
ability to use unification to extract subparts out of parse
tree nodes. However, as we pointed out in section 3.3,
standard unification is not appropriate for matching parse
trees and such a reification is also prone to violating the
causal link. Therefore, SOUL reifies method bodies using
object-oriented parse trees and establishes a unification be-
tween these parse trees and their corresponding logic com-
poundterm representation. As a result, the advantages of
both representations are combined.

The unification extension: A parse tree node with chil-
dren c1, . . . , cn unifies with a logic term f(t1, . . . , tn) if
and only if the term’s functor f unifies with the name of
the node’s class, its multiplicity n agrees with the number
of children and each of the term’s arguments ti unifies with
the corresponding parse tree node child ci.

5.2 Messages

We have also specialized the unification of message-send
statements, such that syntactically different, but semanti-
cally equivalent, messages are matched by the unification
algorithm.

The unification extension: A message-send node m1

with selector s1 and argument expressions a1, . . . , an uni-
fies with a message-send node m2 with selector s2 and ar-
gument expressions b1, . . . , bn if and only if either of the
following conditions is true:

1. s1 and s2 are syntactically identical and each of the
argument expressions ai unifies with its corresponding
argument expression bi.

2. s1 and s2 are semantically equivalent and each of the
argument expressions ai unifies with its corresponding
argument expression bj , given a mapping i→ j that is
particular to each pair s1 and s2.

The Smalltalk implementation of this unification extension
uses a dictionary to store and retrieve semantically equiva-
lent messages and the appropriate argument mapping. This
dictionary is specified by the developer.

5.3 Variable References

Finally, we take the scope of variables into account dur-
ing their unification.

The unification extension: A variable reference node
v1 with variable name n1 unifies with a variable reference

node v2 with variable name n2 if and only if the lookup
of variable names n1 and n2 in the corresponding lexical
scopes of v1 and v2 refers to the same variable d.

The lexical name lookup that is required for the above
unification scheme is implemented by walking the parse
tree from the variable reference nodes up to a node where
the variable with the same name is declared. This can either
be a temporary variable declaration, a method argument list
definition or an instance/class variable definition.

Historically, our primary motivation for adapting the
logic unification scheme of SOUL stems from our recent
application of SOUL to reason over Java code. In the next
section, we therefore present a more elaborate discussion of
the unification scheme that we implemented for Java code
that lives in an Eclipse workspace.

6 Unification of Java Code

Inter-language reflection, as introduced in Section 2.2,
enables SOUL to quantify over any object that is reach-
able in the Smalltalk image. Similarly, we have established
inter-language reflection between SOUL and Java such that
SOUL queries an actual Eclipse workspace using an inter-
operability library between Smalltalk and Java: JavaCon-
nect [10]. This library allows a Smalltalk application to
reference any Java object, via a proxy in Smalltalk, and to
send it messages. As a result, logic variables are bound
to Smalltalk proxies for the actual Java objects. This way,
SOUL can seamlessly quantify over projects in the Eclipse
workspace, their build options and the parse trees of their
contents.

In each of the solutions to the first query depicted in Fig-
ure 4, logic variable ?c is bound to a proxy for a Java compi-
lation unit that declares more than one type. Each such solu-
tion is found by backtracking over consecutive bindings for
?c —returned by the isCompilationUnit predicate—
until the second condition ([?c types size > 1]) is satisfied.
Note that this condition is a Smalltalk expression compris-
ing method invocations in Smalltalk that are sent to the ac-
tual Java objects using JavaConnect.

Similar to the problems experienced when unifying
Smalltalk code, SOUL’s standard unification scheme leaves
much to be desired for unifying Java’s parse tree nodes.
To harness the full potential of a logic language to quan-
tify over parse tree nodes, the remainder of this section ex-
plores three extensions to the default unification scheme.
The first extension defines a unification between logic com-
pound terms and parse tree nodes, for similar reasons as in
unifying Smalltalk programs. Its implementation is more-
over entirely based on reflection. The two remaining exten-
sions increase quantification efficacy by incorporating static
analysis results into the unification.



1 if ?c isCompilationUnit, [?c types size > 1]
2 if compilationUnit(packageDeclaration(simpleName([’testapp’])),?,?) isCompilationUnit
3 if ?c isCompilationUnit, ?c hasPackage: ?p, ?p hasName: ?n, ?n isSimpleName, ?n hasIdentifier: [‘testapp’]

Figure 4. Some queries illustrating quantification over the compilation units in an Eclipse workspace.

6.1 Structural reflection for unification

In the logic paradigm, unification with a compound logic
term provides an effective means to constrain the values of
a variable. Given a suitable reification of parse tree nodes
as compound terms, the quantification over all compilation
units declared in the package named testapp can be ac-
complished by the second query in Figure 4. However, we
have deliberately chosen not to reify parse tree nodes as
compound logic terms, which forces us to expand the unifi-
cation into a quite elaborate sequence of conjuncted condi-
tions comprising the figure’s third query.

6.1.1 The unification extension

In order to reconcile the declarative style of the second
query with the reification of the actual parse tree node ob-
jects, we adapt SOUL’s unification scheme such that parse
tree nodes unify with their logic compound term repre-
sentation. Although this extension is much like its corre-
sponding extension for Smalltalk, the Java grammar’s sheer
size leaves customizing the unification for each individual
ASTNode subclass a laborious undertaking. Therefore, a
reflection-based unification scheme was implemented by
means of the structural property descriptors available on
the entire ASTNode hierarchy. A property descriptor for a
particular ASTNode object essentially provides meta-level
information for each of its children, enabling an automatic
mapping of the object onto its logic compound term repre-
sentation.

These reflective capabilities of the ASTNode-hierarchy
thereby trivialize the unification between a parse tree node
and a logic term. Similar to its corresponding extension for
Smalltalk code, a parse tree node with property descriptors
δ1, . . . , δn unifies with a logic term f(t1, . . . , tn) if and only
if the term’s functor f unifies with the name of the node’s
class, its multiplicity n agrees with the amount of property
descriptors and each of the term’s arguments ti unifies with
the value of the node’s property designated by property de-
scriptor δi.

Although one can argue that this customization could
as well have been part of a closed unification pro-
tocol, it has already been overridden for certain sub-
classes to exclude unimportant properties from the logic
term. Import declarations for instance omit their boolean
static property which can be accessed more natu-

rally in the logic programming paradigm through an
importDeclarationIsStatic predicate.

6.1.2 The extension in practice

The following logic query illustrates the custom unification
in practice:

1 if ?c isCompilationUnit,
2 ?c compilationUnitHasPackage: ?p,
3 ?c equals: compilationUnit(?p, [?c imports], ?)

It is composed of three separate logic conditions. The
first condition establishes bindings of the variable ?c to
CompilationUnit instances. Through the predicate
compilationUnitHasPackageDeclaration, the
second condition binds ?p to the package the compilation
unit ?c is declared in. The third condition demonstrates that
compilation unit ?c unifies with the logic compound term
given as second argument to the equals: predicate1. This
argument is a Smalltalk term evaluating to the compilation
unit’s import declarations obtained through an invocation of
the Java CompilationUnit.imports() method.

6.2 Semantic analysis for unification

As most object-oriented parsers use a distinct object for
otherwise structurally indistinguishable nodes, logic pro-
gram queries often include conditions overcoming SOUL’s
stringent identity-based comparison of parse tree nodes.
Queries involving method selector comparisons, for in-
stance, always comprise conditions comparing the identi-
fiers those selectors encapsulate.

It is therefore tempting to override the identity-based de-
fault unification between SimpleName instances to ob-
solete such recurring conditions. However, method dec-
larations do not account for all potential parent nodes of
SimpleName instances. Relying on an identifier-based
structural comparison of names could therefore lead to in-
correct or incomplete results. Variable references whose
identifiers agree, can still reference a completely different
declaration depending on the scope they reside in. Depend-
ing on its compilation unit’s imports, a simple name can
moreover denote the same type as a qualified name. Without
explicit support for these complex resolutions, it is unlikely

1The logic fact ?x equals: ?x. implements the equals: pred-
icate which hence serves as a substitute for Prolog’s = operator.



1 package p;
2 public class C {
3 private Integer f;
4 public C(Integer g) { f = g; }
5 public C(p.C other) { f = other.f;}
6 public Integer notGettingF(Integer f) { return f; }
7 public java.lang.Integer getF() { return f;} }

Figure 5. A class with an ad-hoc copy con-
structor and one actual getter method.

that a user’s query resolves to both sound and complete re-
sults. Indeed, such resolutions are traditionally performed
during a compiler’s semantic analysis phase.

6.2.1 The unification extension

Including the results of a semantic analysis in the logic
reification of the program under investigation isn’t a vi-
able option as few application programmers are famil-
iar with its intricate details. Truly declarative program
queries are only concerned with a program’s entities, leav-
ing any operational details about their matching to the lan-
guage’s problem solving strategy. We therefore extend
SOUL’s default unification scheme with a comparison be-
tween different types of parse tree nodes based on the enti-
ties they denote according to a semantic analysis. Eclipse
provides the results of its semantic analysis through a
resolveBinding() method defined on particular parse
tree nodes. This method returns a representation of the
named program entity the node resolves to. Fully-resolved
representations are available for packages, types, methods
and the various sorts of variables.

The actual comparison is straightforward for most kinds
of nodes. Types are, for example, deemed equal if they re-
solve to the same entity. This takes care of the aforemen-
tioned difference between fully qualified types and types
whose resolution depends on package imports. As the next
section will demonstrate, it is also convenient to deem type
declarations and type references equal if their resolved enti-
ties are the same. The same goes for comparing names with
field declarations.

Equality among names is somewhat more involved. Nat-
urally, names are deemed equal if they refer to the same
entity according to the semantic analysis which takes scop-
ing rules into account. However, identifier-based compar-
isons are still attempted for names referring to entities of
a different kind. This is for instance necessary in queries
identifying methods named after the class they are declared
in.

6.2.2 The extension in practice

The following rule expresses what it means for a method

declaration ?m to declare a getter method for one of the
variable declaration fragments2 ?g of a field declaration ?f
in the class ?c. Its final conditions state that such a method
resides in the same class as the field declaration and con-
tains a statement returning an expression that has to unify
with the field declaration fragment’s name:

1 ?m getsFragment: ?g ofFieldDeclaration: ?f in: ?c if
2 ?f isFieldDeclarationInClassDeclaration: ?c,
3 ?f fieldDeclarationHasFragment: ?g,
4 ?g variableDeclarationFragmentHasName: ?name,
5 ?m isMethodDeclarationInClassDeclaration: ?c
6 ?m methodDeclarationHasBody: block(?s),
7 ?s contains: returnStatement(?name)

SOUL’s default unification procedure would result in
queries involving the predicate defined above to fail since
any candidate field declaration and return statement simply
contain different SimpleName instances. A custom unifi-
cation procedure based on the equality of both instance’s
identifiers would on the other hand return false positives
such as the notGettingF(Integer) method depicted
in Figure 5. While its return statement’s expression agrees
identifier-wise with the protected field, its parameter shad-
ows the field’s name in reality. Finally, getF() is correctly
identified as the class’s single getter method by the unifica-
tion procedure that relies on semantic analysis for object
comparison. In fact, as this comparison is also specified be-
tween names and field declaration fragments, it allows for a
more concise rule that omits line 4 and has ?g substitute for
the remaining variable ?name .

Likewise, the following logic rule relies on the unifica-
tion between class declarations, simple names and types to
succeed. It identifies ad-hoc copy constructors which are of-
ten the cause of subtle bugs involving a shallow copy where
a deep copy was intended instead. The heuristic it employs
marks a method as a possible copy constructor if its selec-
tor comprises the name of its declaring class and a single
parameter of the type that is its declaring class:

1 ?m isPossibleCopyConstructorIn: ?c if
2 ?m isMethodDeclarationInClassDeclaration: ?c,
3 ?m methodDeclarationHasName: ?c,
4 ?m methodDeclarationHasParameters: <?p>,
5 ?p singleVariableDeclarationHasType: ?c

It successfully identifies the third declaration in Figure 5
as a declaration of an ad-hoc copy constructor. For this,
the class declaration bound to ?c was compared with the
Type instance p.C and with the SimpleName instance
with identifier C.

6.3 Points-to analysis for unification

As we have deliberately equaled the base program’s reifi-
cation to its actual implementation, logic queries identifying

2Note that Java allows multiple fields of the same type to be declared
in one declaration.



software patterns are limited to conditions over parse tree
nodes. By nature, such queries are closely related to one
particular implementation variant of the pattern they hope
to identify. Other variants require a separate logic rule in
order to be recognized as an alternative implementation of
the same pattern. Unfortunately, this ad-hoc approach often
results in an operational definition of the search for pattern
variants rather than the desired declarative specification of
its essence.

It is however hard to let a single logic rule suffice for the
detection of multiple pattern implementation variants with-
out having this rule refer to information about the pattern’s
run-time behavior. Such behavioral information could be
offered by a reification of a static or dynamic analysis of
the base program. Unfortunately, only few application pro-
grammers are acquainted with the various ways these analy-
ses represent behavioral information. We therefore prefer to
incorporate them into the unification procedure, effectively
defining the comparison of parse tree nodes as a comparison
of the behavior they give rise to.

6.3.1 The unification extension

Our final extension unifies syntactically differing expres-
sions when their values can coincide at run-time according
to a static analysis. While the previous extension primarily
relieved users from the meticulous application of name res-
olution and scoping rules, this extension relieves users from
the exhaustive enumeration of a base program’s aliasing ex-
pressions.

To determine whether two expressions can coincide at
run-time, the extended unification procedure requires for
each expression the set of all heap objects it might point
to during an execution of the program. We obtain such
points-to sets through the Spark [12] toolkit of the Soot Java
Optimization Framework which implements a conservative,
flow-insensitive and context-insensitive points-to analysis.

However, as points-to sets are conservative approxima-
tions of the actual heap objects a reference points to at run-
time, users should be aware that false positives might be
reported under the latter. In previous work [2], we have ad-
dressed this issue by having the unification succeed with a
partial degree of truth, but its fuzzy resolution procedure is
out of this paper’s scope.

6.3.2 The extension in practice

Under the extended unification procedure, existing pattern
detection rules rarely need to be changed in order to rec-
ognize a pattern’s implementation variants. Unification de-
mands are interpreted in an intentional manner by taking a
program’s possible run-time behavior into account. As a
result, conditions express constraints over the run-time be-

1 package testapp;
2 public class SumComponentVisitor {
3 private Integer sum;
4 public SumComponentVisitor self() { return this;}
5 public Integer getSum() { return this.self().sum;}
6 public Integer returnSum() {
7 return (Integer) returnArg(sum, 10);}
8 public Integer retrieveSum() {
9 Integer retrieved = self().returnSum();

10 return retrieved; }
11 public Object returnArg(Object o, int delay) {
12 if(delay == 0) return o;
13 else return returnArg(o, delay-1); }
14 }

Figure 6. Getter methods in Java.

havior parse tree nodes give rise to instead of constraints
over the literal parse tree nodes themselves.

While the original logic rule for the getter method
still recognizes the getF() method from Figure 5, its
newfound ability to detect implementation variants under
the extended unification procedure is better illustrated by
the somewhat artificial getter methods depicted in Fig-
ure 6. Behavior-wise, one can for instance consider
returnSum() a getter method since it returns the value of
the sum instance variable through an invocation of a method
which returns its first argument after it has recursively in-
voked itself as often as indicated by its second argument.
For the sake of completeness, we retake the compact version
of the getsFragment:ofFieldDeclaration:in:
predicate’s implementation:

1 ?m getsFragment: ?g ofFieldDeclaration: ?f in: ?c if
2 ?f isFieldDeclarationInClassDeclaration: ?c,
3 ?f fieldDeclarationHasFragment: ?g,
4 ?m isMethodDeclarationInClassDeclaration: ?c
5 ?m methodDeclarationHasBody: block(?s),
6 ?s contains: returnStatement(?g)

Its final condition demands that a return statement in
the method’s parse tree refers to the field it is protect-
ing. Upon evaluation, it expects the unification of the
VariableDeclarationFragment instance bound to
?g with the parse tree node corresponding to the return
statement’s argument expression to succeed. As this rule
demonstrates again, it is convenient to have unification de-
fined between variable declarations and arbitrary expres-
sions. A comparison according to semantic analysis will be
attempted first. It succeeds for the aforementioned getF()
method in which the return statement’s expression child
node is the name of protected field. This comparison will
however fail for the other getter methods which feature a
field access of an invocation, a cast of an invocation and the
name of a local variable respectively. The comparison that
is attempted next will however succeed, as it will determine
that these parse tree nodes might evaluate to overlapping
sets of objects. The return statement’s argument expression
is, in other words, allowed to be an arbitrarily complicated



expression as long as it possibly aliases the protected field’s
value at run-time. In a sense, the rule’s final condition is in-
terpreted as a constraint on the possible values returned by
the return statement.

7. Related Work

To the best of our knowledge, the idea of an open uni-
fication procedure has not been explored before in any
logic-based program query language. Closed extensions to
the unification procedure are however prominent in fuzzy
logic programming where the logic problem solving strat-
egy draws conclusions from rules of which the premises
are only partially satisfied. Similarity-based unification
schemes, in particular, unify two incompatible logic terms
provided they are deemed similar up to a certain degree.
Similarity degrees are either provided by users [15] or com-
puted by the problem solving strategy itself. Fury [6],
for instance, generalizes the well-known edit distance al-
gorithm to logic terms.

8. Conclusion

Logic-based program querying exhibits some well-
established advantages regarding concise and declarative
expressiveness. Nevertheless, the standard unification
scheme often restrains the developer from exploiting the
language’s full declarative power in program queries. We
have proposed Open Unification as a mechanism for a query
developer to adapt the standard unification scheme to better
fit reasoning over program entities. This mechanism es-
sentially permits to relocate the intricate details involved
with comparing program entities to the unification algo-
rithm such that developers can implement more concise and
declarative program queries. We have demonstrated how
some example unification schemes for Java and Smalltalk
code significantly simplify program queries in the SOUL
logic program query language.

Acknowledgements

Partially funded by the Interuniversity Attraction Poles
Programme of the Belgian Science Policy. Johan Brichau
is funded by a “FIRST” post-doc grant of the Région Wal-
lonne and Coen De Roover has a PhD scholarship funded by
the Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders.

References

[1] J. Cohen and T. J. Hickey. Parsing and compiling using pro-
log. Transactions on Programming Languages and Systems,
9(2):125–163, 1987.

[2] C. De Roover, J. Brichau, and T. D’Hondt. Combining fuzzy
logic and behavioral similarity for non-strict program vali-
dation. In Proc. of the 8th Symp. on Principles and Practice
of Declarative Programming, pages 15–26, 2006.

[3] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and
T. D’Hondt. An approach to high-level behavioral program
documentation allowing lightweight verification. In Proc. of
the 14th IEEE Int. Conf. on Program Comprehension, pages
202–211, 2006.

[4] M. D’Hondt, K. Gybels, and V. Jonckers. Seamless integra-
tion of rule-based knowledge and object-oriented function-
ality with linguistic symbiosis. In Proc. of the 2004 Symp.
on Applied computing, pages 1328–1335, 2004.

[5] J. Fabry and T. Mens. Language-independent detection of
object-oriented design patterns. Elsevier Int. Journal on
Computer Languages, Systems & Structures, 30(1-2):21–33,
2004.

[6] D. Gilbert and M. Schroeder. Fury: Fuzzy unification and
resolution based on edit distance. In Proc. of the 1st IEEE
Int. Symp. on Bioinformatics and Biomedical Engineering,
pages 330–336, 2000.

[7] K. Gybels, R. Wuyts, S. Ducasse, and M. D’Hondt. Inter-
language reflection: A conceptual model and its implemen-
tation. Elesevier Int. Journal on Computer Languages, Sys-
tems and Structures, 32:109–124, 2006.

[8] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scal-
able source code queries with datalog. In Proc. of the 20th
European Conf. on Object-Oriented Programming, volume
4067 of Lecture Notes in Computer Science, pages 2–27,
2006.

[9] D. Janzen and K. D. Volder. Navigating and querying code
without getting lost. In Proc. of the 2nd Int. Conf. on Aspect-
oriented software development, pages 178–187, 2003.

[10] JavaConnect:. http://www.info.ucl.ac.be/˜jbrichau/software.html.
[11] G. Kiczales, A. Paepcke, and G. Kiczales. Open Implemen-

tations and Metaobject Protocols.
[12] O. Lhoták. Spark: A flexible points-to analysis frame-

work for java. Master’s thesis, McGill University, December
2002.

[13] M. Martin, B. Livshits, and M. S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query
language. In Proc. of the Conf. on Object-oriented Program-
ming Systems, Languages and Applications, pages 365–383,
2005.

[14] K. Mens, I. Michiels, and R. Wuyts. Supporting software de-
velopment through declaratively codified programming pat-
terns. In Proc. of the 13th Int. Software Engineering and
Knowledge Engineering Conf., 2001.

[15] M. I. Sessa. Approximate reasoning by similarity-based sld
resolution. Theoretical Computer Science, 275(1-2):389–
426, 2002.

[16] SOUL:. http://prog.vub.ac.be/SOUL/.
[17] T. Tourwé and T. Mens. Identifying refactoring opportuni-

ties using logic meta programming. In Proc. of the 7th Eu-
ropean Conf. on Software Maintenance and Reengineering,
pages 91–100, 2003.

[18] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, Belgium, Jan-
uary 2001.


