
Modularizing Crosscuts in an E-commerce Application in
Lisp using HALO

Charlotte Herzeel∗, Kris Gybels, Pascal Costanza †and Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
{ caherzee | kris.gybels | pascal.costanza | tjdhondt }@vub.ac.be

ABSTRACT
Some program concerns cannot be cleanly modularized, and
their implementation leads to code that is both hard to un-
derstand and maintain. In this paper we consider extending
an e-commerce application, written in CLOS, with two of
such crosscutting concerns. Though most of the time Com-
mon Lisp’s macro facilities and CLOS’ method combinations
can be used to modularize crosscuts, we discuss the use of
a more declarative solution when crosscuts depend on the
execution history. For this purpose we give an overview of
HALO, a novel pointcut language based on logic meta pro-
gramming and temporal logic, which allows one to reason
about program execution and (past) program state.

1. INTRODUCTION
In this paper we take a look at the implementation of an e-
commerce application written in CLOS on top of the Hunchen-
toot framework, and we extend it with a discounting and a
suggestions feature. Implementing the extensions is done
by introducing new classes and we observe that in order to
integrate these classes with the base application, multiple
methods need to be adapted. The concern of this paper
is whether these adaptations can be done in a modularized
manner in CLOS, or whether we need to resort to a cross-
cutting implementation. The latter is important to know
when striving for a separation of concerns.

Full separation of concerns through modularization using
any object-oriented language is difficult to achieve because a
program can only be modularized in one way at a time, pos-
sibly matching very well for particular concerns, but other
concerns that do not align with this modularization end up
scattered over different modules. Concerns that do not align

∗Funded by a doctoral scholarship of the Institute for the
Promotion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen), Belgium.
†Funded by the Institute for the Promotion of Innova-
tion through Science and Technology in Flanders (IWT-
Vlaanderen).

with a particular modularization are called crosscutting con-
cerns.

Crosscutting concerns occur in CLOS programs as well. The
two new features we want to add to the e-commerce applica-
tion are in fact examples of crosscutting concerns. Most of
the time crosscutting concerns can be modularized in Com-
mon Lisp by means of before, after and around methods.
As an example consider a banking application where sensi-
tive operations such as withdrawing and depositing money
need to be logged. This can be achieved by adding before

methods for each sensitive method, rather than scattering
the logging code over the different method bodies. However,
implementing the discounting and suggestions features from
the e-commerce application in a similar way is not trivial.
The reason for this is that they seem to rely on a dynamic
interplay of different methods and temporary program state.
Our proposed solution applies aspect-oriented programming
to the problem.

The goal of aspect-oriented programming [15] (AOP) is to
modularize such crosscutting concerns. An aspect language
is a language extension for a base language, such as Com-
mon Lisp, that introduces new constructs that allow the im-
plementation of crosscutting concerns in distinct modules,
called aspects. An aspect language consists of a means of
describing join points, namely a pointcut language, and a
means of affecting behavior at join points, namely an advice
language, where join points are well-defined points in (the
execution of) a program. A pointcut can be seen as a predi-
cate over all join points in a program, to pick out join points
of interest. In CLOS, a before, after or around defines a
piece of advice for a single join point, while a macro could
be used to expand a declarative description of several join
points – that is, a pointcut – into several such before, after
and around methods.

Although early research in AOP focused on aspects that are
triggered at single join points at distinct moments in time,
recent research has evolved towards aspect that are triggered
based on the occurrence of a series of consecutive join points
in the execution of a program and their respective program
state in the past: They were dubbed event-based aspects,
stateful aspects [6] and context-aware aspects [22]. In this
paper we refer to them as history-based aspects, and as we
will explain, history-based aspects are a perfect means for
modularizing the crosscuts in the e-commerce application.

In the pursuit of an expressive pointcut language for CLOS
for history-based aspects, we have applied logic meta pro-
gramming to the problem, resulting in HALO. HALO –
which stands for “History -based aspects using Logic” – ex-
tends our earlier research on logic pointcut languages [9]
with support for writing pointcuts that can depend not just
on the current join point but also on previous join points
and also on past program state.

The rest of this paper is organized as follows. In Section 2
we present an overview of HALO. We present both the ad-
vice language and the pointcut language, as well as some
basic examples. The follow-up section discusses the imple-
mentation of a basic e-commerce application, and how it
can be extended with a discounting and a suggestions fea-
ture. A modularized implementation in HALO of the latter
two features is subsequently explained. Section 5 presents
an overview of related work, including other approaches to
aspect-oriented programming in Lisp. Finally, before pre-
senting our conclusions, we elaborate on some future work.

2. THE HALO LANGUAGE
HALO (“History-based Aspects using LOgic”) is a novel
logic-based pointcut language for Common Lisp [2] that al-
lows pointcuts to be expressed over a history of join points
as well as allowing interactions with the base language (so
called hybrid pointcuts). In this section, we first give some
background information on the concept of advices in aspect-
oriented programming and how this works in HALO, as well
as the motivation for making HALO a temporal-logic-based
pointcut language. The remainder of the section explains
the HALO pointcut language itself.

2.1 Aspect-Oriented Programming & Advice
Most aspect languages are founded on the concept of advice.
Advice already exist in Common Lisp in the form of before,
after and around methods in CLOS. The latter “intercept”
when a generic function with a particular set of specializ-
ers is executed and execute additional behavior before, after
or around its execution. This concept is extended in AOP
to pointcuts: rather than being defined on a single generic
function with a particular name, an advice is defined using
a description of which “join points” the advice should in-
tercept, which can be more complex. A join point is a key
event in the execution of the program, such as the execution
of a method.

While some aspect languages have explicit “before” and “af-
ter” advices, HALO does not distinguish between types of
advices. Instead, the join point model includes distinct “re-
turn” join points on which the application of an advice has
the same effect as an “after” advice in other languages.

An example to illustrate the form in which advices using the
HALO pointcut language are defined:

(at ((gf-call ’buy ?args)

(escape ?time (get-universal-time)))

(print "Buy was invoked with arguments: " ?args)

(print " at time " ?time))

This is an example of a straightforward logging advice, which

intercepts invocations of the generic function buy and prints
information about the invocation to a log. The advice body
consists of two calls to print. The gf-call and escape

forms are predicates in the HALO logic pointcut language.

For comparison, a before method in CLOS that does the
same as the simple advice depicted above:

(defmethod buy :before (args)

(let ((time (get-universal-time)))

(print "Buy was invoked with arguments:" args)

(print " at time " time)))

2.2 Logic Pointcuts over Joinpoint Histories

Motivation for logic-based pointcut languages. Several
ways to write pointcuts exist. For example, the AspectS
framework for Smalltalk [12] uses Smalltalk’s meta-object
protocol to write pointcuts as Smalltalk expressions that
compute a collection of methods. The use of Smalltalk ex-
pressions means a Turing-complete language can be used to
express pointcuts, the use of the MOP furthermore allows
complex pointcuts that check statements in the method bod-
ies, relationships between classes and so forth. A similar
approach could be taken in CLOS. But on the other hand,
previous work on CARMA [9] and other logic-based point-
cut languages [21, 10, 25] has demonstrated the suitability
of logic programming [17] as the basis for a pointcut lan-
guage. Logic programming allows pointcuts to be written
in a declarative style, without control loops and such, which
in general is taken to make expressions in these languages
easier to read (as Kowalski explained through his well-known
equation “algorithm = logic + control” [18]).

Logic pointcut matching. In logic pointcut languages, point-
cuts are written as logic queries over logic facts that give
information about the join points. Conceptually, whenever
a join point (such as a method execution) occurs, facts giv-
ing information about the join point (such as its name and
its arguments) are made. The pointcuts of all advices are
then checked against this fact base. If the pointcut (a logic
query) has a solution using this fact base, we say the point-
cut matches the join point. Such a match means the advice
body is then executed. Note that it is possible for logic
queries to have multiple solutions, with different values for
logic variables. In that case, in HALO, the advice is exe-
cuted for every solution. The advice body can also make use
of the values of the logic variables, as illustrated in the exam-
ple in the previous section: the ?args and ?time variables
are used in the advice body, and will respectively contain
the arguments and time of execution of calls to the function
buy.

HALO and temporal logic. In most early pointcut lan-
guages, no history of join points was available to point-
cuts. Using a logic-based pointcut language as example:
in CARMA, whenever a join point occurs, only information
about that join point and some additional information about
the program (the classes, relationships between classes, their
methods and so forth) is available in the fact base. More re-

cent proposals for pointcut languages have included some
form of allowing pointcuts to depend on join points that
occurred earlier. For logic-based pointcut languages, this
means the fact base does not just include information about
the “current” join point, but also about earlier join points.
This allows for pointcuts that intercept the execution of a
method named “buy”, but only if there was previously an
execution of “login”. This means there are also temporal
relations between the join points in the fact base. To deal
with these, HALO is in particular based on temporal logic
programming.

2.3 HALO Pointcut Language
In a logic pointcut language, join points are represented as
logic facts and pointcuts are expressed as queries using logic
predicates. The built-in predicates of HALO fall into two
classes: the primitive predicates that distinguish between
types of join points and higher-order temporal predicates
for dealing with temporal relationships between join points.
The predicates are summarized in Figure 1.

Note that while HALO is a logic-based language, in con-
trast with other logic-based pointcut languages, it does not
use the syntax of the well-known logic language Prolog. In-
stead, Lisp-style list syntax is used for logic pointcut queries.
Variables are written with a question mark, as in ?var. For
example, the expression (gf-call ’buy ?args) would be
written in Prolog as gf-call(buy, Args).

2.3.1 Joinpoint Type Predicates
HALO’s join point model, as with most other pointcut lan-
guages, consists of the key events in the execution of an
object-oriented program. In the case of Common Lisp, there
are seven types of join points: the instantiation of a class,
the invocation of and return from a generic function, the
execution of and return from a method, and the accessing
or changing of a slot (instance variable).

Figure 1 lists HALO’s join point predicates. They each have
a number of arguments exposing data of the join point. The
gf-call and method-call predicate respectively capture in-
vocations of a generic function and executions of specific
methods of a generic function. They each expose the ar-
guments the function is invoked with: i.e. the actual run-
time objects. The name of the function is exposed as a
symbol. The method-call predicate has an additional pa-
rameter that exposes the specializers of the method, i.e. the
argument types specified in the method signature, which are
used to select a specific method of a generic function. The
corresponding gf-return and method-return predicates se-
lect return join points for generic functions and methods
respectively. They have a similar parameter list as the gf-

call and method-call predicates, but additionally expose
the return value. The slot-get and slot-set predicates re-
spectively capture slot access and change join points. They
expose the object whose slot is referenced, the name of the
slot, its value, and its new value in the case of slot-set.
The create predicate captures class instantiation join points
and exposes the class’s name and the actual instance.

2.3.2 Temporal Predicates

Temporal predicates overview. The temporal predicates
in HALO allow for pointcuts that express a temporal rela-
tion between past join points. This is not limited to join
points which are in a control flow relationship. Rather, a
history of past join points is kept which can be referred to
using the temporal predicates. The temporal predicates are
higher-order predicates that take pointcuts as arguments.
To establish some terminology, consider the following point-
cut:

((gf-call ’checkout ?argsC)

(most-recent (gf-call ’buy ?argsB)))

The first condition is referred to as the outer pointcut, the
single condition used as argument to the temporal predicate
most-recent is referred to as the inner pointcut.

The temporal higher-order predicates share the same basic
semantics. An inner pointcut is evaluated against a subset
of join points relative to the join points matching the outer
pointcut. The actual subset, of course, depends on the par-
ticular temporal predicate. In the above example, the inner
pointcut (gf-call ’buy ?argsB) is thus evaluated against
join points in the past of the join points matching the outer
pointcut (gf-call ’checkout ?argsC).

The since temporal predicate is the more difficult one of
the three predicates as it has two inner pointcuts. The first
inner pointcut is evaluated against the past join points rela-
tive to the join points captured by the outer pointcut. The
second inner pointcut is evaluated against the join points
in-between the two other join points.

The all-past and most-recent predicates match the in-
ner pointcut against all past join points relative to the join
point matched by the outer pointcut. The predicates differ
in that the all-past has solutions for all past join points
that match, while the most-recent predicate only has a so-
lution for the most recent join point that matches. The
cflow predicate is a variation of the most-recent predicate
which additionally checks that no corresponding return join
point has occurred for the join point captured by the inner
pointcut (it is therefore similar to the cflow construct in
AspectJ [19]).

Variable sharing. Variables can be shared between the in-
ner and outer pointcuts. As the semantics of the temporal
predicates is that the inner pointcut is evaluated against the
past of the join point captured by the outer pointcut, vari-
ables are bound by the outer pointcut. For example, the
following pointcut captures invocations of the buy function
and gives all users that previously also bought the same ar-
ticle:

((gf-call ’buy (?user1 ?article))

(all-past (gf-call ’buy (?user2 ?article))))

In this example, the outer pointcut captures a buy call and
exposes the arguments of the call in the ?user1 and ?arti-

pointcut :: (< primitive pointcut >< escape > ∗ < tpointcut >)
pointcut :: (< primitive pointcut >< escape > ∗(since < tpointcut >< tpointcut >))
tpointcut :: ({< temporal >| not} < pointcut >)
primitive pointcut :: < gf call >|< gf return >|< get >|< set >|< create >

| < m return >|< m call >
escape :: (escape ?variable < lisp-form >)
gf call :: (gf -call ?gfName ?arguments)

Generic function call join point
m call :: (method-call ?methodName ?arguments ?specializers)

Method call join point
gf return :: (gf -return ?gfName ?arguments ?rvalue)

Generic function return join point
m return :: (method-return ?methodName ?arguments ?specializers ?rvalue)

Method return join point
get :: (slot-get ?obj ?slotName ?value)

Slot get join point
set :: (slot-set ?obj ?slotName ?oldV alue ?newV alue)

Slot set join point
create :: (create ?className ?instance)

Instance creation join point
temporal :: most-recent | all-past | cflow

Temporal relations

Figure 1: Grammar for HALO pointcut language. For conciseness we have depicted the arguments of the
different predicates as logic variables preceded by a “?”.

cle variables, the inner pointcut then matches on all previ-
ous calls to buy with the same article object as argument.

2.3.3 Hybrid Pointcuts
The escape predicate can be used to include Lisp code refer-
ring to logic variables in a pointcut definition. The example
below shows a pointcut capturing invocations of a generic
function named buy, where the escape predicate is used to
ask the price of an article (second argument) and to bind the
result to a logic variable ?price (first argument). Whenever
such a pointcut is evaluated, the piece of Lisp code is ex-
ecuted using the bindings available for the logic variables,
resulting in a new variable binding which in return is used in
the evaluation of the rest of the pointcut. But if the return
value of the Lisp code is nil, the condition has no solution.
In the example, the constraint (greater-than ?price 10)

is checked for a value ?price computed at the Lisp level –
or in other words, the binding for ?price is not logically
derived.

((gf-call ’buy (?user ?article))

(escape ?price (price ?article))

(greater-than ?price 10))

The escape predicate can be in a temporal predicate; The
only restriction is that applies is that all of the variables
used in its condition are bound by the rest of the pointcut.
The semantics is such that it appears as if the Lisp code of
the escape conditions inside the most-recent is evaluated
when user2 buys an article. The following example advice
prints the price for which a user previously bought an article
when the same article is bought by another user:

(at

((gf-call ’buy (?user1 ?article))

(most-recent

(gf-call ’buy (?user2 ?article))

(escape ?price2 (price ?article))

(escape ?name2 (user-name ?user2))))

(print "Article previously bought by "

?name2 " for " ?price2 " EUR"))

So the variable ?price2 will refer to the past price of the ar-
ticle, which is possibly different from the price of the article
when the second buyer purchases the article.

2.4 Defining Rules
Programmers can define rules for new predicates using the
defrule construct. As in other logic-based pointcut lan-
guages [9, 21], this mechanism can be used to define new
join point predicates. This is simply a matter of using an
existing join point predicate in the definition of the rule.
For example, the rule definition below extends HALO with a
new pointcut predicate that captures invocations of a generic
function called checkout:

(defrule (checkout-gf-call ?args)

(gf-call ’checkout ?args))

Note that rules do not have to define predicates about join
points. Only rules based on other join point predicates de-
fine a new join point predicate.

3. HALO WEAVER
Though the focus of this paper is to illustrate the HALO lan-
guage, the reader might benefit from a little inside informa-
tion on how HALO is implemented. We won’t delve into all

the details, but we do cover how HALO code and Lisp code
are combined. The latter integration process is called weav-
ing in AOP terminology and – in HALO’s case – involves
a runtime process for intercepting join points and a query
engine for matching pointcuts to a join point. A schema
of the dynamic weaving process, responsible for combining
HALO code and base code, is depicted in Figure 2.

The weaver is responsible for mapping the key events in the
execution of a CLOS program (or join points) to logic facts
and storing them in a fact base. In our concrete implemen-
tation this is achieved by wrapping the generic function call,
instance creation and slot access protocols in Common Lisp
through the CLOS Metaobject Protocol[14] to attach code
for generating the facts. Hence in order to generate join
points for classes or generic functions, it is necessary to in-
troduce a correct meta class at the class or generic function
definition.

Secondly the weaver is responsible for weaving in the proper
advice code at each event; The proper advice code is com-
puted by trying to resolve the pointcuts given the fact base.
The latter is done by a query engine, which is basically an
interpreter for our logic language HALO. A first implemen-
tation of the HALO query engine was based on backward
chaining.This approach however relies on storing the entire
execution history forever and making deep copies of object
state at each point in time. This appeared to be necessary
to evaluate hybrid pointcuts correctly using backward chain-
ing [11]. However, currently, a more practical implementa-
tion of HALO relies on an implementation strategy based
on forward chaining. Because of the way pointcut queries
are then pre-computed as join point facts are asserted, it
diminishes copying object state for evaluating escape con-
ditions correctly. In addition HALO’s predefined set of tem-
poral relations allows us to build a weaver where memory
management can be optimized. More concretely, we have
implemented an extended version of the RETE [8] forward
chaining algorithm to evaluate HALO pointcuts, which al-
lows for a dynamic management of the join point history. In
fact, the e-commerce application as presented in this paper
runs on top of this implementation.

Switching HALO from backward chaining to forward chain-
ing is however not trivial. More precisely, because of HALO’s
hybrid pointcut mechanism, allowing full variable sharing
and recursive rule definitions appears problematic. How-
ever a full discussion on these problems is out of the scope
of this paper, and will be discussed elsewhere.

4. IMPLEMENTING AN E-COMMERCE AP-
PLICATION

The application we discuss in this paper is an e-commerce
application for selling clothing. This application was first
implemented on top of the Hunchentoot framework [24] and
CLOS. Hunchentoot is a toolkit for building dynamic web-
sites and is currently being used for commercial web sites
such as ERGO [24]. Hence Hunchentoot is an excellent start-
ing point for developing a realistic web application. The lat-
ter is important because we want to show that something as
exotic as a temporal logic-based pointcut language is indeed
useful and plausible to use in a real-life application.

In this paper we extend the e-commerce application with a
discounting and suggestions feature using HALO. To get a
better grasp of how the application works, we discuss the
basic workings of an e-shop in the next section. Thereafter
follows an overview of the basic program structure, refer-
enced in the follow-up sections which discuss how aspects in
HALO adapt the base program to implement the discount-
ing and suggestions features.

4.1 Going shopping

Online Shopping at Boutique. The Boutique store exclu-
sively sells clothing by mail order: the Boutique catalogue
itself can be viewed on a website and customers can place
their orders online. Though browsing the catalogue requires
nothing more than surfing the website, placing an order re-
quires one to identify oneself by filling in a login form. The
latter can only be done by customers that have an account
at Boutique. When logged in, the customer can add dif-
ferent products from the catalogue to his virtual shopping
basket. The contents of a shopping basket can be viewed at
a dedicated web page, displaying each added article, a num-
ber indicating the total price of all purchased articles and
a checkout form asking for a desired payment method and
packaging details. When the customer fills in the checkout
form, the products are retrieved from the Boutique stock and
mailed to the customer, along with the bill. Two screenshots
of the Boutique website are depicted in Figure 3

Program structure. The application implementing the above
e-shop is modelled as depicted in Figure 4. The figure dis-
plays a UML diagram of the classes implementing the dif-
ferent roles outlined in the above description of the e-shop.
The class shop represents the Boutique store and the slots
articles, customers and accounts are there to track the
catalogue content, the customers visiting the Boutique web-
site and the customer accounts respectively. When a cus-
tomer accesses the Boutique homepage, he is represented as
an instance of the class user and added to the shop’s cus-

tomers list. When the customer logs in, the user object is
mapped to one of the accounts stored at the shop.

Accounts can be added to or removed from the shop using
the methods create-account and remove-account. As de-
scribed by the class account in Figure 4, an account itself
consists of a unique user-name and password, as well as
a credits number. The latter stores the total of all bills
paid by the customer owning the account. As hinted before,
customers are represented as instances of the class user.

The class user in the same UML diagram prescribes that
all customers have their own shopping basket, a reference
account-id to the account a customer logs in on and a
session identifier. Logging in a user is done through the
method login and results in setting the user’s account-id

– given that the provided user name and password match
an existing account. The methods buy and undo-buy imple-
ment adding and removing a product from the user’s bas-
ket. The checkout method is used to finalize a shopping
session and results in removing the products cached in the
basket (by means of the methods add-article and remove-

article defined in the class Basket), decreasing the stock

runtime weaver

query engine

TN:(gf-call 'checkout (<kris>))
TN-1: (gf-call 'buy (<kris> <cd>))

jp facts

(defclass user () ((name)))
(defmethod login ((u user) (s shop)) ...)
(defmethod buy ((u user) (a article)) ...)
(defmethod checkout ((u user)) ...)

base

(at
 ((gf-call 'checkout (?user))
 (most-recent (buy ?user)))
(log "user ~s made buy") ?user)

aspect

(defrule (buy ?user)
 (gf-call 'user (?user ?article)))

rules

most-recent, all-past, since,
cflow

 temporal relations

Figure 2: HALO weaver schema.

Figure 3: Screenshots of the e-commerce application.

number for each of these products in the shop (see method
decrease-nr-of-articles-for-size in the class Article),
and increasing the total amount purchased by the user. Fi-
nally, the class Article models a product from the Boutique
catalogue. Each such article has a name, a description, a
price and a picture and belongs to a collection: all these
slots hold some information to be displayed when a customer
browses the catalogue. The slot quantity-in-stock-per-

size in the same class denotes the amount of each product
stocked at Boutique per available size (“Small”, “Medium”,
“Large” or “Extra Large”).

Note that for conciseness we have omitted the classes and
methods responsible for generating HTML code and that
explaining the methods and slots left undiscussed so far, is
done on as necessary in the following sections.

4.2 Adding Discounts and Suggestions
The e-commerce application discussed above implements the
primary features of an e-shop. In this section we investigate
how HALO can be used to add a discounting and a sug-
gestion feature. Both features are discussed separately in
the next section; For each we first discuss the feature’s pur-

pose, we continue by explaining what extra classes we need
to implement the feature, and finally we show how the base
application and the extra classes are linked using HALO.
The latter discussion illustrates HALO’s special properties
such as temporal pointcut language, the ability to access
Common Lisp from within the base language, rule abstrac-
tion, referencing past program state, etc. as defined in the
previous sections.

4.2.1 Promotions and Discounts
Occasionally, Boutique launches a promotional campaign.
For example, when it’s Christmas, all customers get a dis-
count on checkout or when stock of a particular product is
piling up, Boutique offers a discount to customers willing to
buy it. These kinds of promotions are referred to as dynamic
pricing strategies [13].

Implementing the discounting feature requires us to adapt
the e-commerce application to both make customers aware
of promotions, as well as to make sure that discounts are
processed when a bill is created. More concretely, when a
customer visits the Boutique homepage, a list of currently
active promotions pops up. When the customer logs in dur-

+ create-account(user-name pwd)
+ fetch-user(session-id)
+ fetch-account(user-name, pwd)
+ fetch-article(article-id)

- articles
- customers
- accounts

Shop

+ decrease-nr-of-articles-for-size(size)

- article-name
- description
- image-location
- quantity-in-stock-per-size
- article-type
- id
- collection
- price

Article

+ checkout()
+ login(shop, user-name, pwd)
+ logout()
+ buy(article, size)
+ undo-buy(article, size)
+ logged-in-p()

- user-name
- basket
- shop
- session-id
- account-id

User

+ add-article(article, size)
+ remove-article(article, size)
+ compute-total-price()

- user
- articles

Basket

1

1

*

*

*

- user-name
- password
- account-id
- credits

Account

1

*

1

1

*

Figure 4: Sketch of a UML diagram for the e-commerce application.

ing a time at which a certain promotion is active, he should
get the associated discount when he checks out his basket
and the bill is computed – no matter whether the promotion
is still active then. If the latter weren’t true, the customer
could login and be promised a promotion, and finally not
get it when he checks out his basket.

The Promotion class. Promotions are modelled using the
classes depicted in Figure 5. The class Promotion is an
abstract class that outlines the interface that each promo-
tion needs to implement: a method promotion-rate that
computes the promotional rate for an article, a method
promotion-active-p that can be used to see if a particular
promotion is currently active or not, a method promotion-

info that generates an informative text explaining a promo-
tion and a method promotion-banner that returns a picture.
The latter two methods are used to render a representation
of the promotion for a customer visiting the Boutique web-
site. The Promotion class stores extra information by means
of a slot title, referring to the name of a promotion, as well
as a slot catch-phrase. In Figure 5 we have depicted two
concrete subclasses as well, namely christmas-promotion

and overflow-promotion.

The class christmas-promotion implements a promotion
where each customer is offered a (constant) seasonal dis-
count between December 15th and January 15th. The class
itself simply overrides the methods defined by its superclass
promotion. Verifying whether a christmas promotion is ac-

tive is done by checking whether the current time and date is
between December 15th and January 15th. More concretely,
this is done by the method promotion-active-p, which ac-
cesses the time through the system function get-decoded-

time. As in our example a seasonal discount is constant for
each Boutique product, the method promotion-rate simply
returns a constant.

Another promotion is implemented by the class overflow-

promotion. This class extends the class promotion with an
extra slot articles+treshold+rate. The latter maps ar-
ticles to a threshold and a discount rate. The threshold
denotes a maximum of articles that is desired to keep in
stock, whereas the discount rate is a rate specific to each
kind of article. For example, yellow jackets of the brand
“Winter” are highly in fashion at the moment, whereas a
basic raincoat is an evergreen that always sells well. So
for the “Winter” jacket a low stock is kept, which is re-
filled regularly. When that stock starts piling up, indicat-
ing that yellow “Winter” jackets are no longer in fashion,
large discounts are given to get rid of them quickly. In
the case of the classic raincoat however, it is okay for Bou-
tique to stock up on lots of basic raincoats at once, and
only give low discounts to boost sales. The methods find-

particular-rate and find-particular-threshold defined
in the class overflow-promotion, are there to retrieve dis-
count rates and thresholds for a particular article. The
method promotion-active-p verifies whether there currently
is a stock overflow for a particular article by comparing the
current stock number of the article to the threshold defined

+ promotion-rate (article size)
+ promotion-banner()
+ promotion-info()
+ promotion-active-p()

- title
- catch-phrase

promotion

+ promotion-rate (article size)
+ promotion-banner()
+ promotion-info()
+ promotion-active-p()
+ create-christmas-promotion()

christmas-promotion

+ promotion-rate (article size)
+ promotion-banner()
+ promotion-info()
+ promotion-active-p()
+ find-particular-rate (article)
+ find-particular-treshold(article)
+ create-overflow-promotion(shop)

- articles+treshold+rate
overflow-promotion

Figure 5: Sketch of a UML diagram for the Promo-
tion class and subclasses.

by the promotion. In the overflow example, the discount rate
for an article depends on the type of the article. Henceforth
the method promotion-rate looks up this discount rate.

Linking Promotions using CLOS. In order to link the
base application described in Section 4.1 and the promo-
tion classes from the previous section, we need to adapt the
behaviour of quite a few methods defined in the base ap-
plication. We first discuss an implementation using only
CLOS, and in the next paragraph we explain how linking
the promotions and the base application can be done more
concisely by means of HALO.

Clearly we need to extend the behaviour of the method
checkout to incorporate calculating discounts for the prod-
ucts bought during a shopping session. Furthermore we
must make sure that the discount rate for each article bought
conveys with the discount rate that was active when the lo-

gin happened. So we need to include computing and caching
the discount rates for each article in the method login.

More concretely, in order to store the different discount rates
we add a new slot rates-per-size. This slot maps articles
to a discount rate and a size. Of course some extra meth-
ods need to be implemented to manipulate the slot rates-

per-size, as well as a new class to create content for the
mapping:

(defclass article+size+rate ()

((rate :initarg :rate :accessor rate)

(size :initarg :size :accessor size)

(article :initarg :article :accessor article)))

(defmethod add-rate-per-size

((user user) (article article) rate size)

(setf (rates-per-size user)

(cons

(make-instance

’article+size+rate

:rate rate

:size size

:article article)

(rates-per-size user))))

(defmethod reset-rate-per-size ((u user))

(setf (rates-per-size u) ’()))

In addition we extend the class shop with a slot promotions
to keep track of the promotions at Boutique; Of course we
also need to define an :around method for both the meth-
ods create-christmas-promotion and create-overflow-

promotion that updates the promotions list of a shop.

Subsequently the method login is extended to compute the
discount rate for each article stored in the shop, for each
possible promotion and size, and saving the the rates for
the user logging in. The latter is implemented using an
:around method for the method login.

(defmethod login :after ((u user) (s shop) name pwd)

(dolist (article (articles s))

(dolist (promo (promotions s))

(dolist (size (sizes s))

(let ((rate

(promotion-rate promo article size)))

(when rate

(add-rate-per-size u article rate size)

))))))

Next we include giving the discounts at checkout. For this
purpose an :around method checkout is defined as depicted
below. It retrieves the articles bought by a user, and gives
a discount for each article for which a rate was cached at
login time. The method recompute-price is a method we
introduce to charge a customer the discounted price of an
article.

(defmethod checkout :around ((u user))

(let ((articles (articles (basket u))))

(call-next-method)

(dolist (a (rates-per-size u))

(let ((size (size a))

(article (article a))

(rate (rate a)))

(when (find-if

(lambda (p)

(and (equal (cdr p) size)

(equal (car p) article)))

articles)

(recompute-price u article rate))))))

Though the code in this section works perfectly for combin-
ing the promotions and the base application, it still requires
the introduction and extension of quite a few methods. Due
CLOS built-in :after, :before and :around capabilities,
there is no need to produce tangled code. One could ar-
gue however that the implementation is scattered because
the code to make sure a customer gets his discounts covers
multiple different methods and classes. More importantly,
we also observe that a lot of code is concerned with record-
ing/restoring program state (such as the discount rates).
In the next section we discuss how HALO allows a more
declarative implementation, where the storing and retriev-
ing of discount rates is automated. In fact, in HALO, this
code can be modularized by means of a single piece of advice
and adding a single new method.

Linking Promotions using HALO. From the latter chain
of adaptations, we can identify the join points of interest to
be calls to the methods login, buy and checkout. The idea
is to group the scattered code by means of a history-based
pointcut, wherein temporal relations are used to intercon-
nect join points and in addition to make use of the escape

mechanism in HALO to refer to the past discount rates 1:

(defrule

(forall-articles-in-basket ?user ?article ?size)

(all-past

(create article ?article)

(member ?size ("S" "M" "L" "XL")))

(escape

?member (in-basket-p (basket ?user)

?article

?size)))

(at

;; pointcut

((gf-call checkout ?user)

(forall-articles-in-basket ?user ?article ?size)

(since

(most-recent

(gf-call login ?user _ _ _)

(current-discount-rate

?user ?article ?size ?rate))

(all-past

(gf-call buy ?user ?article ?size))))

;; advice code

(recompute-price ?user ?article ?rate))

(defmethod

recompute-price ((u user) (a article) rate)

...)

Roughly said, the piece of advice can be read as: “when
a checkout call happens, execute the method recompute-

price on a user object ?user, for all articles ?article on

1For brevity we have omitted the name of certain logic vari-
ables, and replaced them by a as they are not relevant in
matching the pointcut.

which buy was called, given a discount rate ?rate. In ad-
dition, the buy calls need to have happened since the most
recent call to login for the user ?user. And also, the dis-
count rate ?rate is the one active for the different articles
?article when the login happens.”

More concretely, the pointcut consists of three pointcuts in-
terconnected by means of the since temporal operator. The
outer pointcut of the since operator, namely ((end-gf-

call checkout ?user ?res) (forall-articles-in-basket

?user ?article ?size)), simply employs the built-in pred-
icate gf-call to capture a call to the method checkout

and exposes all articles in the shopping basket at checkout
time through (forall-articles-in-basket ?user ?arti-

cle ?size) 2. The two arguments of the since operator
each capture a series of join points in the past of the lat-
ter outer pointcut. For example, the pointcut put as the
first argument, captures the most recent join point that
matches (gf-call login ?user) and computes all past dis-
count rates (bound to ?rate) by means of (current-discount-
rate ?user ?article ?size ?rate). The latter is possi-
ble as the logic variable ?rate is left unbound by any of
the pointcuts capturing execution join points. Note that
current-discount-rate is not a predefined predicate.

The predicate current-discount-rate is defined as a sep-
arate rule:

(defrule

(current-discount-rate ?user ?article ?size ?rate)

(all-past (promotion-create ?promo))

(all-past (article-create ?article))

(article-rate ?promo ?article ?rate ?size))

As explained in Section 3, verifying whether a user defined
predicate holds at a join point, means the body of the rule,
basically also a pointcut, must hold at the join point. So
(current-discount-rate ?user ?article ?size ?rate) holds at a
login join point, if

1. all join points matching (promotion-create ?promo)

past the login are captured

2. all join points matching (promotion-create ?promo)

past the login are captured

3. (article-rate ?promo ?article ?rate ?size) is computed
at the login

Note that these three conditions themselves are all defined as
separate rules. promotion-create is a predicate that cap-
tures join points representing instance creations of classes
that are subclasses of the class promotion. article-create
simply captures instantiations of the class article:

(defrule (promotion-create ?promo)

2Note that the predicate forall-articles-in-basket is de-
fined a separate rule. Matching rule definitions is explained
further down the text.

1 (create overflow-promotion <promo>)

2 (create article <jacket>)

3 (create article <t-shirtt>)

4 (create article <trousers>)

5 (create article <socks>)

6 (gf-call ’login <kris> <boutique> "kris" "kg")

where the promotion rates given <promo> are:
0.20 for <t-shirt> in size "M"

0.25 for <trousers> in size "M"

7 (gf-call ’buy <kris> <trousers> "M")

9 (end-gf-call ’checkout <kris> <res>)

10 (gf-call ’logout <kris>)

11 (gf-call ’login <kris> <boutique> "kris" "kg")

where the promotion rates given <promo> are:
0.05 for <jacket> in size "M"

0.10 for <socks> in size "M"

12 (gf-call ’buy <kris> <t-shirt> "S")

13 (gf-call ’buy <kris> <jacket> "M")

14 (gf-call ’buy <kris> <socks> "M")

15 (end-gf-call ’checkout <kris> <res>)

Figure 6: A sample history of join points (to sim-
plify the example, only generic function calls are
considered; Note also that there is always a default
promotional rate of 0.0 for any article, but for con-
ciseness we’ve also omitted this from the trace).

(create ?class ?promo)

(escape ?sub (sub-class-p ?class promotion)))

(defrule (article-create ?article)

(create article ?article))

The predicate article-rate is defined in terms of the es-

cape predicate, so that ?rate matches the result of call-
ing the method promotion-rate on ?promo, ?article and
?size. member simply enumerates the elements of the list
("S" "M" "L" "XL).

(defrule (article-rate ?promo ?article ?rate ?size)

(member ?size ("S" "M" "L" "XL"))

(escape ?rate (promotion-rate ?promo ?article ?size)))

Matching pointcuts. To further clarify the way the point-
cuts are matched, we explain which advices are executed
given the sample execution trace shown in Figure 6. Note
that we use the notation <name > to denote object identifiers
(e.g. <t-shirt> represents an object, obviously intent to be
an instance of article).

Recall the first pointcut we discussed first in this section:

(at

;; pointcut

((end-gf-call checkout ?user _)

(forall-articles-in-basket ?user ?article ?size)

(since

(most-recent

(gf-call login ?user _ _ _)

(current-discount-rate

?user ?article ?size ?rate))

(all-past

(gf-call buy ?user ?article ?size))))

It has multiple solutions for join point 15, one for each article
the user checking out ever bought and for which there was
a promotion active when the user last logged in (the articles
<jacket> and <socks> bought by user <kris>).

In more detail, this pointcut is matched at join point nr.
15, because it matches the outer pointcut (end-gf-call

checkout ?user), and exposes the discount rate of all buy
join points (namely nr. 13 and 14) that match the second
argument of the since predicate, since the last login join
point that matched the first argument of the since predi-
cate (join point nr. 11). Due (forall-articles-in-basket

?user ?article ?size) only buy events are captured of ar-
ticles that are still in the user’s basket (so no articles that
were “unbought” (cf. undo-buy in Figure 4)). In addition
the buy join points and the login join point are matched in
the past of the checkout join point. Because of the (forall-
articles-in-basket ?user ?article ?size)

Note that the exposed discount rates are the ones active at
the latter login join point. This discount rate is exposed by
means of the predicate current-discount-rate, for which
we repeat the definition below:

(defrule

(current-discount-rate ?user ?article ?size ?rate)

(all-past (promotion-create ?promo))

(all-past (article-create ?article))

(article-rate ?promo ?article ?rate ?size))

At join point nr. 11 this rule has two matches (exposes rates
0.05 and 0.10 for the articles <jacket> and <socks>). At
join point nr. 11 the first pointcut (all-past (promotion-

create ?promo)) in the body of the rule matches four join
points, namely all instance creation join points of the class
article (so nrs. 2 through 5) predating the login join point.
The second pointcut in the body of the rule, namely (all-

past (article-create ?article)) matches a single join
point: the creation of the object <promo> (nr. 1). Finally,
given those join points, the last pointcut in the body of
the rule, namely (article-rate ?promo ?article ?rate

?size), filters out the join points nrs. 2, 5 and 1 because
there is only a promotion active for the articles <jacket>

and <socks>.

4.2.2 Suggestions
In order to try and trick customers into buying more, Bou-
tique suggests customers products they might like to buy.
It has been observed by the Boutique owner that customers
mostly buy clothing from the same collection: so if they buy
a shirt from one collection, they are likely to buy trousers
from the same collection. In addition, customers that like
certain products, are perceptive to products bought by cus-
tomers that buy similar articles. For example, if one cus-
tomer buys a jacket from the “Winter” collection and a

+ add-likable-article(article, article)
+ add-likable-articles(article, article*)
+ remove-likable-article(article)
+ find-likables(article)
+ likable-articles()
+ create-suggestion(user)

- articles+suggestions
- user

suggestion

Figure 7: Sketch of a UML diagram for the Sugges-
tion class.

pair of trousers from the “Autumn” collection, then another
customer buying the same jacket, probably also desires the
trousers. So when customers purchase an article, the Bou-
tique website pops up a list of suggestions, which all some-
how “match” the article just bought.

The Suggestion class. Suggestion lists are modelled by
means of the class suggestion in Figure 7. The class defines
a slot articles+suggestions that maps each article to a list
of articles that “match” the article (e.g. articles of the same
collection). The slot user simply keeps a reference to the
customer for whom the suggestion list applies. The method
add-likable-article adds a suggested article for an article.
Conversely, the method remove-likable-article deletes
an article and its derived suggestions. The method find-

likables is used to retrieve the list of suggested articles
associated with an article, whereas the method likable-

articles returns a concatenation of simply all suggested
articles. Finally, the method create-suggestion can be
used to initialize a new suggestion, given a user.

HALO code. Integrating the suggestion feature can lead
to scattered and tangled code. For example, making sure
that articles bought by one user are added to the sugges-
tion list of another, requires one to adapt the behaviour of
the checkout method to record per user the list of articles
bought. Then we need to adapt the buy method to query
this record of bought articles per user to compute a new list
of suggested articles and to update another user’s suggestion
list. In this section, we consider a modularized implementa-
tion in HALO.

In order to make sure that each user even has a suggestion
list, each instantiation of the class user triggers creating a
fresh suggestion list. The piece of advice below consists of a
pointcut that captures each instantiation of the class user

and a piece of advice code that triggers a call to the method
create-suggestion (see Figure 7):

(at

((create user ?user))

(create-suggestion ?user))

Though the latter makes sure that each user has a unique

suggestion list, this suggestion list still needs to be updated
regularly. The suggestion list needs to be updated each time
the user adds a new article to his basket. For example, as
suggested articles, we can add each article from the same col-
lection to the user’s suggestion list. The pointcut below con-
sists of two pointcuts interconnected by means of the tempo-
ral operator most-recent. The outer pointcut captures all
calls to the method buy through use of the built-in predicate
gf-call. The inner pointcut then captures the most recent
join point that matches (end-gf-call create-suggestion

?user ?suggestions) – so basically given a buy call on a
user object, the most recently created suggestion list for that
user. The latter is acceptable, as a suggestion list is unique
for each user. Finally, the advice code simply computes
a list of suggested articles and adds them to the captured
suggestion list (logical variable ?suggestion). Note that the
variable *boutique* simply refers to an instance of the class
shop.

(at

((gf-call buy ?user ?article ?size)

(most-recent

(end-gf-call

create-suggestion

?user

?suggestions)))

(add-likable-articles

?suggestions

?article

(compute-articles-same-collection

boutique

?article)))

Furthermore each suggestion list needs to be updated as
soon as the user for whom it exists, removes an item from
his basket; If he isn’t interested anymore in an article, then
he probably isn’t interested in the articles that “match” it
either. The pointcut below is similar to the one we per-
viously described and simply wraps calls to the undo-buy

method to include updating a suggestion list.

(at

((gf-call undo-buy ?user ?article ?size)

(most-recent

(end-gf-call create-suggestion ?user ?likables)))

(remove-likable-article ?likables ?article))

;; at checkout reset likables

(at

((gf-call checkout ?user)

(most-recent

(end-gf-call create-suggestion ?user ?likables)))

(setf (likables ?user) (create-suggestion ?user)))

As a final example, we consider a variation on the suggestion
feature – which as explained below exploits HALO’s hybrid
pointcut mechanism. We recall that there are people that

think alike and tend to enjoy similar things. The piece of
advice below makes sure that this knowledge is used to sug-
gest products to one customer, based on what another one
bought. Relative to the pointcut (end-gf-call buy ?user

?article ?size ?res), there are two other pointcuts that
need to be true, might the entire pointcut match a join point.
Of particular interest is the second form that starts with
most-recent, as this makes use of the escape predicate.
That condition computes the content of a user basket at the
time the method checkout is computed. This makes sure
that when the entire pointcut is actually matched by a buy

method call, ?articles is bound to that past content of a
user basket.Though of course, the content of the basket by
then will have changed.

(at

((end-gf-call buy ?user ?article ?size ?res)

(most-recent

(end-gf-call create-suggestion ?user ?suggestions))

(most-recent

(gf-call checkout ?user2)

(escape ?articles (fetch-articles (basket ?user2)))

(all-past (gf-call buy ?user2 ?article ?size2))))

(add-likable-articles ?suggestions

?article

(quote ?articles)))

4.2.3 Discounts revisited
Below we have depicted an implementation of the discount-
ing feature from Section 4.2.1 that makes use of the possibil-
ity to write escape conditions in a pointcut that make use
of logic variables bound in a “future” pointcut. The latter
feature allows us to implement the discounting by means of
a single piece of advice:

(at

;; pointcut

((end-gf-call checkout ?user _)

(since

(most-recent

(gf-call login ?user _ _ _)

(all-past (promotion-create ?promo))

(escape ?rate

(promotion-rate ?promo ?article ?size)))

(all-past (gf-call buy ?user ?article ?size))))

;; advice code

(recompute-price ?user ?article ?rate))

;; definition of promotion-create as before

More concretely, the escape condition to calculate the dis-
count rates at login time, makes use of the variables ?arti-
cle and ?size, which are bound by the pointcut capturing
calls to the method buy. The latter buy calls happen af-
ter the login call, and as discussed in Section 3 in order
to make sure that the escape condition is evaluated against
the correct program state, the weaver must make a copy
of all objects at the time the login join point occurs. For
this purpose, the weaver makes use of the generic function
copy. Making deep copies of objects is costly in general;
The idea is that the HALO programmer can specialize the

generic copy to define what parts of which objects are rel-
evant to copy. In the example at hand, we define a version
of copy specialized on the class article that backs up the
stock number per size of an article (see the slot quantity-

in-stock-per-size in Figure 4):

(defmethod copy ((a article))

(let ((article-copy (make-instance ’article))

(stock

(copy-alist (available-stock-per-size a))))

(setf (available-stock-per-size article-copy)

stock)

(setf (article-name article-copy)

(article-name a))

(setf (description article-copy)

(description a))

;; set other slots as well

))

The HALO code from this section is more concise than the
code explained in Section 4.2.1 because it uses variables in
escape conditions, bound by “future” pointcuts. For exam-
ple, it is not necessary to define the predicates current-

discount-rate, article-rate or article-create, nor to
refer to them within the pointcuts. Furthermore, control
over the weaver is possible to dictate what object state needs
to copied through the generic copy.

5. RELATED WORK
5.1 AOP and Lisp
HALO is the only implementation of an aspect-oriented pro-
gramming language for a Lisp dialect that allows writing
pointcuts based on the execution history of the applica-
tion. To the best of our knowledge it is also the first logic-
based approach to aspect-oriented programming in a Lisp
dialect. A framework for aspect-oriented programming in
Scheme was proposed by Tucker et. al. [23] , where the no-
tion of AspectJ-like pointcuts and advices are introduced
in Scheme. The focus of the research by Tucker et. al. is
to define the particularities of combining higher-order func-
tional languages and aspect-oriented programming, such as
the treatment of scope, the lack of “names”, etc. The latter
is not the focus of HALO; Furthermore Tucker et. al. unify
aspect-oriented programming with AspectJ [16] in their re-
search and do not consider expressing history-based aspects.
AspectL [4] is a library that provides aspect-oriented ex-
tensions for Common Lisp and CLOS. These extensions in-
clude support for writing generic pointcuts, destructive mix-
ins, special classes and special functions. However, there is
no explicit means in AspectL for expressing history-based
aspects.

5.2 History-based Aspects in Other Languages
A closely related approach to our work is Alpha [21], a logic-
based pointcut language for a Java-like language. Alpha in-
cludes information about the state of objects and the static
structure of the program in the fact base. Full Prolog can
be used to write pointcuts as logic queries over the historic
fact base. A pre-defined set of logic rules for expressing tem-
poral relations is provided, but this can be extended by the
programmer. While Alpha also has a mechanism for let-
ting the pointcut language interact with the base program

the use of standard Prolog only allows interaction with the
base program at the current join point. So (as discussed in
Section 4.2.1), this means the “past rate discounting” as-
pect must be expressed as two pointcuts and advices. Thus,
while Alpha is more expressive than HALO in terms of pro-
viding a richer join point model and the use of full Prolog
to reason about the past history of join points, it is also less
expressive in allowing hybrid pointcuts to interact with the
base program.

Tracematches [1] and J-LO [3] are extensions of AspectJ and
hence use Java as the base language. History-based point-
cuts are expressed in Tracematches as regular expressions
over AspectJ pointcuts, and in J-LO as temporal logic for-
mulae over AspectJ pointcuts. A different temporal logic
is used in J-LO than the one in HALO. Rather than re-
lying on AspectJ or a similar, existing non-logic pointcut
language for Lisp and then using temporal logic to turn it
into a history-based pointcut language, HALO uses the same
logic formalism throughout.

5.3 Hybrid Aspects
OReA [5] is a family of logic-based pointcut languages for
Smalltalk, in which the concept of “hybrid aspects” was orig-
inally introduced. The prime objective in this work was for
“hybrid advices” to be transparent: a condition in a logic
pointcut can be re-defined as a method, and vice-versa. The
pointcut language and base language are changed so that
when no rule is defined for a logic condition, the condition
will be evaluated by sending a message instead. This can
be easily achieved in HALO as well: if no rule exists for
a logic condition, it can be translated to an escape con-
dition. OReA also supports interaction from the base and
advices languages with the rule language, which we have not
considered in HALO so far. OReA is actually a family of
logic pointcut languages, which includes a forward-chaining-
based variant. But this is not based on the Rete network
and lacks the necessary support for memorizing past eval-
uations of hybrid pointcuts. While OReA supports hybrid
pointcuts in both directions in a transparent manner, it does
not support pointcuts over a history of joinpoints.

6. FUTURE WORK
There still remains work to be done on behalf of HALO. Fu-
ture research on HALO’s language design and library sup-
port is still necessary, to adhere to some known (open) issues
in aspect-oriented programming. In addition, HALO suffers
from some issues that relate to its symbiosis with Common
Lisp.

Language design. HALO does not currently feature pred-
icates that offer a static model of the base application, as
in other logic-based pointcut languages [9, 21]. Predicates
for such a model could be easily added, and is a ques-
tion of setting up a standard library in HALO. In addition,
HALO does not fully support obliviousness [7], which is to
be thought one of the main requirements for aspect-oriented
programming. Obliviousness dictates that the base program
should not be adapted nor be prepared so that it can be
combined with an aspect program. Due the explicit meta
classes HALO programmers employ to alert the weaver of
possible join points of interest, HALO breaks obliviousness.

One option could be to redefine the defclass, defgeneric,
defmethod macro’s to simply include setting the appropriate
meta classes. However this would create a tremendous over-
head – think of all the irrelevant join points being generated.
Another option would be to try and statically derive from
the pointcuts which class definitions and generic function
definitions need to be tagged with a meta class. In order
to make a full aspect-oriented programming language out
of HALO we need to introduce an aspect composition lan-
guage [20]. Such a language is necessary to resolve conflicts
between aspects that apply at shared join points. Current
composition languages rely on constructs for expressing an
ordering between aspects. We are thinking along the same
line for HALO, though for uniformity we plan to devise a
composition language based on temporal logic.

Hybrid pointcuts. Furthermore some open issues remain
to be explored concerning HALO’s hybrid pointcut mech-
anism. The latter allows interaction with Common Lisp
from within the pointcuts and is in fact a language symbiosis
mechanism. Up till now we have implicitly considered es-

cape conditions to be side effect-free expressions. However
behaviour is currently undefined when expressions with side
effects are being used. Should the side effect occur when the
entire pointcut is matched, or as soon as the escape condi-
tion can be evaluated? In addition what does it mean when
escape is used in recursive rules?

7. CONCLUSIONS
In this paper we validated the suitability of the logic-based
pointcut language HALO to modularize crosscuts as history-
based aspects. For this purpose, an overview of the tempo-
ral logic-based aspect language was given, discussing both
advice and pointcut language. A large part of this paper
consists of illustrating the use of HALO for extending an e-
commerce application with a discounting and a suggestions
feature. Both features require the implementation of some
additional classes and linking these with the base program
can be expressed in terms of the execution history of the
e-commerce program. Therefore they can be expressed as
history-based aspects in HALO. From these experiments it
has become clear that HALO’s ability to define pointcuts
that refer to past program state result in more concise code,
because it automates storing and referencing program state
at past join points.

8. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen,

L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to aspectj. In
OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 345–364,
New York, NY, USA, 2005. ACM Press.

[2] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene,
G. Kiczales, and D. Moon. Common lisp object
system specification. Lisp and Symbolic Computation,
1(3-4):245–394, January 1989.

[3] E. Bodden. J-LO - A tool for runtime-checking
temporal assertions. Master’s thesis, RWTH Aachen

university, 2005.

[4] P. Costanza. A short overview of aspectl. In European
Interactive Workshop on Aspects in Software (EIWAS
’04), Berlin, Germany, September 23 –24 2004.

[5] M. D’Hondt and V. Jonckers. Hybrid aspects for
weaving object-oriented functionality and rule-based
knowledge. In Proceedings of the Fourth International
Conference on Aspect-Oriented Software Development,
2004.

[6] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. Lecture Notes in Computer
Science, 2192:170–184, 2001.

[7] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns,
OOPSLA 2000, Minneapolis, 2000.

[8] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17 – 37, September 1982.

[9] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the Second International Conference on
Aspect-Oriented Software Development, 2003.

[10] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit.
Detecting and resolving ambiguities caused by
inter-dependent introductions. In Proceedings of 5th
International Conference on Aspect-Oriented Software
Development, AOSD2006, 2006.

[11] C. Herzeel, K. Gybels, and P. Costanza. A temporal
logic language for context awareness in pointcuts. In
”Workshop on Revival of Dynamic Languages”, 2006.

[12] R. Hirschfeld. Aspect-Oriented Programming with
Aspects. In Lecture Notes in Computer Science:
Objects, Components, Architectures, Services, and
Applications for a NetworkedWorld: International
Conference NetObjectDays, NODe 2002, Erfurt,
Germany, October 7–10, 2002. Revised Papers, 2003.

[13] A. Kambil and V. Agrawal. E-commerce: The new
realities of dynamic pricing. In Outlook journal, July
2001.

[14] G. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242, Berlin, Heidelberg, and New
York, 1997. Springer-Verlag.

[16] I. Kiselev. Aspect-Oriented Programming with AspectJ.
Sams, 2002.

[17] R. Kowalski. Predicate logic as programming
language. In IFIP Congress, pages 569–574, 1974.
Reprinted in Computers for Artificial Intelligence
Applications, (eds. Wah, B. and Li, G.-J.), IEEE
Computer Society Press, Los Angeles, 1986, pp. 68–73.

[18] R. Kowalski. Algorithm = logic + control.
Communications of the ACM, 22(7):424–436, 1979.

[19] C. Lopes, E. Hilsdale, J. Hugunin, M. Kersten, and
G. Kiczales. Illustrations of crosscutting. In P. Tarr,
M. D’Hondt, C. Lopes, and L. Bergmans, editors,

International Workshop on Aspects and Dimensional
Computing at ECOOP, 2000.

[20] I. Nagy. On the Design of Aspect-Oriented
Composition Models for Software Evolution. Phd
thesis, IPA, May 2006.

[21] K. Ostermann, M. Mezini, and C. Bockisch.
Expressive pointcuts for increased modularity. In
European Conference on Object-Oriented
Programming, 2005.

[22] É. Tanter, K. Gybels, M. Denker, and A. Bergel.
Context-aware aspects. Lecture Notes in Computer
Science, Proceedings of the 5th International
Symposium on Software Composition (SC 2006),
4089:227–242, 2006.

[23] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In AOSD ’03:
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 158–167,
New York, NY, USA, 2003. ACM Press.

[24] E. Weitz. Hunchentoot - the common lisp web server
formerly known as tbnl.
http://weitz.de/hunchentoot/.

[25] T. Windeln. Logicaj - eine erweiterung von aspectj um
logische meta-programmierung. Diploma thesis, CS
Dept. III, University of Bonn, Germany, Aug 2003.

