A Semantic-based Runtime Weaver for Dynamic Management of

the Join Point History

Charlotte Herzeel, Kris Gybels, Pascal Costanza
{charlotte.herzeel, kris.gybels, pascal.costanza}@vub.ac.be
Programming Technology Lab
Vrije Universiteit Brussel

January 25, 2007

1 Introduction

Although early research in aspect-oriented pro-
gramming focussed on aspects that are triggered at
a single join point, more recent research has evolved
towards aspects that are triggered based on the oc-
currence of a series of join points in the execution
of a program. These types of aspects were dubbed
event-based aspects, stateful aspects [2] and context-
aware aspects [10], and a number of novel pointcut
languages with direct support for these kinds of as-
pects are currently being developed [9, 5, 1].

One of the most challenging aspects of develop-
ing an aspect language that supports these history-
based aspects, is managing the join point history. In
an ideal situation, we would keep all data about join
points in memory forever, so that we could write ar-
bitrary pointcuts over this history. However, in re-
ality, this is not feasible. Currently a series of static
analysis techniques (e.g. AspectJ [8], Alpha [7])
have been proposed where one analyzes the base
code and aspect code to derive join point shadows,
which are places in the base code that generate a
join point that could possibly trigger a pointcut.
Henceforth an optimal weaver can be build that
omits generating unnecessary join points and hence
the recorded join point history is reduced. In this
paper we take a look at how the join point history
can be managed at runtime so that data about join
points can be deleted once it is no longer relevant
for resolving pointcuts. More concretely, we discuss
the weaver of the HALO language.

The logic-based language HALO provides sup-
port for writing history-based aspects that are de-

fined in terms of temporal relations between join
points. For this purpose, HALO offers a predefined
set of higher-order temporal predicates — derived
from temporal logic programming — for connecting
pointcuts. The latter is exploited by the HALO
weaver: because of the predefined set of temporal
relations the weaver can — in some cases — with
certainty decide whether data about a specific join
point will ever (again) be used in matching a point-
cut. Hence we can effectively reduce the join point
history as the program runs.

2 The HALO language

HALO is an extension of Common Lisp, allow-
ing one to express history-based aspects over a
CLOS program. In addition HALO (similarly to
CARMA [4] and Alpha [9]) is based on logic pro-
gramming and as such pointcuts are expressed as
logic queries over the join point history. The
built-in pointcut predicates in HALO capture the
key events in the execution of a CLOS program.
For this discussion, explaining the pointcut pred-
icate for capturing generic function calls suffices.
(gf-call 7gfName 7arguments) captures generic
function call join points and exposes the generic
function’s name and argument list through the logic
variables 7gfName and 7arguments. In addition,
pointcuts can be composed from other pointcuts by
means of the higher-order temporal predicates. In
this discussion we consider the temporal predicates:
most-recent, all-past and since. For example,
the pointcut below matches at a generic function
call named checkout and also captures the most

recent generic function call named buy along with
the most recent call to checkout before the latter.
(at ((gf-call ’checkout ?userl)

(most-recent (gf-call ’checkout ?7user2)

(most-recent (gf-call ’buy 7user2 7article2))))
(format t "“s just bought ~s" ?user2 ?article2))

3 HALO weaver

The bulk of the HALO weaver consists of a query
engine that matches logic facts generated for each
join point against pointcuts; The latter query en-
gine is based on the Rete forward chaining algo-
rithm [3]. Put briefly, logic queries (or pointcuts
in HALO) are represented as a network of nodes in
Rete. Each such node has a memory table that is
used to cache partial matches of the query, which
are computed by propagating facts through the net-
work. In standard Rete the two main types of nodes
are filter nodes and join nodes. Filter nodes store
logic facts, whereas join nodes cache conjunctions
of the latter. We have extended the Rete forward
chaining algorithm with novel types of join nodes
to implement the different temporal predicates in
HALO. In addition we extended the Rete algorithm
to incorporate removing old conclusions when prop-
agating inserts through these nodes.

As an example the Rete network for the point-
cut discussed above is depicted in figure 1. A
sample program run is depicted in the same fig-
ure. In addition, the figure displays tables labelled
LT (life time): the intervals stored by these ta-
bles indicate the begin and end point for the in-
terval during which entries in the memory tables
are kept. Note that though the entries in the third
filter node are removed as new entries are made,
the derived conclusions are not also removed at the
same time: at time 7 for example, when the en-
try made for (gf-call ’buy <lotte> <dvd>) is
removed, the derived conclusion for time 5 in the
first most-recent join node is kept. This ensures
that at time 8 it can be used to match the point-
cut. But this does not mean the derived conclusion
is kept forever. The first most-recent join node is
itself the input of another most-recent join node.
The input nodes of this second join node share
no variables. So the entry for time 5 in the out-
put memory table of the first join node is removed
when any other entry is made, which in this exam-
ple will happen the next time a user checks out if

he bought something (e.g. if the user lotte does
another checkout).

T1 |gf-call |'checkout | 2userl T1 |gf-call |'checkout | 7user2

[551] | 5 <lotte> [5.5] 5 <lotte>

(8,81 :

8 <kris> | B8] |8 <kris>
- P
(login <lotte> <shop>) . . o T2 |gf-call |'buy | ?user2 |?article2
(login <kris> <shop>) . 3 <lotte> | <game>
(buy <lotte> <game>) . p
(buy <lotte> <dvd>) o4 <lotte> | <dvd>
(checkout <lotte>) T g <otte> | <book>
(login <lotte> <shop>)
(buy <lotte> <book>) N
(checkout <kris>) N \
Bead] (8 <ksis> [<otes | <dvi> |

Figure 1: Garbage collection of the join point his-
tory.

4 Presentation Outline

The goal of this presentation is to discuss the pos-
sible benefits of enabling a dynamic management
of the join point history, and to contrast our ap-
proach with the static analysis techniques used to
avoid generating join points. For this purpose, we
are currently benchmarking a web application we
extended with two new features using HALO [6].
The results from this experiment will then be pre-
sented and used to validate our approach.

References

[1] C. Allan, P. Avgustinov, A. S. Christensen,
L. Hendren, S. Kuzins, O. Lhotk, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to
aspectj. In OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on
Object oriented programming, systems, lan-
guages, and applications, pages 345-364, New
York, NY, USA, 2005. ACM Press.

R. Douence, O. Motelet, and M. Siidholt.
A formal definition of crosscuts. In RE-
FLECTION °01: Proceedings of the Third
International Conference on Metalevel Archi-
tectures and Separation of Crosscutting Con-

