Reasoning About Past Events
in Context-Aware Middleware

Eline Philips, Christophe Scholliers,Charlotte Herzeel and Stijn Mostinckx
{ephilips, cfscholl, caherzee, smostinc}@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel

1 Introduction

The hardware advances in networking technology of the past few decades have
resulted in novel kinds of distributed systems, commonly referred to as mobile ad
hoc networks. Such networks are populated by small, mobile handheld computers
or cellular phones interconnected by highly volatile wireless communication links.
Whereas the resources of these devices tend to be limited, their true strength
stems from their ability to seamlessly integrate computing into our everyday life.
A crucial factor to preserve this integration is that devices and the applications
they host respond to the context in which they are situated.

The development of context-aware applications is widely supported by a large
variety of frameworks such as JCAF [1], WILDCAT [2], and LIME [6]. A com-
mon trait of these frameworks is that they cater for an event-driven programming
style, where reactions are triggered as context events are fired. The one-to-one
mapping between events and reactions requires that a reaction which is to be
triggered when two context events occur simultaneously should install two sep-
arate event-handlers and hard-code the combination logic in the event handlers.

In previous work we have presented CRIME, a logic coordination language
which allows expressing reactions to be triggered upon the simultaneous occur-
rence of various context events [5]. By capturing these constraints in general-
purpose rules, additional conditions can be imposed in a declarative fashion.
Hence, CRIME alleviates the need for imperative checks to be performed in body
of the context event handlers.

On the other hand, we have also built HALO, an aspect-oriented extension
to the Common Lisp Object System that supports reasoning about the execu-
tion history of a program in its logic-based aspect language, and thus enables
expressing context-aware aspects [4].

In previous experiments, we have noted that although CRIME allows one to
reason about the current context, it can be equally interesting to reason about
context events which were fired in the past. The next section provides an example
scenario which illustrates a clear use case for this behaviour. This position paper
proposes to integrate features of HALO into CRIME as a basis to explore reasoning
about past events in context-aware middleware.

2 Scenario

In previous work we have presented the following scenario as an example of a
complex context-aware system whose behaviour can be expressed in a declarative
fashion using CRIME [5].

Alice, Jim and Bob are students which share an apartment. A great deal
of their life is all about music. When one of them is relaxing in the joint
living room of their apartment, it is quite common to find their jukebox
playing music. Unfortunately, they do not always share one another’s
taste in music. Whereas this might be a recipe for endless quarrels in
any other situation, there is no arguing over who is in charge of choos-
ing the music being played. This is due to the fact that the jukebox
is in fact a small computer (a Mac Mini in our setup) which combines
information regarding the presence of its users with their respective mu-
sical preference to construct a playlist which is acceptable for all present
users. Moreover, if Alice, Jim and Bob invite some friends, their musical
preferences can be taken into account as well. Finally, the jukebox also
stops playing automatically when it detects that no-one is present. [5]

In this paper we impose an additional constraint on the system. In order to
avoid playing the same songs over and over again, the jukebox should avoid
playing tracks that its users have heard while they were previously in the room.
As we will demonstrate, keeping track of such songs in CRIME — such that the
reasoning engine can actively use this knowledge — is greatly facilitated by the
introduction of HALO’s temporal operators. However, before delving into more
advanced topics, the next section first presents the core of CRIME and HALO.

3 Contextual and History-based Reasoning

3.1 Contextual Reasoning in a Mobile Environment

CRIME is a coordination language dedicated to reason about context information
in a mobile environment [5]. The language consists of two essential building
blocks: a data model and a programming model.

CRIME’s data model — called the fact space model — extends upon the fed-
erated tuple space model popularised by LIME [6]. The chief difference between
both systems is that tuple spaces correspond to a white board where messages
can be published, read and removed, whereas CRIME considers a distributed
knowledge base describing the context of all nearby devices. The chief opera-
tional difference between both models is that in a distributed knowledge base
both the assertion and the retraction of a fact are meaningful events which may
trigger reactions. The retraction of facts is automatically triggered when context
providers disconnect, allowing programs to respond to the (presumed) invalidity
of the information they provided.

CRIME’s programming model consists of a rule-based formalism with a syn-
tax akin to PROLOG to describe the causal relation between (a combination of)
context events and the corresponding context event handlers. The CRIME rules
are interpreted by a RETE network which allows for an event-driven and opti-
mised reasoning engine [3]. RETE is a forward-chained algorithm which actively
derives every valid conclusion from given a set of facts. As a consequence, CRIME
applications do not need to manually query the fact space, as the appropriate
context event handlers are triggered automatically when the reasoning engine is
notified of changes to the fact space.

3.2 History-based Aspects Using Logic

The need to reason about past program state in order to correctly handle events
does not only manifest itself in context-aware systems for mobile ad-hoc net-
works. An interesting parallel can be made with aspect-oriented programming
languages offering support for expressing context-dependent behaviour, in e.g.
the domain of business rules. One such business rule could be that in an e-
shop application, discounts a customer receives upon checkout should depend
on whether a discount was active when the user added the item to the shopping
cart. This strategy is to be preferred over taking into account discounts active
at the checkout, since customers respond badly when they see items they have
selected when a discount was active have become more expensive [7,4].

Similar to event-driven programming approaches like CRIME, aspect-oriented
pointcut languages allow responding to events (in this case in the program exe-
cution) using, for example, a combination of execution and cflow predicates.
However, they typically fall short when events are considered relevant which are
no longer active (i.e. they are no longer on the dynamic call stack).

Context-aware aspects introduce an extensible pointcut language where con-
text information can be aggregated into a context snapshot. These snapshots can
be used to determine whether a pointcut occurs in a conceptual context which is
no longer necessarily tied to the dynamic call stack [7]. Whereas that framework
is very general, the need to manually snapshot context at certain points in time
imposes an imperative style where programmers are actively considering how
reasoning about past events should be facilitated.

HALO is an aspect language, built upon the idea of context-aware aspects,
yet introducing them in the form of a logic-based pointcut language, enabling
a declarative programming style [5]. In Halo, context is modelled as logic facts.
Pointcuts can be restricted to such a context, by linking join point conditions
to context facts. To make it possible to describe past join points and the past
program context in wich they occured, primitives from temporal logic are inte-
grated in the language. Hence pointcuts are aware of the (past) context in which
join points occurred

As both CRIME and HALO use the RETE algoritm to implement their reason-
ing engines, it seems plausible that CRIME’s support for distribution, and HALO’s
support to manage the fact history can be combined into a single framework.

4 TImplementation of the Scenario

We illustrate how the programming model of CRIME accommodates the devel-
opment of the jukebox application described in section 2. In this section we focus
on the actual rules to script the jukebox, and assume the presence of facts of
the form location(‘‘Alice’’, ‘‘DiningRoom’’) to represent the current lo-
cation of users and prefers(¢‘Alice’’, ‘‘Rock’’) to describe their musical
preferences. These facts are published into the distributed knowledge base such
that the jukebox application has access to them.

The rule presented below triggers the context event handler Toggle. The rule
keeps track of the amount of persons which are currently in the jukebox room.
When one person is detected the room, this rule will be activated. This implies
that the activate method of the context event handler will be called, which in
turn will start the music player. Similarly, when no-one is left in the room the
deactivate method will ensure that the music player is stopped.

: Toggle () :—
location (? person, ‘‘Jukebox Room’’).

Listing 1.1. Toggle Rule

The rating the jukebox attributes to a particular genre depends on both the
current number of people in the room and the number of people who prefer the
genre. The following two rules calculate these two values by making use of the
findall and bagof constructs borrowed from PROLOG. The findall construct
used in the total rule, accumulates all persons located in the room in the ?per-
sons variable. Similar to the findall, the bagof construct used in the category
rule also accumulates all persons in the room but groups them according to the
specific genre they like.

total (?quantity) :—
findall (?person, (
location (? person, ‘‘Jukebox Room’’)),
?persons),
length (7 persons, ?quantity).

category (?genre, ?quantity) :—
bagof (?person, (
location (? person, ‘‘Jukebox Room’’),
prefers (?person, ?genre)),
?persons),
length (7 persons, ?quantity).

Listing 1.2. total and category Rule

The quantities calculated by both rules presented above are used to trigger
the UpdateRatings context event handler provided by the jukebox. This event
handler will update the ratings of the songs according to the present users’
combined preference. These ratings are used in turn by the music player to
compile a playlist where highly rated music is featured more often.

: UpdateRating (? genre, ?rating) :—
category (?genre, ?absolute),
total(?total),
rating is ?absolute / ?total.

Listing 1.3. UpdateRatings Rule

0O Utk W~

4.1 Introducing HALO’s Temporal Operators in CRIME

To the best of our knowledge, contemporary frameworks for the development of
distributed context-aware applications do not provide reified support to reason
about past contexts. In contrast with HALO, reasoning about the past is done
manually by recording and manipulating past events in the code of the context
event handlers. The current incarnation of the CRIME coordination language,
as described in section 3.1, exhibits the same shortcoming. However, its event-
driven reasoning engine makes it a suitable candidate to introduce the temporal
operators developed in HALO.

As a starting point, we propose to introduce the following set of tempo-
ral operators from HALO. Note that temporal operators are always implicitly
parametrised by the fact that precedes them. That is to say, they have implicit
access to the timestamp ¢; at which this fact was triggered.

sometime-past This operator takes one explicit argument (timestamped with ¢2) and
allows only matching facts such that ¢; > t2. In other words, a rule body of the
form £1(), sometime-past £2() only matches facts £2 which occurred before a
matching fact £1.

most-recent This operator has similar semantics as sometime-past with the explicit
restriction that only one matching fact can be returned. In other words, a rule
body of the form £1(), most-recent f£2() only matches a single fact £2 which
occurred before a matching fact £1.

since This operator takes two explicit arguments (respectively timestamped with to
and t3) and matches facts such that ¢1 > ¢35 > t2. In other words, a rule body of the
form £1(), since (£2(), £3()), matches events £3 which occurred between £2
and f1.

Fig. 1. HALO’s temporal operators.

These three operators provide an expressive set of building blocks to identify
relevant past events. To illustrate this, we complete the scenario described in
section 2 by automatically removing songs from the playlist which a user has
heard when he has last seen in the jukebox room. The code excerpt below is an
outline for a possible implementation.

:DeleteFromPlaylist (? person, ?songs) :—

location (? person, ‘‘Jukebox Room’’),
most—recent (not location (?person, ¢‘Jukebox Room’’)),
since (

most—recent (location (?person, ‘‘Jukebox Room’’)),

findall(7song,
played (?song),
?songs).

Listing 1.4. Implementation using temporal operators

The rule in the code excerpt is triggered whenever a person enters the jukebox
room (line 2). At this point in time, the system recalls the last time when the

person left the jukebox room (line 3). This timestamp is used as the end of a
since interval (line 4), the starting point of which is the previous time the user
was spotted by the system (line 5). The fact being sought for in this interval is
a findall which accumulates all songs played in the interval (lines 6-8). These
songs are then deleted from the current playlist (using the DeleteFromPlaylist
context event handler) as they should not be repeated (line 1).

5 Position Statement

This position paper has identified the need for mobile context-aware applications
to be able to reason about past events in order to better adapt their behaviour
to the current context. Rather than deferring the reasoning to explicit checks
in the context event handlers, we advocate the use of a logic coordination lan-
guage which incorporates temporal operators as basic language constructs. Such
temporal operators have already proven their merit for aspect-oriented program-
ming, a setting which is not dissimilar from the one proposed in this paper. We
therefore consider them to be a prime candidate for inclusion in context-aware
application toolkits and intend to prepare a proof-of-concept implementation
which combines features of CRIME and HALO to be presented at the workshop.
With this experiment, we intend to contribute a discussion of problems related
to integrating temporal reasoning in mobile ad-hoc networks (e.g. volatility and
management of distributed historical data etc.).

References

1. J. E. Bardram. The Java Context Awareness Framework (JCAF) A Service Infras-
tructure and Programming Framework for Context-Aware Applications. 2005.

2. P. David and T. Ledoux. Wildcat: a generic framework for context-aware applica-
tions. In Proceeding of MPAC 05, the 3rd International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, 2005.

3. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. In J. Mylopoulos and M. L. Brodie, editors, Artificial Intelligence
& Databases, pages 547-557. Kaufmann Publishers, INC., San Mateo, CA, 1989.

4. C. Herzeel, K. Gybels, P. Costanza, and T. D’Hondt. Modularizing crosscuts in an
e-commerce application in lisp using halo. ILC 2007, 2007.

5. S. Mostinckx, C. Scholliers, E. Philips, C. Herzeel, and W. D. Meuter. Fact spaces:
Coordination in the face of disconnection. In Proc. of 9th Int. Conf. on Coordination
Models and Languages, 2007.

6. G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda meets mobility. In
International Conference on Software Engineering, 1999.

7. E. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-aware aspects. Proc. of
the 5th International Software Composition Symposium, 2006.

