
Summary of the Second Workshop on Domain-Specific Aspect
Languages

Johan Fabry
INRIA Futurs - LIFL, ADAM Team

40, avenue Halley,
59655 Villeneuve d’Ascq, France

Johan.Fabry@lifl.fr

Damijan Rebernak
University of Maribor
Smetanova ulica 17

2000 Maribor, Slovenia
damijan.rebernak@uni-mb.si

Thomas Cleenewerck
Vrije Universiteit Brussel, PROG

Pleinlaan 2,
1050 Brussel, Belgium
tcleenew@vub.ac.be

Anne-Francoise Lemeur
LIFL, ADAM Team
40, avenue Halley

59655 Villeneuve d’Ascq, France
lemeur@lifl.fr

Jacques Noyé
Ecole des Mines de Nantes

4, rue Alfred Kastler, BP 20722
44307 NANTES Cedex 3, France

Jacques.Noye@emn.fr

Éric Tanter
DCC - University of Chile

Blanco Encalada 2120,
Santiago, Chile

etanter@dcc.uchile.cl

1. Introduction to the workshop
Although the majority of work in the AOSD community
focuses on general-purpose aspect languages (e.g. AspectJ),
seminal work on AOSD proposed a number of domain-
specific aspect languages, such as COOL for concurrency
management and RIDL for serialization, RG, AML, and
others. A growing trend of research in the AOSD community
is returning to this seminal work, as witnessed by the high
attendance rate at the DSAL06 workshop, held as part of
GPCE06/OOPSLA06.

The workshop aimed to bring the research communi-
ties of domain-specific language engineering and domain-
specific aspect design together. In the previous successful
edition we approached domain-specific aspect languages
from a language implementation point of view, where ad-
vances in the field of domain-specific language engineering
were investigated to answer the implementation challenges
of aspect languages. In this second edition, we approached
the design and implementation of new domain-specific as-
pect languages, as well as the composition at all levels (from
design to implementation) of these languages or individual
features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL ’07 March 12, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 1-59593-659-8/07/03. . . $5.00

The workshop sought contributions related to domain-
specific aspect languages, more particularly (but not limited
to):

• design of DSALs
• successful DSALs and their applications
• issues in both design and implementation of DSALs
• methodologies and tools suitable for creating DSALs
• mechanisms for interaction detection and handling in

DSALs
• theoretical foundations for DSALs
• analysis about the specificity spectrum in aspect lan-

guages
• key challenges for future work in the area

The workshop was comprised of two parts: paper presen-
tation sessions and freeform discussion sessions. The former
were held in the morning, the latter in the afternoon.

2. Contributions
The papers presented at the workshop were the following:

• ERTSAL: A Prototype of a Domain-Specific Aspect Lan-
guage for Analysis of Embedded Real-Time Systems, by
William L. Sousan, Victor Winter, Mansour Zand and
Harvey Siy

• A Distribution Definition Language for the Automated
Distribution of Java Objects, by Paul Soule, Tom Carn-
duff and Stuart Lewis

• ReLAx: Implementing KALA over the Reflex AOP Ker-
nel, by Johan Fabry, Éric Tanter and Theo D’Hondt

• ALPH: A Domain-Specific Language for Crosscutting
Pervasive Healthcare Concerns, by Jennifer Munnelly
and Shiobán Clarke

• Aspect Oriented DSLs for Business Process Implemen-
tation, by Arno Schmidmeier

Each of these papers is also contained in this workshop
proceedings volume.

3. Discussions
3.1 Definitions
The discussion in the afternoon started by seeking a defi-
nition of the term Domain-Specific Aspect Language. The
participants agreed that a suitable definition would be the
following: A DSAL is a domain-specific language that is
used to express a concern that cuts across multiple con-
cerns. Furthermore a defining property of a DSAL is The
use of a DSAL in programming an application invasively
changes the behavior or structure of other modules of the
application. This can be achieved, e.g., by inserting code in
these modules. Also, it was deemed that the DSAL program-
mer is not required to know about the cross-cutting nature,
nor to know that the DSAL makes use of some form of as-
pects as an implementation strategy.

The above definitions then raised the question of join-
point models for such languages. Some participants ex-
pressed their reservations with giving these domain-specific
join-point models the name ’join-point models’ as there is a
strong implicit connection to the general-purpose join-point
model. Other participants argued that a domain-specific join-
point model can be considered as a specialization of a hypo-
thetical ’most general’ join-point model, and that therefore
the naming should be kept. It was decided that the term
’join-point model’ was indeed appropriate.

3.2 DSAL Infrastructure
A second topic of discussion was whether it is possible to
create an infrastructure for the definition of DSALs that is
general enough to enable a wide variety of DSALs to be im-
plemented, and whether a set of design criteria can be es-
tablished for such an infrastructure. It was established early
on that due to the wide variety of domains, one general in-
frastructure would be difficult to make. As examples of this
wide variety were considered the KALA DSAL as discussed
in the ReLAx presentation versus an example DSAL that
would manipulate the dynamic representation of web-pages.
It seemed initially that because of this wide variety of do-
mains it would also be impossible to establish design crite-
ria beyond the use of common sense guidelines. However, by
considering the differences between DSLs and DSALs, and
the definition of a DSAL previously established, a number
of criteria could be established.

Design Criteria for a DSAL infrastructure are:
• it should enable the easy creation of a DSL translator and

other language-based tools such as, e.g., debuggers
• it should take care of exposing join-points to the DSAL
• it should be open, to enable new join-points to be exposed
• it should provide for a form of conflict detection and res-

olution, both for conflicts within programs in one DSAL
as conflicts for programs written in multiple DSALS.

The first of these criteria is due to the fact that a DSAL is a
DSL, and the remainder of the criteria are due to the cross-
cutting nature of DSALs. The discussion closed with a brief
look at the design of DSALs themselves. The participants
agreed that well designed DSALs are at the core well de-
signed DSLs and therefore require largely the same design
criteria.

3.3 Use Of DSALs
Lastly, the use of DSALs was discussed. It was hypothesized
that there could be a link between horizontal and vertical
DSALs and asymmetrical and symmetrical AOP.

Vertical DSALs are created for a vertical domain, i.e., do-
mains that correspond with a particular kind of applications:
banking, e-commerce, et cetera. Horizontal domains, in con-
trast, span multiple vertical domains. Examples are transac-
tion management, graphical user interfaces, and so on.

The hypothesis is that horizontal DSALs would have an
asymmetrical nature, and vertical DSALs would have a sym-
metrical nature. Verifying this hypothesis was considered as
an interesting avenue for future work. Considering the types
of users for DSALs, the workshop concluded that the tar-
get audience for DSALs would be the average programmers,
while general-purpose aspect languages should be reserved
for power-users.

Acknowledgments
The organizers wish to thank the workshop attendants for an
enjoyable and productive workshop.

