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Motivation

The aim of this working session on Industrial Realities of Program Comprehension is to exchange and 
discuss experiences, opportunities, challenges and strategies for the application of program 
comprehension techniques in industry. In this position paper we focus on a potentially interesting 
opportunity and challenge for adopting program comprehension techniques, and source code mining 
techniques in particular, in an industrial setting: mining source code for design regularities. 

Design regularities are an important aspect of current-day software implementations. Coding 
conventions, design patterns, programming idioms and architectural constraints are only a few 
examples of design regularities that govern the implementation of large and complex software 
systems. Maintaining these regularities in the source code of an evolving software system requires 
adequate documentation that is continuously monitored and verified for consistency with the source 
code of that system.

The formalism of intensional views [1,2] and their supporting tool-suite IntensiVE1  [3], for example, 
permit to document and verify design regularities by means of program queries that group source 
code entities into views, and that impose constraints over these views. By checking the validity of the 
views and constraints with respect to the source code, the tool-suite provides fine-grained feedback 
concerning inconsistencies between the design regularities and the source code. The intensional view 
approach, however, currently provides no support for automatically identifying these regularities (i.e., 
views and constraints) from the source code of a program. Instead, the approach assumes that the 
views are created “by need” by the software developers or architects that document or analyze the 
program. This assumption is unrealistic in an industrial setting where developers have very little time to 
document their programs adequately, where programs have several tens to hundreds of thousands of 
lines of code, and where legacy software is the norm rather than the exception.

If we want to apply techniques that support the documentation and verification of design regularities 
in such a setting, there is a real need for program comprehension techniques that help in identifying 
the design regularities adhered to by a program.

Context: documenting and verifying design regularities in source code

In a nutshell, intensional views [1,2,3] are a technique for describing a conceptual model of a 
program’s design regularities and verifying consistency of that model with respect to the source code 
of that program. Views describe concepts of interest to a programmer by grouping program entities 
(classes, methods, fields, ...) that share some structural property. These sets of program entities are 
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1 IntensiVE, which stands for Intensional View Environment, is a pre-commercial set of tools that supports applying the 
intensional view approach to programs written in programming languages like Smalltalk and Java. 
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specified intensionally, i.e., by means of an executable description that collects the set of entities 
satisfying that description. This intension2 is expressed in the logic meta-programming language SOUL 
[4], which allows us to write queries that collect program entities in either Smalltalk or Java programs.

For example, in order to model the concept of “all getter methods” in a program, we specify an 
intensional view using the following query that groups all methods that contain a single statement 
returning an instance variable (defined in the same class or inherited from one of its ancestors):

getterMethod(?class, ?method, ?field) if
    isMethodInClass(?method, ?class), 
    fieldInClassChain(?field, ?class), 
    fieldName(?field, ?fname), 
    methodStatements(?method, ?slist), 
    ?slist = <return(variable(?vtype, ?fname))>

Without explaining all details of the SOUL syntax and semantics, upon evaluation the above query 
accumulates all solutions for the logic variables ?class, ?method and ?field, such that the 
class ?class implements a ?method which contains a return statement returning the ?field. 
This query is the intension of the view.

In addition to such views,  design regularities can be encoded by declaring n-ary constraints over these 
views
For example:
- a unary constraint that states that a view should not be empty
- or that all of its entities are of a certain kind, 
- or a binary constraint that declares that two views are extensionally equivalent (i.e., they provide an 

alternative way of describing the same set of entities)
- or how all entities in one view are related to those of a second view (e.g., all methods in the first 

view must call at least one method in the second view). 

This combination of logic program queries, intensional views and relations that impose constraints 
over those views, provides a flexible means of documenting and verifying structural and design 
regularities in programs.

Challenge: extracting design regularities from source code

The current approach of documenting and verifying design regularities with intensional views still has 
an important limitation if we want to apply it to industrial-scale software, because it requires the 
intensional views and relations to be defined by a software developer or architect. Evidently, this is not 
an easy task, especially not for very large legacy software where documentation often is scarce and 
out-dated.

To aid a developer or architect in uncovering the design and structural regularities that govern a 
system, we therefore think there is a need for (semi-)automated techniques that mine the source 
code of a program for regularities. This process of discovering design regularities is related to aspect 
mining [5], a novel research direction in the domain of aspect-oriented software development that 
aims at uncovering crosscutting concerns in existing code bases.
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2 The intension – with an ‘s’ of a set is its description or defining properties, i.e., what is true about the members of the set. 
The extension of a set is its members or contents.



Such aspect mining techniques are based on the assumption that crosscutting concerns are 
characterized by a number of symptoms such as the rigorous use of naming and stylistic conventions 
[6,7], high fan-in values [8] or code duplication [9]. By using source code analysis approaches such as 
clone detection, or techniques from data mining such as cluster analysis [10] and formal concept 
analysis [11], these aspect mining techniques mine the source code for groups of source-code entities 
that all exhibit a similar symptom of crosscutting.

The task of mining for design regularities is based on the same assumptions as aspect mining, namely 
that certain concepts (crosscutting or not) in the source code of a system are characterized by a 
recurring pattern in their implementation. We are confident that techniques similar to those for mining 
aspects can be used to discover structural source-code regularities. 

Although some aspect mining techniques are particularly devised to detect instances of crosscutting 
concerns only, techniques such as the work of Tourwé et al. [7] and He et al. [12] propose a strategy 
in which the source code is mined for recurring patterns in general. Using extensive post-filtering, the 
set of results is reduced to those sets of entities that represent a crosscutting concern.

Our intuition that these techniques are suitable for identifying regularities is strengthened by our own 
findings. In [7] we reported on an experiment in which we applied formal concept analysis [11] to 
group source-code entities which contained similar substrings. In addition to identifying a number of 
potential crosscutting concerns, we were also able to identify in this experiment certain 
implementation idioms, design patterns and domain-specific concepts that were characterized by a 
similar naming scheme. 

In general, the output of such a mining algorithm is a collection of sets of related source-code entities. 
As such, a developer still needs to transform this extensional set of entities into an intensional view.  In 
other words, a developer needs to specify a program query that describes the source-code entities 
returned by the mining technique. To automate this process, we suggest using techniques such as 
inductive logic programming [13]. This machine learning technique takes as input a set of facts and 
returns a set of logic rules that provide a description for those facts. We have performed some initial 
experiments [14] using inductive logic programming as a means to induce an intension of a view 
automatically from a set of source-code entities.

Risks

Evidently, semi-automatically mining the source code of a program for useful design regularities is a 
non-trivial task with many pitfalls. Just like for aspect mining research we expect, amongst others, the 
following kinds of problems:
- the code of the program being analyzed may not be well-structured enough to extract relevant 
regularities;

- it may be difficult to extract the relevant from the irrelevant regularities (poor precision);
- mining techniques may exhibit poor recall (i.e., important regularities may be missed);
- too much user involvement may be required (for example to filter out irrelevant results, to refine 
the discovered regularities or to guide the search);

- turning sets of program entities that adhere to a similar design regularity into an actual program 
query may be harder than expected.

Nevertheless, in spite of these expected problems we are hopeful that it is possible to come up with 
a pragmatic solution that solves or avoids most of these problems and is able to identify, with a 
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minimum of user-involvement, a set of relevant verifiable design regularities from the source code of a 
program.

Conclusion

We have a background both in documenting and verifying structural and design regularities in the 
source code of large software systems, and in the emerging field of aspect mining. Whereas a variety 
of tools exist to document and check design regularities at various levels of details, most approaches 
either rely on a fixed set of predefined rules or assume that the software designers and architects 
themselves will codify the rules. Such an  approach does not scale-up to industrial-scale legacy 
software. We therefore think there is a need and opportunity for program comprehension 
techniques, and source code mining techniques in particular, for suggesting potential rules or at least 
sets of software artifacts that exhibit a similar structural regularity. Inspiration may be taken from the 
field of aspect mining research, even though there are still many pitfalls to be overcome.
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