
Example-based Program Querying

Andy Kellens
Vrije Universiteit Brussel

Brussels, Belgium
andy.kellens@vub.ac.be

Johan Brichau
Université catholique de Louvain

Louvain-la-Neuve, Belgium
johan.brichau@uclouvain.be

Coen De Roover
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.ac.be

Abstract

Program query languages are an essential component of
program analysis and manipulation systems. In each such
system, a query identifies the source-code parts of interest
by reasoning over a program representation that is dedi-
cated to the intent of the system (e.g. call-graphs to de-
tect behavioral flaws, abstract syntax trees for refactorings,
concrete source code to verify programming conventions,
etc.). In order to detect a wide variety of such “patterns
of interest”, or more importantly, to detect patterns that re-
quire a combination of such program representations, de-
velopers must understand all the different applicable rep-
resentations and techniques. We therefore present a logic-
based language that allows the program’s implementation
to be queried using concrete source code templates that are
matched against a combination of structural and behavioral
program representations. These representations include
call-graphs, points-to analysis results and abstract syntax
trees that are uniformly composed through a customizable
unification procedure. The result of our approach is that de-
velopers can detect patterns in the queried program using
source code excerpts (embedded in logic queries) which act
as prototypical samples of the structure and behavior they
intend to match.

1. Introduction

The growing amount of program query languages —of
which ASTLog [4], SOUL [16], JQuery [9], CodeQuest [8]
and PQL [12] are only some examples— is testament to the
significant momentum on the investigation of a program’s
structure and/or behavior by means of user-defined queries.
Such queries serve the identification of code exhibiting fea-
tures of interest which range from application-specific cod-
ing conventions [13] over metrics [10], refactoring opportu-
nities [15] and design patterns [7] to run-time errors [12, 5].

A large body of these query languages are logic pro-
gram query languages, meaning that they rely on the use

of an executable logic to query the program under investi-
gation. The use of a logic programming language to query
programs has several well-established advantages [3, 16].
In imperative programming languages, programmers spec-
ify exactly how the solution to a problem is to be found us-
ing step-by-step algorithms. In contrast, logic programming
languages allow the problem itself to be specified. The pro-
gram will find a solution on its own, relying on a specific
problem-solving strategy defined by the language. In such
an approach, program queries are expressed as logic condi-
tions over the program’s parts.

In order for the aforementioned logic problem-solving
strategy to work, the program under investigation is reified
in a representation that is fine-tuned for a particular purpose.
Systems that focus on the verification of coding conventions
and styles generally only require a structural representation
(i.e. abstract syntax trees), conveying only the static struc-
ture of the program. In contrast, the detection of run-time
errors requires a representation that exposes run-time be-
havior of the program, such as its control flow, call-graph,
etc. Such a fine-tuned representation enables the natural
use of logic quantification and unification to reason over
the program parts, mostly because logic unification estab-
lishes a pattern-matching scheme over the program’s repre-
sentation. However, many pattern detection problems can
benefit from the availability of a structural as well as be-
havioral representation about the application. A general-
purpose program investigation tool would thus need to pro-
vide different representations of the software application.
However, such an approach will typically hamper the adop-
tion by developers since they must have detailed knowledge
about many different representations and explicitly quantify
over them. The resulting queries are often overly complex.

To reconcile the need for different program representa-
tions with the ease of specification of queries, we have ex-
tended a logic program query language with a template-
based pattern specification mechanism. This template-
based meta-programming system allows the detection of
patterns in software that require diverse representations of
the code (i.e. structural as well as behavioral representa-



tions). Developers can specify templates that represent pro-
totypical implementations of the patterns they wish to de-
tect. The system then matches these templates on the static
source code structure of the system as well as on a call-
graph and a points-to analysis of the code. In particular,
the call-graph and points-to analysis-based representations
allow to conceal the matching of a sequence of statements
and expressions into the matching on control-flow and run-
time values respectively. As a result, the system allows the
detection of structural code patterns as well as run-time er-
rors in the program and provides a uniform pattern specifi-
cation mechanism to express both. Furthermore, the tem-
plates can be embedded in logic queries, thereby still en-
abling developers to compose different patterns using logic
operators and resort to pure query programs whenever the
need arises. Most importantly, developers are not required
to understand the intricate details of the structural and be-
havioral representations of the program that are required to
perform the pattern detection.

The remainder of this paper demonstrates the technique
of Soul’s template-based queries by applying it to detect an
example problem pattern in the code of a software system.

2. Undesired Object Mutability

The example we use in this paper is a particular run-
time bug which we will refer to as undesired object mu-
tability. An illustration of this bug is shown in Figure 1.
It pertains to a blackboard architecture [2] that provides a
simple data exchange mechanism between multiple compo-
nents by means of a common infrastructure through which
the components can exchange data. In our example, this in-
frastructure is implemented by a class Blackboard that
offers a method publish to share a particular object, and
a method getLast that returns the last published object.

One particular threat when using this simple architec-
ture is that changes to a data object after it has been pub-
lished can result in erratic behavior. For example, if a data
object has been changed in between retrievals by differ-
ent components, these components will share inconsistent
data, compromising the application’s correctness. In Fig-
ure 1, we illustrate the two possible occurrences of this
bad smell: at the sending component and at the receiv-
ing component. The data object that can be exchanged
is implemented by the class ImmutableObject. This
class consists of two fields, namely date and contents
along with their respective getter and setter methods. We
have a component 1 that at some point in time creates
a new ImmutableObject and publishes this object to
the blackboard. A first occurrence of the undesired ob-
ject mutability problem can be seen when, some time af-
ter the publish of the object happened, component 1 alters
the state of the published object (in this case by changing

the value of the contents field). Note that this call to
the setContents method does not have to occur imme-
diately after the object is published. Similarly, if in com-
ponent 2 a data object is retrieved from the blackboard, this
component 2 should not be allowed to alter the state of the
object (this is the top-most violation indicated in component
2).

An important challenge in the detection of this bug is
that it is not sufficient to only consider the direct state of
ImmutableObject. This is illustrated by the bottom-
most violation in component 2 of Figure 1. In this case,
component 2 has created an internal reference to the value
of the date field of the immutable object. The violation
arises since the component alters the date object, which ul-
timately belongs to the state of the ImmutableObject.
State changes must thus be prevented transitively.

The following two Sections discuss the implementation
of a query using both normal SOUL queries as well as tem-
plate queries that detects occurrences of undesired object
mutability.

3. Soul Queries

The “Smalltalk Open Unification Language”
(SOUL) [14] is a logic program query language im-
plemented in —and tightly integrated with— Smalltalk.
SOUL programs are a hybrid combination of Prolog and
Smalltalk, meaning that a SOUL program comprises Pro-
log conditions as well as Smalltalk expressions. This also
entails that SOUL programs can manipulate any Smalltalk
object as a logic value (i.e. as a constant term) and that
these values can be exchanged transparently between logic
conditions and Smalltalk expressions.

The SOUL programs and queries presented in this paper
employ SOUL’s symbiotic syntax [6], which closely resem-
bles Smalltalk’s keyworded message syntax. An expression
such as ?a plus:?b is:?c is a logic condition that im-
poses the predicate plus:is: over the logic variables ?a,
?b and ?c. It states that the value of ?c must be the sum of
the values of ?a and ?b. Apart from this particular syntax,
SOUL logic programs are evaluated exactly like Prolog pro-
grams. For example, we can use the aforementioned pred-
icate in the query if 2 plus:3 is:?result to calcu-
late the sum of 2 and 3. Evaluation of this query will pro-
duce the result 5, bound to variable ?result.

Logic-based program queries rely upon a logic problem-
solving strategy for their evaluation. One of the essential
operations involved in this problem-solving strategy is unifi-
cation. Unification is a pairwise matching process between
logic terms that does not only establish an equivalence be-
tween logic values but also assigns values to variables. Two
logic values are said to unify if they match –or– if an appro-
priate set of bindings can be found for the enclosed variables



 // ...
 ImmutableObject o := new ImmutableObject();
 Blackboard.publish(o);
 // ...
 o.setContents("contents");

getContents()
setContents(String)
getDate()
setDate(Date)

contents
date

ImmutableObject

Violation

Component 1

 // ...
 ImmutableObject o := Blackboard.getLast();
 Date date := o.getDate();
 // ...
 o.setContents("contents");
 date.setMonth(5);

Component 2

Violation
Violation

publish(Object)
getLast()

publishedObjects
Blackboard

Figure 1. Illustration of the Object Mutability pattern

1 ?c classDeclarationHasName: {ImmutableObject},
2 ?c hasTransitiveState: ?field,
3 ?creation isExpression,
4 ?creation equals: classInstanceCreation(?,?,?c,?,?),
5 ?someClass definesMethod: ?method,
6 ?method invokes: ?invocation calling: ?publishMethod,
7 ?publishMethod methodDeclarationHasName: {publish},
8 ?invocation methodInvocationHasArguments: <?argument>,
9 ?argument mayAliasWith: ?creation,

10 ?method invokesTransitive: ?mutatorInv after: ?invocation,
11 ?mutatorInv methodInvocationHasExpression: ?receiver,
12 or(?receiver mayAliasWith: ?creation,
13 ?receiver mayAliasWith: ?field),
14 ?mutatorInv calls: ?mutatorMethod,
15 ?mutatorMethod writesTo: ?field

Figure 2. A direct query to detect undesired object mutations



such that they match when each variable’s binding substi-
tutes for the same variable in both values. Using SOUL’s
standard definition of unification, which is identical to the
one of Prolog and which uses object identity to match pro-
grams (i.e. parse tree entities), we can use the query in Fig-
ure 2 to detect the undesired object mutation bug.

Lines 1–2 gather all field declarations ?field in
ImmutableObject, or transitively contained objects.
The remainder of the query searches for the invocations and
assignments to those fields, following an invocation of the
publishmethod. To this extent, lines 3–9 gather all meth-
ods ?method that perform an invocation of the publish
method using an instance of ImmutableObject as its
argument. Lines 10–13 identify method invocations af-
ter the invocation of the publish method on receivers
?receiver that are values of the transitive state of the
ImmutableObject instance. In addition, lines 14–15
ensure that the invoked method actually performs an assign-
ment to such a transitively contained field declaration.

This query mostly reasons about the static structure
of the program’s source code, but requires quantification
over call-graph, control-flow graph and points-to analysis.
The latter is used by the red mayAliasWith: predi-
cate that determines whether two expressions that are syn-
tactically different can have coinciding runtime values.
This points-to analysis is obtained through the Spark [11]
toolkit of the Soot Java Optimization Framework which
implements a conservative, flow-insensitive and context-
insensitive points-to analysis. Similarly, the green predi-
cates on lines 10 and 14 quantify over a control-flow and
call-graph representation of the system.

Although all these representations of the system can be
uniformly quantified over in SOUL, this explicit quantifi-
cation renders the query of Figure 2 extremely verbose. In
other words, the query does not convey the actual pattern
it tries to match. To resolve this issue, we have — as de-
scribed in detail in [1] — integrated the results of the points-
to analysis in the unification procedure of SOUL itself. This
reduces the complexity of the query in Figure 2 because we
can omit the explicit quantification using the mayAlias:
predicate. Furthermore, SOUL offers the ability to express
the same query using concrete source code syntax patterns,
as we will describe in the next section.

4. Template Queries

Template queries are an extension to the SOUL language
that allows developers to write program queries by means of
specifying a concrete source-code template — representing
a prototypical implementation of the pattern to be queried
— instead of a Prolog program. As such, developers are
able to express their intent by writing down their query as
a piece of source code, in which points of variation can be

1 ?c classDeclarationHasName: {ImmutableObject},
2 ?c hasTransitiveState: ?field,
3
4 jtExpression(?o){ new ?c(?)},
5
6 jtMethodDeclaration(?m){
7 ?modList ?return ?name(?argList) {
8 ?exp.publish(?o);
9 ?some.?invocation(?aList); }},

10
11
12 jtClassDeclaration(?){
13 class ? {
14 ?mod2List ?return2 ?invocation(?arg2List) {
15 ?field = ?exp2;}
16 }}

Figure 3. Template query for detecting unde-
sired object mutations

indicated using logic variables. As we already discussed in
the section above, SOUL offers the possibility to, next to
querying the structure of a program, also use information
resulting from a call-graph analysis and a points-to anal-
ysis into the reasoning process. In contrast to the regular
SOUL queries, in which this semantical information needed
to be explicitly quantified over, template queries hide the
users of the query language from the details of all different
program representations. Instead of matching the template
query purely structurally, the semantic analyses are taken
into account in the matching process of the template query.

Figure 3 is a template query that searches for the unde-
sired object mutation bug. It reports those methods ?m that
possibly write to a (transitively contained) ?field of an
instance ?o of ImmutableObject after an publish
message has been sent. The query consists of five condi-
tions. The first two conditions (lines 1–2) are identical to
the query in the previous section. The three other condi-
tions of the predicate make use of source-code templates.
The first template (on line 4 of the example) matches all
Java expressions ?o that create a new instance of class ?c
(ImmutableObject).

The second template (lines 6–9) identifies all method
declarations ?m that invoke a publish of the object ?o
and that is followed by an invocation ?invocation. The
reasoning process behind these source-code queries will
make use of the call-graph information that is made avail-
able such that not only calls immediately after the invo-
cation of the ?publish method are considered, but also
calls that occur later in the call-graph after the ?publish.
Moreover, since the information from the points-to analysis
is taken into account, the argument ?o of the invocation of



?publish will not only unify with the direct result of the
instantiation of the immutable object, but also with all val-
ues that — according to the points-to analysis — possibly
alias with this instantiation.

Finally, the third template (lines 12–16) restricts the
bindings of the ?invocation variable to those that cor-
respond to an invocation of a setter method, by selecting
all methods that assign to the field ?field. In line 2 of
the query, this variable ?field is bound to all transitive
fields of the class ?c, of which ?o is an instance. Note
that the unification of the ?invocation variable does not
merely happen by comparing the method name of the setter
method, but that the call-graph information is used to verify
that the ?invocation effectively is invoked from within
the control flow of method ?m.

To summarize, this predicate will return the methods
?m that invoke a setter method ?invocation for a field
?field of a data object, after a value ?o, that aliases with
a data object, has been published.

5. Acknowledgements

Johan Brichau is funded by a “FIRST” post-doc grant of
the Région Wallonne, Belgium. Andy Kellens and Coen De
Roover are funded by research grants provided by the by
the “Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders” (IWT Vlaanderen). This
research is partially funded by the Interuniversity Attraction
Poles Programme Belgian State, Belgian Science Policy.

References

[1] J. Brichau, C. De Roover, and K. Mens. Open unification
for program query languages. In H. Astudillo and E. Tanter,
editors, Proceedings of the 16th International Conference of
the Chilean Computer Science Society, pages 92–101. IEEE
Computer Society, 2007. (acceptance rate 34%).

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture. John Wiley
& Sons, 1996.

[3] J. Cohen and T. J. Hickey. Parsing and compiling using pro-
log. Transactions on Programming Languages and Systems,
9(2):125–163, 1987.

[4] R. F. Crew. ASTLOG: A language for examining abstract
syntax trees. In Proc. of the Conf. on Domain-Specific Lan-
guages, pages 229–242, 1997.

[5] C. De Roover, I. Michiels, K. Gybels, K. Gybels, and
T. D’Hondt. An approach to high-level behavioral program
documentation allowing lightweight verification. In Proc. of
the 14th IEEE Int. Conf. on Program Comprehension, pages
202–211, 2006.

[6] M. D’Hondt, K. Gybels, and V. Jonckers. Seamless integra-
tion of rule-based knowledge and object-oriented function-
ality with linguistic symbiosis. In Proc. of the 2004 Symp.
on Applied computing, pages 1328–1335, 2004.

[7] J. Fabry and T. Mens. Language-independent detection of
object-oriented design patterns. Elsevier Int. Journal on
Computer Languages, Systems & Structures, 30(1-2):21–33,
2004.

[8] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scal-
able source code queries with datalog. In Proc. of the 20th
European Conf. on Object-Oriented Programming, volume
4067 of Lecture Notes in Computer Science, pages 2–27,
2006.

[9] D. Janzen and K. D. Volder. Navigating and querying code
without getting lost. In Proc. of the 2nd Int. Conf. on Aspect-
oriented software development, pages 178–187, 2003.

[10] C. Lewerentz and F. Simon. A Product Metrics Tool Inte-
grated into a Software Development Environment. In Proc.
of the ECOOP Workshop on Object-Oriented Technology,
volume 1543, pages 256–257, 1998.

[11] O. Lhoták. Spark: A flexible points-to analysis frame-
work for java. Master’s thesis, McGill University, December
2002.

[12] M. Martin, B. Livshits, and M. S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query
language. In Proc. of the Conf. on Object-oriented Program-
ming Systems, Languages and Applications, pages 365–383,
2005.

[13] K. Mens, I. Michiels, and R. Wuyts. Supporting software de-
velopment through declaratively codified programming pat-
terns. In Proc. of the 13th Int. Software Engineering and
Knowledge Engineering Conf., 2001.

[14] SOUL:. http://prog.vub.ac.be/SOUL/.
[15] T. Tourwé and T. Mens. Identifying refactoring opportuni-

ties using logic meta programming. In Proc. of the 7th Eu-
ropean Conf. on Software Maintenance and Reengineering,
pages 91–100, 2003.

[16] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, Belgium, Jan-
uary 2001.


