
Experiences in modularizing business rules into aspects

Andy Kellens, Kris De Schutter, Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
{ akellens | kdeschut | tjdhondt}@vub.ac.be

Viviane Jonckers
System and Software Engineering Lab

Vrije Universiteit Brussel
vejoncke@ssel.vub.ac.be

Hans Doggen
inno.com

Beerzel, Belgium
hans.doggen@inno.com

Abstract

This paper provides an experience report on the use
of aspect-oriented technology as a means to modularize
the implementation of business rules in an object-oriented,
large scale case study. The goal of this refactoring of the
system was to provide a proof-of-concept implementation
of how such an aspect-oriented solution can improve the
modularity and the extensibility of the business rule imple-
mentation. This paper focusses on the approach taken in
refactoring the system and the difficulties of integrating the
aspect solution into the build process.

1 Introduction

Aspect-oriented programming has been advanced as a
novel technique to modularize crosscutting concerns, i.e.
concerns that are spread across the implementation of mul-
tiple modules. Over the recent years, we have seen an adop-
tion of this technique by industry [4, 5] as a means to sepa-
rate mostly non-functional concerns (such as logging, mon-
itoring, . . . ) from the base code of a system, with the aim
of increasing evolvability and maintainability by providing
a better separation of concerns.

In this paper we relate our experiences in applying aspect
technology to an industrial system as a means to modularize
the implementation of business rules (a functional concern)
in an object-oriented customer information system. While
— as discussed by Cibran et al. [1] — the modularization of
business rules can benefit from the use of aspects, the goal
of this work is to demonstrate the feasibility of migrating
business rules in an existing, large-scale system.

This experience report focusses on two aspects of the
refactoring process. First, we relate how the business rules

Oracle database

Data objects

JPBM Workflow 
Engine

Facades

Managers

Hibernate

Struts Tiles JSP

Interface layer

Logic layer

Data layer

Business rules

Figure 1. Overview of the architecture of the
system

were implemented in the original system and how, by using
aspect technology, we were able to refactor them in a sep-
arate module. Second, we discuss a major technical chal-
lenge we had to tackle in order to perform the refactoring,
namely the integration of the aspect-oriented solution into
the build process of the system.

2 Business rules in the case study

The system under consideration is a customer informa-
tion system developed by a Belgian company (+ 30.000 em-
ployees) and assisted by the Flemish company inno.com. It
is a fairly large J2EE application (305 KLOC) consisting
of 2602 classes with a total of 26968 methods. The sys-
tem is designed following a 3-tier architecture as depicted in
Figure 1 and makes use of off-the-shelf technology such as
Struts, Tiles and JSP to render the user interface, the JBPM
workflow engine in the logic layer to steer the business flow



class DAOManager {
public void saveDAO(DAO dao) {
validateDAO(dao);
dao.save(); }

public void updateDAO(DAO dao) {
validateDAO(dao);
dao.update(); }

public void validateDAO(DAO dao)
throws BusinessException{
try {
validateBR1(dao);
validateBR2(dao);

} catch (UncaughtBusinessException exception) {
/* ... */

}}
private void validateBR1(DAO dao)
throws BusinessException {
/* check rule 1 */ }

private void validateBR2(DAO dao)
throws BusinessException {
/* check rule 2 */ }}

Figure 2. Implementation of the business
rules

in the application, and Hibernate as a means to enable per-
sistence of the data objects in the data layer. Aside from
the use of a workflow engine in the logic layer, the business
logic of the system is implemented by a number of Facade
and Manager classes that coordinate the various operations
on data objects.

As mentioned above, it is our intent to refactor a part
of the business rules present in the system. These busi-
ness rules are situated in the Manager classes, together with
that part of the core logic that implements operations on
data objects. In order to implement the business rules, the
original developers of the system consistently followed a
particular implementation idiom. We will illustrate this id-
iom by means of an example1 (see Figure 2). For a par-
ticular data access object (DAO), a separate Manager class
(DAOManager) is provided that implements the opera-
tions for this DAO. For example, in Figure 2 two opera-
tions saveDAO and updateDAO are shown that apply to a
DAO. Aside from performing the operation, these methods
also invoke a validateDAO method that verifies the busi-
ness rules applicable to the data object. For each business
rule, a separate method is provided implementing that busi-
ness rule. These methods then get invoked from within the
validateDAO method, together with code that performs
the exception handling in case a rule is violated.

Although the current implementation rigourously fol-
lows the above idiom, the lack of a clear modularization of
the business rules does introduce a number of disadvantages
with respect to evolvability and extensibility of the set of
business rules. Since the business rules are spread through-
out the system and tangled with the Manager classes, adapt-

1Due to a non-disclosure agreement, we are not allowed to show an
actual example from the source code. Therefore, we present an abstract
example of the applied idiom.

aspect DAOBusinessRules {
pointcut businessOperation(DAO dao):
(execution(* DAOManager.saveDAO(DAO)) ||
execution(* DAOManager.updateDAO(DAO)))

&& args(dao);

before(DAO dao) throws UncaughtBusinessException:
businessOperation(dao) {

/* check rule 1 */ }
before(DAO dao) throws UncaughtBusinessException:
businessOperation(dao){
/* check rule 2 */ }}

Figure 3. Implementation of the business
rules using aspects

ing or extending the set of business rules cannot be per-
formed in isolation of the other concerns in the system.
Moreover, since the business rules are tangled with the op-
erations on DAOs, this needlessly complicates the source
code of the Manager classes. Furthermore, we encountered
some cases of code duplication that resulted from the lack
of an explicit modularization of the business rules: in some
situations a particular business rule was applicable to mul-
tiple DAOs, which resulted in duplication of that rule in all
affected Manager classes. A second source of code dupli-
cation was the exception handling mechanism to deal with
violations of business rules, which is almost identical across
all Manager classes. Finally, the Manager classes exhibit
some degree of scattering: the validateDAO method has
to be invoked from within multiple operations on the DAO.

3 Modularizing the business rules with as-
pects

As a proof-of-concept to illustrate the use of aspects to
express the business rules in the customer information sys-
tem, we refactored a subset of the business rules using the
AspectJ language [2]. To this end, we implemented a hi-
erarchy of aspects — parallel to the hierarchy of data ac-
cess objects — in which we separated the business rules
from the core logic of the system. An illustration of this
refactoring, applied to the example above can be found in
Figure 3. For each DAO we create a separate aspect imple-
menting that DAO’s business rules. In this aspect, a point-
cut businessOperation is specified that enumerates
all the places in the execution of the core logic at which
the business rules need to be verified. In our example,
this pointcut should intercept the execution of the methods
saveDAO and updateDAO. Each business rule applica-
ble to the DAO is implemented by a separate before advice
that is triggered before the actual execution of an operation.
Aside from modularizing the business rules, we also ex-
tracted the exception handling mechanism that is associated
with the verification of business rules from the Manager
classes and implemented this mechanism using aspects.

2



After this refactoring, we were able to completely re-
move the source code pertaining to the business rules
from the Manager classes. The source code for the
DAOManager class in our example now becomes:
class DAOManager {

public void saveDAO(DAO dao) { dao.save(); }
public void updateDAO(DAO dao) { dao.update(); }}

From this class, all methods implementing business rules as
well as the exception handling mechanism associated with
the business rules are removed, leaving only the operations
belonging to the core logic present in the Manager class.

4 Evaluation of the solution

Our refactored solution offers the advantage that a sep-
aration of core logic and business rules is obtained. Con-
sequently, the tangling of the business rules with the core
logic is eliminated from the system. Moreover, rather than
being scattered throughout the Manager classes, the busi-
ness rules implementation is made explicit and located in a
single module. As a result, adding or manipulating business
rules is limited to investigating and editing the aspects that
implement these business rules, instead of manipulating the
Manager classes. For example, the addition of a new busi-
ness rule for a DAO can be achieved by adding a new before
advice to the corresponding business rule aspect. Further-
more, the use of the pointcut mechanism to capture the in-
vocations of the business rules removes the scattered calls
to the validation methods from within the Manager classes.

Our refactoring also removed the code duplication result-
ing from the business rule implementation. First, the excep-
tion handling code — which was similar for all business
rules — was extracted as a separate aspect. Second, busi-
ness rules that are applicable to multiple DAOs, and which
resulted in code duplication in the original application, are
now only present in one aspect. Remember that we repre-
sent the business rules as a hierarchy of aspects: if a busi-
ness rule is applicable to multiple DAOs, it is implemented
higher in the hierarchy.

We were greatly aided in performing the above refactor-
ing by the fact that the discussed implementation idiom is
used rigourously throughout the implementation. Conse-
quently, this makes translating the original semantics of the
system relatively straight-forward into an aspect-oriented
solution without having to restructure the code significantly.
As future work, we have yet to investigate to which degree
this refactoring process may even be automated.

5 Integration within the build process

Aside from performing the refactoring of the source
code of the system, we also had to incorporate the busi-
ness rule aspects in the build process of the otherwise stan-

dard object-oriented system. In doing so we want to retain
as many of the qualities of the original build system while
adding one of our own: the weaving of aspects should in-
troduce as little runtime overhead as possible. This means
tackling the weaving within the build system itself, rather
than relegating it until runtime.

In the case study presented here, the build system con-
sists of an ANT script making use of the basic ANT tasks,
and augmented with several macros which handle recurring
patterns. The structure within intimately reflects that of the
application’s architecture: all modules are compiled sepa-
rately, each placed in a jar of its own, all of which are then
placed inside the final web-archive along with any resources
they need. This allows for separate compilation of mod-
ules, reducing developer overhead as they are consigned to
a single module. It also makes for a very straightforward
and very clean build structure, which helps maintenance and
evolution thereof.

We will now discuss the three different possible scenar-
ios for integrating aspects into this build system we investi-
gated, arguing their advantages and disadvantages.

5.1 Aspects as just another module

The first approach was to take the existing structure and
simply continue in the same vein. As the build system is
based around separate compilation of modules, we chose to
treat our aspects as just another module. In order to get this
working we needed to make the following changes:

• Replace the default compiler with the AspectJ com-
piler. AspectJ provides an ANT task for doing this. As
the AspectJ compiler accepts all legal Java programs
this in itself has no further consequences on the final
result.

• Compile the aspects separately, and place them in a jar
of their own. AspectJ allows separate compilation of
aspects without having to instantly weave them in the
application.

• Compile all other modules, telling the AspectJ weaver
to apply the previously compiled aspects. Each module
will then get the aspects applied. Further processing
for each module remains as before.

• Add the aspects jar to the web-archive, together with
the AspectJ runtime library.

This approach has the advantage of having only a small
impact on the structure of the build system, maintaining
its modular design and retaining the advantage of separate
compilation of modules. Of course, modification of the as-
pects will entail a complete recompilation of all modules,
but for the module developers this should happen only in-
frequently.

3



However due to strict ordering needed, first compile the
aspects, then compile/weave the modules, this meant that
we were not able to compile the system. The business rule
aspects explicitly reference classes present in the modules.
This means that they can not be compiled before these mod-
ules. The modules should already be compiled, or be com-
piled along with the aspects. As our aspects modify the
modules, the first is no option either, and so the latter ap-
proach becomes necessary. Consequently, we had to inves-
tigate other means to incorporate our aspects into the build.

5.2 All-in-one compilation/weaving

The second approach was to take all modules along with
the aspects and compile/weave them in one go. While solv-
ing the inter-dependency problem between our aspects and
the modules, this comes at a great cost:

• We need to rewrite the entire build system in order to
obtain a single compilation step. This means that all
modules/aspects are copied to a single location where
they get compiled, thus breaking the modular structure
of the build file.
• A minor side effect of this single compilation step is

that it becomes hard to separate the different modules
again after compilation. Whereas before we ended up
with a single jar per module, now we have one mono-
lithic jar instead.
• The major side effect is that we lose separate compila-

tion. Any modification to any part of the system now
entails a recompilation of the entire system, and this
quickly becomes tedious and costly, resulting in a sig-
nificant overhead on the development process.

5.3 Middle ground

In the end, we preferred to trade some of the aspects’
modularity in for separate compilation of the modules. We
chose to consider the aspects to be part of the modules they
affect rather than belonging to a module of their own. Note
that this also limits the scope of the aspects to the module in
which they are placed. By applying these restrictions we ob-
tained a situation where each module can again be compiled
separately, where compilation of a module is an all-in-one
compilation of all aspects and classes in that module.

The obvious disadvantage here is that we can no longer
have aspects which cross the boundaries of modules. In
the case of the business rule aspects in this paper, however,
this poses no problem, as these rules are indeed tied to a
single module. If module boundaries have to be crossed,
we imagine the following two workarounds:

• If the aspects are truly generic —that is, they are not
tied to any of the application’s types or classes— then
we can apply them using the solution from section 5.1.

• If they do not exhibit this genericity then the
workaround is to duplicate the aspects in each module.
This may be done through a simple copy operation dur-
ing the build so as to circumvent source code duplica-
tion. Communication among the different copies will
then have to be implemented manually, e.g. through a
mediating class. This is similar to what Nordberg pro-
poses in [3] as a way to mix components and aspects.

Since we had to make a trade-off between build system
modularity and build time, this is again not an ideal solu-
tion. The problem we encountered seems to indicate that in
the presence of aspects, current build systems no longer can
express and check the source code dependencies between
various modules, and might indicate the need for more ad-
vanced, aspect-aware build systems.

6 Conclusion

In this paper we have discussed the refactoring of the
business rules implementation in an object-oriented system
to an aspect-oriented solution. At the level of the aspect-
oriented solution itself we were successful in migrating the
crosscutting business rules into aspects, facilitated by the
rigourous use of a particular pattern for implementing busi-
ness rules in the original system. However, the integration
of the aspects into the build process of the system proved to
be less trivial due to the lack of proper support for aspect
modules in current-day build systems. We discussed three
alternative solutions to this problem and their impact on the
development process.

Acknowledgments — Andy Kellens is funded by a research grant pro-
vided by the “Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders” (IWT Vlaanderen). Kris De Schutter receives support from the
research project AspectLab, also sponsored by the IWT Vlaanderen.

References

[1] M. Cibran and M. D’Hondt. A slice of mde with aop: Trans-
forming high-level business rules to aspects. In 9th Interna-
tional Conference on MoDELS/UML, pages 170–184, 2006.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proc.
ECOOP 2001, LNCS 2072, pages 327–353. Springer-Verlag,
June 2001.

[3] M. Nordberg. Aspect-oriented dependency inversion. In
Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA 2001), Oct. 2001.

[4] T. Pijpops and J. Van Reusel. Improving the design of a large
jave EE application with AOP. In Proceedings of the 7th In-
ternational Conference on Aspect-Oriented Software Develop-
ment (Industry track), pages 45–47, 2008.

[5] D. Shepherd, T. Roper, and L. Pollock. Using AOP to ease
evolution. In ICSM (Industrial and Tool Volume), pages 16–
25, 2005.

4


