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Abstract

The design and implementation of a software system is often governed by many different
coding conventions, design patterns, architectural design rules, and other so-called struc-
tural regularities. To prevent a deterioration of the system’s source code, it is important
that these regularities are verified and enforced in subsequent evolutions of the system.
The Intensional Views Environment (IntensiVE), presented in this article, is a tool suite for
documenting such structural regularities in (object-oriented) software systems and verify-
ing their consistency in later versions of those systems.
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1 Structural Regularities

In the design and implementation of (object-oriented) software systems, the appli-
cation of various forms of coding conventions, design patterns, design rules, idioms
and so on has become a widespread practice. The use of such structural regulari-
ties explicitly molds the implementation with design and implementation principles
that intend to establish improved software qualities such as reusability, extensi-
bility, comprehensibility, and so on. A visitor design pattern, for example, antici-
pates extensions of the implementation with operations over object trees. Similarly,
naming conventions render implementation concepts explicit and improve the un-
derstandability of code, especially in collaborative development environments. In
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brief, structural regularities is a broad term describing various governing princi-
ples of the source code of a system, ranging from low-level, stylistic properties
such as naming and coding conventions, over the use of language idioms to more
high-level rules describing architectural constraints, design dependencies and the
implementation of design patterns.

Structural regularities play an important role in the development process [12]. For
example, a developer can communicate certain concepts that are only implicitly
available in the implementation to other developers by consistently using intention-
revealing names or patterns in the source code to characterize this concept and thus
make it explicit. Furthermore, regularities aid in obtaining stylistically more uni-
form source code, leading to a more comprehensible and maintainable implemen-
tation [1]. Next to the aforementioned stylistic reasons for introducing regularities,
the correct functioning of the system can depend on whether developers correctly
adhere to certain regularities. When regularities expressing architectural or design
rules are violated, this can result in erratic and incorrect behavior of a system.
For example, when making use of technology such as object-oriented frameworks,
when applying design patterns, or when particular platforms such as J2EE are em-
ployed, certain regularities are imposed on the source code that – if not correctly
adhered to – can result in the introduction of bugs in the source code of a system.

In spite of their intended benefits, the consistent and meticulous application of
structural regularities in the implementation of a software system is often prob-
lematic. The reason for this is that most regularities are not integrally part of the
development process and programming languages of current-day implementation
practices. Without any means to document and enforce them in the implementa-
tion, they can easily be violated in subsequent evolutions of the system. In order to
prevent the quality of the source code from deteriorating it is therefore imperative
that regularities can be enforced when the system evolves.

This article presents how IntensiVE 3 , the Intensional Views Environment [11], is
used to document structural regularities in the source code of a system and enforce
their consistency during evolution of the system. Key to the tool is that it imple-
ments a framework for verifying structural source-code regularities, much in the
style of unit testing. Developers can specify the regularities they deem interesting
and subsequently invoke their verification. Although IntensiVE is implemented in
Smalltalk and it integrates tightly with the VisualWorks development environment,
it can equally-well verify regularities in Eclipse Java projects through a loose inte-
gration with the Eclipse environment.

3 http://www.intensional.be
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2 Intensional Views & Constraints

IntensiVE supports the documentation and verification of structural regularities us-
ing the concepts of intensional views and constraints. An intensional view is a set
of source-code entities in the software’s implementation that share some structural
property. In many cases, this shared structural property (for example a coding con-
vention) also denotes that these entities implement a shared concept. Therefore,
typical intensional views are, for example, “all getter methods in the implemen-
tation”, “all methods that invoke database operations” or “all exception handlers
that only perform a logging operation”. An important characteristic of intensional
views is that these sets are not defined by enumeration but by means of an inten-
sion. An intension is an executable description that yields, upon evaluation, the set
of entities belonging to the view. Although any programming language can be used
to define these intensions, the IntensiVE tool is tightly integrated with the logic
(meta)programming language SOUL [14] (a derivative of Prolog). Its declarative
source-code queries are a powerful means for the definition of intensional views
and we will use them throughout this article.

Consider, for example, the intensional view of all “getter” methods that is defined
using the following query:

1 ?method isMethodDeclaration,
2 ?method isPublicMethod,
3 ?method reads: ?field named: ?fieldName,
4 ?method methodDeclarationHasName: {get?fieldName}

The above expresses all conditions that a source-code entity must fulfill to be part
of the intensional view. We present queries such that each condition is shown
on a separate line. Also note that variables start with ? and that the syntax of
the logic predicates follows Smalltalk’s messages syntax. In this simple exam-
ple, the first condition expresses that an entity belonging to the view (captured
by the logic variable ?method) must be a method declaration (using the logic pred-
icate isMethodDeclaration). The following conditions specify that such a
method must be public, that it must read a field ?field named ?fieldName and that the
method’s name must start with “get”, followed by the field name. The evaluation
of this intension yields all methods in the source code of the system that satisfy all
these conditions and, consequently, populate the “getter methods” intensional view.
In some cases, there exist exceptions to this general rule. For example, it may occur
that some non-getter methods’ names are prefixed with “get”. Therefore, IntensiVE
also permits to explicitly include or exclude entities that must or must not be part
of the intensional view.

To verify and enforce an actual structural regularity, we impose constraints on the
defined intensional views. Depending on the kind of regularity we wish to enforce,
two different techniques can be used.
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Alternative Views
A first kind of constraint can be expressed using alternative views. Such views
define an alternative intension for an already existing intensional view. Upon eval-
uation, this alternative view must contain the exact same set of source-code entities
as the original view. A typical alternative view for “getter methods” collects all
methods that return an instance variable:

1 ?method isMethodDeclaration,
2 ?class definesMethod: ?method,
3 ?class definesVariable: ?field,
4 ?method returns: ?field

In this query, lines 2 and 3 express that the method ?method is defined on a class
?class that defines a variable ?field. The last condition specifies that the method must
return the instance variable ?field. Note that this alternative view imposes a rather
strict implementation regularity on a “getter method”. In most cases, additional
queries are required to cope with possible variations in the implementation, such as
array indexing and use of collection classes, indirect field returns, and so on. For
brevity, we stick with this strict regularity to explain the concepts of intensional
views.

IntensiVE automatically verifies the consistency of an intensional view by checking
if the set of entities contained in all alternative views are equal. Any additional or
missing entities in alternative views are reported to the developer, which indicates
an inconsistency of the source-code with respect to the regularity. Using our exam-
ple, we can detect methods that return an instance variable but that do not adhere to
the naming convention, or vice-versa. To illustrate this, Figure 1 shows how such
inconsistent methods are reported by IntensiVE upon verification of this constraint
on the source-code of a package of the jEdit open-source project. The inconsis-
tency window displays which (alternative) views each method is missing from,
thus reflecting the nature of the inconsistency. The methods named isBuiltIn
and getTokenMarker, for example, are not included in the default view (indi-
cated by the red X in the first column). It means that they do not adhere to the
naming convention. However, they do return an instance variable, and therefore
were included in the alternative view (shown by the green dot in their last column).
Inversely, the method getRuleSets follows the naming convention but does not
return an instance variable. In the verification that is reported by this screenshot,
there are 15 inconsistent methods on a total of 29 “getter methods”, which is an
expected high number of inconsistencies: the source-code of jEdit was only used
to demonstrate the reporting of inconsistencies and was not implemented with this
convention in mind.

Intensional Relations

A second kind of constraints are intensional relations. Intensional relations im-
pose structural conditions to be verified between the entities of one or two different
views. The constraint is implemented as a combination of a source-code query and
pre-defined quantifiers. The query expresses the conditions that entities of the dif-
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Fig. 1. Inconsistent “getter methods”

2

1

Fig. 2. Intensional relation between “getter” and “setter” methods.

ferent views need to satisfy and the quantifiers express for which elements those
conditions must hold (i.e. for all, for exactly one, etc. . . ). For example, consider an
intensional view that groups all “setter methods”, in a similar way as we defined the
“getter methods” view. Using an intensional relation between these views, we can
enforce that for all classes that define a “setter method” for a particular field, there
also exists a “getter method” for that same field. The verification of this relation
in the jEdit source code is shown in Figure 2. IntensiVE reports the entities of the
different views that violate the relation, i.e. when a “getter method” does not have
a corresponding “setter method” that writes to the same field. The 9 entities of the
source view that violate the relation are shown in pane (1). Pane (2) lists the cor-
responding entities of both relations that adhere to the relation. Now that we have
explored the basic concepts and mechanisms of IntensiVE, we move on to more
illustrative uses of the tool.

3 Enforcing the Abstract Factory Design Pattern

The Abstract Factory design pattern insulates the creation of objects (a.k.a. product
objects) from their usage. Its implementation consists of an abstract class that de-
fines an interface of abstract “product-creation” methods, and several concrete sub-
classes (a.k.a. concrete factories) that implement these methods. Instead of creat-
ing product objects directly, clients create objects by invoking the product-creation
methods. The use of this pattern makes it possible to interchange the kind of prod-
ucts that are created by switching between different concrete factories. In addition,
the pattern groups the creation of compatible products into separate concrete facto-
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Client

createRequest(): RequestEvent
...

AbstractEventFactory

createEvent(): DefaultRequestEvent
...

DefaultEventFactory

createRequest(): LenientRequestEvent
...

LenientEventFactory

<<uses>>

publishOn(Bus): void
...

RequestEvent

publishOn(Bus): void
...

DefaultRequestEvent

publishOn(Bus): void
...

LenientRequestEvent

publishOn(Bus): void
...

NotificationEvent

publishOn(Bus): void
...

ErrorEvent

<<creates>>

<<creates>>

Concrete Factories Concrete Products

Abstract Products

Fig. 3. Abstract Factory Design Pattern

ries. Figure 3 illustrates the structure of the design pattern, applied to the creation
of “events”.

Regularities

In this design pattern, a number of structural regularities need to be respected:

(1) The most important regularity is that objects created by the factory should not
be created outside of the factory. If they are created outside of the factory,
the main reason for using the pattern is lost. It would mean that incompatible
objects can exist at execution time, probably resulting in faulty behavior.

(2) The factory needs to define product-creation methods for each kind of product.
This regularity is partially enforced through the definition of abstract methods
in the factory superclass, which require an implementation in each of the con-
crete factories. However, it is not checked that the abstract superclass defines a
creation method for each product and that it effectively creates a new instance
of such a product. In our example, we need to enforce that a product-creation
method exists for each class of events in the library and that such a method
effectively creates a new instance of such an event class.

(3) Each concrete factory must create compatible product objects. Product ob-
jects must be characterized as compatible by the developers by, for example,
organizing them into separate hierarchies.

(4) Developers often use the naming convention that each concrete factory’s name
is also postfixed with “Factory”.

Although each of the regularities will most probably be adhered to when the fac-
tory is first implemented, subsequent evolutions of the software implementation
may easily break these regularities, especially in collaborative development envi-
ronments. Most importantly, developers can violate the abstract factory through
direct instantiation of objects that should be created through the factory. Additions
of new kinds of events must also trigger the addition of an object-creation method
to the factory. These regularities are enforced using the following intensional views
and relations.
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Intensional Views

Three intensional views form the heart of the IntensiVE documentation for this
design pattern:

(1) The “Concrete Factories” view gathers all concrete factories implemented in
the system. The query that defines this view collects all subclasses of the ab-
stract factory superclass AbstractEventFactory. Regularities (1) and
(4) are enforced by defining the following alternative views, which are sup-
posed to contain the same elements. The first alternative gathers all classes
in the system whose methods contain instance creation statements for classes
identified as products. Such product classes are identified using the intensional
view below. A second alternative view contains all classes whose name termi-
nates with Factory.

(2) The “Products” intensional view groups all classes that are created by con-
crete factories. It gathers all classes for which an instance creation state-
ment is found inside the implementation of the concrete subclasses of the
AbstractEventFactory class. An alternative view is defined by collect-
ing all concrete classes that are subtypes of the “Abstract Products” types,
which are defined next. Verifying consistency of this view ensures that all
possible products have a corresponding ‘product creation’ method in some
concrete factory, which is part of regularity (2).

(3) The “Abstract Products” view groups the types that represent each kind of
product to be created by a factory. These types are the return types of the ab-
stract ‘product-creation’ methods of the abstract factory superclass. An alter-
native view that needs to ensure regularity (2) is often application-specific. In
the particular case upon which we based this example, a set of Java interfaces
was defined for each abstract product, following a naming convention.

Intensional Relations

In addition to the intensional views and their alternatives, we define the following
intensional relations:

(1) For each factory in the “Concrete Factories” view, all created products must be
a subtype of exactly one abstract product in the “Abstract Products” view. The
query that implements this relation searches for all classes created in a factory
and verifies that they are a subtype of the same type (an abstract product).
When this relation is enforced, it ensures regularity (3).

(2) Inversely, for each abstract product in the “Abstract Products” view, each con-
crete factory of the “Concrete Factories” view must implement a method that
effectively creates an instance of a subtype of the abstract product. This re-
lation completes the verification of regularity (2) and will report all kinds of
products that are not created by a concrete factory.

Discovering Violations
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Fig. 4. Verification of the Factory Design Pattern.

When verifying the aforementioned views and relations, IntensiVE reports all
source-code entities that violate the imposed constraints as shown in Figure 4.
Screen (a) presents the verification of the “Concrete Factories” view with respect
to its alternatives. In this case, we can see that the DefaultEventFactory and
LenientEventFactory classes are the only ones that fully adhere to the reg-
ularities of an abstract factory class. All other classes directly create instances of
products and do not follow the naming scheme, thereby violating regularities (1)
and (4). In screen (b), the verification of the intensional relation (2) shows that
there is one factory (LenientEventFactory) that does not create a product
(PublishPropertiesEvent). Screen (c) is an inspector opened on the violat-
ing entity, which displays the source-code entities involved in the violation.

4 Additional Applications

Bad Smell and Bug Detection

Many bad smells in code or code that can potentially lead to a runtime bug are
much alike structural regularities except that they are undesirable properties of the
code. IntensiVE can be used equally well to detect entities that expose such unde-
sired structural properties. For example, the following query detects unused “getter
methods” (a particular “dead code” bad smell):

1 ?method isGetterMethod,
2 not(?somemethod calls: ?method),

The first condition in this query collects all entities that are part of the “getter meth-
ods” intensional view. The second condition filters only those methods for which
there does not exist a caller method (?somemethod). The intensional view associ-
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ated to this query can be inspected by the developers to investigate the necessity of
fixing the bad smell or not.

Potential runtime bugs are often also detectable based on (undesired) structural
properties of the source-code. For example, subtle errors can occur in Java when a
constructor calls a non-final method of its class. In particular, an error occurs when
the called method is overridden in a subclass and it references fields. These fields
have not yet been initialized by the constructor of the subclass and thus contain
the default initialization values, which is often an unexpected result. Although this
bug is not very common, knowing that it exists in the code can save valuable time.
Therefore, we define an intensional view using the following query that gathers the
classes ?class, their constructors ?constructor, the called method(s) ?aMethod and
instance fields ?var involved in the potential bug pattern. In summary, the query
will find constructors that (transitively) invoke a method that is defined in the same
class or any of its subclasses and which reads but does not write to a field defined
on the same class.

1 ?class isClassDeclaration,
2 ?class definesConstructor: ?constructor,
3 ?constructor callsTransitiveOnSelf: ?aMethod,
4 ?subclass definesMethod: ?aMethod,
5 ?subclass isSubClassOf: ?class,
6 ?subclass definesVariable: ?var
7 ?aMethod reads: ?var,
8 not(?aMethod writesTo: ?var)

Visualized Regularities

Above, we have shown how IntensiVE directly supports reasoning over the im-
plementation by using queries over source-code entities. In essence, the results of
the source-code queries are also the results displayed in any of the consistency-
checking tools of IntensiVE. Developers thus verify regularities in terms of the
source-code entities that implement them. Although this works well for many reg-
ularities, often more appropriate design documentation that describes regularities is
used in a software project. For example, the use of the State Design Pattern to im-
plement state machines, is often documented using state diagrams. These diagrams
describe the states and possible transitions for the state machine implementation.
As a consequence, the regularities that must be enforced in the implementation are
documented using state diagrams.

We have extended IntensiVE with a tool that visualizes the state diagrams exactly
as they are implemented in the source code. In particular, the possible state transi-
tions in the source code were gathered into an intensional view that lists pairs of
“state” classes. Each pair thereby represents a possible state transition from the one
state to the other state. The query that extracts this view reasons over the meth-
ods implemented on each state class (the source state) and extracts the creation of
other state classes in the call-flow of these methods as possible destination states.
Instead of portraying these intensional views as a collection of source-code entities,
we passed on these entities to a visualisation script that draws their corresponding
state diagrams. Figure 5 presents such a state diagram as it is shown in IntensiVE.
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BeamDelivery

BeamDeliveryDisabledState

BeamDeliveryPrepareState

BeamDeliveryFailedState BeamDeliveryCompleteState

Fig. 5. The State diagram of a sample State Pattern implementation.

These diagrams reflect the actual state machine behavior as it is implemented in the
source code using the State design pattern. The names of the states in the figure are
the names of the classes that implement each state.

5 Related Work

Code checkers: Lint [10], P 3 [3], CheckStyle [2], FindBugs [9] and many others
provide developers a means to verify a wide range of generally applicable regular-
ities such as common mistakes, bad smells, bad programming style, violations of
platform-specific constraints and so on. These tools provide a dedicated and often
highly optimized means to identify locations in the source code that infringe on
such regularities and can provide additional support, such as (semi-)automated cor-
rection of the detected infringements. While IntensiVE does not provide the same
kind of dedicated support as code checkers, our tool suite is sufficiently versatile to
express the same kinds of regularities as those verified by code checkers, as exem-
plified in Section 4. In addition, IntensiVE is not limited to verifying the regularities
supported by code checkers, but also is able to document and verify a broad scope
of e.g. non-stylistic and domain-specific regularities.

Architectural and design conformance checkers: are dedicated tools that aim at
verifying a high-level description of a software system (e.g. design patterns, archi-
tectural descriptions, dependencies between components, . . . ) with respect to the
actual implementation of that system. Examples of these tools are Reflexion Mod-
els [13], Ptidej [7] and RevJava [6]. As illustrated by the Factory design pattern
documentation in Section 3, IntensiVE can also be used to document regularities
at the architectural and design level. Similar to the comparison to code checkers,
IntensiVE is not specifically dedicated nor limited to these kinds of regularities but
provides a general framework for documenting and verifying regularities.

Meta-programming systems: CCEL [4], Law-governed systems [12], IRC [5] and
SCL [8] offer developers languages for writing meta-programs that reason about
programs. One application domain of these meta-program systems is the implemen-
tation of meta-programs that verify source-code regularities or that allow for im-
posing constraints on the source code of a system. IntensiVE is related to this group
of tools in that the intension is specified by means of a meta-program, expressed
using the meta-language SOUL. The concepts of intensional views and constraints
provide developers with a conceptual framework and tool support for expressing
and verifying structural regularities, using these meta-programming systems.
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