
Group Communication Abstractions for
Distributed Reactive Systems

Andoni Lombide Carreton, Stijn Mostinckx and Wolfgang De Meuter

Programming Technology Lab (PROG)
Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussel, Belgium

{alombide} {smostinc} {wdmeuter}@vub.ac.be

Abstract. Pervasive computing in mobile ad hoc networks requires that
applications react to a plethora of events fired by other devices in the
mobile ad hoc network. Current context-aware and event-driven archi-
tectures require the programmer to react to these events via a carefully
crafted network of observers and event handlers, while inherently intro-
ducing complex concurrency issues. This paper proposes the integration
of group communication abstractions with Reactive Programming as an
alternative technique that does not suffer from these problems.

1 Introduction

Because of the constant evolution of computing hardware, mobile computing
devices with networking capabilities are becoming increasingly cheap, small and
energy efficient. To reap the benefits of the resulting mobile networks, applica-
tions must be able to respond to changes in the environment in a timely fashion.
State of the art context-aware applications are often conceived as event-driven
architectures which consume events fired by a context-aware middleware frame-
work. The events represent significant context changes which should percolate
through the entire application, requiring a carefully crafted network of observers
combined with complex synchronization code to deal with the inherent concur-
rency issues [1].
Recently, we have introduced Reactive Context-aware Programming [1] as an
alternative technique, which considerably reduces the complexity of developing
such context-aware applications by preserving a conventional programming style
instead of requiring code to be structured around event handlers. Using this ap-
proach, objects on nearby devices are expressed as collections of references to
these objects that dynamically reflect the state of the network. In this case how-
ever, communication with remote parts of the application boils down to iterating
over such dynamic collections and manually encoding the appropriate commu-
nication scheme (e.g. sending a message to all objects joining the collection).
This results in application logic polluted with recovery code for dealing with
devices that disconnected while iterating over these collections. A second diffi-
culty is that there is no easy way to meaningfully aggregate results of broadcast
messages computed in parallel with the requesting application component. Our

position is that these problems can be solved by introducing group communica-
tion abstractions tailored towards a Reactive Programming environment.
In section 2, first Reactive Programming in AmbientTalk is explained. Subse-
quently, a motivating example is given where group communication abstractions
are clearly desirable to be able to deal with the problems discussed above. In
section 3, existing group communication techniques are discussed and it is shown
why they cannot be used in a reactive environment. The last section is our po-
sition statement.

2 Reactive Context-aware Programming in AmbientTalk

Consider a shopping cart equipped with a RFID reader which allows it to detect
all tagged products that are placed in the cart. The cart has a display which
is used to display the total price of all items in the cart. We first define two
ordinary functions. calculateTotalCost will iterate over a collection of prices
to compute the total cost and printCost is used to show the price of all items
in the shopping cart to the users.

Listing 1.1. calculateTotalCost and printCost functions.
def calculateTotalCost(aPriceList) {

def sum := 0;
aPriceList .each: { |price | sum := sum + price };
sum
};

def printCost(aCost) {
system.println(”Total cost: ” + aCost.asString());
};

We want to use these functions defined above to continuously display the price
of the products in the cart. In Reactive Programming languages, a network
of dependent computations is constructed implicitly by calling lifted functions
which operate on time-varying values called behaviors [2]. Assume that the
RFIDTAGSINCART variable shown in listing 1.2 denotes such a behavior that con-
stantly represents the RFID tags within a user’s shopping cart. The RFID tags
are represented as objects which implement a getPrice method. A new be-
havior pricesOfContainedProducts is created by applying the map method
to RFIDTAGSINCART. Whenever the RFIDTAGSINCART behavior changes, the map
function is applied. The argument of map is a block closure which invokes getPrice()
on every RFID tag. By passing the newly created behavior
pricesOfContainedProducts to the (plain) calculateTotalCost function, the
function is implicitly lifted and its result is a new behavior totalCost. This
totalCost behavior is passed to printCost, which will print the cost on the
screen each time the total cost changes.

Listing 1.2. Programming a reactive shopping cart in AmbientTalk.
def pricesOfContainedProducts := RFIDTAGSINCART.map: { |tag| tag.getPrice() };

def totalCost := calculateTotalCost(pricesOfContainedProducts);

printCost(totalCost);

2.1 Reactive Programming and Asynchronous Communication

Assume that the RFID tags from the example above are remote objects able to
compute their price autonomously. Communication with remote objects is only
possible by sending them asynchronous messages (using the <- operator). In
listing 1.3, the list of RFID tags in our shopping cart is again represented by the
RFIDTAGSINCART behavior, but this time it contains remote objects. Having this
list of communication partners, the programmer is supposed to iterate over the
individual objects, send them asynchronous messages and gather results from
these messages. The result of an asynchronous invocation is a future, a place-
holder for the result which is computed in parallel. Accessing the result requires
installing an observer on the future using the when:becomes:catch:using: con-
struct, as shown in the new version of the calculateTotalCost function. To
deal with the fact that in a mobile ad hoc network communication partners may
leave the network during the iteration over this list, the future observers must
also specify how to handle exceptions.

Listing 1.3. Reactive Programming and asynchronous communication.
// This is now a list of futures
def pricesOfContainedProducts := RFIDTAGSINCART.map: { |tag|

tag<−getPrice() // Returns a future
};

def sum;

def calculateTotalCost(aFutureList) {
sum := 0;
aFutureList.each: { |priceFuture|

when(priceFuture) becomes: { |price|
sum := sum + price;
} catch: TimeoutException using: { |exc|

system.println(”Connection with tag lost!”)
}
}
};

calculateTotalCost(pricesOfContainedProducts);

printCost(sum);

One possible solution is splitting up the computation in multiple future observers
and using a mechanism external to the reactive dataflow to aggregate the results
(e.g. a shared variable or data structure containing results, sum in this example).
This is essentially writing the application in a classic event-driven style where
events are generated by the resolutions of futures, introducing the same code
structuring problems as mentioned in section 1. Also note that by setting sum to
0 in the calculateTotalCost function, event handlers from previous iterations
can lead to incorrect sums when they are triggered with a slight delay. Further-
more, the sum variable is not a behavior, which means that the display of the
shopping cart will not be automatically updated anymore.

The alternative is accumulating all the replies from the asynchronous invoca-
tions in a list by waiting for each reply in the map loop. However, by introducing
such a synchronization point, we may render the application unresponsive and
increase the chances of unreachable communication partners while the loop is
still executing [3].
In both approaches it is impossible to write a straight forward implementation
such as in listing 1.2. These problems, that even show up when simply adding
some numbers like in the example above, stem from the fact there is not enough
abstraction for communicating with actual states of (parts of) the network. We
intend to solve them by introducing group communication abstractions that al-
low us to communicate with volatile sets of objects by returning a reactive group
of results.

3 Group Communication Abstractions for a Distributed
Reactive Environment

Given the properties of the pervasive applications in mobile ad hoc networks
that we envision, we have identified the requirements that we will impose on
group communication abstractions for a distributed reactive environment:

– Broadcasting of messages: It should be possible to broadcast a single mes-
sage to all objects in the group without explicitly referencing the objects. By
holding explicit references to distributed objects, code has to be structured
around recovery mechanisms to deal with the frequent disconnections.

– Sustained communication: Objects should not be known beforehand to
be able to join the group and messages should be transparently sent when
new objects join the group. This is necessary to reflect the dynamic nature
of the network.

– Reactive aggregation of results of asynchronous invocations: It
should be possible to specify how to aggregate the results of the broad-
casted messages into a reactive value (e.g. one result only, list of incoming
results, application-specific accumulation of results...). The fact that this
value must be reactive (e.g. a behavior) is the key to be able to connect
the results of asynchronous message sends to the dataflow of the sequential
reactive program in a meaningful way.

3.1 Existing Group Communication Abstractions

Group communication abstractions are often used to provide transparent repli-
cation in fault tolerant systems. An example of this are Concurrent Aggregates
[4]. Concurrent Aggregates are abstractions behaving like a single distributed
object, but actually consist of a group of objects. Messages sent to an Aggre-
gate are executed by a non-deterministically selected object in the group. Hence,
Concurrent Aggregates do not support broadcasting of messages.
ActorSpaces [5] are also groups of distributed objects, but can be defined using

an intensional description (i.e. the objects do not have to be known beforehand).
Messages can both be sent to a single object in an ActorSpace, or can be broad-
casted to all objects in the group. However, once the ActorSpace is created, the
objects it consists of are fixed and no objects can join or leave the group. There-
fore, ActorSpaces do not support sustained communication.
M2MI handles [6] are anonymous references to remote objects exported by means
of a Java interface type designed specically for ad hoc wireless proximal networks.
M2MI distinguishes between uni, multi and omnihandles. Unihandles refer to one
specific proximate object, multihandles to a specific group of proximate objects
and omnihandles to all proximate objects of the handles interface type. M2MI
handles only support the asynchronous invocation of methods that do not return
a value or raise no declared exceptions. Moreover, messages are delivered only to
receivers currently in range, and otherwise immediately discarded, which means
that M2MI handles are not capable of sustained message sending to new objects.
AmbientTalk has its own construct for referencing a volatile set of remote objects:
Ambient References [7]. Remote objects designated by an Ambient Reference do
not have to be known beforehand, but can be dynamically discovered. The arity
of the communication, the time to keep broadcasting the message to newly dis-
covered objects and the time to wait for replies can be specified. If a one-to-many
communication scheme is used, sending a message to an Ambient Reference re-
turns a multifuture. Multifutures behave like normal futures, with the difference
that they can be resolved multiple times. Different observer constructs are avail-
able for gathering results from one-to-many invocations (i.e. trigger on the first
returned value, trigger on each new value and trigger when no more new values
will be returned). Because future observers have to be used instead of a reactive
value to gather the results of broadcasted asynchronous messages, we cannot use
Ambient References in a reactive system.

3.2 Our Approach

A technique not specifically aimed at distributed and concurrent applications
is Higher Order Messaging [8]. Higher order messages are messages sent to an
object that take other messages as arguments. The higher order message decides
how to deliver the argument messages to the receiver and what to do with the
results of the argument messages. Higher Order Messaging may be an interest-
ing way of implementing different group communication strategies in a reactive
environment, especially in languages where messages are first class objects, such
as AmbientTalk. As an example, we adapt the code from section 2:

Listing 1.4. Reactive Programming and Higher Order Messages.
def pricesOfContainedProducts := RFIDTAGSINCART.collectResultsOf: <−getPrice();

def calculateTotalCost(aPriceList) {
def sum := 0;
aPriceList .each: { |price | sum := sum + price };
sum
};

def printCost(aCost) {
system.println(”Total cost: ” + aCost.asString());
};

def totalCost := calculateTotalCost(pricesOfContainedProducts);

printCost(totalCost);

Assume that collectResultsOf: is a higher order message defined on the
RFIDTAGSINCART behavior that broadcasts the first class getPrice argument
message (constructed using the <- operator) to all RFID tags in the behavior
(including to newly discovered tags). Replies from the RFID tags are collected
into a new behavior which contains a list that is maintained by the Reactive
Programming system to contain the results of the message sends to currently
connected (i.e. present in the shopping cart) RFID tags. Newly received re-
sponses are automatically collected and responses of (disconnected) tags that
are taken out of the shopping cart are automatically discarded. With such a
construct that exploits the Reactive Programming system, the rest of the code
from the example in section 2 can remain unchanged.

4 Position Statement

Writing context-aware applications involves reacting to changes in the environ-
ment to adopt or fire the correct behavior. Using state of the art event-driven
techniques, applications are required to register event handlers which will be
triggered when context changes occur. Relying on explicit event handlers has
effects which percolate throughout the entire design of the application, as access
to shared data needs to be protected from race conditions and context depen-
dencies in the program need to be encoded manually by registering observers.
Using the Reactive Programming paradigm to implicitly reflect the context of
an application is a novel approach that avoids these problems. However, current
Reactive Programming mechanisms are not integrated with asynchronous com-
munication, which we deem necessary for distributed applications in a mobile ad
hoc network [9]. In this case, the application still has to be written in a classic
event-driven style to bridge the gap between sequential (local) code and (remote)
requests executed in parallel. We propose the use of group communication ab-
stractions to abstract away the current state of the network. To integrate them
in a Reactive Programming language, we impose a number of requirements such
that asynchronous group communication can be connected to sequential code
without losing the power of implicitly reflecting the state of the network.

References

1. Mostinckx, S., Lombide Carreton, A., De Meuter, W.: Reactive context-aware pro-
gramming. In: Workshop on Context-Aware Adaptation Mechanisms for Pervasive
and Ubiquitous Services (CAMPUS 2008). Volume 10 of Electronic Communications
of the EASST., DisCoTec (June 2008)

2. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value
language. In Sestoft, P., ed.: ESOP. Volume 3924 of Lecture Notes in Computer
Science., Springer (2006) 294–308

3. Friedman, R.: Fuzzy group membership. In Schiper, A., Shvartsman, A.A., Weath-
erspoon, H., Zhao, B.Y., eds.: Future Directions in Distributed Computing. Volume
2584 of Lecture Notes in Computer Science., Springer (2003) 114–118

4. Chien, A.A., Dally, W.J.: Concurrent aggregates (ca). In: PPOPP ’90: Proceed-
ings of the second ACM SIGPLAN symposium on Principles & practice of parallel
programming, New York, NY, USA, ACM Press (1990) 187–196

5. Agha, G., Callsen, C.J.: Actorspace: an open distributed programming paradigm.
In: PPOPP ’93: Proceedings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming, New York, NY, USA, ACM Press (1993) 23–
32

6. Kaminsky, A., Bischof, H.P.: Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In: OOPSLA ’02: Companion of the
17th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, New York, NY, USA, ACM (2002) 72–73

7. Van Cutsem, T., Dedecker, J., Mostinckx, S., Gonzalez, E., D’Hondt, T., De Meuter,
W.: Ambient references: addressing objects in mobile networks. In: OOPSLA ’06:
Companion to the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, New York, NY, USA, ACM (2006) 986–997

8. Weiher, M., Ducasse, S.: Higher order messaging. In: DLS ’05: Proceedings of the
2005 conference on Dynamic languages symposium, New York, NY, USA, ACM
Press (2005) 23–34

9. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
oriented Programming in Ambienttalk. In Thomas, D., ed.: Proceedings of the 20th
European Conference on Object-oriented Programming (ECOOP). Lecture Notes
in Computer Science, Springer (2006) 230–254

