
Pitfalls in Aspect Mining

Kim Mens
Université catholique de Louvain, Belgium

kim.mens@uclouvain.be

Andy Kellens
Vrije Universiteit Brussel, Belgium

akellens@vub.ac.be

Jens Krinke
FernUniversität Hagen, Germany

krinke@acm.org

Abstract

The research domain of aspect mining studies the prob-
lem of (semi-)automatically identifying potential aspects
and crosscutting concerns in a software system, to improve
the system’s comprehensibility or enable its migration to an
aspect-oriented solution. Unfortunately, most proposed as-
pect mining techniques have not lived up to their expecta-
tions yet. In this paper we provide a list of problems that
most aspect mining techniques suffer from and identify some
of the root causes underlying these problems. Based upon
this analysis, we conclude that many of the problems seem
to be caused directly or indirectly by the use of inappro-
priate techniques, a lack of rigour and semantics on what
is being mined for and how, and in how the results of the
mining process are presented to the user.

1 Introduction

Several years after the emergence of the aspect-oriented
software development paradigm, some researchers recog-
nised the need for and relevance of reverse engineering
techniques in the context of aspect-oriented software. The
new research domain of aspect mining was born. Just like
the adoption of any new programming paradigm evidently
leads to the question how to migrate existing systems to that
new paradigm, the same happened to aspect-oriented pro-
gramming. The research area of aspect mining addresses
part of this problem, namely the identification of potential
aspect candidates in the source code of existing software
systems [8, 16]. A second part of the problem, addressed
by the aspect refactoring community, is how to transform
the identified aspect candidates into actual aspects in the
software [4, 23]. Unfortunately, most of this research is still
relatively immature and most of the proposed techniques
have not lived up to their expectations yet.

In this paper we focus on the domain of aspect mining in

particular, and try to identify the root causes of why the pro-
posed techniques fail to deliver. To this end, we base our-
selves on our own experiences in aspect mining research,
and on an extensive survey of existing aspect mining tech-
niques we conducted. Our first goal is to provide an ex-
tensive list of problems encountered with currently existing
aspect mining techniques, based upon our own experience
and that of others. Our second goal is to try and identify the
main underlying causes of these problems. Thirdly, based
on our analysis of the problems and their main causes we
discuss the future of aspect mining: is there a future, what
can be solved, what can be improved?

This paper presents a moment of reflection on the state
of research in aspect mining. Most identified issues are not
new or unknown, nor are they unique. They occur scattered
throughout recent aspect mining literature, and the reverse
engineering community has faced similar problems. The
merit of this paper is in collecting these issues and to pro-
vide a broader basis for discussion on the topic.

2 Aspect Mining

Crosscutting concerns have always caused problems in
software development and its maintenance because of the
scattering and tangling of concerns’ implementations [27].
Aspect-oriented software development has been introduced
to cope with these problems by encapsulating crosscutting
concerns into a new abstraction called aspects. However,
there are several research questions that still require inves-
tigation. One of those questions, when migrating a non
aspect-oriented system to an aspect-oriented one, is how to
identify those crosscutting concerns that can be turned into
aspects. We call those crosscutting concerns aspect candi-
dates and the activity of identifying them aspect mining.

Our survey paper [16] distinguished three different cat-
egories of techniques that could help in locating the as-
pect candidates in a software system: early aspect discovery

1



techniques, dedicated code browsers and automated aspect
mining techniques. Early aspect mining techniques iden-
tify and manage crosscutting properties from the early soft-
ware development stages [2] of requirements and domain
analysis [1, 24, 28] and architecture design [3]. Advanced
special-purpose code browsers (like Concern Graphs [25],
Intensional Views [22], Aspect Browser [12], (Extended)
Aspect Mining Tool [14, 31], SoQueT [20] and Prism [32]),
on the other hand, aid a developer in manually navigating
the source code of a system to explore potential aspect can-
didates. These techniques typically start from a so-called
aspect seed, a location in the code from which the users start
their navigation to explore other places in the code which
might be part of the same concern. This way, the user itera-
tively constructs a model of the different places in the code
that correspond to an aspect candidate.

Complementary to the early aspect mining techniques
and dedicated browsers, automated aspect mining tech-
niques aim at automating the aspect identification process
and proposing one or more aspect candidates with as little
user intervention as possible. These automated aspect min-
ing approaches are the ones we will focus on in this paper.
They all have in common that they reason about the sys-
tem’s source code or execution traces and that they search
for symptoms of crosscutting concerns. Typically, they use
either techniques from data mining and data analysis like
formal concept analysis and cluster analysis, or more clas-
sic code analysis techniques like program slicing, software
metrics and heuristics, clone detection and pattern matching
techniques, dynamic analysis, and so on.

In [16] we conducted an extensive survey of aspect min-
ing techniques which semi-automatically assist a developer
in the activity of mining potential aspect candidates from
the source code of an existing system. We observed a lot
of variation in those techniques, depending on what under-
lying techniques they rely upon (e.g., clone detection, clus-
tering, concept analysis), the kind of analysis they perform
(e.g., static or dynamic, structural or behavioural), the gran-
ularity of the results being reported (e.g., entire methods,
code fragments), what underlying assumptions the tech-
niques make about the program being analysed (e.g., size,
use of coding conventions, presence of code duplication, ex-
istence of use cases), what symptoms of crosscutting con-
cerns they look for (e.g., scattering, tangling, code dupli-
cation), the kind of user involvement required (e.g., pre-
processing of input data, post-processing of results), and on
how well the techniques have been validated.

For a more detailed overview and comparison of those
techniques we refer to that survey paper. In this paper, hav-
ing noticed that each technique has its own limitations and
weaknesses, we build on that paper and list the main prob-
lems we observed in current-day aspect mining techniques,
before trying to understand the main causes behind those

problems and suggesting ways of solving or avoiding them.

3 Problems with aspect mining

In this section we present a list of typical problems that
current aspect mining techniques suffer from. To structure
the discussion, we present these problems in a pattern-like
format consisting of the name of the problem, a short de-
scription, a concrete illustration of the problem and (option-
ally) a set of other, related problems.

3.1 Poor precision

Description Many current-day aspect mining techniques
exhibit poor precision, meaning that the percentage of rele-
vant aspect candidates in the set of all candidates reported
by a given technique is relatively low. While this low preci-
sion is not a problem in se, it does imply that aspect mining
techniques tend to return a lot of false positives, which can
be detrimental to their scalability and ease-of-use. Espe-
cially for techniques that return a large number of results,
this lack of precision can be problematic, since it may re-
quire an important amount of user involvement to separate
the false positives from the relevant aspect candidates.

Note that precision can be observed at several levels of
granularity:

1. At the level of individual aspects or concerns: do we
find some things that are not aspects or concerns?

2. At the level of code: for a given aspect candidate or
seed we detected, are the code fragments we find as
belonging to that concern really a part of that aspect?

3. At the level of crosscutting sorts1: if we look for all
aspects or concerns of a given kind, how many false
positives do we find that do not belong to that kind?

In most papers describing aspect mining techniques, if they
report on the precision of the technique at all, typically only
one kind of precision is calculated (depending on the gran-
ularity of the results produced by the technique).

Example Bruntink et al. [6, 7] evaluated the suitability
of clone detection techniques for automatically identifying
crosscutting concern code. They considered 16, 406 lines
of code belonging to a large industrial software system and
five known crosscutting concerns that appeared in that code:
memory handling, null pointer checking, range checking,
exception handling and tracing. Before applying their clone

1A crosscutting sort is a class of crosscutting concerns that share simi-
lar properties such as intent, behaviour, and so on. For example, concerns
of the sort ‘contract enforcement’ and ‘consistent behaviour’ generally de-
scribe common functionality implemented by many crosscutting methods,
such as a specific pre-condition check on certain methods in a class hierar-
chy [19].

2



Technique: AST Token PDG
Concern:
Memory handling 65% 63% 81%
Null pointer checking 99% 97% 80%
Range checking 71% 59% 42%
Exception handling 38% 36% 35%
Tracing 62% 57% 68%

Table 1. Average precision of each technique
for each of the five concerns

detection techniques to mine for the code fragments (lines
of code) belonging to each of those concerns, they asked
the developer of this code to manually mark, for each line
of code, to what concern(s) it belonged. Next, they applied
three different clone detection techniques to the code: an
AST-based, a token-based and a PDG-based one. In order
to evaluate how well each of the three techniques succeeded
in finding the code that implemented the five crosscutting
concerns, the results of each of the clone detection tech-
niques were compared to the manually marked occurrences
of the different crosscutting concerns, and precision and re-
call were calculated against those. Table 1 shows the av-
erage precision of the three clone detection techniques for
each of the five concerns considered.

As can be seen from the table, the results of this exper-
iment were rather disparate. For the null pointer checking
concern, all clone detectors identified the concern code at
near-perfect precision. For most of the other concerns, none
of the clone detectors achieved satisfying precision.

In a way, the experiment conducted by Bruntink et al. [7]
was a kind of ideal situation because they actually compared
the results of their technique with the crosscutting concerns
marked by a developer in the code. In absence of such doc-
umentation on the crosscutting concern code, most other
aspect mining experiments either fail to report on the pre-
cision of their technique, or they compare the results with
their own judgement (which may lead to subjectivity). Yet,
even such experiments most often report a disappointingly
low precision.

Related problems As will be explained in the forthcom-
ing subsections, poor precision has a negative impact on
scalability (3.4) and may be due partly to the problem of
subjectivity (3.3). There is also a subtle trade-off between
recall (3.2) and precision: often better precision can be
reached at the cost of lower recall and vice versa.

3.2 Poor recall

Description Recall is the proportion of relevant aspect
candidates that were discovered out of all aspect candidates
present in the source code. In other words, recall gives an
idea of how many false negatives remain in the code and

thus how well (or not) the technique covers the entire code
analysed. As for precision, recall can be observed at sev-
eral levels of granularity. At the level of individual aspects
or concerns: do we find all aspects and concerns that are
present in the code? At the level of code: do we find the full
extent of the aspect or concern or does the technique fail
to discover some code fragments pertaining to the aspect?
At the level of crosscutting sorts: if we look for all aspects
or concerns of a given kind, do we find all concerns of that
kind which exist in the code?

A problem with calculating recall is that typically, in
a program under analysis, it is not known what the rele-
vant aspects and code fragments are, except in an ideal case
like the validation experiment of Bruntink et al. (see above)
where the concerns are known in advance and where a pro-
grammer took the time to mark each line of code with the
concern(s) it belongs to. A second problem is that most
techniques will look for certain symptoms of aspects only
and thus are bound to miss occurrences of aspects that ex-
hibit different symptoms.

Examples In their aspect mining experiment, Zhang and
Jacobsen [33] report on a recall of only slightly above 50%
(with a precision of slightly above 70%). A similarly low
(and sometimes lower) recall is reported for most other as-
pect mining techniques we are aware of, if they report on re-
call at all. In addition, as was the case for precision as well,
most authors typically calculate only one kind of recall and
do not mention explicitly at what level of granularity the
recall was considered.

As a more detailed example of recall at the level of cross-
cutting concerns, consider the following example taken
from Ceccato et al. [8]. By comparing the results of three
different aspect mining techniques, the authors observed
that some techniques where better at finding instances of
some crosscutting sorts than others. For example, consider
the ‘contract enforcement’ or ‘consistent behaviour’ sorts
mentioned in footnote 1. An example from the JHotDraw
application is the Command hierarchy for which the exe-
cute methods contain code to ensure the pre-condition that
an ‘active view’ reference exists (is not null). Since such
consistency checks are typically implemented by having the
methods call the same auxiliary methods, the technique of
fan-in analysis [21] proved to be particularly suited at find-
ing instances of these kinds of concern. Indeed, since fan-
in analysis looks for methods with a high fan-in, it easily
finds those auxiliary methods that are called by many other
methods. A technique like identifier analysis [30], however,
which mainly looks for crosscutting methods with a similar
naming scheme, only found some instances of that concern
sort but missed those instances where the methods that en-
force a given contract or ensure consistent behaviour did not
share a common naming scheme.

On the other hand, the technique of fan-in analysis

3



scored worse at the level of code fragments. Indeed, by its
nature the technique only discovers methods with a high-fan
in. These aspect seeds, if relevant, must then be completed
by the user to include many other methods calling or called
by those methods, that are part of the aspect as well.

Related problems As mentioned before, recall often has
an inverse correlation to precision (3.1) as a higher recall
tends to cause the precision to decrease, and vice versa.
Subjectivity (3.3) can also have an impact on recall as it
may cause relevant concerns to be missed. Finally, there
is a link with scalability too (3.4) since the larger the sys-
tem being analysed is, the harder it will be to calculate the
recall (especially since there exists no automated means of
calculating recall).

3.3 Subjectivity

Description For many existing aspect mining techniques,
the produced results exhibit some ambiguity. Depending
on the person and the definition of aspect he or she uses,
sometimes one person would say that something is an aspect
candidate, whereas another person would say that it is not.

Example In their comparison of three different aspect
mining techniques (i.e., identifier analysis, use case analy-
sis and fan-in analysis), Ceccato et al. [8] observed a certain
amount of subjectivity in the interpretation of the results
proposed by the different techniques. First of all, every tool
uses its own specific filters to discard certain results and
keep others, and some of these filters can be partly config-
ured by the user (e.g., by setting a certain threshold value or
by ignoring certain input). Secondly, in the list of filtered
results, the user typically has to make a selection of which
results do and which do not represent valid aspect seeds or
aspect candidates. This user involvement may be a cause of
subjectivity, even for those cases where a similar concern
is proposed by different tools. For example, when applied
to the JHotDraw application, all three techniques flagged
the ‘Moving figures’ concern as a potential aspect. The re-
searchers conducting an identifier analysis as well as those
performing a use case analysis considered this concern as
a potential aspect and included it in the list of relevant re-
sults. The team which used fan-in analysis, however, dis-
carded the concern, arguing that the original design seems
to consider this functionality as part of the application’s core
logic of handling figures. This shows that, depending on the
definition of aspect that is explicitly or implicitly used, the
analysis may lead to different results, even when the brute
results produced by the tools are the same.

Related problems Subjectivity may have a negative im-
pact on the quality of the results produced by a technique,
and on precision (3.1) and recall (3.2) in particular. Any
kind of empirical validation (3.5) suffers from subjectivity.

3.4 Scalability

Description An important property of any given aspect
mining technique is its scalability. One factor that has an
impact on scalability is the time-efficiency of the tool, i.e.,
the amount of time required for the tool to compute its re-
sults (how long it takes for the tool to run). Most tools do
not seem to be problematic in this respect. Another factor
contributing to scalability, however, is the amount of user
involvement required for a given technique. Often, the time
required for an aspect mining tool to calculate its results, is
negligible with respect to the amount of time required for a
tool user to pre-process the tool’s input and/or post-process
and analyse its output.

Example Although the problem of user involvement
holds for several known aspect mining techniques, identifier
analysis [30] is a technique that suffers in particular from
this scalability issue.

The identifier analysis technique performs a formal con-
cept analysis to group methods with similar names. To in-
crease the precision and limit the number of results returned
by the analysis, a number of different filters are applied.
One filter restricts the search to those concepts that exhibit
a certain amount of crosscutting (by checking that the meth-
ods grouped in such a concept belong to different class hier-
archies). Other filters reject concepts that are too small (too
few keywords in common or too few methods in the con-
cept) and ignore methods of which the names contain key-
words belonging to an experimentally determined blacklist.

As reported by Ceccato et al. [8], applying the identi-
fier analysis technique on JHotDraw yielded 230 concepts
and took about 31 seconds. This was when a threshold of 4
for the minimum number of methods in a reported concept
was used (i.e., when applying a filter that refuses all con-
cepts containing less than 4 methods sharing similar key-
words in their identifier). When conducting the experiment
again with a stricter threshold of 10 for that filter, the num-
ber of concepts produced was significantly reduced: only
100 concepts remained after filtering, for a similar execu-
tion time. Applying this stricter filter thus removed a lot
of the noise produced by the less strict filter, yet without
loosing too much interesting results. Nevertheless, given
that every concept grouped about 6 methods on average, the
amount of data to browse through by a user to validate the
results was still significant. (Note that with a threshold of 4,
not only were there many more concepts, the average num-
ber of methods per concept was higher as well: 17 instead
of 6). Therefore, in their comparison, Ceccato et al. [8]
concluded that the identifier analysis technique is probably
more useful as a technique to complement the sometimes
partial results proposed by other techniques, than as a stand-
alone technique.

4



Some tools also require certain user involvement to pro-
vide the tool with the appropriate input. This is for example
the case for the use case analysis technique [29] which takes
as input a set of use cases for the analysed software system.
Providing the tool with a relevant and appropriate set of use
cases is the tool user’s responsibility. For large applications,
this may require a significant amount of work.

3.5 Empirical validation

Description It is impossible for the discipline of aspect
mining to make further progress without empirical valida-
tion of the results. However, validating the quality of an as-
pect mining technique is an intrinsically difficult problem.
A good empirical validation of aspect mining techniques re-
quires the ability to measure the precision and recall of the
results, at different levels of granularity. The subjectivity
of the interpretation of the results, however, obstructs such
an empirical validation: analysing the results of a technique
or comparing it with the results of a different technique be-
comes subject to the researchers performing the experiment,
thus limiting the reproducibility of the results.

Furthermore, to demonstrate the scalability of the ap-
proach, user studies should be conducted. End users of
aspect mining techniques (e.g., the programmers of a sys-
tem on which the aspect mining is being applied) should
be involved in order to evaluate the actual usefulness and
usability of each proposed technique.

Example Most of the approaches we studied do not pro-
vide an empirical validation of their results but rather pro-
vide a more incidental validation of their work. They
demonstrate how particular interesting crosscutting con-
cerns can be identified using a specific technique. While
this can give an indication of the adeptness of the technique
for identifying crosscutting concerns, this does not provide
any quantitative information nor a sufficient basis for objec-
tive comparison of techniques.

One example of a successful empirical validation of an
aspect mining technique is the work of Bruntink et. al [7]
which we already discussed in Subsection 3.1. In their
work, they were able to compare the results of the min-
ing process with a version of the system that was manu-
ally annotated by the original developers, thus making an
empirical validation possible. In general however, a com-
mon benchmark for aspect mining techniques, containing a
complete and sound set of aspects over which there exists a
consensus is missing.

3.6 Other problems

In this subsection, we briefly mention some other prob-
lems related to aspect mining, but do not discuss them in
detail due to space limitations.

Comparability It has shown to be difficult to compare
the results of different techniques. There are differ-
ent causes to this problem: difference in granularity
(level of detail) of the results, difference in kinds of re-
sults (sometimes just method names, sometimes code
fragments, sometimes just methods being called, . . . ),
subjectivity in interpretation of the results, etc.

Composability Because of the observed limitations of
some aspect mining techniques, there is a desire to
combine the techniques of different researchers [8].
However, for reasons similar to those mentioned just
above, this is not that easy in practice.

Simple crosscutting concerns are not so simple In [5],
the implementation of the tracing concern in a large
industrial case was studied. Although tracing is
traditionally considered as a “simple” crosscutting
concern, it turned out that the idiom programmers
used to implement this concern exhibited remarkable
variability. This variability significantly hinders the
task of automatically mining instances of that concern
from the code. Although part of this variability is
accidental and due to typing errors or improper use of
idioms, a significant part of the variability turned out
to be essential. Therefore, aspect mining techniques
should explicitly take this variability into account to
mine for relevant aspect candidates. If even with a
“trivial” concern like tracing we already have such
variability, things will probably get worse when more
complex concerns are being investigated.

4 Analysis of the problems

By carefully analysing the above problems, we managed
to bring them back to three main root causes: inappropri-
ateness of the techniques used to mine for aspects, lack of a
precise definition of what constitutes an aspect, and inade-
quate representation of the aspect mining results.

4.1 Inappropriate techniques

A first important cause of many of the observed prob-
lems is that most current-day aspect mining approaches use
too simple techniques, not the right techniques, or the avail-
able techniques in a too simple way. Below we discuss a
variety of reasons we identified why current aspect mining
techniques are not well-suited at their job.

4.1.1 Too general-purpose

Most current aspect mining approaches rely on a general-
purpose mining technique in order to identify aspect seeds
or candidates. Consequently, such approaches may be too
general-purpose and result in poor performance.

5



Firstly, some of the approaches we studied make use of
traditional data mining techniques such as cluster analysis,
formal concept analysis or natural language processing in
order to group source-code entities that—according to some
similarity criterion—might belong to the same crosscutting
concern. In order to tweak these techniques to the partic-
ularities of aspect mining in general and the system that is
being analysed in particular, a considerable amount of ex-
pertise is required to fine-tune and customise the parameters
of the technique and the post-processing of the results. For
example, the choice of thresholds, applied filters, and so on
strongly depend on what particular technique is being used
and to what system it is being applied.

Secondly, most current aspect mining techniques are not
dedicated to finding instances of one particular crosscut-
ting sort, but rather mine the source code of a system for
any crosscutting concern. Due to the multitude of possi-
ble crosscutting sorts this assumption of a “one size fits all”
aspect mining technique appears to be too broad.

Instead, dedicated techniques that look for particular
kinds of crosscutting concerns may do a better job (with
higher precision and lower recall) of finding valid aspect
candidates because they can be fine-tuned to the particular-
ities of the concern sort they are interested in.

4.1.2 Too strong assumptions

All aspect mining techniques make certain assumptions
about how, for example, crosscutting concerns are imple-
mented in the source code, to identify groups of source-code
entities that exhibit the assumed symptom of crosscutting-
ness. Examples of such symptoms used by existing aspect
mining techniques are recurring call patterns, code duplica-
tion and high fan-in values. By relying too hard on these
assumptions, current aspect mining techniques tend to suf-
fer from two problems.

On the one hand, some techniques are too dependent on
or too tightly coupled with how the source code of a system
is structured. They only look for crosscutting concerns that
are revealed by a very specific way of how the concern itself
and its embedding base code are structured. Consequently,
these techniques will only detect those aspect candidates
that match this particular assumption. Unless a particular
aspect mining technique takes many different assumptions
into account, this will result in that a given technique only
finds a limited subset of the possible aspect candidates.

On the other hand, the assumptions made by a given
technique about the implementation of a particular kind of
crosscutting concern most often do not take possible vari-
ations in the crosscutting concern’s implementation into
account. As we already mentioned in Subsection 3.6, in
legacy systems even seemingly simple crosscutting con-
cerns are not always uniformly implemented. This lack of
homogeneity in the implementation of aspect candidates af-

fects the recall of aspect mining techniques. As such, even
crosscutting concerns that deviate only slightly from the as-
sumed implementation can be missed by a technique.

4.1.3 Too optimistic approaches

Most (if not all) techniques we are aware of are optimistic
approaches: they only search for symptoms in the source
code supporting the hypothesis that a code fragment is part
of an aspect or a crosscutting concern, but do not look for
symptoms supporting the anti-thesis that the fragment is not
part of an aspect or crosscutting concern. A code fragment
may exhibit all the right symptoms that make it look like it is
part of an aspect or crosscutting concern, but this hypothesis
may be invalidated by certain counter-arguments.

As an example of such a situation, consider the “Mov-
ing Figures” concern discussed in Section 3.3. This concern
was discovered by the three techniques mentioned there and
also by Krinke’s execution-relation analysis [17]. Similar to
fan-in analysis, Krinke’s execution-relation analysis discov-
ers it because a method Rectangle.translate is called in eight
instances of a basicMoveBy method (supports the hypothe-
sis). However, there are nine other instances of that method
which call Rectangle.translate for different purposes or not
at all (support of the anti-thesis). None of the four tech-
niques uses or even presents this information to the user.

4.1.4 Scattering versus tangling

Two main symptoms of the presence of aspects are scatter-
ing and tangling. While scattering is the phenomenon that
crosscutting code fragments tend to get spread throughout
the entire system, tangling is the phenomenon that some
cleanly localised core functionality may get cluttered with
these crosscutting code fragments.

Almost all aspect mining techniques focus exclusively
on detecting symptoms of scattering. While scattering
certainly is an indicator of crosscuttingness, it alone does
not suffice for correctly identifying valid aspect candidates.
This problem was exemplified nicely by the poor precision
and recall of some of the clone detection techniques men-
tioned in Subsection 3.1. It appeared that this was related
to the amount of tangling of the concerns. Clone detectors
achieved higher precision and recall for concerns that ex-
hibited relatively low tangling with other concerns or with
the base code, than for concerns that exhibited high tan-
gling. We conclude that the symptom of tangling is at least
as important to consider when mining for aspects.

Incorporating this notion of tangling into mining tech-
niques however is far from trivial. In order to approximate
tangling in the implementation, information about the dif-
ferent concerns that are present in the system is needed.
Since this information is often hard or impossible to ob-
tain, and is partly what we are mining for in the first place,

6



most current-day aspect mining techniques do not take this
symptom into account.

4.1.5 Lack of use of semantic information

While relying on symptoms of crosscutting concerns (like
scattering and tangling) makes it possible to identify po-
tential candidate aspects, as discussed above it also re-
sults in the introduction of poor precision and recall. Al-
though crosscutting concerns can often be characterised by
a particular symptom, we also saw that this does not nec-
essarily mean that all source-code entities exhibiting this
symptom are part a crosscutting concern. For example,
one wide-spread symptom of crosscuttingness is code du-
plication. While techniques that focus on finding some
form of code duplication can positively identify crosscut-
ting concerns, this code duplication can also identify non-
crosscutting concerns. In addition, aspects do not imply
crosscutting (depending on the definition of aspect that is
taken)2, hence these aspects are not discovered by most
techniques (since most techniques seem biased to looking
for symptoms of crosscutting).

Finally, without semantic knowledge it is hard to decide
how a crosscutting piece of code is coupled to the embed-
ding code. More semantic information on this coupling can
help in deciding whether the structurally crosscutting piece
of code is crosscutting in the aspect-oriented sense, and thus
represents a potential aspect candidate. This is not neces-
sarily the case. For example, as reported by Krinke [17], in-
stances of delegation are by some techniques (accidentally)
identified as being a potential crosscutting concern.

4.2 Imprecise definition

The second main cause of many of the problems we
encountered with current-day aspect mining techniques is
the lack of a sound and precise definition of what consti-
tutes an aspect or a crosscutting concern. Without a clear
and unambiguous definition of what we are mining for it is
hard to define and validate appropriate mining techniques.
While current-day techniques can identify the manifestation
of useful aspect candidates in the source code of a system,
the lack of a more formal definition causes the interpretation
of the results obtained by these techniques to be subjective
to the actual user of the technique. Consequently, this also
affects the ease with which it is possible to perform empiri-
cal validation of an aspect mining technique: validating the
correctness of a mining technique’s results is impossible if
it is not clear what it is exactly the technique tries to find.

Apart from the lack of a good definition there is the prob-
lem that many approaches seem to equate crosscuttingness

2For example, in AspectJ [18] it is easy to write an aspect that affects
only a single class or even a single joinpoint. The language by no means
imposes the aspect definitions to be crosscutting.

with aspects. In general, aspect mining techniques return
sets of source-code entities that—according to a particular
definition—are crosscutting and proposes these to the user
as aspect candidates. However, if the goal of the mining
process is to find crosscutting concerns that can be extracted
into aspects, this vision on aspect mining seems to be too
broad. When a particular piece of the code is identified as
belonging to a crosscutting concern, this does not necessar-
ily imply that this piece of code can or should be extracted
into an aspect. For example, many of existing techniques’
results include trivial crosscutting concerns for which it is
not interesting to extract them from the source code. Simi-
larly, as reported by [4, 23], the lack of a clear structural pat-
tern in the source code of a crosscutting concern or the way
it is implemented may require that classic object-oriented
refactorings of the code are necessary in order to extract it,
or that extraction into an aspect is not feasible.

The other problem with equating crosscuttingness with
aspects, as already mentioned in point 4.1.5, is that aspects
that do not have a crosscutting nature may be overlooked.

4.3 Inadequate representation of results

A final problem category is related to the representation
used for the results of an aspect mining technique. First, the
level of granularity at which the results of a technique are
represented can impact the quality and usability of the tech-
nique in several ways. If a too coarse granularity is used,
this may make it harder for users to discern whether a pro-
posed concern is indeed a valid candidate aspect. Providing
too much detail on the other hand can result in the user be-
ing overwhelmed by the amount of data he needs to process
in order to filter out the irrelevant information. However, if
the results of the mining process need to serve as input of
a extraction step, sufficient detailed information concerning
the joinpoints and their context should be returned.

In addition, not only the level of granularity, but also how
the results are presented to the user (method names, callees
and callers, shared code fragments, similar types used) may
be a cause of ambiguity because they force the user’s mind
in a certain direction. Finally, there is no standard represen-
tation format for representing the results of aspect mining
results, which makes it hard to compare or combine differ-
ent aspect mining techniques.

4.4 Conclusion

We identified three main causes that seem to lie at the
root of many of the analysed problems in Section 3. These
causes are somewhat overlapping in the sense that even if
two of these causes are taken away, some problems will
still remain because of the third cause. For example, even
if there would exist a precise definition of aspects and an

7



Cause: Inappropriate techniques Imprecise Inadequate represen-
too general too strong too optimistic no attention lack of use definition tation of results

purpose assumptions approaches to tangling of sem. info
Problem:
Poor precision - (+) - - - - -

Poor recall (+) - (+) - - -
Subjectivity - - -
Scalability (-) (+) (-) (-) (+) (-) - (-)

Empir. valid. - -
Comparability - -
Composability - -

Table 2. Aspect mining problems and their causes

adequate and standard representation of results, the use of
an inappropriate technique would still lead to low quality
results. A second observation is that, with the notable ex-
ception of the lack of consideration for the symptom of tan-
gling, none of these causes seem specific to the problems
encountered with aspect mining but are relevant to any kind
of pattern mining technique. However, the problems are es-
pecially present for aspect mining due to the (still) relative
immaturity of this research area.

Table 2 summarises the impact of the different causes
identified above on the problems listed in Section 3. A ‘-’
sign indicates a negative impact, most of which have been
discussed above. The ‘-’ sign is put between parentheses
when the negative impact is less direct. A ‘(+)’ sign in-
dicates a positive impact. We put it between parentheses
because our main focus is on the problems and their causes.

Having already discussed the most obvious negative im-
pacts in the previous subsections, we distil our main find-
ings here. First of all, we observe that all causes negatively
affect precision, recall or both. Indeed, it is not surprising
that limitations in either the technique, definition or repre-
sentation of the results tend to lower the quality of the re-
sults. Secondly, the absence of a precise definition of what
constitutes an aspect, the lack of use of semantic informa-
tion as well as the inadequacy of how results are represented
are potential causes for most of the observed problems.

Other negative impacts are less direct. For example,
techniques with poor precision tend to be less scalable sim-
ply because they produce more false positives that need to
be analysed by the user.

Finally, we can see from Table 2 that some causes may
positively affect some observed problems. For example, in
contrast to a dedicated mining technique that tries to find in-
stances of certain kinds of aspects or crosscutting concerns
only, a general-purpose technique may improve the recall.
Too optimistic approaches may positively influence the re-
call as well, simply because they impose less restrictions.
In contrast, a technique that makes very strong assumptions
about the source code may have a higher precision, at the
cost of a lower recall. This is the well-known trade-off be-
tween precision and recall. Scalability too may be posi-

tively affected by techniques that make very strong assump-
tions, simply because they limit the number of results pro-
duced. Since using more semantic information may require
a more detailed source code analysis, the lack of using such
information can positively influence scalability.

5 Discussion

In this final section we take a step back from the prob-
lems encountered with aspect mining techniques and our
analysis of the causes of these problems, and distil some
important lessons for future aspect mining techniques.

Concern-awareness A first important observation to be
made is that the desired quality (e.g., in terms of precision
and recall) of an aspect mining technique depends on what
you want to achieve with it. If your goal is to get an initial
understanding of the crosscutting nature of a software sys-
tem, then poor precision and poor recall are not necessarily
dramatic. If, on the other hand, your goal is to automati-
cally migrate a non aspect-oriented legacy system into an
aspect-oriented one through automated aspect mining and
subsequent aspect refactoring, then a much more rigourous
aspect mining approach is essential.

Before doing such a migration it is important to decide
whether there is an actual need to do so. It is clear that ap-
plying an aspect mining technique can support system com-
prehension by identifying the crosscutting concerns in the
source code and where they are located. But is it neces-
sary to refactor the system in such a way that the crosscut-
ting concerns are replaced by aspects? Are the crosscutting
concerns present in the system really hampering software
quality? Until now, there is insufficient support for the the-
sis that extraction of crosscutting concerns and replacement
by aspects does improve the understandability, quality or
maintainability of a system.

Consider the analogy with the problem of clone detec-
tion. For years, the presence of code clones has been con-
sidered as an obstacle to software maintainability, and re-
search has looked at techniques to automatically discover

8



and refactor code clones and replace them by functions or
macros. Today, the pendulum swings in the other direc-
tion again with recent publications claiming that the pres-
ence of clones alone is not necessarily bad [15] and that
clone-aware development environments [9] that support the
developer and maintainer could be a better approach. Simi-
larly, aspect mining could focus on concern-aware environ-
ments [22] that allow developers to understand and docu-
ment the concerns in their system without necessarily hav-
ing to transform them into actual aspects.

Improved aspect mining techniques Probably the most
important improvement would be the use of more intelli-
gent mining techniques that go beyond the search for purely
structural patterns in source code. Mining techniques could
be made more appropriate by taking more semantic infor-
mation into account, by looking at symptoms of tangling in
addition to scattering, by taking negative information (sup-
port for the anti-thesis) into account, and so on.

Some authors have suggested to combine aspect mining
techniques to improve the overall result. However, a mere
combination of techniques may not suffice as it does not
solve the underlying problems. Also, a combination is cur-
rently not easy because of the composability problem.

Paying more attention to how the results of a technique
are presented may be beneficial for avoiding subjectivity in
interpretation (and thus improving the precision), and for
being able to validate the technique or to compare and com-
bine it with other techniques.

Dedicated aspect mining techniques It is doubtful
whether a single aspect mining technique can be conceived
that identifies the complete range of aspects with high pre-
cision and recall. Future aspect mining techniques may be
better of targeting specific classes of aspects, ranging from
development aspects to complex production aspects.

To do so, they should be very precise on what kinds of
aspects or crosscutting concerns they can and cannot iden-
tify. This will decrease the problems of subjectivity, scal-
ability, validation, comparability and composability, and at
the same time make it easier to fine-tune the technique so
that it achieves higher precision and recall.

To allow for a methodological way of comparing and
combining the large number of aspect mining techniques
that have been proposed in literature, Marin et. al. [19] pro-
pose a common framework, based on crosscutting concern
sorts, that allows for a consistent evaluation, comparison
and combination of aspect mining techniques. Many of the
problems listed in Section 3 were explicitly part of their mo-
tivation for developing such a framework.

Similarity with design pattern mining It is worthwhile
to note similarities with design recovery tools [13] and de-

sign pattern mining in particular, where systems are mined
for occurrences of (specified) design patterns. Most ap-
proaches in design pattern mining analyse a structural rep-
resentation of a system for instances of specific structural
patterns. Interestingly, authors report problems similar to
the ones we have identified. Usually, the approaches have
low precision and recall. A comparison of three design pat-
tern mining tools [11] also revealed that, because design
patterns are not defined formally, different tools found dif-
ferent design pattern instances mostly because of their dif-
ferent pattern definitions. Also, the use of different min-
ing algorithms resulted in differences in the output. A final
observation is that the need for more intelligent techniques
has been recognised by the design pattern mining commu-
nity too. An example of such an improved technique is the
combination of design pattern mining with machine learn-
ing [10] to filter out false hits. Such an approach is promis-
ing for aspect mining too, because it enables to increase the
precision by making the approaches less optimistic.

Stable semantic foundation Most approaches for aspect
mining seem biased by the AspectJ style of aspect-oriented
programming, where pointcuts are purely based on syntac-
tic events. Moreover, AspectJ has been criticised recently
for its lack of semantic foundation [26]. All aspect mining
approaches suffer from this as they cannot base the mining
on a stable semantic foundation.

To conclude, in spite of all research efforts that have
been devoted to aspect mining in recent years, many prob-
lems still abound. We highlighted some of those problems
and their root causes and observed that aspect mining re-
searchers would benefit from a more stable semantic foun-
dation; should define more precisely what exactly they are
mining for and tailor their technique to that definition; and
should pay more attention to how the results are represented
by their technique. They would also benefit from a common
framework for consistent evaluation, comparison and com-
bination of different aspect mining techniques.

Acknowledgements

This research is partly funded by the Interuniversity Attraction
Poles Programme - Belgian State - Belgian Science Policy. Andy
Kellens is funded by a research grant provided by the “Institute
for the Promotion of Innovation through Science and Technology
in Flanders” (IWT Vlaanderen).

References

[1] E. Baniassad and S. Clarke. Theme: An approach for aspect-
oriented analysis and design. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 158–167, 2004.

9



[2] E. Baniassad, P. C. Clements, J. Araujo, A. Moreira,
A. Rashid, and B. Tekinerdogan. Discovering early aspects.
IEEE Software, 23(1):61–70, January-February 2006.

[3] L. Bass, M. Klein, and L. Northrop. Identifying aspects
using architectural reasoning. Position paper presented at
Early Aspects 2004: Aspect-Oriented Requirements Engi-
neering and Architecture Design, Workshop at Int’l Conf.
Aspect-Oriented Software Development (AOSD), 2004.

[4] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella. Automated refactoring of object oriented code
into aspects. In Proc. Int’l Conf. Software Maintenance
(ICSM), pages 27–36, 2005.

[5] M. Bruntink, M. DHondt, A. van Deursen, and T. Tourwé.
Simple crosscutting concerns are not so simple: Analysing
variability in large-scale idioms-based implementations. In
Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 199 – 211, 2007.

[6] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. An evaluation of clone detection techniques for
identifying crosscutting concerns. In Proc. Int’l Conf. Soft-
ware Maintenance (ICSM), pages 200–209, 2004.

[7] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. On the use of clone detection for identifying
cross cutting concern code. IEEE Computer Society Trans.
Software Engineering, 31(10):804–818, 2005.

[8] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwé. Applying and combining three different aspect
mining techniques. Software Quality Journal, 14(3):209–
231, September 2006.

[9] E. Duala-Ekoko and M. P. Robillard. Tracking code clones
in evolving software. In Proc. Int’l Conf. Software Engineer-
ing (ICSE), pages 158–167, 2007.

[10] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele. Design pat-
tern mining enhanced by machine learning. In Proc. Int’l
Conf. Software Maintenance (ICSM), pages 295–304, 2005.

[11] L. J. Fulop, T. Gyovai, and R. Ferenc. Evaluating C++ de-
sign pattern miner tools. In Proc. Workshop Source Code
Analysis and Manipulation (SCAM), pages 127–138, 2006.

[12] W. Griswold, Y. Kato, and J. Yuan. Aspect browser:
Tool support for managing dispersed aspects. In Workshop
on Multi-Dimensional Separation of Concerns in Object-
oriented Systems, 1999.

[13] Y.-G. Gueheneuc, K. Mens, and R. Wuyts. A comparative
framework for design recovery tools. In Proc. European
Conf. Software Maintenance and Reengineering (CSMR),
pages 123–134. IEEE Computer Society, 2006.

[14] J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition in legacy code. In Workshop on Advanced
Separation of Concerns, Int’l Conf. Software Engineering
(ICSE), 2001.

[15] C. Kapser and M. W. Godfrey. “Cloning considered harm-
ful” considered harmful. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 19–28, 2006.

[16] A. Kellens, K. Mens, and P. Tonella. A survey of auto-
mated code-level aspect mining techniques. Trans. Aspect-
Oriented Software Development (TAOSD), pages 145–164,
2007.

[17] J. Krinke. Mining execution relations for crosscutting con-
cerns. IET Software, 2(2):65–78, Apr. 2008.

[18] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications, 2003.

[19] M. Marin, L. Moonen, and A. van Deursen. A common
framework for aspect mining based on crosscutting concern
sorts. In Proc. Working Conf. Reverse Engineering (WCRE),
pages 29–38, 2006.

[20] M. Marin, L. Moonen, and A. van Deursen. Soquet: Query-
based documentation of crosscutting concerns. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 758–761, 2007.

[21] M. Marin, A. van Deursen, and L. Moonen. Identifying as-
pects using fan-in analysis. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 132–141, 2004.

[22] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views — a case study.
Journal on Computer Languages, Systems and Structures,
32(2–3):140–156, July-October 2006.

[23] M. P. Monteiro and J. M. Fernandes. Object-to-aspect refac-
torings for feature extraction. In Proc. Int’l Conf. Aspect-
Oriented Software Development (AOSD), 2004.

[24] A. Rashid, P. Sawyer, A. M. D. Moreira, and J. Araújo. Early
aspects: A model for aspect-oriented requirements engineer-
ing. In Joint Int’l Conf. Requirements Engineering (RE),
pages 199–202, 2002.

[25] M. P. Robillard and G. C. Murphy. Concern graphs: Find-
ing and describing concerns using structural program depen-
dencies. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 406–416, 2002.

[26] F. Steimann. The paradoxical success of aspect-oriented
programming. In Proc. ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 481–497, 2006.

[27] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees
of separation: multi-dimensional separation of concerns. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 107–
119, 1999.

[28] B. Tekinerdogan and M. Aksit. Deriving design aspects
from canonical models. In S. Demeyer and J. Bosch, edi-
tors, Workshop Reader of the 12th European Conf. Object-
Oriented Programming (ECOOP), Lecture Notes in Com-
puter Science, pages 410–413, 1998.

[29] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. In Proc. Working
Conf. Reverse Engineering (WCRE), 2004.

[30] T. Tourwé and K. Mens. Mining aspectual views using for-
mal concept analysis. In Proc. Workshop Source Code Anal-
ysis and Manipulation (SCAM), 2004.

[31] C. Zhang and H. Jacobsen. Extended aspect mining tool.
http://www.eecg.utoronto.ca/∼czhang/amtex, 2002.

[32] C. Zhang and H.-A. Jacobsen. PRISM is research in as-
pect mining. In Proc. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOP-
SLA), pages 20–21, 2004.

[33] C. Zhang and H.-A. Jacobsen. Efficiently mining crosscut-
ting concerns through random walks. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages
226–238, 2007.

10


