
SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 1

Software variation by means of first-class
change objects

Peter Ebraert, Leonel Merino, Theo D’Hondt
Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.

Abstract—A growing trend in software construction advocates the encapsulation of software building blocks as features which better
match the language of requirements. As a result, programmers find it easier to design and compose different variations of their systems.
Feature oriented programming (FOP) is the study domain that targets this trend. We argue that the state-of-the-art techniques for FOP
have shortcomings because they specify a feature as a set of building blocks rather than a transition that has to be applied on a software
system in order to add that feature’s functionality to the system. We propose to specify features as sets of first-class change objects
which can add, modify or delete building blocks to or from a software system. We present ChEOPS, a proof-of-concept implementation
of this approach and use it to show how our approach contributes to FOP on three levels: expressiveness, composition verification and
bottom-up development.

F

1 SOFTWARE PRODUCT LINING

CUSTOMERS are becoming more and more demand-
ing and cost-conscious. They want specific products

that exactly cope with their needs at the lowest cost
possible. From the producers point of view, these two
requirements are usually conflicting. The development
of a specific product for one client takes a lot of time and
will consequently be more expensive. The development
of a more generic product is cheaper but usually does
not exactly cope with the specific needs of the customer.

In order to find the golden mean of both requirements,
producers tend to use a business strategy called product
lining: offering for sale several related products of var-
ious sizes, types, colors, qualities or prices. The more
variations the product line offers, the more specific and
expensive it’s products tend to get. The fewer variations
the product line contains, the cheaper and less specific
it’s products become. Adopting this business strategy,
the producer’s goal boils down to the maximisation of
the number of variations at the lowest possible cost.

Software companies are the producers of either pure
software products or products with an important soft-
ware component (embedded systems). Driven by con-
sumer’s demand, they are also forced to increase vari-
ability of their products. Over the last decade, the man-
agement of this variability has become a major bottle
neck in the development, maintenance and evolution of
software products. Next to that, many companies do not
even reach the desired level of variability or fail to do
so in a cost efficient manner. An explanation of this can
be found in the development approaches used by those
companies.

• E-mail: {pebraert},{lmerinod},{tjdhondt}@vub.ac.be

Research funded by a doctoral scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT Vlaanderen).

A fundamental problem with many current develop-
ment approaches is that they view systems from the per-
spective of producers, rather than consumers. Producers
tend to specify their systems in terms of software building
blocks while the consumers tend to specify requirements
primarily in terms of features. This mismatch complicates
variability, since there is no direct mapping between
a composition of features and the software building
blocks that implement that composition. Recent research
in software construction increasingly reects a common
theme: the need to realign modules around features
rather than software building blocks [1].

Feature Oriented Programming (FOP) is the study of
feature modularity, where features are raised to first-
class entities [2]. In FOP, features are basic building
blocks, which satisfy intuitive user-formulated require-
ments on the software system. A software product is
built by composing features. Many case studies show
that FOP is an appropriate technique to cope with the
problems stated above (e.g. [3], [4], [5], [6]).

The following section briefly explains FOP, the state-
of-the-art approaches to FOP and their limitations. Sec-
tion 3 proposes an alternative way to specify features
and shows how this overcomes the limitations that were
pointed out in Section 2. Section 4 shows the advantages
of specifying feature with first-class changes. Conclu-
sions and future work are pointed out in Section 5.

2 FEATURE ORIENTED PROGRAMMING

Pioneer work on software modularity was made in the
70’s by Parnas [7] and Dijkstra [8]. Both have proposed
the principle of separation of concerns that suggests to
separate each concern of a software system in a separate
modular unit. According to these papers, this leads to
maintainable, comprehensible software that can easily be

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 2

reused, configured and extended. FOP is an implemen-
tation of that idea that modularises every concern as a
separate features.

Mixin Layers are an appropriate technique to imple-
ment features [9]. A Mixin Layer is a static compo-
nent encapsulating fragments of several different classes
(Mixins) so that all fragments are composed consistently.
Advantages are a high degree of modularity and an
easy composition. AHEAD is an architectural model
for FOP and a basis for large-scale compositional pro-
gramming [10]. The AHEAD Tool Suite (ATS), including
the Jak language, provides a tool chain for AHEAD
based on Java. FeatureC++ is a programming language
that supports FOP for C++ [11]. It extends the Mixin
Layers approach with Aspectual Mixin Layers which
can overcome issues with the crosscutting modularity of
features. Composition Filters provide a set of filters that
allow a modular and orthogonal extension of classes [12].
A modular extension means that a filter can be attached
to a class without necessarily modifying the definition of
that class. Orthogonal extension means that each filter
extension to a class is independent from other filter
extensions. This allows easy composition of multiple
filters.

All four state-of-the-art approaches to FOP implement
features by cross-cuts that are modifications or extensions
to multiple software building blocks. While aspects in
aspect-oriented programming (AOP) [13] focus on the
quantification – by specifying predicates that identify
join points at which to insert code, feature implemen-
tations are actually much closer to framework designs.
That is, to add a feature to a framework, there are
predefined building blocks that are to be extended or
modified. In such designs, there is little or no quantifi-
cation, but there are indeed ”cross-cuts” [10].

The problem that we see with all approaches to FOP,
is that they all specify a feature by a set of building
blocks, rather than by a program transition that modifies
a program is such a way that the functionality – that that
feature implements – is added. In [10], Batory already
pointed out that a feature can be looked at as a function
that is applicable on a base (a set of program building
blocks). The application of a feature on a base yields
that the base is extended or modified with the building
blocks specified by that feature. From that point of view,
a software composition is a sequence of applied features
to one base. AHEAD [10] is an algebra that formalises
how features can be composed as functions.

We strongly agree with that vision, but find that
features should not be limited to extend or modify
existing programs. In some situations, a feature should
also be able to remove building blocks from a program.
Examples of such cases include anti-features, the creation
of a demo-application (which consists of all features,
but only to a certain extent), or the customisation of
certain features so that the software system matches
some specific hardware.

3 CHANGE AS FIRST-CLASS OBJECTS

Together with us [14], other researchers also pointed out
the use of encapsulating change as first-class entities.
In [15] Robbes shows that the information from the
change objects provides a lot more information about
the evolution of a software system than the central code
repositories. In [16] Denker shows that first-class changes
can be used to define a scope for dynamic execution
and that they can consequently be used to adapt active
software systems. In this section, we first explain a model
of first-class changes and then show how these changes
can be used to specify features.

3.1 Model for software building blocks

FAMIX stands for FAMOOS Information Exchange Model
and was created to support information exchange be-
tween interacting software analysis tools by capturing
the common features of different object-oriented pro-
gramming languages needed for software re-engineering
activities [17], [18], [19]. It provides a generic model
to wich most class-based programming languages (e.g.
Java, C++, Ada, Smalltalk) adhere. Figure 1 shows that
the core of the FAMIX model consists of Classes, Meth-
ods, Attributes and relations between them.

Fig. 1. Famix - Core Model

3.2 Model of changes

While the FAMIX model expresses the different possible
building blocks of a software system, the model of
changes expresses the different kinds of change oper-
ations that can be applied on those subjects. The UML
class diagram of the model’s core is presented in Fig-
ure 2.

The building blocks that are specified by the FAMIX
model (FamixObject) form the Subject of the change.
We identify three possible commands on those subjects:
the addition, the removal and the modification of the
building block. We model those commands with the
classes Add, Remove and Modify respectively. Together,
they form the concrete commands of the Command
design pattern [20]. The Atomic Change class plays
the role of the abstract Command class in the Com-
mand design pattern. Next to that, it also fullfils the
responsibilities of the Leaf participant in the Composite
design pattern [20]. A Composite Change is composed

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 3

of Changes (which can in their turn be of any change
kind). We do not elaborate on the difference between
atomic and composite changes in this paper due to space
constraints.

apply
undo

Add

apply
undo

Modify

apply
undo

Remove

apply
undo

Atomic
Change

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

composites

apply
undo

Composite
Change

apply
undo

timeStamp
isApplied
intent
user

Change

dependentChanges

changeSubject

changesOnWhichIDepend

parent
affectingChanges

Fig. 2. ChEOPS - Core Model

The figure shows a dependency relation between the
change objects, that is explained deeper in the follow-
ing section. Note that, thanks to the granularity of the
FAMIX model, our model allows the specification of
changes on the level of granularity of invocations and
accesses (below statement level). For more information
about the model of changes, we refer to [21].

3.3 Change-oriented programming
In [14] and [22] we propose change-oriented program-
ming (ChOP): an approach that centralises change as the
main development entity. Examples of developing code
in a change-oriented way can be found in most inter-
active development environments (IDE): the creation of
a class though interactive dialogs or the modification of
the code by means of an automated refactoring.

Change and evolution oriented programming support
(ChEOPS) is an IDE plugin for VisualWorks, which we
created as a roof-of-concept implementation of ChOP.
ChEOPS fully supports change-oriented programming
but also has the capability of logging developers devel-
oping code in the standard OO way. Behind the screens,
ChEOPS produces fine-grained first-class change objects
that represent the actions taken by the developer.

Fig. 3. Buffer: (left) source code (right) change objects

Figure 3 shows the source code (on the left) and the
changes (on the right) of a Buffer. The change objects
are identified by a unique number: B1 is a change that
adds a class Buffer, B1.2.1 is a change that adds an

access of the instance variable buf. The dependencies
between change objects are also maintained by ChEOPS:
B1.2.1 depends on the change that adds the method to
which buf is added (B1.2) and on the change that adds
the instance variable that it accesses (B1.1).

We distinguish between two kinds of dependencies:
syntactic dependencies – imposed by the meta-model
of the used programming language and exemplified
above – and semantic dependencies – that depend on
domain knowledge. ChEOPS supports the former in an
automatic way and the latter by allowing the grouping
of change objects in sets that represent features – denoted
by the rounded squares surrounding change objects.

Fig. 4. Buffer, Restore, Log features: (left) source code
(right) change objects

Figure 4 shows two extra features: Restore allows the
buffer to restore its previous value, Logging makes sure
that all methods of the buffer are logged when executed.
Notice the dashed line surrounding Logging’s changes:
It not only denotes that these changes implement the
Logging feature, but also that Logging is a flexible fea-
ture. The difference between flexible (dashed lines) and
monolithic features (full lines) is that the latter can only
be applied as a whole, while the former can be applied
partially. This semantic information is used to verify
whether a feature composition is valid, as elaborated on
in the next section.

4 ADVANTAGES FOR SOFTWARE VARIATION

We see three advantages in the specification of features in
terms of fine-grained first-class change objects: increased
expressiveness, improved composability and a novel bottom-
up approach to FOP.

In comparison with state-of-the-art approaches to FOP,
which allow the specification of features as a set of
program building blocks that might extend or modify
existing building blocks, our approach allows a more ex-
pressive feature specification. Features do not only express
the building blocks that implement a feature, but also
how that feature can be added to a composition. Next

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 4

to that, features can express changes below statement
level, which is more fine-grained than the state-of-the-
art. Finally, features can include the deletion of building
blocks, which is not supported by the state-of-the-art.

The dependencies between change objects provide the
fine-grained information that is required to verify whether
a certain feature composition is valid. In this model, a
feature composition is valid if the union of the change
sets of the features in that composition does not contain
a change that has a dependency to a change object that
is not in the composition. In case we want to make a
composition of Buffer and Logging, L12 and L15
would form a problem as they respectively depend
on R1 and R2 which are not in the composition. The
semantic information stating that the Logging feature is
flexible, allows the exlusion of L12 and L15 from the
composition. This results in a valid composition {B1,
B11, B12, B13, B121, B131, L1, L11, L13, L14} that
specifies a buffer with a logging feature.

The final advantage of specifying features by change
objects is that it enables a methodology for a bottom-
up approach to FOP. Instead of having to specify a
complete design of a feature oriented application before
implementing it (top-down), our approach allows the
development of such an application in an incremental
way. Some state-of-the-art approaches also provide an
implementation of this bottom-up approach. In [23], Liu
shows that ATS can be used to do so by manually
annotating all building blocks with information that
denotes the feature that building block belongs to. That
is a tedious task in comparison to our approach.

5 CONCLUSIONS

In this paper, we advocate feature oriented program-
ming (FOP) as the right development technique for
software companies to provide variation in their soft-
ware products for satisfying the demand of customers
who are becoming more and more demanding and cost-
conscious. We find the state-of-the-art approaches to
FOP not satisfactory and present an alternative approach
based on the specification of features by sets of change
objects rather than program building blocks. Features are
functions that can be applied to add the functionality
they implement.

We present a model of first-class changes which can
add, modify or delete building blocks to or from a
software system. We propose to specify features in terms
of those first-class changes. This increases the expres-
siveness of features as they can specify adaptations to
fine-grained building blocks (classes, methods, attributes
and statements). The dependencies between the change
objects provide the necessary fine-grained information
to validate feature compositions. Finally, this way of
specifying features allows a bottom-up approach to do
FOP.

REFERENCES

[1] M. Kratochvı́l and C. Carson, Growing Modular. Mass Customization
of Complex Products, Services and Software. Springer, March 2005,
no. 3540239596.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-
wise refinement,” in ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 187–197.

[3] A. Brown, R. Cardone, S. McDirmid, and C. Lin, “Using mixins
to build flexible widgets,” in Proc. 1st Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2002), G. Kiczales, Ed. ACM Press,
2002, pp. 76–85.

[4] D. Batory and S. O’Malley, “The design and implementation of
hierarchical software systems with reusable components,” ACM
Trans. Softw. Eng. Methodol., vol. 1, no. 4, pp. 355–398, 1992.

[5] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, “Creating
reference architectures: an example from avionics,” in SSR ’95:
Proceedings of the 1995 Symposium on Software reusability. New
York, NY, USA: ACM, 1995, pp. 27–37.

[6] D. Batory and J. Thomas, “P2: A lightweight dbms generator,”
University of Texas at Austin, Austin, TX, USA, Tech. Rep., 1995.

[7] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Comm. ACM, vol. 15, no. 12, pp. 1053–1058, dec
1972.

[8] E. W. Dijkstra, A discipline of programming. Englewood Cliffs,
New Jersey: Prentice-Hall, 1976.

[9] Y. Smaragdakis and D. Batory, “Mixin layers: An object-oriented
implementation technique for refinements and collaboration-
based designs,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 11, no. 2, pp. 215–255, 2002.

[10] D. S. Batory, “A tutorial on feature oriented programming and
the ahead tool suite,” in GTTSE, 2006, pp. 3–35.

[11] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “Featurec++: On
the symbiosis of feature-oriented and aspect-oriented program-
ming,” in GPCE, ser. Lecture Notes in Computer Science, R. Glück
and M. R. Lowry, Eds., vol. 3676. Springer, 2005, pp. 125–140.

[12] L. Bergmans and M. Akşit, “Composing crosscutting concerns
using composition filters,” Comm. ACM, vol. 44, no. 10, pp. 51–57,
2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in 11th
Europeen Conf. Object-Oriented Programming, ser. LNCS, M. Akşit
and S. Matsuoka, Eds., vol. 1241. Springer Verlag, 1997, pp. 220–
242.

[14] P. Ebraert, J. Vallejos, P. Costanza, E. V. Paesschen, and T. D’Hondt,
“Change-oriented software engineering,” in ICDL ’07: Proceedings
of the 2007 international conference on Dynamic languages. New
York, NY, USA: ACM, 2007, pp. 3–24.

[15] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Electronic Notes in Theoretical Computer Science, pp. 93–
109, 2007.

[16] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz, L. Renggli,
and P. Zumkehr, “Encapsulating and exploiting change with
changeboxes,” in ICDL ’07: Proceedings of the 2007 international
conference on Dynamic languages. New York, NY, USA: ACM,
2007, pp. 25–49.

[17] S. Demeyer, S. Tichelaar, and P. Steyaert, “FAMIX 2.0 - the
FAMOOS information exchange model,” University of Berne,
Tech. Rep., 1999.

[18] S. Ducasse and S. Demeyer, The FAMOOS Object-Oriented Reengi-
neering Handbook. University of Bern, 1999.

[19] S. Tichelaar, “Modeling object-oriented software for reverse engi-
neering and refactoring,” Ph.D. dissertation, University of Bern,
2001.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley, 1994.

[21] P. Ebraert, B. Depoortere, and T. D’Hondt, “A meta-model for
expressing first-class changes,” in Proceedings of the Third Interna-
tional ERCIM Symposium on Software Evolution, T. Mens, K. Mens,
E. V. Paesschen, and M. D’Hondt, Eds., October 2007.

[22] P. Ebraert, E. V. Paesschen, and T. Dı́Hondt, “Change-oriented
round-trip engineering,” Vrije Universiteit Brussel, Tech. Rep.,
2007.

[23] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring
of legacy applications,” in ICSE ’06: Proceedings of the 28th inter-

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 5

national conference on Software engineering. New York, NY, USA:
ACM, 2006, pp. 112–121.

