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Abstract

A growing trend in software construction advocates the
encapsulation of software building blocks as features which
better match the specification of requirements. As a result,
programmers find it easier to design and compose different
variations of their systems. Feature-oriented programming
(FOP) is the research domain that targets this trend. We ar-
gue that the state-of-the-art techniques for FOP have short-
comings because they specify a feature as a set of build-
ing blocks rather than a transition that has to be applied
on a software system in order to add that feature’s func-
tionality to the system. We propose to specify features as
sets of first-class change objects which can add, modify or
delete building blocks to or from a software system. We
present ChEOPS, a proof-of-concept implementation of this
approach and use it to show how our approach contributes
to FOP on three levels: expressiveness, composition verifi-
cation and bottom-up development.

1 Feature oriented programming

Pioneering work on software modularity was made in
the 70’s by Parnas [17] and Dijkstra [10]. Both have pro-
posed the principle of separation of concerns that suggests
to separate each concern of a software system in a separate
modular unit. According to these papers, this leads to main-
tainable, comprehensible software that can easily be reused,
configured and extended. Feature Oriented Programming
(FOP) is an implementation of that idea that modularises
every concern as a separate feature. In FOP features are
the basic building blocks that are raised to first-class enti-
ties [4]. They satisfy intuitive user-formulated requirements
on the software system. A software product is built by com-
posing features. Many case studies show that FOP is an ap-
propriate technique to compose many variations of the same
software product ( e.g. [8, 3, 2, 5] ).

Aspect-oriented programming (AOP) [14] is another im-
plementation of that idea. Aspects focus on the quantifica-

tion – by specifying predicates that identify join points at
which to insert code, feature implementations are actually
much closer to framework designs. That is, to add a feature
to a framework, there are predefined building blocks that are
to be extended or modified. In such designs, there is little
or no quantification, but there are indeed ”cross-cuts” [6].
Mixin Layers [19], AHEAD [6], FeatureC++ [1], Compo-
sition Filters [7] and Delegation Layers [16] are all state-
of-the-art approaches to FOP that implement features by
cross-cuts that are modifications or extensions to multiple
software building blocks.

The problem that we see with all approaches to FOP, is
that they all specify a feature by a set of building blocks,
rather than by a program transition that modifies a program
is such a way that the functionality – that that feature imple-
ments – is added. In [6], Batory already pointed out that a
feature can be looked at as a function that is applicable on a
base (a set of program building blocks). The application of
a feature on a base yields that the base is extended or modi-
fied with the building blocks specified by that feature. From
that point of view, a software composition is a sequence of
applied features to one base. AHEAD [6] is an algebra that
formalises how features can be composed as functions.

We strongly agree with that vision, but find that features
should not be limited to extend or modify existing pro-
grams. In some situations, a feature should also be able
to remove building blocks from a program. Examples of
such cases include anti-features (a functionality that a de-
veloper will charge users to not include, the creation of a
demo-application which consists of all features but only to
a certain extent, or the customisation of certain features so
that the software system copes with specific hardware re-
quirements (e.g. limited memory or computation power).

2 Change as first-class objects

Together with us, other researchers pointed out the use of
encapsulating change as first-class entities. In [18] Robbes
shows that the information from the change objects provides
a lot more information about the evolution of a software



system than the central code repositories. In [9], Denker
shows that first-class changes can be used to define a scope
for dynamic execution and that they can consequently be
used to adapt running software systems. In this section, we
first explain a model of first-class changes and then show
how these changes can be used to do FOP.

2.1 Model of changes

We use the FAMIX model [20] to express the building
blocks of a software system. We chose FAMIX since it pro-
vides a generic model to wich most class-based program-
ming languages (e.g. Java, C++, Ada, Smalltalk) adhere.
Figure 1 shows that the core of the FAMIX model consists
of Classes, Methods, Attributes and relations between them.

Figure 1. Famix - Core Model

The model of changes expresses the different kinds of
change operations that can be applied on those building
blocks. The UML class diagram of the model’s core is
presented in Figure 2. The building blocks that are spec-
ified by the FAMIX model (FamixObject) form the
Subject of an Atomic Change. We identify three
possible commands on those subjects: the addition, the
removal and the modification of the building block. We
model those commands with the classes Add, Remove and
Modify respectively. A Composite Change is com-
posed of Changes (which can in their turn be of any
change kind). An elaborated discussion about atomic and
composite changes is is omitted because it does not resides
in the scope of this paper.

The figure shows a dependency relation between the
change objects, that is explained deeper in the following
section. Note that, thanks to the granularity of the FAMIX
model, our model allows the specification of changes on
the level of granularity of invocations and accesses (below
method level). For more information about the model of
changes, we refer to [11].

2.2 Change-oriented programming

In [12] and [13] we propose change-oriented program-
ming (ChOP): an approach that centralises change as the
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Figure 2. ChEOPS - Core Model

main development entity. Some examples of developing
code in a change-oriented way can be found in most inter-
active development environments (IDE): the creation of a
class through interactive dialogs or the modification of the
code by means of an automated refactoring. ChOP goes fur-
ther than that, however, as it requires all building blocks to
be created, modified and deleted in a change-oriented way
(e.g. adding a method to a class, removing a statement from
a method, etc).

Change and evolution oriented programming support
(ChEOPS) is an IDE plugin for VisualWorks, which we
created as a proof-of-concept implementation of ChOP.
ChEOPS fully supports ChOP but also has the capability
of logging developers producing code in the standard OO
way. Behind the scenes, ChEOPS produces fine-grained
first-class change objects that represent the development ac-
tions taken by the developer.
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Figure 3. Buffer: (left) source code (right)
change objects

Figure 3 shows the source code (on the left) and the
changes (on the right) of a Buffer. The change objects
are identified by a unique number: B1 is a change that adds
a class Buffer, B1.2.1 is a change that adds an access
of the instance variable buf. The dependencies between
change objects are also maintained by ChEOPS: B1.2.1
depends on the change that adds the method to which buf
is added (B1.2) and on the change that adds the instance
variable that it accesses (B1.1).

We distinguish between two kinds of dependencies: syn-



tactic dependencies – imposed by the meta-model of the
used programming language and exemplified above – and
semantic dependencies – that depend on domain knowl-
edge. ChEOPS supports the former in an automatic way
and the latter by allowing the grouping of change objects in
sets that represent features – denoted by the rounded squares
surrounding change objects.
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Figure 4. (left) Restore source code, (middle)
Logging source code, (right) change objects

Figure 4 shows two extra features: Restore allows
the buffer to restore its previous value, Logging makes
sure that all methods of the buffer are logged when ex-
ecuted. Notice the dashed line surrounding Logging’s
changes: It not only denotes that these changes implement
the Logging feature, but also that Logging is a flexible
feature. The difference between flexible (dashed lines) and
monolithic features (full lines) is that the latter can only be
applied as a whole, while the former can be applied par-
tially. This information is used to verify whether a feature
composition is valid, as elaborated on in the next section.

2.3 Software composition

In our model, a feature composition is valid if the union
of the change sets that implement the features in that com-
position does not contain a change that has a dependency
to a change object that is not in the composition. Follow-
ing this definition, adding a flexible feature (like Logging)
to a composition is always possible, as the change objects
from such feature could be excluded from the composition
in case they would have a dependency to a change object
that is not in the composition.

Change objects and the dependencies amongst them can
be visualised by a directed graph. The left side of Figure 5
shows the graph of the Buffer with the Restore and
Logging features. The colors of the change objects de-

note the semantic dependencies that exist between them.
Change objects with a red full line belong to the monolithic
Restore feature. Change objects with a blue dashed line
belong to the flexible Logging.
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Figure 5. Composition based on first-class
changes

The right part of Figure 5 presents a composition of a
Buffer with Logging. L12 and L15 would cause the
composition to be invalid (according to the definition of va-
lidity given above). The problem is that those changes re-
spectively depend on R1 and R2 which are not in the com-
position. The semantic information stating that the Log-
ging feature is flexible, allows the exlusion of L12 and L15
from the composition. This results in a valid composition
{B1, B11, B12, B13, B121, B131, L1, L11, L13, L14}
that specifies a buffer with a logging feature. The informa-
tion about what changes are not going to be applied (L12
and L15) and the information about changes that should be
added (R1 and R2) for the composition to be valid can be
presented to the developer in order to assist in producing a
valid composition.

3 Advantages

We see three advantages in the specification of fea-
tures in terms of fine-grained first-class change objects:
increased expressiveness, improved composability and a
novel bottom-up approach to FOP.

In comparison with state-of-the-art approaches to FOP,
which allow the specification of features as a set of pro-
gram building blocks that might extend or modify existing
building blocks, our approach allows a more expressive fea-
ture specification. Features do not only express the build-
ing blocks that implement a feature, but also how that fea-
ture can be added to a software composition. Next to that,
features can express changes up to statement level, which
is more fine-grained than the state-of-the-art (only allow-
ing the expression of addition or modification on class or
method level). Finally, features can include the deletion of
certain building blocks, which is not supported by the state-
of-the-art.

The dependencies between change objects provide the
fine-grained information that is required to verify whether a
certain feature composition is valid. The notions of mono-
lithic and flexible features allow distinguishing between



change sets that must be applied as a whole (the former)
or that can be applied partially (the latter). This semantic
information allows for more flexible compositions than the
state-of-the-art approaches to FOP.

The final advantage of specifying features by change ob-
jects is that it enables a methodology for a bottom-up ap-
proach to FOP. Instead of having to specify a complete de-
sign of a feature oriented application before implementing
it (top-down), our approach allows the development of such
an application in an incremental way. Some state-of-the-art
approaches also provide an implementation of this bottom-
up approach. In [15], Liu shows that the ATS can be used to
do so by manually annotating all building blocks with infor-
mation that denotes the feature that building block belongs
to. That is a tedious task in comparison to our approach.

4 Conclusions

In this paper, we advocate feature oriented programming
(FOP) as the right development technique to modularize
software systems. We find the state-of-the-art approaches
to FOP not satisfactory and present an alternative approach
based on the specification of features by sets of change
objects rather than program building blocks. Features are
functions that can be applied to add the functionality they
implement.

We present a model of first-class changes which can
add, modify or delete building blocks to or from a software
system. We propose to specify features in terms of those
changes. This increases the expressiveness of features as
they can specify adaptations to fine-grained building blocks
(classes, methods, attributes and statements). The depen-
dencies between the change objects provide the necessary
information to validate feature compositions. Specifying
features this way allows a bottom-up approach to do FOP.
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