
Summary of the Third Workshop on Domain-Specific Aspect
Languages

Thomas Cleenewerck
Vrije Universiteit Brussel, PROG

Pleinlaan 2,
1050 Brussel, Belgium

tcleenew@vub.ac.be

Jacques Noyé
Ecole des Mines de Nantes

4, rue Alfred Kastler, BP 20722
44307 NANTES Cedex 3, France

Jacques.Noye@emn.fr

Johan Fabry
PLEIAD Lab

Computer Science Department
(DCC)

University of Chile
jfabry@dcc.uchile.cl

Anne-Françoise Lemeur
LIFL, ADAM Team
40, avenue Halley

59655 Villeneuve d’Ascq, France
lemeur@lifl.fr

Éric Tanter
PLEIAD Lab

Computer Science Department (DCC)
University of Chile

etanter@dcc.uchile.cl

1. Introduction to the workshop
The tendency to raise the abstraction level in programming
languages towards a particular domain is also a major driv-
ing force in the research domain of aspect-oriented program-
ming languages. As a matter of fact, pioneering work in
this field was conducted by devising small domain-specific
aspect languages (DSALs) such as COOL for concurrency
management, RIDL for serialization, RG, AML, and oth-
ers. After a dominating focus on general-purpose languages,
research in the AOSD community is again taking this path
in search of innovative approaches, insights and a deeper
understanding of fundamentals behind AOP. Based on the
successful DSAL06 and DSAL07 workshops, and the spe-
cial issue of IET Software journal on Domain-Specific As-
pect Languages, this workshop series continues to support a
growing trend in AOSD research.

The workshop aims to bring the research communities of
domain-specific language engineering and domain-specific
aspect design together. In the previous successful editions
held at GPCE06/OOPSLA06 and AOSD07 we approached
domain-specific aspect languages both from a design and a
language implementation point of view. New for this edition
is that we explicitly invited contributions of work on adding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop DSAL ’08 April 1st, 2008 Brussels, Belgium.
Copyright c© 2008 ACM 978-1-60558-146-0. . . $5.00

domain-specific extensions (DSXs) to general-purpose as-
pect languages (GPALs). The focus on language embedding
raises specific issues for language designers, such as proper
symbiosis between, and composition of, DSXs.

We sought contributions related to domain-specific aspect
languages, more particularly (but not limited to):

• design of DSALs and DSXs
• successful DSALs, DSXs and their applications
• issues in both design and implementation of DSALs and

DSXs
• methodologies and tools suitable for creating DSALs and

DSXs
• semantics and composition of DSALs and DSXs
• disciplined approaches for invasive metaprogramming
• error reporting in DSALs and debugging of DSALs
• approaches for composable language embeddings
• mechanisms for interaction detection and handling in

DSALs
• theoretical foundations for DSALs
• analysis about the specificity spectrum in aspect lan-

guages
• key challenges for future work in the area

The remainder of this workshop summary is structured
as follows. Section 2 gives an overview of all the papers pre-
sented at the workshop, which are divided in two groups: de-
sign and implementation of DSALs, and experience reports.

The workshop discussions are summarized in Section 3. In
the three main discussions we defined what constitutes a
DSAL, we investigated how domain-specificness surfaces in
DSALs and what design criteria are used when an imple-
mentation approach for DSALs is selected.

2. Presented Papers
The papers which were presented at the workshop can be di-
vided into two groups.The first group of papers deals with is-
sues in the design and implementation of DSALs and DSXs,
while the second group discusses about experiences of de-
signing particular DSALs and DSXs.

2.1 Design & Implementation Issues
Common to the papers in this group is they all are concerned
with the issue of composability. This quality is approached
from different perspectives ranging from a single to multiple
DSALs and from an implementation point of view to a
language design point of view. Each paper offers a tool in
which a disciplined approach for invasive metaprogramming
is used to design and implement DSALs and DSX.

• “Prototyping and Composing Aspect Languages using
an Aspect Interpreter Framework” by Wilke Havinga,
Lodewijk Bergmans, Mehmet Aksit [HBA08].
This invited talk investigates the composability among
different DSALs by offering an aspect interpreter frame-
work. The challenge is to offer support that is general
enough to express the DSALs and their interactions.

• “Modularizing Invasive Aspect Languages” by Thomas
Cleenewerck, Theo D’Hondt (Technical Paper) [CD08].
In this paper composability of domain-specific aspect
language constructs of a single DSAL is investigated by
focussing on the modularization of the implementation of
each language construct. The challenge of modularizing
the constructs lies in expressing the composition of the
invasive semantics of each language construct in a mod-
ular fashion.

• “Dynamically Linked Domain-Specific Extensions for
Advice Languages” by Tom Dinkelaker, Mira Mezini
(Technical paper) [DM08].
Composability is approached in this paper from the ex-
tensibility point of view. An implementation technique
is demonstrated in which specific DSX can be easily de-
fined to serve as advice languages in aspect languages.
The challenge is to embed the language extensions and
coordinate their execution.

• “A DSL to Declare Aspect Execution Order” by Antoine
Marot, Roel Wuyts (Short paper) [MW08].
One particular facet of composability is the execution or-
der. In this position paper, the authors identified some
problems and postulated a possible solution for the de-
sign of DSALs that should improve composibility.

2.2 Design & Implementation Experience
Experiences drawn from the designing of particular DSALs
and DSXs have again proven to be very valuable for assess-
ing the pros and cons of DSALs and DSX and for driving
the workshop discussions.

• “Towards a DSAL for Object Layout in Virtual Ma-
chines” by Stijn Timbermont, Bram Adams, Michael
Haupt (Short paper) [TAH08].
This position paper argues in favor of the design of a
DSAL to handle the tangled object layout concern in vir-
tual machines. The language being proposed explores the
boundaries of DSALs as it does not prevent the scattering
but rather allows modular reasoning over scattered code
fragments.

• “Towards a Domain-specific Aspect Language for Leas-
ing in Mobile Ad hoc Networks” by Elisa Gonzalez
Boix, Thomas Cleenewerk, Jessie Dedecker, Wolfgang
De Meuter (Short paper) [GBCDM08].
This paper motivates that leasing code in distributed ap-
plications is a complex crosscutting concern, consisting
of many subconcerns which, in turn, are also tangled and
scattered. The authors present a DSX rather than a new
DSAL and shows that event-based AOP (a natural fit in
an asynchronous computational model) introduces chal-
lenging design issues.

• “A Domain-specific Language for Parallel and Grid
Computing” by João L. Sobral, Miguel P. Monteiro
(Short Paper) [SM08].
The DSAL presented in this paper aims to promote the
localization of parallelization and gridification issues into
well-defined modules. Interestingly, it also contains the
main motivations for implementing the DASL on top of
AspectJ.

Each of these papers is contained in this workshop pro-
ceedings volume.

3. Discussions
The workshop hosted three main discussions. First, we de-
fined what constitutes a DSAL, second, we investigated how
domain-specificity surfaces in DSALs and, third, we listed
the design criteria that are used when an implementation ap-
proach for DSALs is selected.

3.1 Defining DSALs
There were a couple of papers that challenged the boundaries
of what constitutes a DSAL and what not. Timbermont et.al
[TAH08] argued that that DSALs can be used to merge and
reason about domain-specific object layout descriptions of
VMs. This language does not have pointcuts and does not
separate the concern. So the question, also stated by the
authors, is: when is a DSAL not a just a plain DSL? A similar
question was raised through the work of Dinkelaker and

Mezini [DM08] where DSLs are used to define advices of
aspects. In contrast, Gonzalez et.al [GBCDM08] based their
language on general-purpose event-based AOP. So when
is a DSAL not just a GPAL? Lastly, Sobral et.al. [SM08]
implemented their DSAL on top of AspectJ. Does this imply
that these DSAL programs, from an implementation point of
view, are no longer crosscutting in nature?

These questions led to quite vivid discussions on what is
a DSAL. The outcome of this discussion led to the following
definition of a DSAL.

Conjecture 1. A DSAL is a DSL for expressing crosscut-
ting concerns, more formally a DSL whose programs are
non-functionally composed with other programs.

In function(al) composition defined by the mathematical
operator ◦, values are provided to a unit of computation (i.e.
a module, a function, etc.) and are subsequently processed
in order to produce several other values. Computations are
thus solely parameterized. In non-functional composition it
is not sufficient to only pass values to change the outcome
of the computation but the computation itself needs to be
changed. Aspects are an example of this style. They cannot
be composed in a “mere” functional style, because they need
to change the behavior of other computations.

The main characteristic of the implementation techniques
for aspects is that they all operate at the meta-level in or-
der to change the behavior of other modules. In the dis-
cussion some border cases were discussed, e.g. monads.
Monads capture a frequently reoccurring pattern in func-
tional programs to control the composition of functional
computations. It has been shown that monads are expres-
sive enough to implement aspects [DM97]. Moreover, mon-
ads are implemented with higher-order functional program-
ming. So, monads seem to implement aspects by “mere”
functional composition. However, this is not entirely true
because in order to benefit from the improved composition
possibilities provided by monads, programs need to be writ-
ten in monadic style. More concretely, a program needs to
be rewritten using the monad abstraction so that it can be
composed with monads implementing extensions [Wad92].
Monads thus introduce an extra “parameter” to the program,
and are used to expose hooks within the execution of a func-
tional program. By exploiting these hooks, aspects can be
implemented as a monad that extends the execution of the
base program. Clearly, although monads are functional, an
additional meta operation is necessary to transform the pro-
grams involved in a composition.

Further elements of discussion were the following:

DSL From our conjecture of what constitutes a DSAL we
can conclude that composition is an inherent and distin-
guishing characteristic of DSALs in comparison to DSLs.
Despite the emphasis on composition with another pro-

gram, the conjecture does not distinguish between sym-
metrical and asymmetrical AOP approaches. Like most
GPALs, most DSALs are asymmetric. In this case, the
program produced by a DSAL cannot be executed. How-
ever, a DSAL may also yield an executable program but
which is then nevertheless composed with another pro-
gram.

GPAL The conjecture does not explicitly mention GPALs.
Instead we get a unambiguous definition of DSALs.
Moreover, it avoids a number of confusions. The first
confusion may arise when using a GPAL to implement
the DSAL. In such a case, although a domain-specific
aspect is compiled into a single module the DSAL never-
theless remains an aspect language dealing with a cross-
cutting concern. The second confusion may arise when
comparing other common characteristics of GPALs with
those of DSLs. One of them is declarativity. DSALs are
not always more declarative. Like in DSLs declarative-
ness is not a necessary condition nor a sufficient one.
The third and last remark is about the separation between
pointcut and advice. In GPALs these are commonly very
clearly separated. In DSALs this is not always the case.
See the next section for a more elaborate discussion.

Inversion of Control Dependency inversion and depen-
dency injection are patterns to invert the dependency
relations between modules. However, in each of those
patterns, modules are still parameterized with other de-
pendent modules or execution control is directed by new
modules.

Separation Separation of concerns is an important quality
of GPALs. This is also the case for DSAL. It is implicitly
part of the conjecture as an external specification is non-
functionally composed with another module by changing
the behavior of that module.

CSL Concern-specific languages (CSL) are often confused
with DSALs. Like DSALs, concerns can be stand-alone
programs. Unlike DSALs, concern-specific languages
also encompass non crosscutting concerns which can
be composed using functional composition techniques.
This means that DSALs are CSLs but not the other way
around.

Other relations with existing terminology and techniques
may need to be investigated. One of them, which was iden-
tified, but not further discussed, is invasive composition.

3.2 Joinpoints, Pointcuts and Advice in DSALs
We observed that, in the past edition, including this one, only
a small amount of work in the DSAL community has focused
on domain-specific pointcuts. DSALs use either simple
domain-specific pointcuts like in [SM08], or revert to GPAL
solutions like in [DM08], or mix both like in [GBCDM08].
One exception this year was the work in [CD08] where
pointcuts are defined in terms of the concepts from the do-

Joint-point Model Pointcut Advice
Domain-specific Domain-specific Domain-specific

(1)

(2)

(3)

(4)

Figure 1. Overview of the argumentation for Conjecture 2.

main of the aspect language in order to modularly compose
the semantics of DSAL constructs. Moreover, similarly to
the early aspect languages such as COOL [Lop97], in some
current DSAL proposals such as [TAH08] the separation
between poincuts and advice is not very clear.

To summarize, the question is how does the domain-
specific nature surface in DSALs. Concerning the relation
of joinpoints, pointcuts and advice in DSALs it is our con-
jecture that:

Conjecture 2. A DSAL must at least provide a domain-
specific join point model, domain-specific pointcuts or
domain-specific advice.

Joint-point Model A joint-point model defines a set of exe-
cution events e.g. execution of a method within an object.
In some cases, these models also capture the time when
an event occurs e.g. before the execution of a method.

Pointcuts A pointcut is a predicate selecting a number of
join points. Quantification is a part of a pointcut offering
operators to specify the quantity of individual join points.

Advice An advice is the action that is taken when an event
occurs. In case of execution events, advices also need to
stipulate when they are executed e.g. before or after.

Figure 1 sketches an argumentation for the above conjec-
ture. Each crossed arrow depicts a ”does not imply” rela-
tionship. For example, a domain-specific pointcut does not
imply a domain-specific join point model. Given all these
relationships, we can conclude that a domain-specific joint-
point model, pointcut or advice can independently be made
domain specific from one another. Hence, it suffices for a
DSAL to make at least one of these three domain specific.

These three parts of a DSAL can be independently made
domain-specific because:

(1) The expression of a pointcut can be domain specific,
while relying on a GPAL pointcut model. An example of
this can be found in KALA [FTD08]. A KALA pointcut
has the form of a method signature (with AspectJ-like
wildcard support). KALA however uses the AspectJ join-
point model: this pointcut identifies both the execution of

the corresponding method, as well as calls to getter and
setter methods in this method.

(2) GPAL predicates are domain independent. They can thus
also be applied to domain-specific join-point models. For
example, trivial sets can be computed like the entire set or
the empty set. A less academic example is the selection
of one join point by referring to its name e.g. in a simple
DSAL for workflows a single action can be selected.

(3) Domain-specific advices are often used in conjunction
with GPAL predicates. An example of such a language is
COOL [Lop97].

(4) Predicates select elements from the domain-specific
joint-point model. This does not imply any relationship
to how the advice is specified.

Let us remark that during the workshop we did not
discuss the relation between domain-specific advices and
domain-specific joint-point models. In particular, does a
domain-specific joint-point model imply a domain-specific
advice?

3.3 Tool support
In the past, DSALs have been implemented from scratch
by ad-hoc implementation approaches. It is only quite re-
cently that implementation toolkits are becoming available
for DSALs. We distinguish between three implementation
approaches:

1. Implementations on top of or in a GPAL like AspectJ or
extensible GPALs such as LMP [BMV02].

2. Implementations using general language development
approaches such as Stratego [FTD08], JastAdd [AET08],
LTS [CD08].

3. Implementations using dedicated toolsuites. Compile-
time approaches such as Josh [CN04], Aspect-
Bench [ACH+05], load-time approaches such as
Reflex [FTD08], or run-time approaches based on
interpreters such as the ones presented by Havinga et
al. [HBA08] and Dinkelaker and Mezini [DM08].

What conscious design criteria based on engineering
qualities and implementation mechanisms are being used
when choosing an implementation approach?

A somewhat remarkable result that surfaced during the
discussions is that AspectJ is frequently chosen, despite its
well-known limitations. The main reasons for this choice are
that research results can be more easily communicated, and
it is a robust and efficient tool that is well supported. The
most important downside to AspectJ for DSAL development
is its closed nature. This makes it hard to impossible to,
e.g. have a domain-specific joinpoint model that requires
joinpoints that are not captured by AspectJ.

AspectJ also serves as an easy reference to compare fea-
tures. The downside is that a lot of approaches that tackled
some its limitations are not always referenced to compare

features. In order to boost the research results of this com-
munity we concluded that alternative approaches should be
more accessible. As such their correctness and effectiveness
can be more easily and reliably checked. They should also
be more flexible for extensions.

Acknowledgments
The organizers wish to thank the following workshop at-
tendants for participating in the workshop: Elisa Gonzalez,
Stijn Timbermont, Antoine Marot, Miguel P. Monteiro, Tom
Dinkelaker, Wilke Havinga, João L. Sobral, Edgar Souse,
Jenny Munnely, and Oscar Gonzalez.

References
[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie

Hendren, Sascha Kuzins, Jennifer Lhoták, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. ABC: an extensi-
ble AspectJ compiler. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-
oriented software development, pages 87–98, New
York, NY, USA, 2005. ACM.

[AET08] Pavel Avgustinov, Torbjörn Ekman, and Julian
Tibble. Modularity first: a case for mixing AOP
and attribute grammars. In AOSD ’08: Proceedings
of the 7th international conference on Aspect-
oriented software development, pages 25–35, New
York, NY, USA, 2008. ACM.

[BMV02] Johan Brichau, Kim Mens, and Kris De Volder.
Building composable aspect-specific languages
with logic metaprogramming. In GPCE ’02:
Proceedings of the 1st ACM SIGPLAN/SIGSOFT
conference on Generative Programming and
Component Engineering, pages 110–127, London,
UK, 2002. Springer-Verlag.

[CD08] Thomas Cleenewerck and Theo D’Hondt. Mod-
ularizing Invasive Aspect Languages. In DSAL
’08: Proceedings of the 3rd Workshop on Domain-
specific Aspect Languages, New York, NY, USA,
2008. ACM.

[CN04] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an
open AspectJ-like language. In Gail C. Murphy
and Karl J. Lieberherr, editors, AOSD, pages 102–
111. ACM, 2004.

[DM97] Wolfgang De Meuter. Monads as a theoretical
foundation for AOP. International Workshop
on Aspect-Oriented Programming at ECOOP’97,
1997. ftp://prog.vub.ac.be/tech report/1997/vub-
prog-tr-97-10.pdf.

[DM08] Tom Dinkelaker and Mira Mezini. Dynamically
Linked Domain-Specific Extensions for Advice
Languages. In DSAL ’08: Proceedings of the 3rd
Workshop on Domain-specific Aspect Languages,
New York, NY, USA, 2008. ACM.

[FTD08] Johan Fabry, Eric Tanter, and Theo D’Hondt.
KALA: Kernel aspect language for advanced trans-
actions. Elsevier Science of Computer Program-
ming, 2008. http://dx.doi.org/10.1016/j.scico.2007.10.004.

[GBCDM08] Elisa Gonzalez Boix, Thomas Cleenewerk, Jessie
Dedecker, and Wolfgang De Meuter. Towards a
Domain-Specific Aspect Language for Leasing
in Mobile Ad hoc Networks. In DSAL ’08:
Proceedings of the 3rd Workshop on Domain-
specific Aspect Languages, New York, NY, USA,
2008. ACM.

[HBA08] Wilke Havinga, Lodewijk Bergmans, and Mehmet
Aksit. Prototyping and composing aspect lan-
guages – using an aspect interpreter framework. In
Proceedings of the 22nd European Conference on
Object-Oriented Programming, ECOOP08, 2008.

[Lop97] Cristina Videira Lopes. D: A Language Framework
For Distributed Programming. PhD thesis, College
of Computer Science of Northeastern University,
1997.

[MW08] Antoine Marot and Roel Wuyts. A DSL to declare
aspect execution order. In DSAL ’08: Proceedings
of the 3rd Workshop on Domain-specific Aspect
Languages, New York, NY, USA, 2008. ACM.

[SM08] João L. Sobral and Miguel P. Monteiro. A
Domain-Specific Language for Parallel and Grid
Computing. In DSAL ’08: Proceedings of the 3rd
Workshop on Domain-specific Aspect Languages,
New York, NY, USA, 2008. ACM.

[TAH08] Stijn Timbermont, Bram Adams, and Michael
Haupt. Towards a DSAL for Object Layout in
Virtual Machines. In DSAL ’08: Proceedings
of the 3rd Workshop on Domain-specific Aspect
Languages, New York, NY, USA, 2008. ACM.

[Wad92] Philip Wadler. Comprehending Monads. Math-
ematical Structures in Computer Science, 2(4),
1992. (Special issue of selected papers from
6’th Conference on Lisp and Functional Program-
ming.).

